US3862715A - Centrifuge for the interacting of continuous flows - Google Patents

Centrifuge for the interacting of continuous flows Download PDF

Info

Publication number
US3862715A
US3862715A US257081A US25708172A US3862715A US 3862715 A US3862715 A US 3862715A US 257081 A US257081 A US 257081A US 25708172 A US25708172 A US 25708172A US 3862715 A US3862715 A US 3862715A
Authority
US
United States
Prior art keywords
rotor
reaction vessel
axis
rotation
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US257081A
Inventor
Carl J Remenyik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US257081A priority Critical patent/US3862715A/en
Application granted granted Critical
Publication of US3862715A publication Critical patent/US3862715A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/04Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
    • B04B5/0442Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/04Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
    • B04B5/0442Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation
    • B04B2005/0464Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation with hollow or massive core in centrifuge bowl

Definitions

  • ABSTRACT A liquid centrifuge rotor for inducing the interaction of a plurality of substances flowing continuously therethrough, separating products that result from this interaction and continuously removing these products.
  • Plural flow passages arranged as concentric cylinders near the periphery of the rotor, are interconnected with either porous walls or open portions in the walls for controlling velocities of radial flow between flow passages. The design thus permits countercurrent axial flow as well as radial cross-flow.
  • Applications of this rotor are described for the continuous separation of particulate blood components via centrifugation combined with plasma cross-flow, and the oxygenation of blood as in a heart-lung machine.
  • Centrifuges for separating the particulate components of blood are described in reports submitted by Abcor, Inc., Cambridge, Mass, to the National Cancer Institute, N.I.H., under Contract NIH-20-2239.
  • the fundamental centrifuge for these studies is Model CL manufactured by International Equipment Corporation.
  • a similar centrifuge was utilized in a research contract between International Business Machine Corp. and the National Cancer Institute.
  • Continuous flow centrifuge rotors of the prior art generally fall into one of three classes. In all of these types, entrance and exit is made at or near the axis of rotation. frequently at both ends.
  • the separation chamber is essentially parallel to the axis of rotation, often a cylindrical chamber located at some distance from the axis. During passage of fluid through this chamber, dense suspensions tend to concentrate at or near the outer wall of the chamber and less dense ones. closer to the axis of rotation.
  • One or more of these fractions may be individually removed by several conventional techniques after separations have been completed.
  • the reaction vessel or chamber is essentially oriented in a radial position within the rotor.
  • the more dense fractions are left at the position farthest from the axis, and the less dense fractions leave with the carrier liquid at or near the axis.
  • the more dense fractions may later be removed by a separate flow of fluid through the rotor.
  • a third, or intermediate, class of rotors has separation chambers in the rotors such that the principal flow directions are inclined at angles, to the axis, between and 90.
  • centrifuges from which separated blood components (red blood cells, white blood cells and plasma) are removed continuously have unsatisfactory efficiencies, usually less than about 20%. Furthermore, may types of desired interactions are not possible in these prior art devices.
  • FIG. I is a vertical sectional drawing, in schematic form, of a centrifuge rotor to accomplish the interacting of at least two continuous flows of fluids;
  • FIG. 2 is an enlarged sectional drawing of a portion of the rotor of FIG. 1 taken at 22 thereof.
  • My improved centrifuge rotor is an elongate cylinder having a plurality of slender concentric vessels arranged near the periphery thereof.
  • Plural inlet and outlet ports are provided at one or both ends of the rotor, near to and concentric with the axis of rotation, whereby two or more fluids may be passed continuously through adjacent vessels.
  • Small openings between the concentric vessels permit radial flow, inward or outward, to control the radial velocity of fluids to induce the interaction between the plural fluids and the removal of certain products of the interaction. Separation of the products is achieved by the combined centrifugal field acting upon components of differing densities and by drag forces produced by the cross-flow.
  • a rotor body 10 is caused to be rotated about axis of revolution 11 by any suitable means including conventional bearings, seals and drive motor (not shown).
  • a first fluid inlet 12 is positioned on the axis at either end of body 10 (shown here at the bottom) and communicates with radially-extending passageway 13 leading to a primary slender cylindrical reaction vessel 14.
  • slender I mean having a radial dimension that is small with respect to the axial dimension.
  • the upper end of reaction vessel 14 connects to radial passageway 15 which, in turn, connects with outlet 16 on the axis 11 at the top of body 10.
  • a second fluid inlet 17 is concentric with outlet 16 and communicates with passageway 18 leading to slender cylindrical chamber 19.
  • the vessel 14 and chamber 19 are separated by a wall 22.
  • Small interconnections 20, 21 in wall 22 between chamber 19 and reaction vessel 14 join chamber 19 to reaction vessel 14 on either side of a constriction formed by ridge 23 projecting into vessel 14.
  • the ridge 23 may extend into reaction vessel 14 from either the inner or outer wall thereof.
  • Similar small interconnections 24, 25 through a wall 37 join reaction vessel 14 to an inwardly disposed slender cylindrical chamber 26 for purposes discussed below.
  • An outer slender concentric channel 27 is connected to reaction vessel 14, by passageway 28, on the upstream side of the ridge 23, and additional channels 29, 30 connect to vessel 14 for purposes described hereinafter.
  • Channel 27 and channel 29 connect to a common passageway 31 leading to an outlet 32 concentric with outlet 16.
  • Channel 30 connects with passageway 33 which, in turn, connects with concentric outlet 34.
  • the rotor of my design may be fabricated from any material which is compatible with the fluids to be utilized in the separations. Since the rotor is not intended for high-speed operation, even certain inert plastics may be utilized to simplify fabrication procedures. Alternatively, the bulk of the rotor may be fabricated of either metal or plastic, with all cavity surfaces coated with unreactive materials. Typically, the rotor may be fabricated in several portions to produce the required cavities and thereafter the portions joined to create the entire rotor. In order to minimize the number of rotary seals, all inlets and outlets for the rotor preferably may be at one end of the rotor.
  • Theppenings or pores 20, 21 24 and 25 are in the form of inserts of sheets of porous materials or like materials. The pore size is greater than the size of red blood cells which is about 7-8;.L. Thus the pore size is about 101.1. or greater.
