US3871382A - Heart stimulator system for rapid implantation and removal with improved integrity - Google Patents

Heart stimulator system for rapid implantation and removal with improved integrity Download PDF

Info

Publication number
US3871382A
US3871382A US332610A US33261073A US3871382A US 3871382 A US3871382 A US 3871382A US 332610 A US332610 A US 332610A US 33261073 A US33261073 A US 33261073A US 3871382 A US3871382 A US 3871382A
Authority
US
United States
Prior art keywords
catheter
connector
cavity
contact member
male
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US332610A
Inventor
Alfred E Mann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Elema AB
Original Assignee
Pacesetter Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacesetter Systems Inc filed Critical Pacesetter Systems Inc
Priority to US332610A priority Critical patent/US3871382A/en
Application granted granted Critical
Publication of US3871382A publication Critical patent/US3871382A/en
Assigned to SIEMENS-ELEMA AB, A CORP OF SWEDEN reassignment SIEMENS-ELEMA AB, A CORP OF SWEDEN ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: PACESETTER SYSTEMS, INC., A CORP OF CA.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/3752Details of casing-lead connections

Definitions

  • the catheter assembly is screwed into the remainder of the system and not only effects positive mechanical coupling, but also positive and resilient electrical connection and fluid-tight sealing, all in one quick operation.
  • the system also permits inserting and removing a catheter positioning stylet without disconnecting the catheter from the remainder of the system with self sealing material preventing entry of body fluids after the stylet is withdrawn.
  • 'It is the principal object of this invention to provide an arrangement for quick connect-disconnect of a catheter to a heart stimulator body which has the features of high, reliable contact pressure and fluid-tight, sealed connection.
  • FIG. 1 is a pictorial view of a heart stimulator system according to this invention
  • FIG. 2 is a partly sectioned elevational view of a catheter assembly and stimulator assembly as assembled into the systemaccording to this invention
  • FIG. 3 is a partly sectioned side view of a system in accordance with FIG. 2;
  • FIG. 4 is a partial section view taken along the lines 4-4 in FIG. 2;
  • FIG. 5 is a partial section view taken along the lines 5-5 in FIG. 2;
  • FIG. 6 is a partial section view taken along the lines 66 in FIG. 7;
  • FIG. 7 is a partial section view of the heart contacting end of a catheter.
  • FIG. 1 shows an implantable stimulator system comprising a stimulator body or assembly 10, and a catheter assembly 20.
  • Body 10 comprises a main enclosure 11 in which an open cavity 11A is defined in an upper corner surface thereof.
  • Main enclosure 11 houses a power cell and pulse generating pacer circuitry and a cover 12 which is welded to enclosure 11.
  • Catheter 30 has a proximal electrode 31 and a distal tip electrode 32, and defines an axially extending interior space 30A.
  • This particular catheter is a dual polarity typea single polarity type would have only a distal tip electrode.
  • catheter assembly 20 which includes both a catheter 30 and a catheter support means 20A, is best understood from a description of the manner in which each part is assembled with reference to FIGS. 25.
  • Catheter support means 20A is assembled as follows. Connector arm 204 is welded transversely across the upper end of a male connector nut 201, adjacent one end of arm 204. Center contact member 202 is inserted through male connector nut 201 and held in position while insulator 203 is molded in place using an epoxy material. A catheter mounting or terminal block 205 is slipped over the top of member 202 and positioned upon arm 204, over insulator 203, and opposite male connector 201, with arm 204 therebetween.
  • Terminal mounting block 205 is provided with a transverse passageway 205A therethrough.
  • a plurality of silicone rubber membranes 206 are inserted in catheter mounting block 205 in passageway 205A and then stylet funnel 207 is screwed in place. This subassembly is then fastened to contact member 202 by set screw 208 (FIG. 3).
  • catheter support means 20A with catheter 30 to form catheter assembly 20 the proximal end of catheter 30 is slipped through clip 209 which is then welded at its flanges (FIG. 5) to connector arm 204 so that catheter interior space 30A and passageway 205A are coaxial and in communication at the catheter connector end.
  • Distal coil lead 304 which comprises three coiled wires, is inserted in a boss on catheter mounting block 205. The three wires of this lead are led out through three slots (e.g., 205A, see FIG. 4) and sequentially welded to catheter mounting block 205.
  • Proximal coil lead 302 which comprises four coiled wires, is then attached to proximal connector arm 204 by sequentially welding the four wire ends to separate points on arm 204.
  • the connector contact portion of body 10 is assembled in'this manner.
  • Ceramic insulator 106 is placed into the cavity 11A in body 10, preferably defined by metal support 101.
  • terminal cap is welded to terminal stud 104, connected in turn to the aforementioned circuitry, and then two contact wires 108 are welded to terminal cap 105.
  • This assembly is inserted through support 101 and glass insulating ring 103 is cast in place, creating a hermetic seal.
  • Ceramic insulator 106 is then cemented in place. Belleville springs 109 are inserted, followed by O-ring 110, and then contact pad 107 is placed into the cavity. Contact wires 108 are welded to contact pad 107.
  • female connector 111 is mounted in the cavity occupying the entrance thereof, and welded in place, and O-ring 112 is inserted in a recess in female connector 112.
  • Connector 111 is oriented so that connectors 201 and 111 will upon being united define an axis which is transverse to passageway 205A and space 30A. After this assembly operation body 10 is inserted in a mold and covered with silicone rubber 102.
  • male connector 201 and female connector 111 can be joined by screwing male connector nut 201 into female assembly 111.
  • the molded body of connector 20 provides a lever arm for tightening male assembly nut 201 against the beveled contact portion of female connector 111.
  • O-ring 112 is compressed to aid in keeping body fluids out of the connector.
  • a second resilient O-ring 110 is provided within cavity 11A coaxially with connector 111, in contact with the cavity wall (as defined by insulation 106), and having an annular thickness at least large enough to permit the male connector conductive portion to engage it.
  • contact member 202 encounters contact pad 107 and an annular knife edge 202A provided on the leading end of contact member 202 bites into the top surface of contact pad 107 to provide intimate metal-to-metal contact.
  • Belleville springs resist the movement of contact pad 107 to provide a high contact pressure, but also to absorb any cumulative tolerance errors.
  • resilient O-ring 110 is compressed to help seal out any body fluids which may enter this part of the connector.
  • the same Bellville springs also support ring 110, to aid in compressibly sealing the electrical connection.
  • the two contact wires provide connection redundancy, and the lower part of terminal pad 107 has flat sides to prevent rotation as knife edge 202A screws into the top surface of terminal pad 107.
  • connect-disconnect means for coupling body to catheter assembly 20, quickly, easily, positively, and sealingly for both mechanical and electrical purposes in one manual operation.
  • stylet funnel 207 and catheter mounting block 205 have apertures therethrough which communicate with the interior of distal coil lead 304.
  • Silicone rubber membranes 206 are adapted to be pierced by a catheter positioning stylet (not shown) insertedthrough funnel 207 into distal coil lead 304 and to reseal themselves against entry of body fluids into catheter 30 after the stylet is withdrawn.
  • This arrangement permits repositioning of the heart-contacting end ofcatheter 30 after connection to body 10, without loss of pacing function.
  • a stylet can be in-- serted through a slit in the patients skin without exposing the whole body or disconnecting the catheter therefrom.
  • Catheter 30 is constructed to have leads of low electrical resistance and a high degree of resistance to breakage due to flexwire stresses encountered in operation as an implanted assembly.
  • Distal coil 304 comprises three parallel wires wound in a tight helix on a common mandrel.
  • Proximal coil 302 comprises four parallel wires wound in the same manner.
  • Each lead carries a silicone rubber insulating sleeve.
  • These multiwire leads constitute low parallel electrical resistance and provide redundant signal communication paths should one lead happen to break. Both leads employ a high-tensile strength corrosion resistant metal alloy.
  • the heart contacting end of the catheter is constructed as follows.
  • Proximal electrode 305 is welded with two annular welds 305A to inner shell 306. This assembly is slipped over porximal coil 302 at an exposed end with a short section of coil 302 extending beyond electrode 305. lnner shell 306 is then welded to coil 302 at several annular areas 306A. Rubber sleeve 30] is pulled up to a point just behind electrode 305.
  • Distal coil 304 and its sleeve 303 are pushed through proximal coil 302; and coil 304 is pulled partially out of sleeve 303 and slipped over shaft 308A on distal electrode 308.
  • Distal tip 309 has previously been welded at annular area 308B to distal electrode 308.
  • Distal coil 304 is welded to shaft 308A at several places, and then sleeve 303 is stretched over electrode 308.
  • This assembly is then inserted in a mold and partly encapsulated in silicone rubber. This encapsulates and bonds proximal coil 302 to proximal electrode 305 and bonds proximal sleeve 301 and distal electrode 308 and tip 309.
  • Distal electrode 308 and inner proximal shell 306 are constructed of the same material as coil leads 302 and 304.
  • Proximal electrode 305 and distal tip 309 are constructed of highly corrosion resistant platinum. Any corrosion occurring because of joining of dissimilar metals will thus occur at massive interfaces rather than at the relatively fine wires of the leads. Moreover, surrounding body tissue will be protected from chemical reactions due to any corrosion which occurs by the molded silicone rubber.
  • the resultant catheter assembly has a very high degree of flexibility and strength.
  • the coaxial coiled wires provide shielding against pickup of RF interference in the distal coil lead.
  • the proximal electrode is eliminated but the proximal lead is retained to provide the RF shielding. This shielding is an important advantage in demand heart stimulators which sense the natural R-wave over the catheter leads.
  • Heart stimulator system adapted to be implanted within a human body, comprising:
  • a sealed assembly including a sealed enclosure and pulse generating means housed therewithin, said enclosure defining an open cavity;
  • a catheter having distal and proximal ends and adapted to be coupled to a human heart adjacent said distal end, with at least one electrode for carrying signals between said pulse generating means and said heart, said catheter defining an axially extending interior space;
  • elongated catheter support means defining a transverse passageway coaxial with said catheter interior space and communicating therewith at one end while being open at the other end, said support means being joined to said catheter adjacent said 'proximal end;
  • quick connect-disconnect means for sealingly and simultaneously coupling mechanically and electrically said assembly to said catheter and support transversely to said passageway into a sealed unit, including a male threaded connector secured to said catheter support means adjacent one end thereof, said connector including a conductive portion therewithin insulated from the remainder of said connector. extending to the leading end thereof, and electrically connected to said one electrode.
  • said catheter and said catheter support means forming an integral elongated lever arm for said threaded connector;
  • a female threaded connector adapted to receive said male connector therethrough and secured within said cavity at the entrance thereof, said male and female connectors defining an axis upon being united which is transverse to that of said catheter passageway and interior space;
  • a contact member mounted within said cavity and spaced inwardly from said female connector, said contact member being electrically connected to said pulse generating means
  • resilient means positioned in said cavity inwardly from said female connector, and responsive to the passage of said male connector through said female connector for sealing said cavity;
  • said male connector conductive portion thereupon engaging said contact member, effecting electrical as well as mechanical connection with the sealing of said cavity simultaneously, said connection being tensioned with said lever arm to complete a sealed stimulator system which may be equally quickly disassembled and whose catheter may be stylet-positioned without disturbing said connection.
  • said pierceable means for sealing includes a plurality of membranes of pierceable resilient self-sealing material serially mounted one behind the other within said passageway, to permit passage therethrough of a catheter positioning stylet into said catheter interior space, and a subsequent rescaling of said passageway upon removal of such stylet.
  • a system as in claim 1 which further includes means .for movably, and resiliently mounting said contact member within said cavity whereby said contact member is positively and resiliently biased into contact with said male member conductive portion upon the coupling of said connectors.
  • a heart stimulator system for rapid and simplified high reliability assembly and implantation within the human body comprising:
  • a sealed stimulator assembly including a sealed enclosure and electrical pulse generating means housed therewithin, said enclosure defining an open cavity in the surface thereof, said circuitry having a terminal extending into said cavity at an inner portion thereof;
  • a male threaded connector sealingly secured at one end thereof to said catheter support portion with the connector axis transverse to that of said catheter, said connector defining a central axial aperture therethrough;
  • a female threaded connector adapted to receive said male connection therethrough and secured within said cavity so as to occupy the cavity entrance, said circuitry terminal being spaced from said female connector;
  • said means including a conductor member carried within said axial aperture of said male connector and insulated from said male connector, said conductor member being electrically connected adjacent said one connector end to said electrode, said conductor member extending outwardly from the other, leading connector end into a sharp outward projection;
  • said catheter support portion includes an elongated connector arm extending transversely and substantially across said support parallel to said catheter, and to which said male connector is secured at one connector arm end, said arm extending under said one catheter end, said arm including a clip at the end opposite said male connector, said clip securing said catheter upon said arm, and means potting said connector arm and clip with said one catheter end into an integral assembly to form a lever arm for said male connector adapted to aid in tightening said connectors and ensure high contact forces between said projection and said contact member.
  • a heart stimulator system as in claim 4 in which said conductor member projection comprises an annular knife edge, and said contact member includes a flat surface facing said annular knife edge, whereby said knife edge digs into said contact surface for optimum contact upon said connectors being united.

