US3873944A - Bonding of ferrite to metal for high-power microwave applications - Google Patents

Bonding of ferrite to metal for high-power microwave applications Download PDF

Info

Publication number
US3873944A
US3873944A US337059A US33705973A US3873944A US 3873944 A US3873944 A US 3873944A US 337059 A US337059 A US 337059A US 33705973 A US33705973 A US 33705973A US 3873944 A US3873944 A US 3873944A
Authority
US
United States
Prior art keywords
button
layer
circulator
ferrite
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US337059A
Inventor
Victor A Vaguine
Dennis R Nichols
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Varian Medical Systems Inc
Original Assignee
Varian Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian Associates Inc filed Critical Varian Associates Inc
Priority to US337059A priority Critical patent/US3873944A/en
Priority to US05/513,030 priority patent/US3960512A/en
Priority to US05/513,021 priority patent/US3969086A/en
Priority to US05/513,195 priority patent/US3940051A/en
Application granted granted Critical
Publication of US3873944A publication Critical patent/US3873944A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators
    • H01P1/383Junction circulators, e.g. Y-circulators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/122Metallic interlayers based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/72Forming laminates or joined articles comprising at least two interlayers directly next to each other
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/86Joining of two substrates at their largest surfaces, one surface being complete joined and covered, the other surface not, e.g. a small plate joined at it's largest surface on top of a larger plate

Definitions

  • ABSTRACT A ferrite-to-metal bond suitable for the environment of a high-power microwave circulator is disclosed.
  • the bonding surface of a gyromagnetic ferrite or garnet button is metallized by a sputtering process that deposits successive layers of nichrome, copper and gold thereon.
  • a flexible stainless steel band surrounds the button to prevent sputtered material from being deposited on other than the bonding surface of the button.
  • the metallized bonding surface is then soldered to a metal wall of the circulator.
  • the bond so formed is capable of withstanding a peak power level in the circulator of 2.0 megawatts and an average power level of 3.5 kilowatts under standing-wave conditions.
  • One method for achieving non-reciprocal transmission of power in a microwave system is by means of a circulator having a pair of symmetrically disposed gyromagnetic ferrite or garnet buttons mounted therein to concentrate the flux lines of an externally produced magnetic field. Interaction of the microwave with the externally magnetized gyromagnetic ferrite or garnet buttons will cause transmission of the microwave power only in a particular direction.
  • ferrite or'garnet'buttons had been bonded to opposing metal walls of a circulator by a dielectric bonding material such as an epoxy or a mixture of epoxies.
  • This invention provides a technique for metallizing a gyromagnetic ferrite or garnet button so that the button can be soldered to a wall of a microwave circulator, and thereupon function in a high-powerenvironment within the circulator for an extended length of time without being fractured and without suffering diminution in its capacity to effect non-reciprocal transmission of microwave power.
  • a sputtering process is utilized to metallize the button by depositing an adherent layer of nichrome onto the bonding surface of the button, and thereafter a layer of copper onto the nichrome layer, and finally a layer of gold onto the copper layer.
  • a flexible stainless steel band surrounds the ferrite button to prevent sputtered material from being deposited on any portion of the button other than its bonding surface. Flexibility of the band is achieved by providing a scallop in the band.
  • FIG. 1 shows'in schematic form a microwave system comprising a three-port circulator having a pair of gyromagnetic ferrite buttons disposed to achieve nonreciprocal transmission of power.
  • FIG. 2 shows in plan view a stainless steel band as used in the sputtering process of this invention.
  • FIG. 3 shows the band of FIG. 4 surrounding a ferrite button, and indicates appropriate dimensions.
  • FIG. 4 shows a cross-sectional view of a ferrite button metallized according to the technique of this invention.
  • FIG. 5 shows a cross-sectional view of a ferrite button bonded to a metal wall according to the technique of this invention.
  • FIG. 6 shows a cross-sectional view of a ferrite button bonded to a metal wall by an alternative bond to the bond shown in FIG. 5.
  • the working load is a resonant apparatus such as an electron accelerator and the power source is a magnetron
  • reflections of power from the accelerator can be caused by frequency mismatch between the accelerator and the magnetron and/or by transient processes inherent in pulsed operation of the accelerator. Even small power reflections from the accelerator will tend to drive the magnetron off frequency. If the magnetron is off frequency, all power will be reflected from the accelerator thereby causing further detuning of the magnetron. It is therefore necessary in such systems that the power source be isolated from the resonant load.