  • the space between walls in vessel 14 and chambers 19, 26 may vary typically between 1 mm and mm. To meet external constraints, rotor lengths may be 15 to 50 cm and diameters 10 to cm. A typical rotor speed is 1000 rpm. It will be recognized that exact parameters of size and speed are determined by particular applications of my rotor design.
  • FIG. 2 is an enlarged portion of a transverse section taken through the rotor at 22 of FIG. 1 perpendicular to the axis of rotation of rotor 10.
  • the details of the passages are more clearly illustrated in this enlargement.
  • the wall 22 between channel 19 and reaction vessel 14 is made up of a plurality of generally teardrop shaped sections 35 to thereby form radiallyoriented channels 36 running in an axial direction.
  • the portion of channels 36 most distant from the axis of rotor 10 are narrow, and interconnections or pores 21 communicate to these channels at that point.
  • channel 36 is chosen to produce the proper radial (inward) velocity gradient to fluids entering the periphery of the channel whereby drag forces are produced on particles attempting to move radially outwardly.
  • the pores 21 act as diffusers to give the high initial velocity. Reduced velocity and thus drag forces exist inward from that radius due to the widening of channel 36, as shown. The effect of this construction will become more apparent from the hereinafterdescribed separation of particulate blood components.
  • reaction vessel 14 and concentric chambers 19, 26, and channel 27 are illustrated as being completely annular in rotor 10. While this may be preferred for high volume flow through the rotor, these elements may also be subdivided by axiallyextending septa if desired for fabrication requirements. Likewise, the radially-extending passageways, e.g., 13, may be subdivided.
  • the rotor of my design may be utilized for inducing many interaction reactions such as those between whole blood and blood components.
  • Typical is the separation of particulate blood components from whole blood by centrifugation with plasma cross-flow.
  • whole blood is introduced into reaction vessel 14 through inlet I2 and passageway 13, while plasma is fed through inlet 17 and passageway 18 into chamber 19.
  • Plasma flows through the openings (small pores) 21 to mix with the whole blood in vessel 14.
  • large rouleaux (aggregate) of red blood cells separate from the whole blood stream and collect along the outer wall of reaction vessel 14 (in channels 36) in a band designated as A in FIG. 2. These then move axially and are withdrawn through passageway 28 into channel 27 where they later leave the rotor 10 through outlet 32.
  • a whole blood flow rate into the rotor is about ml/min. and the recirculating plasma feed rate is about 200 ml/min.
  • These fluids are subjected to a centrifugal acceleration force of about 50G I to bring about the intereaction and the subsequent separation of the components as described above.
  • a further application of my rotor design, in a simplified form, is that of performing the functions ofa heartlung machine.
  • the ridge 23 is not required nor are the majority of various channels to re ceive separated components.
  • the whole blood is pumped into reaction vessel 14, as above.
  • An oxygenrich liquid of lower density than the whole blood, such as oxygenated plasma, is admitted into chamber 19 where it then passes inwardly through pores 20, 21 to perfuse the blood, thereby exchanging oxygen to the red blood cells.
  • Oxygen-depleted liquid leaves the blood stream through pores 24, 25 into chamber 26.
  • Oxygenated blood then leaves the rotor through channel 29 (and outlet 32) and the oxygen depleted liquid is removed through outlet 16.
  • the centrifugal field accelerates the exchange of oxygen by accelerating the transition of the oxygen-rich liquid (plasma) through the whole blood. This then reduces the amount of blood that is outside a patient at any one time.
  • any treatment of blood particularly where all or portions thereof are to be reinjected into patients, care must be exercised to minimize (preferably prevent) contact with an adverse environment such as gases, e.g., air. Otherwise there is a detrimental reaction between the blood and the gases, resulting in cell deterioration, as well as the entrapment of gas bubbles in the blood, causing embolism.
  • an adverse environment such as gases, e.g., air.
  • gases e.g., air
  • my rotor design blood is not exposed to air or other gas interface at any time.
  • Prevention of contact is accomplished by first filling (and flushing) the rotor passages with a fluid which is compatible with blood constituents. This fluid may be, for example, additional blood plasma. A flow of whole blood then displaces the plasma and the abovedescribed procedures are carried out.
  • the desirable products from my rotor may be used directly for patients permitting a closed flow-path from the patient back to the patient or from a donor back to a patient and to the donor as desired.
  • Appropriate pumps would be combined with my centrifuge to bring about the desired flow.
  • a centrifuge rotor for effecting interaction between continuously flowing first and second liquid streams and for continuously removing the products of the interaction, which comprises: a cylindrical rotor body symmetrical about an axis of rotation; a slender annular reaction vessel within the rotor body coaxial with the axis of rotation; a first liquid inlet to the rotor body; an axially-symmetrical first inlet passage peripherally connecting the first inlet with one end of the reaction vessel for uniformly and continuously admitting the first liquid; a slender annular first chamber within the body coaxial with the reaction vessel and spaced farther from the axis of rotation; a second liquid inlet to the rotor body; a second inlet passage peripherally connecting the second inlet with the first chamber for uniformly and continuously admitting the second liquid; a plurality of radially-oriented first openings interconnecting the first chamber and the reaction vessel whereby the second liquid is continuously in cross-flow relationship with the first liquid to bring about interaction therebetween; an axially-symmetrical first outlet passage
  • the rotor of claim 1 further comprising a plurality of axially-extending channels in the reaction vessel along a wall farthest removed from the axis of rotation, the peripheral width of these channels decreasing at increased distances from the axis of rotation; and wherein the first openings from the first chamber communicate with the most .convergent portion of the channels.
  • the rotor of claim 2 further comprising: an annular ridge extending radially from one wall of the reaction vessel in a plane perpendicular to the axis of rotation; and an axially-symmetrical third outlet passage peripherally connected to the reaction vessel at a position between the annular ridge and the first inlet passage, the third outlet being at a greater distance from the axis of rotation than the second outlet.
  • the rotor of claim 2 further comprising a slender annular second chamber coaxial with the reaction vesse] and spaced toward the axis of rotation from the reaction vessel, and a plurality of radially-oriented second openings interconnecting the reaction vessel and the second chamber.
  • the rotor of claim 4 wherein the radial dimension of the reaction vessel and the first and second chambers is about 1 to 5 mm, wherein the rotor axial length is about 15 to 50 cm and wherein the size of the first and second openings is at least 10 u.