Abstract

Disclosed is a quick connect-disconnect heart stimulator system including a catheter assembly. The catheter assembly is screwed into the remainder of the system and not only effects positive mechanical coupling, but also positive and resilient electrical connection and fluid-tight sealing, all in one quick operation. The system also permits inserting and removing a catheter positioning stylet without disconnecting the catheter from the remainder of the system with self sealing material preventing entry of body fluids after the stylet is withdrawn.

Description

Unite Mann atent 91 [451 Mar. 18, 1975 HEART STIMULATOR SYSTEM FOR RAPID IMPLANTATION AND REMOVAL WITH IMPROVED INTEGRITY [75] Inventor: Alfred E. Mann, Los Angeles, Calif.
[73] Assignee: Pacesetter Systems, Inc., Sylmar,
Calif.
[22] Filed: Feb. 15, 1973 [2]] Appl. No.: 332,610
[52] U.S. Cl. 128/419 P [51] 1nt.C1 A61n 1/36 [58] Field of Search.... 128/404, 418, 419 P, 419 R, 128/421, 422
[56] References Cited UNITED STATES PATENTS 3,198,195 8/1965 Chardack 128/419 P 3,367,339 2/1968 Sessions 128/419 P 3,416,533 12/1968 Fisher et a1 128/419 P 3/1972 Purdy 128/419 P 3,649,367 3,683,932 8/1972 Cole 128/419 P 3,757,789 9/1973 Shanker 128/419 P Primary ExaminerWi11iam E. Kamm Attorney, Agent, or FirmW. C. Ramm; C. H. Thomas, Jr.; P. J. Sgarbossa [57] ABSTRACT Disclosed is a quick connect-disconnect heart stimulator system including a catheter assembly. The catheter assembly is screwed into the remainder of the system and not only effects positive mechanical coupling, but also positive and resilient electrical connection and fluid-tight sealing, all in one quick operation. The system also permits inserting and removing a catheter positioning stylet without disconnecting the catheter from the remainder of the system with self sealing material preventing entry of body fluids after the stylet is withdrawn.
10 Claims, 7 Drawing Figures HEART STIMULATOR SYSTEM FOR RAPID IMPLANTATION AND REMOVAL WITH IMPROVED INTEGRITY Artificial heart stimulations, or pacers are employed to supplement or replace the material pacing electrical activity of a heart which is functionally impaired due to one or more diseased conditions. The most widely used stimulators at present comprise an implantable body containing pacing circuitry and an endocardial catheter connected to the pacing circuit on one end with the other end introduced through a large vein into the right ventricle of the heart. This conventional heart stimulator is powered by a battery of mercury cells which have a useful life of about 18-24 months, after which the stimulator body must be replaced. Also, catheter lead connections for attachment to the stimulator are difficult to make and require auxiliary tools and materials to effect sound electrical contact and reasonable sealing against body fluids.
With the development of a heart stimulator which employs a rechargeable long-lived nickel-cadmium cell, such as those disclosed in copending patent applications with Ser. Nos. 154,492, filed 6/18/71 and 267,1 l4, filed 6/28/72, now abandoned in favor of continuation-in-part application Ser. No. 464,441, filed Apr. 26, 1974, many of the disadvantages of the conventional stimulators were overcome.
'It is the principal object of this invention to provide an arrangement for quick connect-disconnect of a catheter to a heart stimulator body which has the features of high, reliable contact pressure and fluid-tight, sealed connection.
It is another object of this invention to provide a sealed heart stimulator system including a catheter which permits introduction into the catheterwhen connected to the remainder of the system of a positioning stylet through a body of self-sealing material which prevents entry of body fluids into the catheter when the stylet is withdrawn.
Other objects, features and advantages of this invention will be apparent from a consideration of the following detailed description in conjunction with the drawings which are briefly described as follows:
FIG. 1 is a pictorial view of a heart stimulator system according to this invention;
FIG. 2 is a partly sectioned elevational view of a catheter assembly and stimulator assembly as assembled into the systemaccording to this invention;
FIG. 3 is a partly sectioned side view of a system in accordance with FIG. 2;
FIG. 4 is a partial section view taken along the lines 4-4 in FIG. 2;
FIG. 5 is a partial section view taken along the lines 5-5 in FIG. 2;
FIG. 6 is a partial section view taken along the lines 66 in FIG. 7; and
FIG. 7 is a partial section view of the heart contacting end of a catheter.
FIG. 1 shows an implantable stimulator system comprising a stimulator body or assembly 10, and a catheter assembly 20. Body 10 comprises a main enclosure 11 in which an open cavity 11A is defined in an upper corner surface thereof. Main enclosure 11 houses a power cell and pulse generating pacer circuitry and a cover 12 which is welded to enclosure 11. Catheter 30 has a proximal electrode 31 and a distal tip electrode 32, and defines an axially extending interior space 30A.
This particular catheter is a dual polarity typea single polarity type would have only a distal tip electrode.
The construction of the catheter assembly 20, which includes both a catheter 30 and a catheter support means 20A, is best understood from a description of the manner in which each part is assembled with reference to FIGS. 25. Catheter support means 20A is assembled as follows. Connector arm 204 is welded transversely across the upper end of a male connector nut 201, adjacent one end of arm 204. Center contact member 202 is inserted through male connector nut 201 and held in position while insulator 203 is molded in place using an epoxy material. A catheter mounting or terminal block 205 is slipped over the top of member 202 and positioned upon arm 204, over insulator 203, and opposite male connector 201, with arm 204 therebetween. Terminal mounting block 205 is provided with a transverse passageway 205A therethrough. A plurality of silicone rubber membranes 206 are inserted in catheter mounting block 205 in passageway 205A and then stylet funnel 207 is screwed in place. This subassembly is then fastened to contact member 202 by set screw 208 (FIG. 3).
To join catheter support means 20A with catheter 30 to form catheter assembly 20, the proximal end of catheter 30 is slipped through clip 209 which is then welded at its flanges (FIG. 5) to connector arm 204 so that catheter interior space 30A and passageway 205A are coaxial and in communication at the catheter connector end. Distal coil lead 304, which comprises three coiled wires, is inserted in a boss on catheter mounting block 205. The three wires of this lead are led out through three slots (e.g., 205A, see FIG. 4) and sequentially welded to catheter mounting block 205. Proximal coil lead 302, which comprises four coiled wires, is then attached to proximal connector arm 204 by sequentially welding the four wire ends to separate points on arm 204.
This assembled structure is then placed in a mold and I potted in an epoxy material 208. Finally, the potted connector is placed in another mold and coated with silicone rubber 209A, completing assembly 20.
The connector contact portion of body 10 is assembled in'this manner. Ceramic insulator 106 is placed into the cavity 11A in body 10, preferably defined by metal support 101. In the lowermost portion of cavity 11A, spaced from the entrance thereof, terminal cap is welded to terminal stud 104, connected in turn to the aforementioned circuitry, and then two contact wires 108 are welded to terminal cap 105. This assembly is inserted through support 101 and glass insulating ring 103 is cast in place, creating a hermetic seal. Ceramic insulator 106 is then cemented in place. Belleville springs 109 are inserted, followed by O-ring 110, and then contact pad 107 is placed into the cavity. Contact wires 108 are welded to contact pad 107. Finally, female connector 111 is mounted in the cavity occupying the entrance thereof, and welded in place, and O-ring 112 is inserted in a recess in female connector 112. Connector 111 is oriented so that connectors 201 and 111 will upon being united define an axis which is transverse to passageway 205A and space 30A. After this assembly operation body 10 is inserted in a mold and covered with silicone rubber 102.
At this point male connector 201 and female connector 111 can be joined by screwing male connector nut 201 into female assembly 111. The molded body of connector 20 provides a lever arm for tightening male assembly nut 201 against the beveled contact portion of female connector 111. O-ring 112 is compressed to aid in keeping body fluids out of the connector. A second resilient O-ring 110 is provided within cavity 11A coaxially with connector 111, in contact with the cavity wall (as defined by insulation 106), and having an annular thickness at least large enough to permit the male connector conductive portion to engage it. As male connector nut 201 screws into female connector 111, contact member 202 encounters contact pad 107 and an annular knife edge 202A provided on the leading end of contact member 202 bites into the top surface of contact pad 107 to provide intimate metal-to-metal contact. Belleville springs resist the movement of contact pad 107 to provide a high contact pressure, but also to absorb any cumulative tolerance errors. At the same time, resilient O-ring 110 is compressed to help seal out any body fluids which may enter this part of the connector. The same Bellville springs also support ring 110, to aid in compressibly sealing the electrical connection. The two contact wires provide connection redundancy, and the lower part of terminal pad 107 has flat sides to prevent rotation as knife edge 202A screws into the top surface of terminal pad 107. This prevents compressive or rotational stresses on the relatively fragile contact wires. It will be noted that the foregoing elements define a connect-disconnect means for coupling body to catheter assembly 20, quickly, easily, positively, and sealingly for both mechanical and electrical purposes in one manual operation.
As shown in FIG. 2, stylet funnel 207 and catheter mounting block 205 have apertures therethrough which communicate with the interior of distal coil lead 304. Silicone rubber membranes 206 are adapted to be pierced by a catheter positioning stylet (not shown) insertedthrough funnel 207 into distal coil lead 304 and to reseal themselves against entry of body fluids into catheter 30 after the stylet is withdrawn. This arrangement permits repositioning of the heart-contacting end ofcatheter 30 after connection to body 10, without loss of pacing function. Moreover, should the catheter need repositioning after implantation, a stylet can be in-- serted through a slit in the patients skin without exposing the whole body or disconnecting the catheter therefrom.