  • a three-port circulator 1 which isolates a power source 2, which may be a magnetron, from a resonant load 3, which may be a linear accelerator.
  • Broken line 4 shows the direction of transmission of microwave power from the power source to the resonant load
  • dotted line 5 shows the direction of transmission of power reflected from the resonant load to a dummy load 6.
  • the power source is isolated from the resonant load because the circulator achieves non-reciprocal transmission of power within the circulator structure.
  • a pair of gyromagnetic ferrite or garnet buttons, indicated by reference number 7', is disposed within the circulator structure.
  • the wave generated by the power source interacts with the externally magnetized gyromagnetic ferrite or garnet buttons in such a way that power from the power source port of the circulator can be transmitted only in the direction of the resonant Iozid port, as shown by broken line 4. Similarly, any power reflected from the resonant load can be transmitted only in the direction of the dummy load port, as shown by dotted line 5.
  • the dummy load 6 is intended to absorb substantially all of the reflected microwave energy. Techniques exist for utilizing small reflections from the dummy load, which the ferrite buttons cause to be transmitted only in the direction of the powersource port, in order to stabilize the frequency of the power source at the frequency of the resonant load. For example, see U.S. Pat. No. 3,714,592, assigned to Varian Associates, assignee of the present invention.
  • the ferrite or garnet buttons can successfully be located in proper position within the circulator by the dielectric bonding technique of the prior art, which essentially involves bonding a button 7 to a wall of the circulator with an epoxy or a mixture of epoxies. It has been found, however, that for high power operation, dielectric bonding material is likely to melt, evaporate, bubble or boil out, thereby causing the bond to fail. Where the resonant load is an apparatus designed to operate at a sharply defined resonance frequency, even slight frequency tion within the circulator.
  • This invention provides a metallizing technique whereby a gyromagnetic ferrite or garnet button can be soldered to a wall of a microwave circulator.
  • the bond formed by soldering a ferrite or garnet surface that has been metallized according to this invention to a wall of a microwave circulator has been shown experimentally to be capable of withstanding peak power levels as high as 2.0 megawatts and average power levels of 3.5 kilowatts for intervals of time in excess of 30 minutes under standing-wave conditions.
  • Such permanent bonding can generally be achieved only by a sputtering technique, where the particles of metallizing material are driven into the substrate surface with an average energy of electron volts, whereupon the atoms of the metallizing layer form a common interstitial structure with the atoms of the substrate material. It has been found that unless a special masking technique is used, sputtered metallizing material will be deposited on portions of the ferrite button other than the bonding surface. In particular, the side edge of the button is likely to receive a relatively heavy coating of metallizing material.
  • a metallized surface of'the'ferrite button is exposed to a microwave field, even where the metallization consists of only a discontinuous deposition of minute amounts of sputtered metal along the side edge of the button, the capacity of the ferrite to function as a non-reciprocal wave guide is significantly reduced. Furthermore, metallization of the side edge of the ferrite button appears to promote arcing between the button and the walls of the circulator. it is therefore essential that an appropriate masking technique be used during the sputtering operations.
  • a band of masking material covering the side edge of the ferrite button during the sputtering operation would serve as a mask to prevent the deposition of metal on the side edgesurface.
  • the surface temperature of the ferrite button will typically reach 250C, at which temperature the coefficient of thermal expansion for ferrite is approximately 10 X 10 per degree C.
  • a band enclosing the ferrite button will either fracture the ferrite or be itself fractured, unless .the band expands at substantially the same rate as the ferrite.
  • a masking technique has been developed for metallizing the bonding surface of a ferrite button while protecting those surface portions of the button other than the bonding surface from the deposition of metallizing material.
  • a band 10 of 304-stainless steel, tungsten or tantalum, having a scallop 11 in its periphery has been found to provide adequatemasking.
  • the uneven rates of expansion of the ferrite and the band material with respect to each other can be accommodated by the scallop which allows the band to flex as the ferrite expands at a faster rate than the band.
  • Typical dimensions for a ferrite button and for an appropriate stainless steel masking band are shown in FIG. 3.
  • a ferrite button for use in a microwave circulator is typically in the form of a circular wafer having a diameter of approximately 29 millimeters and a thickness of approximately 4 millimeters.