Abstract

A liquid centrifuge rotor for inducing the interaction of a plurality of substances flowing continuously therethrough, separating products that result from this interaction and continuously removing these products. Plural flow passages, arranged as concentric cylinders near the periphery of the rotor, are interconnected with either porous walls or open portions in the walls for controlling velocities of radial flow between flow passages. The design thus permits countercurrent axial flow as well as radial cross-flow. Applications of this rotor are described for the continuous separation of particulate blood components via centrifugation combined with plasma cross-flow, and the oxygenation of blood as in a heart-lung machine.

Description

United States Patent [1 1 Remenyik 1 Jan. 28, 1975 1 1 CENTRIFUGE FOR THE lNTERACTlNG OF CONTINUOUS FLOWS 211 Appl. No.: 257,081
Primary Examiner-George H. Krizmanich Attorney, Agent, or FirmMartin .1. Skinner [57] ABSTRACT A liquid centrifuge rotor for inducing the interaction of a plurality of substances flowing continuously therethrough, separating products that result from this interaction and continuously removing these products. Plural flow passages, arranged as concentric cylinders near the periphery of the rotor, are interconnected with either porous walls or open portions in the walls for controlling velocities of radial flow between flow passages. The design thus permits countercurrent axial flow as well as radial cross-flow. Applications of this rotor are described for the continuous separation of particulate blood components via centrifugation combined with plasma cross-flow, and the oxygenation of blood as in a heart-lung machine.
CENTRIFUGE FOR THE INTERACTING OF CONTINUOUS FLOWS BACKGROUND OF THE INVENTION The art of continuous-flow liquid centrifuges has been advanced substantially in recent years whereby rather intricate analytical-type methods may be easily accomplished. Typical of the centrifuges for these purposes are described in U.S. Pat. Nos. 3,536,253, 3,547,547 and 3,556,967. Additional information is described in the National Cancer Institute Monograph 2 l. The Development of Zonal Centrifuges and Ancilliary Systems for Tissue Fractionation and Analysis, US Dept. of Health, Education and Welfare, Public Health Service. Other pertinent references are: The Ultracentrifuge, T. Svedberg and K. O. Pedersen, Oxford University Press, Oxford, England (1940); and Counter-Streaming Centrifuge for the Separation of Cells or Cell Fragments of Different Sizes," P. E. Lindahl and E. Nyberg, IVA; Tidskrift For Teknisk-Vetenskaplig Forskning, 26, p. 309 (I955).
Centrifuges for separating the particulate components of blood are described in reports submitted by Abcor, Inc., Cambridge, Mass, to the National Cancer Institute, N.I.H., under Contract NIH-20-2239. The fundamental centrifuge for these studies is Model CL manufactured by International Equipment Corporation. A similar centrifuge was utilized in a research contract between International Business Machine Corp. and the National Cancer Institute.
Continuous flow centrifuge rotors of the prior art generally fall into one of three classes. In all of these types, entrance and exit is made at or near the axis of rotation. frequently at both ends. In one class of rotor, the separation chamber is essentially parallel to the axis of rotation, often a cylindrical chamber located at some distance from the axis. During passage of fluid through this chamber, dense suspensions tend to concentrate at or near the outer wall of the chamber and less dense ones. closer to the axis of rotation. One or more of these fractions may be individually removed by several conventional techniques after separations have been completed.
In the second class of rotors, the reaction vessel or chamber is essentially oriented in a radial position within the rotor. Usually the more dense fractions are left at the position farthest from the axis, and the less dense fractions leave with the carrier liquid at or near the axis. The more dense fractions may later be removed by a separate flow of fluid through the rotor.
A third, or intermediate, class of rotors has separation chambers in the rotors such that the principal flow directions are inclined at angles, to the axis, between and 90.
In most continuous flow centrifuges, only the fluid carrying the unseparated mixture of suspensions is flowing continuously through the rotor. The various separated suspensions band in zones and remain there until the flow of the mixture is turned off. The position of the zones is determined by the densities and fluid mechanical properties of the suspended particles. These separated components of the mixture are removed from the rotor after the flow of the mixture has been interrupted.
Present centrifuges from which separated blood components (red blood cells, white blood cells and plasma) are removed continuously have unsatisfactory efficiencies, usually less than about 20%. Furthermore, may types of desired interactions are not possible in these prior art devices.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. I is a vertical sectional drawing, in schematic form, of a centrifuge rotor to accomplish the interacting of at least two continuous flows of fluids; and
FIG. 2 is an enlarged sectional drawing of a portion of the rotor of FIG. 1 taken at 22 thereof.
SUMMARY OF THE INVENTION My improved centrifuge rotor is an elongate cylinder having a plurality of slender concentric vessels arranged near the periphery thereof. Plural inlet and outlet ports are provided at one or both ends of the rotor, near to and concentric with the axis of rotation, whereby two or more fluids may be passed continuously through adjacent vessels. Small openings between the concentric vessels permit radial flow, inward or outward, to control the radial velocity of fluids to induce the interaction between the plural fluids and the removal of certain products of the interaction. Separation of the products is achieved by the combined centrifugal field acting upon components of differing densities and by drag forces produced by the cross-flow.