Catheter 30 is constructed to have leads of low electrical resistance and a high degree of resistance to breakage due to flexwire stresses encountered in operation as an implanted assembly. Distal coil 304 comprises three parallel wires wound in a tight helix on a common mandrel. Proximal coil 302 comprises four parallel wires wound in the same manner. Each lead carries a silicone rubber insulating sleeve. These multiwire leads constitute low parallel electrical resistance and provide redundant signal communication paths should one lead happen to break. Both leads employ a high-tensile strength corrosion resistant metal alloy.
The heart contacting end of the catheter is constructed as follows. Proximal electrode 305 is welded with two annular welds 305A to inner shell 306. This assembly is slipped over porximal coil 302 at an exposed end with a short section of coil 302 extending beyond electrode 305. lnner shell 306 is then welded to coil 302 at several annular areas 306A. Rubber sleeve 30] is pulled up to a point just behind electrode 305.
Distal coil 304 and its sleeve 303 are pushed through proximal coil 302; and coil 304 is pulled partially out of sleeve 303 and slipped over shaft 308A on distal electrode 308. Distal tip 309 has previously been welded at annular area 308B to distal electrode 308. Distal coil 304 is welded to shaft 308A at several places, and then sleeve 303 is stretched over electrode 308.
This assembly is then inserted in a mold and partly encapsulated in silicone rubber. This encapsulates and bonds proximal coil 302 to proximal electrode 305 and bonds proximal sleeve 301 and distal electrode 308 and tip 309.
Distal electrode 308 and inner proximal shell 306 are constructed of the same material as coil leads 302 and 304. Proximal electrode 305 and distal tip 309 are constructed of highly corrosion resistant platinum. Any corrosion occurring because of joining of dissimilar metals will thus occur at massive interfaces rather than at the relatively fine wires of the leads. Moreover, surrounding body tissue will be protected from chemical reactions due to any corrosion which occurs by the molded silicone rubber.
The resultant catheter assembly has a very high degree of flexibility and strength. The coaxial coiled wires provide shielding against pickup of RF interference in the distal coil lead. In a unipolar catheter the proximal electrode is eliminated but the proximal lead is retained to provide the RF shielding. This shielding is an important advantage in demand heart stimulators which sense the natural R-wave over the catheter leads.
The above descriptions are given by way of example only and numerous modifications could be made without departing from the scope of this invention as claimed in the following claims.
I claim:
1. Heart stimulator system adapted to be implanted within a human body, comprising:
a sealed assembly including a sealed enclosure and pulse generating means housed therewithin, said enclosure defining an open cavity;
a catheter having distal and proximal ends and adapted to be coupled to a human heart adjacent said distal end, with at least one electrode for carrying signals between said pulse generating means and said heart, said catheter defining an axially extending interior space;
elongated catheter support means defining a transverse passageway coaxial with said catheter interior space and communicating therewith at one end while being open at the other end, said support means being joined to said catheter adjacent said 'proximal end;
pierceable self-sealing means for sealing said other open passageway end of said catheter support means;
quick connect-disconnect means for sealingly and simultaneously coupling mechanically and electrically said assembly to said catheter and support transversely to said passageway into a sealed unit, including a male threaded connector secured to said catheter support means adjacent one end thereof, said connector including a conductive portion therewithin insulated from the remainder of said connector. extending to the leading end thereof, and electrically connected to said one electrode. said catheter and said catheter support means forming an integral elongated lever arm for said threaded connector;
a female threaded connector adapted to receive said male connector therethrough and secured within said cavity at the entrance thereof, said male and female connectors defining an axis upon being united which is transverse to that of said catheter passageway and interior space;
a contact member mounted within said cavity and spaced inwardly from said female connector, said contact member being electrically connected to said pulse generating means,
resilient means positioned in said cavity inwardly from said female connector, and responsive to the passage of said male connector through said female connector for sealing said cavity;
said male connector conductive portion thereupon engaging said contact member, effecting electrical as well as mechanical connection with the sealing of said cavity simultaneously, said connection being tensioned with said lever arm to complete a sealed stimulator system which may be equally quickly disassembled and whose catheter may be stylet-positioned without disturbing said connection.
2. A system as in claim 1 in which said pierceable means for sealing includes a plurality of membranes of pierceable resilient self-sealing material serially mounted one behind the other within said passageway, to permit passage therethrough of a catheter positioning stylet into said catheter interior space, and a subsequent rescaling of said passageway upon removal of such stylet.
3. A system as in claim 1 which further includes means .for movably, and resiliently mounting said contact member within said cavity whereby said contact member is positively and resiliently biased into contact with said male member conductive portion upon the coupling of said connectors.
4. A heart stimulator system for rapid and simplified high reliability assembly and implantation within the human body, comprising:
a sealed stimulator assembly including a sealed enclosure and electrical pulse generating means housed therewithin, said enclosure defining an open cavity in the surface thereof, said circuitry having a terminal extending into said cavity at an inner portion thereof;
a sealed catheter assembly adapted to be coupled to a human heart and having an elongated catheter and a catheter support portion joining said catheter adjacent one end thereof, said catheter having at least one electrode for carrying signals between said pulse generating means and said heart;
a male threaded connector sealingly secured at one end thereof to said catheter support portion with the connector axis transverse to that of said catheter, said connector defining a central axial aperture therethrough;
a female threaded connector adapted to receive said male connection therethrough and secured within said cavity so as to occupy the cavity entrance, said circuitry terminal being spaced from said female connector;
electrical contact means coaxial with said connectors and operative simultaneously therewith, said means including a conductor member carried within said axial aperture of said male connector and insulated from said male connector, said conductor member being electrically connected adjacent said one connector end to said electrode, said conductor member extending outwardly from the other, leading connector end into a sharp outward projection;
and a contact member movably mounted within said cavity spaced inwardly of and coaxially with said female connector, said contact member being electrically connected to said terminal;
a resilient annular seal positioned in said cavity coaxially with said female connector and inwardly thereof in contact with the wall of said cavity, said seal engaging said conductor upon the passage of said male connector through said female connector;
spring means for urging said contact member toward said female connector, said conductor engaging said seal and compressing it between said end and said wall while said conductor projection engages said contact member upon said connectors being united, whereby said stimulator and catheter assemblies are simultaneously electrically and mechanically connected as well as sealed into a unitary fluid tight system. v
5. A heart stimulator system as in claim 4 in which said catheter support portion includes an elongated connector arm extending transversely and substantially across said support parallel to said catheter, and to which said male connector is secured at one connector arm end, said arm extending under said one catheter end, said arm including a clip at the end opposite said male connector, said clip securing said catheter upon said arm, and means potting said connector arm and clip with said one catheter end into an integral assembly to form a lever arm for said male connector adapted to aid in tightening said connectors and ensure high contact forces between said projection and said contact member.
6. A system as in claim 5 in which said catheter support portion includes a terminal member mounted on said arm and insulated therefrom, in a position opposite said male connector so that said arm is therebetween, said terminal being connected electrically to said conductive portion of said male member, as well as to said catheter electrode.
7. A system as in claim 6, in which a passageway is defined through said terminal member and in which said catheter defines an interior axially extending space, said passageway and space being coaxial and extending transversely to the axis of said male connector, and which further includes a plurality of membranes of pierceable resilient, self-sealing material serially mounted within said passageway, thereby sealing said catheter and passageway yet permitting the passage therewithin of a positioning stylet and insuring subsequent rescaling upon removal of such stylet.
8. A heart stimulator system as in claim 4 in which said conductor member projection comprises an annular knife edge, and said contact member includes a flat surface facing said annular knife edge, whereby said knife edge digs into said contact surface for optimum contact upon said connectors being united.
9. A heart stimulator system as in claim 4 wherein said contact member includes a lower end section hav- 8 the periphery of said flange and said cavity wall, said spring member biasing said Contact member beneath said flange.