  • the side edge of the button is typically faired into the surface of the button which faces the microwave field.
  • a typical radius of curvature for the convex portion of the continuously faired surface of the button is 3 millimeters. It has been found that a typical ferrite button will be adequately masked during the sputtering operation by a circular stainless steel band having an inner diameter just large enough to tightly accommodate the diameter of the button, an outer diameter approximately one millimeter larger than its inner diameter, and a scallop (as shown by reference number 11 in FIG.
  • the coefficients of thermal expansion for some materials typically used for microwave circulator structures are as follows: stainless steel, 16.4 X (C); aluminum; 23 X 10" (C); and copper, 16 X l0 (C) whereas the coefficient of thermal expansion for ferrite is only 10 X lO (C)
  • the bond between the ferrite button and the metal wall of the circulator must therefore be able to accommodate a relatively large difference between these coefficients of thermal expansion, without subjecting the button to such great mechanical stress that the button will be likely to fracture or to suffer displacement from its proper position within the circulator at high temperatures.
  • FIG. 4 shows a ferrite button metallized according to the present invention.
  • the ferrite button 7 has a layer of nichrome 20 sputtered onto its bonding surface, a layer of copper 21 sputtered onto the nichrome layer, and a layer of gold 22 sputtered onto the copper layer.
  • the nichrome layer is approximately 10,000 angstroms thick. Nichrome is chosen because it forms a particularly strong oxide bond with ferrite or garnet. Other materials which form strong oxide bonds with ferrite or garnet and are suitable for this first sputtered layer include molybdenum and chromium.
  • Copper is chosen for the second sputtered layer be cause of its excellent thermal conductivity, which is important in removing heat from the button to the wall of the circulator during high-power microwave operation. In addition, copper will not be dissolved in the solder material during the soldering of the metallized button to the wall of the circulator.
  • the copper layer is relatively thick, being about 30,000 angstroms.
  • a thin layer of gold no more than 10,000 angstroms being necessary, is then sputtered onto the copper layer.
  • Gold is chosen for the third sputtered layer because it is chemically inert.
  • the purpose of the gold layer is to preclude oxidation of the copper layer. If an oxide were to form on the outer metallized layer of the button prior to soldering, the ability of the solder to wet the outer metallized layer would be seriously diminished and the bond formed by the solder would consequently be weakened. An oxide layer would also inhibit thermal conduction from the button to the wall of the circulator.
  • the gold layer therefore, serves as a protective coating on the copper layer. During soldering, the gold layer might dissolve, either partially or totally, depending upon the soldering temperature, into the solder material.
  • solder comprising a mixture of tin and lead is a satisfactory soldering material.
  • a preferable soldering material would be indium, which has a better heat transfer capability and, being a softer material, provides better stress relief when cooling than a tin-lead mixture.
  • FIG. 5 shows a wall 8 of circulator 1, with a ferrite or garnet button 7 bonded thereto according to the technique of this invention.
  • An analysis of the metallizing bond between the ferrite or garnet button and the circulator wall would reveal a first layer 20 comprising nichrome, molybdenum or chromium deposited upon the bonding surface of the button, a second layer 21 of copper, a third layer 22 of gold, and a fourth layer 23 comprising the solder material.
  • the fourth layer might comprise a mixture of tin and lead, or it might be a layer of indium. To the extent that the gold has dissolved into the solder material, the fourth layer will also contain this dissolved gold.
  • FIG. 6 shows a layer 24 sandwiched between the copper layer 21 and the wall 8 of the circulator. Layer 24 comprises the soldering material with the gold protective layer completely dissolved therein.
  • a microwave circulator comprising a metal wall, a gyromagnetic ferrite button, and a bond affixing said button to said wall, said wall comprising at least three metal layers, each of said layers comprising a different metal from the others of said layers.
  • one of said metal layers comprises a first layer in contact with said button, said first layer comprising a metal selected from the group consisting of nichrome, molybdenum and chromium.
  • the microwave circulator of claim 5 further comprising a layer of solder in contact with both said third layer and said metal wall.
  • solder comprises a mixture of lead and tin.
  • solder comprises a mixture of lead and tin.