DETAILED DESCRIPTION Referring now to FIG. 1, a rotor body 10 is caused to be rotated about axis of revolution 11 by any suitable means including conventional bearings, seals and drive motor (not shown). A first fluid inlet 12 is positioned on the axis at either end of body 10 (shown here at the bottom) and communicates with radially-extending passageway 13 leading to a primary slender cylindrical reaction vessel 14. By slender I mean having a radial dimension that is small with respect to the axial dimension. The upper end of reaction vessel 14 connects to radial passageway 15 which, in turn, connects with outlet 16 on the axis 11 at the top of body 10. A second fluid inlet 17 is concentric with outlet 16 and communicates with passageway 18 leading to slender cylindrical chamber 19. The vessel 14 and chamber 19 are separated by a wall 22. Small interconnections 20, 21 in wall 22 between chamber 19 and reaction vessel 14 join chamber 19 to reaction vessel 14 on either side of a constriction formed by ridge 23 projecting into vessel 14. The ridge 23 may extend into reaction vessel 14 from either the inner or outer wall thereof. Similar small interconnections 24, 25 through a wall 37 join reaction vessel 14 to an inwardly disposed slender cylindrical chamber 26 for purposes discussed below.
An outer slender concentric channel 27 is connected to reaction vessel 14, by passageway 28, on the upstream side of the ridge 23, and additional channels 29, 30 connect to vessel 14 for purposes described hereinafter. Channel 27 and channel 29 connect to a common passageway 31 leading to an outlet 32 concentric with outlet 16. Channel 30 connects with passageway 33 which, in turn, connects with concentric outlet 34.
The rotor of my design may be fabricated from any material which is compatible with the fluids to be utilized in the separations. Since the rotor is not intended for high-speed operation, even certain inert plastics may be utilized to simplify fabrication procedures. Alternatively, the bulk of the rotor may be fabricated of either metal or plastic, with all cavity surfaces coated with unreactive materials. Typically, the rotor may be fabricated in several portions to produce the required cavities and thereafter the portions joined to create the entire rotor. In order to minimize the number of rotary seals, all inlets and outlets for the rotor preferably may be at one end of the rotor. Theppenings or pores 20, 21 24 and 25 are in the form of inserts of sheets of porous materials or like materials. The pore size is greater than the size of red blood cells which is about 7-8;.L. Thus the pore size is about 101.1. or greater.
The space between walls in vessel 14 and chambers 19, 26 may vary typically between 1 mm and mm. To meet external constraints, rotor lengths may be 15 to 50 cm and diameters 10 to cm. A typical rotor speed is 1000 rpm. It will be recognized that exact parameters of size and speed are determined by particular applications of my rotor design.
The concentric relationship of the various chambers with the reaction vessel 14 is illustrated also in FIG. 2 which is an enlarged portion of a transverse section taken through the rotor at 22 of FIG. 1 perpendicular to the axis of rotation of rotor 10. The details of the passages are more clearly illustrated in this enlargement. The wall 22 between channel 19 and reaction vessel 14 is made up of a plurality of generally teardrop shaped sections 35 to thereby form radiallyoriented channels 36 running in an axial direction. The portion of channels 36 most distant from the axis of rotor 10 are narrow, and interconnections or pores 21 communicate to these channels at that point. The shape of channel 36 is chosen to produce the proper radial (inward) velocity gradient to fluids entering the periphery of the channel whereby drag forces are produced on particles attempting to move radially outwardly. The pores 21 act as diffusers to give the high initial velocity. Reduced velocity and thus drag forces exist inward from that radius due to the widening of channel 36, as shown. The effect of this construction will become more apparent from the hereinafterdescribed separation of particulate blood components.
In the figures, reaction vessel 14 and concentric chambers 19, 26, and channel 27 are illustrated as being completely annular in rotor 10. While this may be preferred for high volume flow through the rotor, these elements may also be subdivided by axiallyextending septa if desired for fabrication requirements. Likewise, the radially-extending passageways, e.g., 13, may be subdivided.
The rotor of my design may be utilized for inducing many interaction reactions such as those between whole blood and blood components. Typical is the separation of particulate blood components from whole blood by centrifugation with plasma cross-flow. For this separation, and referring to FIGS. 1 and 2, whole blood is introduced into reaction vessel 14 through inlet I2 and passageway 13, while plasma is fed through inlet 17 and passageway 18 into chamber 19. Plasma flows through the openings (small pores) 21 to mix with the whole blood in vessel 14. Due to the centrifugal effects and the counter-acting radial component of the plasma stream, large rouleaux (aggregate) of red blood cells separate from the whole blood stream and collect along the outer wall of reaction vessel 14 (in channels 36) in a band designated as A in FIG. 2. These then move axially and are withdrawn through passageway 28 into channel 27 where they later leave the rotor 10 through outlet 32. Concurrently, plasma, platelets,
single red blood cells and small rouleaux of red blood cells pass through pores 25 into chamber 26.
The remaining portion of the blood stream in reaction vessel 14, as in band B of FIG. 2 which is primarily white blood cells and intermediate rouleaux of red blood cells, passes ridge 23 where remaining rouleaux are broken by shear forces. Additional plasma enters the stream through pores 20 and additional separation occurs as a function of centrifugation and drag forces. The white cells are the fastest sedimenting component in this region and are thus drawn off into channel 30 so as to leave rotor 10 thorugh outlet 34. Since the red cells are more dense than plasma, they sediment and are removed through channel 29 and flow, with the large rouleaux and some plasma, through passageway 31 and outlet 32. Remaining plasma then leaves through outlet 16.