Claims (10)

1. Heart stimulator system adapted to be implanted within a human body, comprising: a sealed assembly including a sealed enclosure and pulse generating means housed therewithin, said enclosure defining an open cavity; a catheter having distal and proximal ends and adapted to be coupled to a human heart adjacent said distal end, with at least one electrode for carrying signals between said pulse generating means and said heart, said catheter defining an axially extending interior space; elongated catheter support means defining a transverse passageway coaxial with said catheter interior space and communicating therewith at one end while being open at the other end, said support means being joined to said catheter adjacent said proximal end; pierceable self-sealing means for sealing said other open passageway end of said catheter support means; quick connect-disconnect means for sealingly and simultaneously coupling mechanically and electrically said assembly to said catheter and support transversely to said passageway into a sealed unit, including a male threaded connector secured to said catheter support means adjacent one end thereof, said connector including a conductive portion therewithin insulated from the remainder of said connector, extending to the leading end thereof, and electrically connected to said one electrode, said catheter and said catheter support means forming an integral elongated lever arm for said threaded connector; a female threaded connector adapted to receive said male connector therethrough and secured within said cavity at the entrance thereof, said male and female connectors defining an axis upon being united which is transverse to that of said catheter passageway and interior space; a contact member mounted within said cavity and spaced inwardly from said female connector, said contact member being electrically connected to said pulse generating means, resilient means positioned in said cavity inwardly from said female connector, and responsive to the passage of said male connector through said female connector for sealing said cavity; said male connector conductive portion thereupon engaging said contact member, effecting electrical as well as mechanical connection with the sealing of said cavity simultaneously, said connection being tensioned with said lever arm to complete a sealed stimulator system which may be equally quickly disassembled and whose catheter may be stylet-positioned without disturbing said connection.
2. A system as in claim 1 in which said pierceable means for sealing includes a plurality of membranes of pierceable resilient self-sealing material serially mounted one behind the other within said passageway, to permit pAssage therethrough of a catheter positioning stylet into said catheter interior space, and a subsequent resealing of said passageway upon removal of such stylet.
3. A system as in claim 1 which further includes means for movably, and resiliently mounting said contact member within said cavity whereby said contact member is positively and resiliently biased into contact with said male member conductive portion upon the coupling of said connectors.
4. A heart stimulator system for rapid and simplified high reliability assembly and implantation within the human body, comprising: a sealed stimulator assembly including a sealed enclosure and electrical pulse generating means housed therewithin, said enclosure defining an open cavity in the surface thereof, said circuitry having a terminal extending into said cavity at an inner portion thereof; a sealed catheter assembly adapted to be coupled to a human heart and having an elongated catheter and a catheter support portion joining said catheter adjacent one end thereof, said catheter having at least one electrode for carrying signals between said pulse generating means and said heart; a male threaded connector sealingly secured at one end thereof to said catheter support portion with the connector axis transverse to that of said catheter, said connector defining a central axial aperture therethrough; a female threaded connector adapted to receive said male connection therethrough and secured within said cavity so as to occupy the cavity entrance, said circuitry terminal being spaced from said female connector; electrical contact means coaxial with said connectors and operative simultaneously therewith, said means including a conductor member carried within said axial aperture of said male connector and insulated from said male connector, said conductor member being electrically connected adjacent said one connector end to said electrode, said conductor member extending outwardly from the other, leading connector end into a sharp outward projection; and a contact member movably mounted within said cavity spaced inwardly of and coaxially with said female connector, said contact member being electrically connected to said terminal; a resilient annular seal positioned in said cavity coaxially with said female connector and inwardly thereof in contact with the wall of said cavity, said seal engaging said conductor upon the passage of said male connector through said female connector; spring means for urging said contact member toward said female connector, said conductor engaging said seal and compressing it between said end and said wall while said conductor projection engages said contact member upon said connectors being united, whereby said stimulator and catheter assemblies are simultaneously electrically and mechanically connected as well as sealed into a unitary fluid tight system.
5. A heart stimulator system as in claim 4 in which said catheter support portion includes an elongated connector arm extending transversely and substantially across said support parallel to said catheter, and to which said male connector is secured at one connector arm end, said arm extending under said one catheter end, said arm including a clip at the end opposite said male connector, said clip securing said catheter upon said arm, and means potting said connector arm and clip with said one catheter end into an integral assembly to form a lever arm for said male connector adapted to aid in tightening said connectors and ensure high contact forces between said projection and said contact member.
6. A system as in claim 5 in which said catheter support portion includes a terminal member mounted on said arm and insulated therefrom, in a position opposite said male connector so that said arm is therebetween, said terminal being connected electrically to said conductive portion of said male member, as well as to said catheter electrode.
7. A system as in claim 6, in which a passageway is defined thrOugh said terminal member and in which said catheter defines an interior axially extending space, said passageway and space being coaxial and extending transversely to the axis of said male connector, and which further includes a plurality of membranes of pierceable resilient, self-sealing material serially mounted within said passageway, thereby sealing said catheter and passageway yet permitting the passage therewithin of a positioning stylet and insuring subsequent resealing upon removal of such stylet.
8. A heart stimulator system as in claim 4 in which said conductor member projection comprises an annular knife edge, and said contact member includes a flat surface facing said annular knife edge, whereby said knife edge digs into said contact surface for optimum contact upon said connectors being united.
9. A heart stimulator system as in claim 4 wherein said contact member includes a lower end section having at least one flat side to limit the rotational excursion of said contact member.
10. A heart stimulator system as in claim 4 wherein said contact member includes a flanged surface facing said sharp projection, and said seal is captured between the periphery of said flange and said cavity wall, said spring member biasing said contact member beneath said flange.
US332610A 1973-02-15 1973-02-15 Heart stimulator system for rapid implantation and removal with improved integrity Expired - Lifetime US3871382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US332610A US3871382A (en) 1973-02-15 1973-02-15 Heart stimulator system for rapid implantation and removal with improved integrity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US332610A US3871382A (en) 1973-02-15 1973-02-15 Heart stimulator system for rapid implantation and removal with improved integrity

Publications (1)

Publication Number Publication Date
US3871382A true US3871382A (en) 1975-03-18

Family

ID=23299008

Family Applications (1)

Application Number Title Priority Date Filing Date
US332610A Expired - Lifetime US3871382A (en) 1973-02-15 1973-02-15 Heart stimulator system for rapid implantation and removal with improved integrity

Country Status (1)

Country Link
US (1) US3871382A (en)