  • a circulator comprising a metal wall, a gyromagnetic ferrite button, a bond affixing said button to said wall, said bond comprising at least three metal layers, each of said layers comprising a different metal from the others of said layers, and means for applying a magnetic field to said button.

Abstract

A ferrite-to-metal bond suitable for the environment of a highpower microwave circulator is disclosed. The bonding surface of a gyromagnetic ferrite or garnet button is metallized by a sputtering process that deposits successive layers of nichrome, copper and gold thereon. During the sputtering process, a flexible stainless steel band surrounds the button to prevent sputtered material from being deposited on other than the bonding surface of the button. The metallized bonding surface is then soldered to a metal wall of the circulator. The bond so formed is capable of withstanding a peak power level in the circulator of 2.0 megawatts and an average power level of 3.5 kilowatts under standing-wave conditions.

Description

Vaguine et al.
[ Mar. 25, 1975 BONDING OF FERRITE TO METAL FOR HIGH-POWER MICROWAVE APPLICATIONS [75] Inventors: Victor A. Vaguine, Palo Alto;
Dennis R. Nichols, San Jose, both of Calif.
[73] Assignee: Varian Associates, Palo Alto, Calif.
[22] Filed: Mar. 1, 1973 [21] Appl. No.: 337,059
[52] US. Cl. 333/1.1, 29/4731 [51] Int. Cl. ..H01p 1/32 [58] Field of Search 333/1.1, 24 G, 24.1, 24.2;
[56] References Cited UNITED STATES PATENTS 2,798,577 7/1957 LaForge, Jr. 29/4731 X 3,010,188 11/1961 80] et al. 29/473.1 X
3.136962 6/1964 Bowness 333/l.1
SOLDER\25 3,793,705 2/1974 Cole et al. 29/473.l
Primary Examiner-Paul L. Gensler Attorney, Agent, or Firm-Stanley Z. Cole; John J. Morrissey [57] ABSTRACT A ferrite-to-metal bond suitable for the environment of a high-power microwave circulator is disclosed. The bonding surface of a gyromagnetic ferrite or garnet button is metallized by a sputtering process that deposits successive layers of nichrome, copper and gold thereon. During the sputtering process, a flexible stainless steel band surrounds the button to prevent sputtered material from being deposited on other than the bonding surface of the button. The metallized bonding surface is then soldered to a metal wall of the circulator. The bond so formed is capable of withstanding a peak power level in the circulator of 2.0 megawatts and an average power level of 3.5 kilowatts under standing-wave conditions.
12 Claims, 6 Drawing Figures 2| COPPER \CIRCULATOR WALL PATENIEnumzslls 3,873 .944
Flea F|G.6
FERRITE/ NICHROME GOLD 0 f Q COPPER soLoER-\25 8'\CIRCULATOR WALL I BACKGROUND OF THE INVENTION 1. Field of the Invention This invention is a further development in the highpower microwave art, and in particular provides a ferrite-to-metal bond that will tolerate standing-wave conditions in a microwave circulator for an extended length of time.
2. Description of the PriorArt I One method for achieving non-reciprocal transmission of power in a microwave system is by means of a circulator having a pair of symmetrically disposed gyromagnetic ferrite or garnet buttons mounted therein to concentrate the flux lines of an externally produced magnetic field. Interaction of the microwave with the externally magnetized gyromagnetic ferrite or garnet buttons will cause transmission of the microwave power only in a particular direction. Prior to the present invention, such ferrite or'garnet'buttons had been bonded to opposing metal walls of a circulator by a dielectric bonding material such as an epoxy or a mixture of epoxies. It has beenfound, however, that for highpower levels that are frequently encountered in mic-rowave systems, dielectric bonding material is likely to melt, evaporate, bubble or boil out thereby causing the bond to fail. Until the present invention, a metallizing technique had not been developed which could provide a bond capable of, withdstanding high-power levels such as would occur under standing wave conditions caused by a frequency mismatch between, for example, a resonant linear accelerator load and a magnetron power source.