' The separation and collection of white blood cells, as described above, is highly useful in the treatment of persons afflicted with leukemia. These persons often require the addition of the order of 10 white blood cells per day. This quantity of cells necessitates the processing, with presently available efficiencies of the prior art, of the order of 10 liters of blood or the equivalent of about 20 donors if batches of collected blood are to be processed. However, a healthy donor can spare that quantity of white blood cells if there is no substantial loss of red blood cells. Accordingly, my rotor can be utilized to continuously separate the particulate components of a donors blood and return the plasma and red blood cells to the donor without contact with any deleterious substance such as gases or chemicals.
For this separation, a whole blood flow rate into the rotor is about ml/min. and the recirculating plasma feed rate is about 200 ml/min. These fluids are subjected to a centrifugal acceleration force of about 50G I to bring about the intereaction and the subsequent separation of the components as described above.
A further application of my rotor design, in a simplified form, is that of performing the functions ofa heartlung machine. For this application, the ridge 23 is not required nor are the majority of various channels to re ceive separated components. The whole blood is pumped into reaction vessel 14, as above. An oxygenrich liquid of lower density than the whole blood, such as oxygenated plasma, is admitted into chamber 19 where it then passes inwardly through pores 20, 21 to perfuse the blood, thereby exchanging oxygen to the red blood cells. Oxygen-depleted liquid leaves the blood stream through pores 24, 25 into chamber 26. Oxygenated blood then leaves the rotor through channel 29 (and outlet 32) and the oxygen depleted liquid is removed through outlet 16. In this manner the centrifugal field accelerates the exchange of oxygen by accelerating the transition of the oxygen-rich liquid (plasma) through the whole blood. This then reduces the amount of blood that is outside a patient at any one time.
In any treatment of blood, particularly where all or portions thereof are to be reinjected into patients, care must be exercised to minimize (preferably prevent) contact with an adverse environment such as gases, e.g., air. Otherwise there is a detrimental reaction between the blood and the gases, resulting in cell deterioration, as well as the entrapment of gas bubbles in the blood, causing embolism. In my rotor design, blood is not exposed to air or other gas interface at any time. Prevention of contact is accomplished by first filling (and flushing) the rotor passages with a fluid which is compatible with blood constituents. This fluid may be, for example, additional blood plasma. A flow of whole blood then displaces the plasma and the abovedescribed procedures are carried out. Thus, the desirable products from my rotor may be used directly for patients permitting a closed flow-path from the patient back to the patient or from a donor back to a patient and to the donor as desired. Appropriate pumps would be combined with my centrifuge to bring about the desired flow.
Although my rotor has been described for applications wherein there is interaction between whole blood and plasma or other second liquid, it is generally applicable to the interaction of other liquids where centrifugal and drag forces can be combined to sediment products of the interaction and provide for the continuous removal of the products.
I claim:
1. A centrifuge rotor for effecting interaction between continuously flowing first and second liquid streams and for continuously removing the products of the interaction, which comprises: a cylindrical rotor body symmetrical about an axis of rotation; a slender annular reaction vessel within the rotor body coaxial with the axis of rotation; a first liquid inlet to the rotor body; an axially-symmetrical first inlet passage peripherally connecting the first inlet with one end of the reaction vessel for uniformly and continuously admitting the first liquid; a slender annular first chamber within the body coaxial with the reaction vessel and spaced farther from the axis of rotation; a second liquid inlet to the rotor body; a second inlet passage peripherally connecting the second inlet with the first chamber for uniformly and continuously admitting the second liquid; a plurality of radially-oriented first openings interconnecting the first chamber and the reaction vessel whereby the second liquid is continuously in cross-flow relationship with the first liquid to bring about interaction therebetween; an axially-symmetrical first outlet passage connected to the second end of the reaction vessel to continuously remove one interaction product; an axially-symmetrical second outlet passage connected to the periphery of the reaction vessel at a greater distance from the axis of rotation to remove another interaction product; and outlets from the rotor body connected to the first and second outlet passages.
2. The rotor of claim 1 further comprising a plurality of axially-extending channels in the reaction vessel along a wall farthest removed from the axis of rotation, the peripheral width of these channels decreasing at increased distances from the axis of rotation; and wherein the first openings from the first chamber communicate with the most .convergent portion of the channels.
3. The rotor of claim 2 further comprising: an annular ridge extending radially from one wall of the reaction vessel in a plane perpendicular to the axis of rotation; and an axially-symmetrical third outlet passage peripherally connected to the reaction vessel at a position between the annular ridge and the first inlet passage, the third outlet being at a greater distance from the axis of rotation than the second outlet.
4. The rotor of claim 2 further comprising a slender annular second chamber coaxial with the reaction vesse] and spaced toward the axis of rotation from the reaction vessel, and a plurality of radially-oriented second openings interconnecting the reaction vessel and the second chamber.
5. The rotor of claim 4 wherein the radial dimension of the reaction vessel and the first and second chambers is about 1 to 5 mm, wherein the rotor axial length is about 15 to 50 cm and wherein the size of the first and second openings is at least 10 u.
l= l l l=