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027678A (en) * 1975-11-19 1977-06-07 Vitatron Medical B.V. Pacing system with connector for connecting electrode to pacer
US4105037A (en) * 1977-05-06 1978-08-08 Biotronik Mess- Und Therapiegerate Gmbh & Co. Releasable electrical connecting means for the electrode terminal of an implantable artificial cardiac pacemaker
US4146029A (en) * 1974-04-23 1979-03-27 Ellinwood Jr Everett H Self-powered implanted programmable medication system and method
US4245642A (en) * 1979-06-28 1981-01-20 Medtronic, Inc. Lead connector
US4248237A (en) * 1978-03-07 1981-02-03 Needle Industries Limited Cardiac pacemakers
US4278093A (en) * 1976-06-08 1981-07-14 American Technology, Inc. Interchangeable pacemaker connector for leads
US4280511A (en) * 1980-02-25 1981-07-28 Medtronic, Inc. Ring electrode for pacing lead and process of making same
US4280514A (en) * 1975-05-09 1981-07-28 Macgregor David C Endocardial pacemaker electrode
US4328812A (en) * 1980-03-21 1982-05-11 Medtronic, Inc. Ring electrode for pacing lead
US4461194A (en) * 1982-04-28 1984-07-24 Cardio-Pace Medical, Inc. Tool for sealing and attaching a lead to a body implantable device
US4479489A (en) * 1981-04-20 1984-10-30 Cordis Corporation Mechanically self-sealing closure
US4566467A (en) * 1984-06-20 1986-01-28 Cordis Corporation Electrical connection between coiled lead conductor and lead tip electrode
US4590950A (en) * 1982-12-20 1986-05-27 Telectronics Pty, Limited Electrical connection
EP0205737A2 (en) * 1985-06-19 1986-12-30 Peter Dr. Ing. Osypka Cardiac pacemaker
US4934366A (en) * 1988-09-01 1990-06-19 Siemens-Pacesetter, Inc. Feedthrough connector for implantable medical device
US5111830A (en) * 1989-11-30 1992-05-12 Marc Bemurat Pacemaker lead with auxiliary stimulation pole
US5261395A (en) * 1992-03-02 1993-11-16 Cardiac Pacemaker, Inc. Tooless pulse generator to lead connection
WO2000056402A1 (en) * 1999-03-19 2000-09-28 Advanced Neuromodulation Systems, Inc. Stimulation lead connector
US20030144718A1 (en) * 2002-01-29 2003-07-31 Zeijlemaker Volkert A. Method and apparatus for shielding coating for MRI resistant electrode systems
US20030144721A1 (en) * 2002-01-29 2003-07-31 Villaseca Eduardo H. Conditioning of coupled electromagnetic signals on a lead
US20030144719A1 (en) * 2002-01-29 2003-07-31 Zeijlemaker Volkert A. Method and apparatus for shielding wire for MRI resistant electrode systems
US20040236396A1 (en) * 1999-04-05 2004-11-25 Coe Michael Sean Lead locking device and method
US20040236397A1 (en) * 1999-04-05 2004-11-25 The Spectranetics Corporation Lead locking device and method
US20050021123A1 (en) * 2001-04-30 2005-01-27 Jurgen Dorn Variable speed self-expanding stent delivery system and luer locking connector
US20060247684A1 (en) * 2001-04-13 2006-11-02 Greatbatch-Sierra, Inc. Band stop filter employing a capacitor and an inductor tank circuit to enhance mri compatibility of active medical devices
US20070088416A1 (en) * 2001-04-13 2007-04-19 Surgi-Vision, Inc. Mri compatible medical leads
US20070112398A1 (en) * 2005-11-11 2007-05-17 Greatbatch Ltd. Tank filters placed in series with the lead wires or circuits of active medical devices to enhance mri compatibility
EP1795226A1 (en) * 2005-12-08 2007-06-13 BIOTRONIK CRM Patent AG Housing for a medical implant
US20070168014A1 (en) * 2006-01-13 2007-07-19 Jimenez Teodoro S Stent Delivery System
US20080049376A1 (en) * 1998-11-04 2008-02-28 Greatbatch Ltd. Non-ferromagnetic tank filters in lead wires of active implantable medical devices to enhance mri compatibility
US20080058635A1 (en) * 1998-11-04 2008-03-06 Johns Hopkins University School Of Medicine Mri-guided therapy methods and related systems
US20080065181A1 (en) * 2001-04-13 2008-03-13 Greatbatch, Ltd. Rfid detection and identification system for implantable medical lead systems
US20080071313A1 (en) * 2005-11-11 2008-03-20 Greatbatch Ltd. Tank filters utilizing very low k materials, in series with lead wires or circuits of active medical devices to enhance mri compatibility
US20080116997A1 (en) * 2001-04-13 2008-05-22 Greatbatch Ltd. Cylindrical bandstop filters for medical lead systems
US20080132987A1 (en) * 2001-04-13 2008-06-05 Greatbatch Ltd. Medical lead system utilizing electromagnetic bandstop filters
US20080195180A1 (en) * 2006-06-08 2008-08-14 Greatbatch Ltd. Low loss band pass filter for rf distance telemetry pin antennas of active implantable medical devices
US20090276002A1 (en) * 2008-04-30 2009-11-05 Sommer John L Lead-Implant Coupling Device
US20100100164A1 (en) * 2006-11-09 2010-04-22 Greatbatch Ltd. Capacitor and inductor elements physically disposed in series whose lumped parameters are electrically connected in parallel to form a bandstop filter
US20100160997A1 (en) * 2001-04-13 2010-06-24 Greatbatch Ltd. Tuned energy balanced system for minimizing heating and/or to provide emi protection of implanted leads in a high power electromagnetic field environment
US20100168821A1 (en) * 2001-04-13 2010-07-01 Greatbatch Ltd. Switched diverter circuits for minimizing heating of an implanted lead in a high power electromagnetic field environment
US20100168756A1 (en) * 2006-08-07 2010-07-01 Dorn Juergen Hand-held actuator device
US20100174290A1 (en) * 2007-07-11 2010-07-08 C.R. Bard, Inc. Device for catheter sheath retraction
US20100191236A1 (en) * 2001-04-13 2010-07-29 Greatbatch Ltd. Switched diverter circuits for minimizing heating of an implanted lead and/or providing emi protection in a high power electromagnetic field environment
US20100198312A1 (en) * 2001-04-13 2010-08-05 Greatbatch Ltd. Emi filter employing a capacitor and an inductor tank circuit having optimum component values
US20100208397A1 (en) * 2008-12-17 2010-08-19 Greatbatch Ltd. Switched safety protection circuit for an aimd system during exposure to high power electromagnetic fields
US20100217262A1 (en) * 2001-04-13 2010-08-26 Greatbatch Ltd. Frequency selective passive component networks for active implantable medical devices utilizing an energy dissipating surface
US7935141B2 (en) 2005-08-17 2011-05-03 C. R. Bard, Inc. Variable speed stent delivery system
USRE42856E1 (en) 2002-05-29 2011-10-18 MRI Interventions, Inc. Magnetic resonance probes
US8224462B2 (en) 2005-11-11 2012-07-17 Greatbatch Ltd. Medical lead system utilizing electromagnetic bandstop filters
US8301243B2 (en) 2006-06-08 2012-10-30 Greatbatch Ltd. Method of tuning bandstop filters for implantable medical leads
US20130245710A1 (en) * 2012-03-19 2013-09-19 Cardiac Pacemakers, Inc. Integral stimulation lead
US8712544B2 (en) 2001-04-13 2014-04-29 Greatbatch Ltd. Electromagnetic shield for a passive electronic component in an active medical device implantable lead
US20140330346A1 (en) * 2011-11-04 2014-11-06 Nevro Corporation Molded headers for implantable signal generators, and associated systems and methods
US8903505B2 (en) 2006-06-08 2014-12-02 Greatbatch Ltd. Implantable lead bandstop filter employing an inductive coil with parasitic capacitance to enhance MRI compatibility of active medical devices
US20140364869A1 (en) * 2013-06-05 2014-12-11 Boston Scientific Neuromodulation Corporation Systems and methods for steering electrical stimulation leads while coupled to a pulse generator
US9031670B2 (en) 2006-11-09 2015-05-12 Greatbatch Ltd. Electromagnetic shield for a passive electronic component in an active medical device implantable lead
US9108066B2 (en) 2008-03-20 2015-08-18 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US9248283B2 (en) 2001-04-13 2016-02-02 Greatbatch Ltd. Band stop filter comprising an inductive component disposed in a lead wire in series with an electrode
US9295828B2 (en) 2001-04-13 2016-03-29 Greatbatch Ltd. Self-resonant inductor wound portion of an implantable lead for enhanced MRI compatibility of active implantable medical devices
US9409020B2 (en) 2014-05-20 2016-08-09 Nevro Corporation Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems and methods
US9427596B2 (en) 2013-01-16 2016-08-30 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US9468750B2 (en) 2006-11-09 2016-10-18 Greatbatch Ltd. Multilayer planar spiral inductor filter for medical therapeutic or diagnostic applications
US9517344B1 (en) 2015-03-13 2016-12-13 Nevro Corporation Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator
US9776002B2 (en) 2011-11-04 2017-10-03 Nevro Corp. Medical device communication and charging assemblies for use with implantable signal generators, and associated systems and methods
US9801745B2 (en) 2010-10-21 2017-10-31 C.R. Bard, Inc. System to deliver a bodily implant
USRE46699E1 (en) 2013-01-16 2018-02-06 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US9884198B2 (en) 2014-10-22 2018-02-06 Nevro Corp. Systems and methods for extending the life of an implanted pulse generator battery
US9931514B2 (en) 2013-06-30 2018-04-03 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US10080889B2 (en) 2009-03-19 2018-09-25 Greatbatch Ltd. Low inductance and low resistance hermetically sealed filtered feedthrough for an AIMD
US10350421B2 (en) 2013-06-30 2019-07-16 Greatbatch Ltd. Metallurgically bonded gold pocket pad for grounding an EMI filter to a hermetic terminal for an active implantable medical device
US10420935B2 (en) 2015-12-31 2019-09-24 Nevro Corp. Controller for nerve stimulation circuit and associated systems and methods
US10559409B2 (en) 2017-01-06 2020-02-11 Greatbatch Ltd. Process for manufacturing a leadless feedthrough for an active implantable medical device
US10561837B2 (en) 2011-03-01 2020-02-18 Greatbatch Ltd. Low equivalent series resistance RF filter for an active implantable medical device utilizing a ceramic reinforced metal composite filled via
US10589107B2 (en) 2016-11-08 2020-03-17 Greatbatch Ltd. Circuit board mounted filtered feedthrough assembly having a composite conductive lead for an AIMD
US10905888B2 (en) 2018-03-22 2021-02-02 Greatbatch Ltd. Electrical connection for an AIMD EMI filter utilizing an anisotropic conductive layer
US10912945B2 (en) 2018-03-22 2021-02-09 Greatbatch Ltd. Hermetic terminal for an active implantable medical device having a feedthrough capacitor partially overhanging a ferrule for high effective capacitance area
US10933238B2 (en) 2019-01-31 2021-03-02 Nevro Corp. Power control circuit for sterilized devices, and associated systems and methods
US11026822B2 (en) 2006-01-13 2021-06-08 C. R. Bard, Inc. Stent delivery system
US11147974B2 (en) 2018-05-01 2021-10-19 Nevro Corp. 2.4 GHz radio antenna for implanted medical devices, and associated systems and methods
US11198014B2 (en) 2011-03-01 2021-12-14 Greatbatch Ltd. Hermetically sealed filtered feedthrough assembly having a capacitor with an oxide resistant electrical connection to an active implantable medical device housing
US11633604B2 (en) 2018-01-30 2023-04-25 Nevro Corp. Efficient use of an implantable pulse generator battery, and associated systems and methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3198195A (en) * 1962-10-18 1965-08-03 William M Chardack Implantable controls for cardiac pacemakers
US3367339A (en) * 1964-10-09 1968-02-06 Robert W. Sessions Implantable nerve stimulating electrode and lead
US3416533A (en) * 1966-05-20 1968-12-17 Gen Electric Conductive catheter
US3649367A (en) * 1966-06-02 1972-03-14 Nuclear Materials & Equipment Electrical generator
US3683932A (en) * 1970-06-01 1972-08-15 Adcole Corp Implantable tissue stimulator
US3757789A (en) * 1971-10-26 1973-09-11 I Shanker Electromedical stimulator lead connector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3198195A (en) * 1962-10-18 1965-08-03 William M Chardack Implantable controls for cardiac pacemakers
US3367339A (en) * 1964-10-09 1968-02-06 Robert W. Sessions Implantable nerve stimulating electrode and lead
US3416533A (en) * 1966-05-20 1968-12-17 Gen Electric Conductive catheter
US3649367A (en) * 1966-06-02 1972-03-14 Nuclear Materials & Equipment Electrical generator
US3683932A (en) * 1970-06-01 1972-08-15 Adcole Corp Implantable tissue stimulator
US3757789A (en) * 1971-10-26 1973-09-11 I Shanker Electromedical stimulator lead connector