SUMMARY OF THE INVENTION This invention provides a technique for metallizing a gyromagnetic ferrite or garnet button so that the button can be soldered to a wall of a microwave circulator, and thereupon function in a high-powerenvironment within the circulator for an extended length of time without being fractured and without suffering diminution in its capacity to effect non-reciprocal transmission of microwave power. A sputtering process is utilized to metallize the button by depositing an adherent layer of nichrome onto the bonding surface of the button, and thereafter a layer of copper onto the nichrome layer, and finally a layer of gold onto the copper layer. During the sputtering process, a flexible stainless steel band surrounds the ferrite button to prevent sputtered material from being deposited on any portion of the button other than its bonding surface. Flexibility of the band is achieved by providing a scallop in the band.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 shows'in schematic form a microwave system comprising a three-port circulator having a pair of gyromagnetic ferrite buttons disposed to achieve nonreciprocal transmission of power.
, FIG. 2 shows in plan view a stainless steel band as used in the sputtering process of this invention.
FIG. 3 shows the band of FIG. 4 surrounding a ferrite button, and indicates appropriate dimensions.
FIG. 4 shows a cross-sectional view of a ferrite button metallized according to the technique of this invention.
FIG. 5 shows a cross-sectional view of a ferrite button bonded to a metal wall according to the technique of this invention.
FIG. 6 shows a cross-sectional view of a ferrite button bonded to a metal wall by an alternative bond to the bond shown in FIG. 5.
DESCRIPTION OF THE PREFERRED EMBODIMENT In many microwave systems, power reflected from the working load cannotbe tolerated by the power source. For example, where the working load is a resonant apparatus such as an electron accelerator and the power source is a magnetron, reflections of power from the accelerator can be caused by frequency mismatch between the accelerator and the magnetron and/or by transient processes inherent in pulsed operation of the accelerator. Even small power reflections from the accelerator will tend to drive the magnetron off frequency. If the magnetron is off frequency, all power will be reflected from the accelerator thereby causing further detuning of the magnetron. It is therefore necessary in such systems that the power source be isolated from the resonant load.
Referring now to FIG. 1, a three-port circulator 1 is shown which isolates a power source 2, which may be a magnetron, from a resonant load 3, which may be a linear accelerator. Broken line 4 shows the direction of transmission of microwave power from the power source to the resonant load, and dotted line 5 shows the direction of transmission of power reflected from the resonant load to a dummy load 6. The power source is isolated from the resonant load because the circulator achieves non-reciprocal transmission of power within the circulator structure. A pair of gyromagnetic ferrite or garnet buttons, indicated by reference number 7', is disposed within the circulator structure. The wave generated by the power source interacts with the externally magnetized gyromagnetic ferrite or garnet buttons in such a way that power from the power source port of the circulator can be transmitted only in the direction of the resonant Iozid port, as shown by broken line 4. Similarly, any power reflected from the resonant load can be transmitted only in the direction of the dummy load port, as shown by dotted line 5. The dummy load 6 is intended to absorb substantially all of the reflected microwave energy. Techniques exist for utilizing small reflections from the dummy load, which the ferrite buttons cause to be transmitted only in the direction of the powersource port, in order to stabilize the frequency of the power source at the frequency of the resonant load. For example, see U.S. Pat. No. 3,714,592, assigned to Varian Associates, assignee of the present invention.
For low power levels of operation, i.e., where peak power remains below 1.7 megawatts and the average operating power level is below 2.0 kilowatts, the ferrite or garnet buttons can successfully be located in proper position within the circulator by the dielectric bonding technique of the prior art, which essentially involves bonding a button 7 to a wall of the circulator with an epoxy or a mixture of epoxies. It has been found, however, that for high power operation, dielectric bonding material is likely to melt, evaporate, bubble or boil out, thereby causing the bond to fail. Where the resonant load is an apparatus designed to operate at a sharply defined resonance frequency, even slight frequency tion within the circulator. The occurrence of such standing waves must be anticipated in a microwave system that comprises, for example, a linear accelerator. Under standing wave conditions, the electric field strength will be double that of travelling wave conditions. The microwave power in the circulator under standing-wave conditions will therefore be four times higher than under travelling wave conditions. It has been found that dielectric bonding material cannot withstand power levels that are attained under such standing-wave conditions.