Claims (5)

1. A centrifuge rotor for effecting interaction between continuously flowing first and second liquid streams and for continuously removing the products of the interaction, which comprises: a cylindrical rotor body symmetrical about an axis of rotation; a slender annular reaction vessel within the rotor body coaxial with the axis of rotation; a first liquid inlet to the rotor body; an axially-symmetrical first inlet passage peripherally connecting the first inlet with one end of the reaction vessel for uniformly and continuously admitting the first liquid; a slender annular first chamber within the body coaxial with the reaction vessel and spaced farther from the axis of rotation; a second liquid inlet to the rotor body; a second inlet passage peripherally connecting the second inlet with the first chamber for uniformly and continuously admitting the second liquid; a plurality of radially-oriented first openings interconnecting the first chamber and the reaction vessel whereby the second liquid is continuously in cross-flow relationship with the first liquid to bring about interaction therebetween; an axially-symmetrical first outlet passage connected to the second end of the reaction vessel to continuously remove one interaction product; an axially-symmetrical second outlet passage connected to the periphery of the reaction vessel at a greater distance from the axis of rotation to remove another interaction product; and outlets from the rotor body connected to the first and second outlet passages.
2. The rotor of claim 1 further comprising a plurality of axially-extending channels in the reaction vessel along a wall farthest removed from the axis of rotation, the peripheral width of these channels decreasing at increased distances from the axis of rotation; and wherein the first openings from the first chamber communicate with the most convergent portion of the channels.
3. The rotor of claim 2 further comprising: an annular ridge extending radially from one wall of the reaction vessel in a plane perpendicular to the axis of rotation; and an axially-symmetrical third outlet passage peripherally connected to the reaction vessel at a position between the annular ridge and the first inlet passage, the third outlet being at a greater distance from the axis of rotation than the second outlet.
4. The rotor of claim 2 further comprising a slender annular second chamber coaxial with the reaction vessel and spaced toward the axis of rotation from the reaction vessel, and a plurality of radially-oriented second openings interconnecting the reaction vessel and the second chamber.
5. The rotor of claim 4 wherein the radial dimension of the reaction vessel and the first and second chambers is about 1 to 5 mm, wherein the rotor axial length is about 15 to 50 cm and wherein the size of the first and second openings is at least 10 Mu .
US257081A 1972-05-26 1972-05-26 Centrifuge for the interacting of continuous flows Expired - Lifetime US3862715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US257081A US3862715A (en) 1972-05-26 1972-05-26 Centrifuge for the interacting of continuous flows

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US257081A US3862715A (en) 1972-05-26 1972-05-26 Centrifuge for the interacting of continuous flows

Publications (1)

Publication Number Publication Date
US3862715A true US3862715A (en) 1975-01-28

Family

ID=22974794

Family Applications (1)

Application Number Title Priority Date Filing Date
US257081A Expired - Lifetime US3862715A (en) 1972-05-26 1972-05-26 Centrifuge for the interacting of continuous flows

Country Status (1)