Cited By (154)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4146029A (en) * 1974-04-23 1979-03-27 Ellinwood Jr Everett H Self-powered implanted programmable medication system and method
US4280514A (en) * 1975-05-09 1981-07-28 Macgregor David C Endocardial pacemaker electrode
US4027678A (en) * 1975-11-19 1977-06-07 Vitatron Medical B.V. Pacing system with connector for connecting electrode to pacer
US4278093A (en) * 1976-06-08 1981-07-14 American Technology, Inc. Interchangeable pacemaker connector for leads
US4105037A (en) * 1977-05-06 1978-08-08 Biotronik Mess- Und Therapiegerate Gmbh & Co. Releasable electrical connecting means for the electrode terminal of an implantable artificial cardiac pacemaker
US4248237A (en) * 1978-03-07 1981-02-03 Needle Industries Limited Cardiac pacemakers
US4245642A (en) * 1979-06-28 1981-01-20 Medtronic, Inc. Lead connector
US4280511A (en) * 1980-02-25 1981-07-28 Medtronic, Inc. Ring electrode for pacing lead and process of making same
EP0037223B1 (en) * 1980-03-21 1983-07-13 Medtronic, Inc. A body implantable lead having a ring electrode, and a process for making same
US4328812A (en) * 1980-03-21 1982-05-11 Medtronic, Inc. Ring electrode for pacing lead
US4479489A (en) * 1981-04-20 1984-10-30 Cordis Corporation Mechanically self-sealing closure
US4461194A (en) * 1982-04-28 1984-07-24 Cardio-Pace Medical, Inc. Tool for sealing and attaching a lead to a body implantable device
US4590950A (en) * 1982-12-20 1986-05-27 Telectronics Pty, Limited Electrical connection
US4566467A (en) * 1984-06-20 1986-01-28 Cordis Corporation Electrical connection between coiled lead conductor and lead tip electrode
DE3521874A1 (en) * 1985-06-19 1987-01-02 Osypka Peter HEART PACEMAKER
EP0205737A3 (en) * 1985-06-19 1987-08-19 Peter Dr. Ing. Osypka Cardiac pacemaker
EP0205737A2 (en) * 1985-06-19 1986-12-30 Peter Dr. Ing. Osypka Cardiac pacemaker
US4934366A (en) * 1988-09-01 1990-06-19 Siemens-Pacesetter, Inc. Feedthrough connector for implantable medical device
WO1991004069A1 (en) * 1989-09-19 1991-04-04 Siemens-Elema Ab Feedthrough connector for implantable medical device
US5111830A (en) * 1989-11-30 1992-05-12 Marc Bemurat Pacemaker lead with auxiliary stimulation pole
US5261395A (en) * 1992-03-02 1993-11-16 Cardiac Pacemaker, Inc. Tooless pulse generator to lead connection
US7822460B2 (en) 1998-11-04 2010-10-26 Surgi-Vision, Inc. MRI-guided therapy methods and related systems
US9301705B2 (en) 1998-11-04 2016-04-05 Johns Hopkins University School Of Medicine System and method for magnetic-resonance-guided electrophysiologic and ablation procedures
US8099151B2 (en) 1998-11-04 2012-01-17 Johns Hopkins University School Of Medicine System and method for magnetic-resonance-guided electrophysiologic and ablation procedures
US9061139B2 (en) 1998-11-04 2015-06-23 Greatbatch Ltd. Implantable lead with a band stop filter having a capacitor in parallel with an inductor embedded in a dielectric body
US20080058635A1 (en) * 1998-11-04 2008-03-06 Johns Hopkins University School Of Medicine Mri-guided therapy methods and related systems
US20080049376A1 (en) * 1998-11-04 2008-02-28 Greatbatch Ltd. Non-ferromagnetic tank filters in lead wires of active implantable medical devices to enhance mri compatibility
WO2000056402A1 (en) * 1999-03-19 2000-09-28 Advanced Neuromodulation Systems, Inc. Stimulation lead connector
US8428747B2 (en) 1999-04-05 2013-04-23 The Spectranetics Corp. Lead locking device and method
US20040236396A1 (en) * 1999-04-05 2004-11-25 Coe Michael Sean Lead locking device and method
US20040236397A1 (en) * 1999-04-05 2004-11-25 The Spectranetics Corporation Lead locking device and method
US9242090B2 (en) 2001-04-13 2016-01-26 MRI Interventions Inc. MRI compatible medical leads
US20100191236A1 (en) * 2001-04-13 2010-07-29 Greatbatch Ltd. Switched diverter circuits for minimizing heating of an implanted lead and/or providing emi protection in a high power electromagnetic field environment
US9248283B2 (en) 2001-04-13 2016-02-02 Greatbatch Ltd. Band stop filter comprising an inductive component disposed in a lead wire in series with an electrode
US20070088416A1 (en) * 2001-04-13 2007-04-19 Surgi-Vision, Inc. Mri compatible medical leads
US20060247684A1 (en) * 2001-04-13 2006-11-02 Greatbatch-Sierra, Inc. Band stop filter employing a capacitor and an inductor tank circuit to enhance mri compatibility of active medical devices
US8219208B2 (en) 2001-04-13 2012-07-10 Greatbatch Ltd. Frequency selective passive component networks for active implantable medical devices utilizing an energy dissipating surface
US20080065181A1 (en) * 2001-04-13 2008-03-13 Greatbatch, Ltd. Rfid detection and identification system for implantable medical lead systems
US8244370B2 (en) 2001-04-13 2012-08-14 Greatbatch Ltd. Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active medical devices
US20080116997A1 (en) * 2001-04-13 2008-05-22 Greatbatch Ltd. Cylindrical bandstop filters for medical lead systems
US20080132987A1 (en) * 2001-04-13 2008-06-05 Greatbatch Ltd. Medical lead system utilizing electromagnetic bandstop filters
US8989870B2 (en) 2001-04-13 2015-03-24 Greatbatch Ltd. Tuned energy balanced system for minimizing heating and/or to provide EMI protection of implanted leads in a high power electromagnetic field environment
US8977355B2 (en) 2001-04-13 2015-03-10 Greatbatch Ltd. EMI filter employing a capacitor and an inductor tank circuit having optimum component values
US8855785B1 (en) 2001-04-13 2014-10-07 Greatbatch Ltd. Circuits for minimizing heating of an implanted lead and/or providing EMI protection in a high power electromagnetic field environment
US8751013B2 (en) 2001-04-13 2014-06-10 Greatbatch Ltd. Switched diverter circuits for minimizing heating of an implanted lead and/or providing EMI protection in a high power electromagnetic field environment
US20100160997A1 (en) * 2001-04-13 2010-06-24 Greatbatch Ltd. Tuned energy balanced system for minimizing heating and/or to provide emi protection of implanted leads in a high power electromagnetic field environment
US20100168821A1 (en) * 2001-04-13 2010-07-01 Greatbatch Ltd. Switched diverter circuits for minimizing heating of an implanted lead in a high power electromagnetic field environment
US8712544B2 (en) 2001-04-13 2014-04-29 Greatbatch Ltd. Electromagnetic shield for a passive electronic component in an active medical device implantable lead
US7899551B2 (en) 2001-04-13 2011-03-01 Greatbatch Ltd. Medical lead system utilizing electromagnetic bandstop filters
US7853325B2 (en) 2001-04-13 2010-12-14 Greatbatch Ltd. Cylindrical bandstop filters for medical lead systems
US9295828B2 (en) 2001-04-13 2016-03-29 Greatbatch Ltd. Self-resonant inductor wound portion of an implantable lead for enhanced MRI compatibility of active implantable medical devices
US20100198312A1 (en) * 2001-04-13 2010-08-05 Greatbatch Ltd. Emi filter employing a capacitor and an inductor tank circuit having optimum component values
US8509913B2 (en) 2001-04-13 2013-08-13 Greatbatch Ltd. Switched diverter circuits for minimizing heating of an implanted lead and/or providing EMI protection in a high power electromagnetic field environment
US20100217262A1 (en) * 2001-04-13 2010-08-26 Greatbatch Ltd. Frequency selective passive component networks for active implantable medical devices utilizing an energy dissipating surface
US7787958B2 (en) 2001-04-13 2010-08-31 Greatbatch Ltd. RFID detection and identification system for implantable medical lead systems
US8457760B2 (en) 2001-04-13 2013-06-04 Greatbatch Ltd. Switched diverter circuits for minimizing heating of an implanted lead and/or providing EMI protection in a high power electromagnetic field environment
US20050021123A1 (en) * 2001-04-30 2005-01-27 Jurgen Dorn Variable speed self-expanding stent delivery system and luer locking connector
US8062344B2 (en) 2001-04-30 2011-11-22 Angiomed Gmbh & Co. Medizintechnik Kg Variable speed self-expanding stent delivery system and luer locking connector
US20030144720A1 (en) * 2002-01-29 2003-07-31 Villaseca Eduardo H. Electromagnetic trap for a lead
US20030144719A1 (en) * 2002-01-29 2003-07-31 Zeijlemaker Volkert A. Method and apparatus for shielding wire for MRI resistant electrode systems
US20030144721A1 (en) * 2002-01-29 2003-07-31 Villaseca Eduardo H. Conditioning of coupled electromagnetic signals on a lead
US7013180B2 (en) * 2002-01-29 2006-03-14 Medtronic, Inc. Conditioning of coupled electromagnetic signals on a lead
US20030144718A1 (en) * 2002-01-29 2003-07-31 Zeijlemaker Volkert A. Method and apparatus for shielding coating for MRI resistant electrode systems
USRE44736E1 (en) 2002-05-29 2014-01-28 MRI Interventions, Inc. Magnetic resonance probes
USRE42856E1 (en) 2002-05-29 2011-10-18 MRI Interventions, Inc. Magnetic resonance probes
US20100321163A1 (en) * 2005-03-21 2010-12-23 Greatbatch Ltd. Rfid detection and identification system for implantable medical lead systems
US8326435B2 (en) 2005-03-21 2012-12-04 Greatbatch Ltd. RFID detection and identification system for implantable medical lead systems
US7935141B2 (en) 2005-08-17 2011-05-03 C. R. Bard, Inc. Variable speed stent delivery system
US8224462B2 (en) 2005-11-11 2012-07-17 Greatbatch Ltd. Medical lead system utilizing electromagnetic bandstop filters
US20110066212A1 (en) * 2005-11-11 2011-03-17 Greatbatch Ltd. Tank filters placed in series with the lead wires or circuits of active medical devices to enhance mri compatability
US20110201912A1 (en) * 2005-11-11 2011-08-18 Greatbatch Ltd. Tank filters placed in series with the lead wires or circuits of active medical devices to enhance mri compatibility
US20080071313A1 (en) * 2005-11-11 2008-03-20 Greatbatch Ltd. Tank filters utilizing very low k materials, in series with lead wires or circuits of active medical devices to enhance mri compatibility
US20070112398A1 (en) * 2005-11-11 2007-05-17 Greatbatch Ltd. Tank filters placed in series with the lead wires or circuits of active medical devices to enhance mri compatibility
US8200328B2 (en) 2005-11-11 2012-06-12 Greatbatch Ltd. Tank filters placed in series with the lead wires or circuits of active medical devices to enhance MRI compatibility
US7945322B2 (en) 2005-11-11 2011-05-17 Greatbatch Ltd. Tank filters placed in series with the lead wires or circuits of active medical devices to enhance MRI compatibility
US8463375B2 (en) 2005-11-11 2013-06-11 Greatbatch Ltd. Tank filters placed in series with the lead wires or circuits of active medical devices to enhance MRI compatability