This invention provides a metallizing technique whereby a gyromagnetic ferrite or garnet button can be soldered to a wall of a microwave circulator. The bond formed by soldering a ferrite or garnet surface that has been metallized according to this invention to a wall of a microwave circulator has been shown experimentally to be capable of withstanding peak power levels as high as 2.0 megawatts and average power levels of 3.5 kilowatts for intervals of time in excess of 30 minutes under standing-wave conditions. These experimental limitations are not due to any discovered or anticipated failure of the bond at the specified power levels, but rather represent merely the maximum available peak power limit (i.e., 2.0 megawatts) of the magnetron used in conducting the test and the maximum repetition rate of the modulator used which resulted in a maximum available average operating power of 3.5 kilowatts. It was determined that under identical experimental conditions, a dielectric bond will fail within 2 minutes at 2.0 kilowatts average power or if peak power risesabove 1.7 megawatts under standing-wave conditions.
The metallizing approach was not an obvious solution to the high-power bonding problem. Gyromagnetic ferrites are known to undergo certain irreversible changes in their electromagnetic properties at soldering temperatures, i.e., at temperatures above 175C. Consequently, it was to be anticipated that the soldering process might cause a ferrite button to lose its property of causing non-reciprocal transmission of power in a microwave circulator. Furthermore, in any metallizing process it is essential that the metal layer be permenently bonded to the bonding surface of the button so that the metal layer cannot be removed by flaking or otherwise in the high-temperature environment of high-power microwave operation. Such permanent bonding can generally be achieved only by a sputtering technique, where the particles of metallizing material are driven into the substrate surface with an average energy of electron volts, whereupon the atoms of the metallizing layer form a common interstitial structure with the atoms of the substrate material. It has been found that unless a special masking technique is used, sputtered metallizing material will be deposited on portions of the ferrite button other than the bonding surface. In particular, the side edge of the button is likely to receive a relatively heavy coating of metallizing material. Where a metallized surface of'the'ferrite button is exposed to a microwave field, even where the metallization consists of only a discontinuous deposition of minute amounts of sputtered metal along the side edge of the button, the capacity of the ferrite to function as a non-reciprocal wave guide is significantly reduced. Furthermore, metallization of the side edge of the ferrite button appears to promote arcing between the button and the walls of the circulator. it is therefore essential that an appropriate masking technique be used during the sputtering operations.
A band of masking material covering the side edge of the ferrite button during the sputtering operation would serve as a mask to prevent the deposition of metal on the side edgesurface. During sputtering, however, the surface temperature of the ferrite button will typically reach 250C, at which temperature the coefficient of thermal expansion for ferrite is approximately 10 X 10 per degree C. A band enclosing the ferrite button will either fracture the ferrite or be itself fractured, unless .the band expands at substantially the same rate as the ferrite. Numerous masking materials exist which have coefficients of thermal expansion approximating that of ferrite. However, at sputtering temperatures, such materials will fuse with the ferrite. Materials such as 'stainless steel, tungsten and tantalum will not fuse with ferrite at sputtering temperatures. but have coefficients of thermal expansion which vary so significantly from the coefficient of thermal expansion for ferrite that fracturing of either the ferrit button or the masking structure would seem inevitable during the sputtering process.
According to the present invention, a masking technique has been developed for metallizing the bonding surface of a ferrite button while protecting those surface portions of the button other than the bonding surface from the deposition of metallizing material. As shown in FIG. 2, a band 10 of 304-stainless steel, tungsten or tantalum, having a scallop 11 in its periphery, has been found to provide adequatemasking. The uneven rates of expansion of the ferrite and the band material with respect to each other can be accommodated by the scallop which allows the band to flex as the ferrite expands at a faster rate than the band. Typical dimensions for a ferrite button and for an appropriate stainless steel masking band are shown in FIG. 3. A ferrite button for use in a microwave circulator is typically in the form of a circular wafer having a diameter of approximately 29 millimeters and a thickness of approximately 4 millimeters. The side edge of the button is typically faired into the surface of the button which faces the microwave field. A typical radius of curvature for the convex portion of the continuously faired surface of the button is 3 millimeters. It has been found that a typical ferrite button will be adequately masked during the sputtering operation by a circular stainless steel band having an inner diameter just large enough to tightly accommodate the diameter of the button, an outer diameter approximately one millimeter larger than its inner diameter, and a scallop (as shown by reference number 11 in FIG. 2) extending radially outward about 5 millimeters beyond the outer diameter of the band with a separation of 2 millimeters between points on opposite sides of the scallop opening on the inner periphery of the band. A suitable thickness for the band is 2.5 millimeters. The stainless steel will not fuse with the ferrite button during the sputtering process, and will not fracture the button despite unequal coefficients of thermal expansion because of the springiness introduced into the band by the scallop. Tungsten of tantalum could be used in place of stainless steel, but stainless steel (and in particular 304- stainless) is especially preferred because of its mechanical workability.