Country Link
US (1) US3862715A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3955755A (en) * 1975-04-25 1976-05-11 The United States Of America As Represented By The United States Energy Research And Development Administration Closed continuous-flow centrifuge rotor
DE3635300A1 (en) * 1985-10-18 1987-04-23 Cobe Lab CENTRIFUGAL SEPARATOR
US4939087A (en) * 1987-05-12 1990-07-03 Washington State University Research Foundation, Inc. Method for continuous centrifugal bioprocessing
US5217427A (en) * 1977-08-12 1993-06-08 Baxter International Inc. Centrifuge assembly
US5217426A (en) * 1977-08-12 1993-06-08 Baxter International Inc. Combination disposable plastic blood receiving container and blood component centrifuge
US5571068A (en) * 1977-08-12 1996-11-05 Baxter International Inc. Centrifuge assembly
DE19634413A1 (en) * 1996-08-26 1998-03-12 Komanns Aribert Method and device for sorting centrifugation or sorting flow centrifugation
US6344489B1 (en) * 1991-02-14 2002-02-05 Wayne State University Stabilized gas-enriched and gas-supersaturated liquids
US7008535B1 (en) 2000-08-04 2006-03-07 Wayne State University Apparatus for oxygenating wastewater
US20070148446A1 (en) * 2005-12-28 2007-06-28 Kimberly-Clark Worldwide, Inc. Wipes including microencapsulated delivery vehicles and processes of producing the same
US20070148198A1 (en) * 2005-12-28 2007-06-28 Kimberly-Clark Worldwide, Inc. Method of Manufacturing Self-Warming Products
US20070149435A1 (en) * 2005-12-28 2007-06-28 Kimberly-Clark Worldwide, Inc. Cleansing composition including microencapsulated delivery vehicles
US20070145617A1 (en) * 2005-12-28 2007-06-28 Kimberly-Clark Worldwide, Inc. Processes for producing microencapsulated heat delivery vehicles
US20070148447A1 (en) * 2005-12-28 2007-06-28 Kimberly-Clark Worldwide, Inc. Wipes including microencapsulated delivery vehicles and phase change materials
US20070145619A1 (en) * 2005-12-28 2007-06-28 Kimberly-Clark Worldwide, Inc. Processes for producing microencapsulated delivery vehicles
US20070202185A1 (en) * 2005-12-28 2007-08-30 Kimberly-Clark Worldwide, Inc. Microencapsulated Delivery Vehicles Having Fugitive Layers
US20070278242A1 (en) * 2006-05-30 2007-12-06 Kimberly-Clark Worldwide, Inc. Wet wipe dispensing system
US20070289988A1 (en) * 2006-05-30 2007-12-20 Kimberly-Clark Worldwide, Inc. Dispensing system for dispensing warm wet wipes
US20080145663A1 (en) * 2006-12-14 2008-06-19 Kimberly-Clark Worldwide, Inc. Supersaturated Solutions Using Crystallization Enthalpy to Impact Temperature Change to Wet Wipes
US20080145437A1 (en) * 2006-12-14 2008-06-19 Kimberly-Clark Worldwide, Inc. Reactive Chemistries For Warming Personal Care Products
US20080272332A1 (en) * 2005-12-28 2008-11-06 Kimberly-Clark Worldwide, Inc. Microencapsulated heat delivery vehicles
US7517582B2 (en) 2006-12-14 2009-04-14 Kimberly-Clark Worldwide, Inc. Supersaturated solutions using crystallization enthalpy to impart temperature change to wet wipes
US7654412B2 (en) 2006-05-30 2010-02-02 Kimberly-Clark Worldwide, Inc. Wet wipe dispensing system for dispensing warm wet wipes
US8192841B2 (en) 2006-12-14 2012-06-05 Kimberly-Clark Worldwide, Inc. Microencapsulated delivery vehicle having an aqueous core
US9919276B2 (en) 2012-05-01 2018-03-20 Therox, Inc. System and method for bubble-free gas-enrichment of a flowing liquid within a conduit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US935311A (en) * 1908-12-04 1909-09-28 Oscar Max Kuchs Centrifugal concentrator and glassifier.
US3027390A (en) * 1959-03-13 1962-03-27 Benjamin H Thurman Apparatus and method for centrifugal purification of fatty oils
US3202347A (en) * 1960-05-02 1965-08-24 Benjamin H Thurman Countercurrent flow centrifugal separator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US935311A (en) * 1908-12-04 1909-09-28 Oscar Max Kuchs Centrifugal concentrator and glassifier.
US3027390A (en) * 1959-03-13 1962-03-27 Benjamin H Thurman Apparatus and method for centrifugal purification of fatty oils
US3202347A (en) * 1960-05-02 1965-08-24 Benjamin H Thurman Countercurrent flow centrifugal separator