US20070270007A1 (en) * 2005-12-08 2007-11-22 Niels Mueller Housing for a medical implant
US20090093855A1 (en) * 2005-12-08 2009-04-09 Niels Mueller Housing for a medical implant
US7912549B2 (en) 2005-12-08 2011-03-22 Biotronik Crm Patent Ag Housing for a medical implant
EP1795226A1 (en) * 2005-12-08 2007-06-13 BIOTRONIK CRM Patent AG Housing for a medical implant
US9675486B2 (en) 2006-01-13 2017-06-13 C.R. Bard, Inc. Stent delivery system
US20070168014A1 (en) * 2006-01-13 2007-07-19 Jimenez Teodoro S Stent Delivery System
US8808346B2 (en) 2006-01-13 2014-08-19 C. R. Bard, Inc. Stent delivery system
US11026822B2 (en) 2006-01-13 2021-06-08 C. R. Bard, Inc. Stent delivery system
US8897887B2 (en) 2006-06-08 2014-11-25 Greatbatch Ltd. Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active medical devices
US9119968B2 (en) 2006-06-08 2015-09-01 Greatbatch Ltd. Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active medical devices
US9042999B2 (en) 2006-06-08 2015-05-26 Greatbatch Ltd. Low loss band pass filter for RF distance telemetry pin antennas of active implantable medical devices
US8577453B1 (en) 2006-06-08 2013-11-05 Greatbatch Ltd. Header embedded filter for implantable medical device
US9008799B2 (en) 2006-06-08 2015-04-14 Greatbatch Ltd. EMI filter employing a self-resonant inductor bandstop filter having optimum inductance and capacitance values
US8649857B2 (en) 2006-06-08 2014-02-11 Greatbatch Ltd. Tank filters placed in series with the lead wires or circuits of active medical devices to enhance MRI compatibility
US20100222856A1 (en) * 2006-06-08 2010-09-02 Greatbatch Ltd. Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active medical devices
US20080195180A1 (en) * 2006-06-08 2008-08-14 Greatbatch Ltd. Low loss band pass filter for rf distance telemetry pin antennas of active implantable medical devices
US8275466B2 (en) 2006-06-08 2012-09-25 Greatbatch Ltd. Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active medical devices
US8301243B2 (en) 2006-06-08 2012-10-30 Greatbatch Ltd. Method of tuning bandstop filters for implantable medical leads
US8903505B2 (en) 2006-06-08 2014-12-02 Greatbatch Ltd. Implantable lead bandstop filter employing an inductive coil with parasitic capacitance to enhance MRI compatibility of active medical devices
US20100168756A1 (en) * 2006-08-07 2010-07-01 Dorn Juergen Hand-held actuator device
US9078779B2 (en) 2006-08-07 2015-07-14 C. R. Bard, Inc. Hand-held actuator device
US10993822B2 (en) 2006-08-07 2021-05-04 C. R. Bard, Inc. Hand-held actuator device
US8175700B2 (en) 2006-11-09 2012-05-08 Greatbatch Ltd. Capacitor and inductor elements physically disposed in series whose lumped parameters are electrically connected in parallel to form a bandstop filter
US8108042B1 (en) 2006-11-09 2012-01-31 Greatbatch Ltd. Capacitor and inductor elements physically disposed in series whose lumped parameters are electrically connected in parallel to form a bandstop filter
US9468750B2 (en) 2006-11-09 2016-10-18 Greatbatch Ltd. Multilayer planar spiral inductor filter for medical therapeutic or diagnostic applications
US9031670B2 (en) 2006-11-09 2015-05-12 Greatbatch Ltd. Electromagnetic shield for a passive electronic component in an active medical device implantable lead
US7920916B2 (en) 2006-11-09 2011-04-05 Greatbatch Ltd. Capacitor and inductor elements physically disposed in series whose lumped parameters are electrically connected in parallel to form a bandstop filter
US20100231327A1 (en) * 2006-11-09 2010-09-16 Greatbatch Ltd. Capacitor and inductor elements physically disposed in series whose lumped parameters are electrically connected in parallel to form a bandstop filter
US20100100164A1 (en) * 2006-11-09 2010-04-22 Greatbatch Ltd. Capacitor and inductor elements physically disposed in series whose lumped parameters are electrically connected in parallel to form a bandstop filter
US8500789B2 (en) 2007-07-11 2013-08-06 C. R. Bard, Inc. Device for catheter sheath retraction
US11026821B2 (en) 2007-07-11 2021-06-08 C. R. Bard, Inc. Device for catheter sheath retraction
US10206800B2 (en) 2007-07-11 2019-02-19 C.R. Bard, Inc. Device for catheter sheath retraction
US9421115B2 (en) 2007-07-11 2016-08-23 C. R. Bard, Inc. Device for catheter sheath retraction
US20100174290A1 (en) * 2007-07-11 2010-07-08 C.R. Bard, Inc. Device for catheter sheath retraction
US9108066B2 (en) 2008-03-20 2015-08-18 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US20090276002A1 (en) * 2008-04-30 2009-11-05 Sommer John L Lead-Implant Coupling Device
US7953495B2 (en) 2008-04-30 2011-05-31 Medtronic, Inc. Lead-implant coupling device
US8447414B2 (en) 2008-12-17 2013-05-21 Greatbatch Ltd. Switched safety protection circuit for an AIMD system during exposure to high power electromagnetic fields
US20100208397A1 (en) * 2008-12-17 2010-08-19 Greatbatch Ltd. Switched safety protection circuit for an aimd system during exposure to high power electromagnetic fields
US10080889B2 (en) 2009-03-19 2018-09-25 Greatbatch Ltd. Low inductance and low resistance hermetically sealed filtered feedthrough for an AIMD
US10952879B2 (en) 2010-10-21 2021-03-23 C. R. Bard, Inc. System to deliver a bodily implant
US9801745B2 (en) 2010-10-21 2017-10-31 C.R. Bard, Inc. System to deliver a bodily implant
US11071858B2 (en) 2011-03-01 2021-07-27 Greatbatch Ltd. Hermetically sealed filtered feedthrough having platinum sealed directly to the insulator in a via hole
US10561837B2 (en) 2011-03-01 2020-02-18 Greatbatch Ltd. Low equivalent series resistance RF filter for an active implantable medical device utilizing a ceramic reinforced metal composite filled via
US11198014B2 (en) 2011-03-01 2021-12-14 Greatbatch Ltd. Hermetically sealed filtered feedthrough assembly having a capacitor with an oxide resistant electrical connection to an active implantable medical device housing
US10596369B2 (en) 2011-03-01 2020-03-24 Greatbatch Ltd. Low equivalent series resistance RF filter for an active implantable medical device
US9776002B2 (en) 2011-11-04 2017-10-03 Nevro Corp. Medical device communication and charging assemblies for use with implantable signal generators, and associated systems and methods
US9227076B2 (en) * 2011-11-04 2016-01-05 Nevro Corporation Molded headers for implantable signal generators, and associated systems and methods
US20140330346A1 (en) * 2011-11-04 2014-11-06 Nevro Corporation Molded headers for implantable signal generators, and associated systems and methods
US10918866B2 (en) 2011-11-04 2021-02-16 Nevro Corp. Medical device communication and charging assemblies for use with implantable signal generators, and associated systems and methods
US20130245710A1 (en) * 2012-03-19 2013-09-19 Cardiac Pacemakers, Inc. Integral stimulation lead
USRE46699E1 (en) 2013-01-16 2018-02-06 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US9427596B2 (en) 2013-01-16 2016-08-30 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US10065044B2 (en) 2013-05-03 2018-09-04 Nevro Corp. Molded headers for implantable signal generators, and associated systems and methods
US10946204B2 (en) 2013-05-03 2021-03-16 Nevro Corp. Methods for forming implantable signal generators with molded headers
US20140364869A1 (en) * 2013-06-05 2014-12-11 Boston Scientific Neuromodulation Corporation Systems and methods for steering electrical stimulation leads while coupled to a pulse generator
US9931514B2 (en) 2013-06-30 2018-04-03 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US10350421B2 (en) 2013-06-30 2019-07-16 Greatbatch Ltd. Metallurgically bonded gold pocket pad for grounding an EMI filter to a hermetic terminal for an active implantable medical device
US11766566B2 (en) 2014-05-20 2023-09-26 Nevro Corp. Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems and methods
US10881857B2 (en) 2014-05-20 2021-01-05 Nevro Corp. Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems and methods
US9409020B2 (en) 2014-05-20 2016-08-09 Nevro Corporation Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems and methods
US10173062B2 (en) 2014-05-20 2019-01-08 Nevro Corp. Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems and methods
US9884198B2 (en) 2014-10-22 2018-02-06 Nevro Corp. Systems and methods for extending the life of an implanted pulse generator battery
US11090502B2 (en) 2014-10-22 2021-08-17 Nevro Corp. Systems and methods for extending the life of an implanted pulse generator battery
US10780276B1 (en) 2015-03-13 2020-09-22 Nevro Corp. Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator
US9517344B1 (en) 2015-03-13 2016-12-13 Nevro Corporation Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator
US9937348B1 (en) 2015-03-13 2018-04-10 Nevro Corp. Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator
US10420935B2 (en) 2015-12-31 2019-09-24 Nevro Corp. Controller for nerve stimulation circuit and associated systems and methods
US10589107B2 (en) 2016-11-08 2020-03-17 Greatbatch Ltd. Circuit board mounted filtered feedthrough assembly having a composite conductive lead for an AIMD
US10559409B2 (en) 2017-01-06 2020-02-11 Greatbatch Ltd. Process for manufacturing a leadless feedthrough for an active implantable medical device
US11633604B2 (en) 2018-01-30 2023-04-25 Nevro Corp. Efficient use of an implantable pulse generator battery, and associated systems and methods
US10905888B2 (en) 2018-03-22 2021-02-02 Greatbatch Ltd. Electrical connection for an AIMD EMI filter utilizing an anisotropic conductive layer
US10912945B2 (en) 2018-03-22 2021-02-09 Greatbatch Ltd. Hermetic terminal for an active implantable medical device having a feedthrough capacitor partially overhanging a ferrule for high effective capacitance area
US11712571B2 (en) 2018-03-22 2023-08-01 Greatbatch Ltd. Electrical connection for a hermetic terminal for an active implantable medical device utilizing a ferrule pocket
US11147974B2 (en) 2018-05-01 2021-10-19 Nevro Corp. 2.4 GHz radio antenna for implanted medical devices, and associated systems and methods
US11684786B2 (en) 2018-05-01 2023-06-27 Nevro Corp. 2.4 GHz radio antenna for implanted medical devices, and associated systems and methods
US11571570B2 (en) 2019-01-31 2023-02-07 Nevro Corp. Power control circuit for sterilized devices, and associated systems and methods
US10933238B2 (en) 2019-01-31 2021-03-02 Nevro Corp. Power control circuit for sterilized devices, and associated systems and methods

Similar Documents

Publication Publication Date Title
US3871382A (en) Heart stimulator system for rapid implantation and removal with improved integrity
US4262982A (en) Electrical socket useful for connecting an electrode catheter to a cardiac pacemaker casing
US9362570B2 (en) Elongate battery for implantable medical device
CN102448543B (en) Implantable medical device with exposed generator
US5509928A (en) Internally supported self-sealing septum
US4248237A (en) Cardiac pacemakers
US7343204B2 (en) Miniature implantable connectors
US5535097A (en) Implantable medical device including a first enclosure portion having a feedthrough in a second interior surface
US8541131B2 (en) Elongate battery for implantable medical device
US6738672B2 (en) Miniature implantable connectors
US4226244A (en) Electrical connector for implantable electrical generators
US3683932A (en) Implantable tissue stimulator
JPH04503021A (en) Feed-through connectors for implantable medical devices
US11691017B2 (en) Leadless biostimulator and electrical feedthrough assembly for leadless biostimulator
US20100304209A1 (en) Elongate battery for implantable medical device
JPH06190060A (en) Connector assembly for implantable medical equipment
JPS61164566A (en) Pacemaker lead wire
JP2624440B2 (en) Pulse generator with diagnostic connector port
WO1989005170A1 (en) Pacemaker connector system
US5522861A (en) Access grommet assembly and devices using the assembly
US20100305628A1 (en) Elongate battery for implantable medical device
US20030045911A1 (en) Connector module having internal weld plates
US20100305627A1 (en) Battery with suture hole
US5330523A (en) Implantable defibrillator patch lead
GB2127629A (en) Implantable medical device with sealed electrical coupling

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)

AS Assignment

Owner name: SIEMENS-ELEMA AB, A CORP OF SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PACESETTER SYSTEMS, INC., A CORP OF CA.;REEL/FRAME:004559/0175

Effective date: 19850430