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3955755A (en) * 1975-04-25 1976-05-11 The United States Of America As Represented By The United States Energy Research And Development Administration Closed continuous-flow centrifuge rotor
US5759147A (en) * 1977-08-12 1998-06-02 Baxter International Inc. Blood separation chamber
US5217427A (en) * 1977-08-12 1993-06-08 Baxter International Inc. Centrifuge assembly
US5217426A (en) * 1977-08-12 1993-06-08 Baxter International Inc. Combination disposable plastic blood receiving container and blood component centrifuge
US5571068A (en) * 1977-08-12 1996-11-05 Baxter International Inc. Centrifuge assembly
DE3635300A1 (en) * 1985-10-18 1987-04-23 Cobe Lab CENTRIFUGAL SEPARATOR
US4939087A (en) * 1987-05-12 1990-07-03 Washington State University Research Foundation, Inc. Method for continuous centrifugal bioprocessing
US6344489B1 (en) * 1991-02-14 2002-02-05 Wayne State University Stabilized gas-enriched and gas-supersaturated liquids
DE19634413C2 (en) * 1996-08-26 1998-07-30 Komanns Aribert Sorting centrifugation or sorting flow centrifugation method and apparatus for carrying out the method
DE19634413A1 (en) * 1996-08-26 1998-03-12 Komanns Aribert Method and device for sorting centrifugation or sorting flow centrifugation
US7008535B1 (en) 2000-08-04 2006-03-07 Wayne State University Apparatus for oxygenating wastewater
US20060054554A1 (en) * 2000-08-04 2006-03-16 Spears J R Method for oxygenating wastewater
US7294278B2 (en) 2000-08-04 2007-11-13 Wayne State University Method for oxygenating wastewater
US20070148459A1 (en) * 2005-12-28 2007-06-28 Kimberly-Clark Worldwide, Inc. Microencapsulated delivery vehicles
US20080272332A1 (en) * 2005-12-28 2008-11-06 Kimberly-Clark Worldwide, Inc. Microencapsulated heat delivery vehicles
US20070145617A1 (en) * 2005-12-28 2007-06-28 Kimberly-Clark Worldwide, Inc. Processes for producing microencapsulated heat delivery vehicles
US20070148447A1 (en) * 2005-12-28 2007-06-28 Kimberly-Clark Worldwide, Inc. Wipes including microencapsulated delivery vehicles and phase change materials
US20070145619A1 (en) * 2005-12-28 2007-06-28 Kimberly-Clark Worldwide, Inc. Processes for producing microencapsulated delivery vehicles
US20070148198A1 (en) * 2005-12-28 2007-06-28 Kimberly-Clark Worldwide, Inc. Method of Manufacturing Self-Warming Products
US20070202184A1 (en) * 2005-12-28 2007-08-30 Kimberly-Clark Worldwide, Inc. Liquid Compositions Including Microencapsulated Delivery Vehicles
US20070202185A1 (en) * 2005-12-28 2007-08-30 Kimberly-Clark Worldwide, Inc. Microencapsulated Delivery Vehicles Having Fugitive Layers
US20070148446A1 (en) * 2005-12-28 2007-06-28 Kimberly-Clark Worldwide, Inc. Wipes including microencapsulated delivery vehicles and processes of producing the same
US7914891B2 (en) 2005-12-28 2011-03-29 Kimberly-Clark Worldwide, Inc. Wipes including microencapsulated delivery vehicles and phase change materials
US20070149435A1 (en) * 2005-12-28 2007-06-28 Kimberly-Clark Worldwide, Inc. Cleansing composition including microencapsulated delivery vehicles
US20070278242A1 (en) * 2006-05-30 2007-12-06 Kimberly-Clark Worldwide, Inc. Wet wipe dispensing system
US7850041B2 (en) 2006-05-30 2010-12-14 John David Amundson Wet wipes dispensing system
US20070289988A1 (en) * 2006-05-30 2007-12-20 Kimberly-Clark Worldwide, Inc. Dispensing system for dispensing warm wet wipes
US7497351B2 (en) * 2006-05-30 2009-03-03 Kimberly-Clark Worldwide, Inc. Wet wipe dispensing system
US20090065521A1 (en) * 2006-05-30 2009-03-12 Kimberly-Clark Worldwide, Inc. Wet wipes dispensing system
US7654412B2 (en) 2006-05-30 2010-02-02 Kimberly-Clark Worldwide, Inc. Wet wipe dispensing system for dispensing warm wet wipes
US20080145437A1 (en) * 2006-12-14 2008-06-19 Kimberly-Clark Worldwide, Inc. Reactive Chemistries For Warming Personal Care Products
US7597954B2 (en) 2006-12-14 2009-10-06 Kimberly-Clark Worldwide, Inc. Supersaturated solutions using crystallization enthalpy to impact temperature change to wet wipes
US8192841B2 (en) 2006-12-14 2012-06-05 Kimberly-Clark Worldwide, Inc. Microencapsulated delivery vehicle having an aqueous core
US20080145663A1 (en) * 2006-12-14 2008-06-19 Kimberly-Clark Worldwide, Inc. Supersaturated Solutions Using Crystallization Enthalpy to Impact Temperature Change to Wet Wipes
US7517582B2 (en) 2006-12-14 2009-04-14 Kimberly-Clark Worldwide, Inc. Supersaturated solutions using crystallization enthalpy to impart temperature change to wet wipes
US9919276B2 (en) 2012-05-01 2018-03-20 Therox, Inc. System and method for bubble-free gas-enrichment of a flowing liquid within a conduit
US10960364B2 (en) 2012-05-01 2021-03-30 Zoll Medical Corporation Method for bubble-free gas-enrichment of a flowing liquid within a conduit
US11420165B2 (en) * 2012-05-01 2022-08-23 Zoll Medical Corporation Method for bubble-free gas-enrichment of a flowing liquid within a conduit

Similar Documents

Publication Publication Date Title
US3862715A (en) Centrifuge for the interacting of continuous flows
US4372484A (en) Device for the separation of a liquid, especially whole blood
US5053127A (en) Continuous centrifugation system and method for directly deriving intermediate density material from a suspension
US4776964A (en) Closed hemapheresis system and method
US4944883A (en) Continuous centrifugation system and method for directly deriving intermediate density material from a suspension
US8226537B2 (en) Blood processing apparatus with cell separation chamber with baffles
US5078671A (en) Centrifugal fluid processing system and method
JP4964627B2 (en) Method for separating fluid components
US3825175A (en) Centrifugal particle elutriator and method of use
JP2000514103A (en) Particle separation system and method
JPH07284529A (en) Centrifuge bowl to process blood and its method
US20020142909A1 (en) Centrifuge bowl for separating particles
US9737898B2 (en) System for blood separation with gravity valve for controlling a side-tapped separation chamber
AU604843B2 (en) Continuous centrifugation system and method for directly deriving intermediate density material from a suspension
US9033858B2 (en) Method and apparatus for concentrating platelets from platelet-rich plasma
JPS58114707A (en) Flat membrane type separation apparatus
JP2003093922A (en) Centrifugal separation bowl
EP0038323B1 (en) A device for the separation of a liquid, especially whole blood
KR20210108802A (en) Centrifugal fluid control device
JPS5969167A (en) Centrifugal separating bowl