Having developed a suitable masking technique, the choice of the particular metallizing material or materials to use remains unobvious. The coefficients of thermal expansion for some materials typically used for microwave circulator structures are as follows: stainless steel, 16.4 X (C); aluminum; 23 X 10" (C); and copper, 16 X l0 (C) whereas the coefficient of thermal expansion for ferrite is only 10 X lO (C) The bond between the ferrite button and the metal wall of the circulator must therefore be able to accommodate a relatively large difference between these coefficients of thermal expansion, without subjecting the button to such great mechanical stress that the button will be likely to fracture or to suffer displacement from its proper position within the circulator at high temperatures.
By a series of experiments, it has been found that a suitable metallizing bond can be formed by sputtering successive layers of nichrome, copper and gold onto the bonding surface of the ferrite button. FIG. 4 shows a ferrite button metallized according to the present invention. The ferrite button 7 has a layer of nichrome 20 sputtered onto its bonding surface, a layer of copper 21 sputtered onto the nichrome layer, and a layer of gold 22 sputtered onto the copper layer. The nichrome layer is approximately 10,000 angstroms thick. Nichrome is chosen because it forms a particularly strong oxide bond with ferrite or garnet. Other materials which form strong oxide bonds with ferrite or garnet and are suitable for this first sputtered layer include molybdenum and chromium.
Copper is chosen for the second sputtered layer be cause of its excellent thermal conductivity, which is important in removing heat from the button to the wall of the circulator during high-power microwave operation. In addition, copper will not be dissolved in the solder material during the soldering of the metallized button to the wall of the circulator. The copper layer is relatively thick, being about 30,000 angstroms.
A thin layer of gold, no more than 10,000 angstroms being necessary, is then sputtered onto the copper layer. Gold is chosen for the third sputtered layer because it is chemically inert. The purpose of the gold layer is to preclude oxidation of the copper layer. If an oxide were to form on the outer metallized layer of the button prior to soldering, the ability of the solder to wet the outer metallized layer would be seriously diminished and the bond formed by the solder would consequently be weakened. An oxide layer would also inhibit thermal conduction from the button to the wall of the circulator. The gold layer, therefore, serves as a protective coating on the copper layer. During soldering, the gold layer might dissolve, either partially or totally, depending upon the soldering temperature, into the solder material. This dissolving of the gold into the solder, however, is not harmful to the bond. It has been found that ordinary commercially available solder comprising a mixture of tin and lead is a satisfactory soldering material. A preferable soldering material would be indium, which has a better heat transfer capability and, being a softer material, provides better stress relief when cooling than a tin-lead mixture.
FIG. 5 shows a wall 8 of circulator 1, with a ferrite or garnet button 7 bonded thereto according to the technique of this invention. An analysis of the metallizing bond between the ferrite or garnet button and the circulator wall would reveal a first layer 20 comprising nichrome, molybdenum or chromium deposited upon the bonding surface of the button, a second layer 21 of copper, a third layer 22 of gold, and a fourth layer 23 comprising the solder material. The fourth layer might comprise a mixture of tin and lead, or it might be a layer of indium. To the extent that the gold has dissolved into the solder material, the fourth layer will also contain this dissolved gold. FIG. 6 shows a layer 24 sandwiched between the copper layer 21 and the wall 8 of the circulator. Layer 24 comprises the soldering material with the gold protective layer completely dissolved therein.
It is clear that changes could be made in particular details of the preferred embodiment of the invention disclosed herein without departing from the scope of the invention. Therefore, it is intended that the above description and the accompanying drawing be interpreted as illustrative only and not as limiting. The scope of this patent shall be limited only by the following claims What is claimed is:
l. A microwave circulator comprising a metal wall, a gyromagnetic ferrite button, and a bond affixing said button to said wall, said wall comprising at least three metal layers, each of said layers comprising a different metal from the others of said layers.
2. The microwave circulator of claim 1 wherein said button is made of garnet.
3. The microwave circulator of claim 1 wherein one of said metal layers comprises a first layer in contact with said button, said first layer comprising a metal selected from the group consisting of nichrome, molybdenum and chromium.
4. The microwave circulator of claim 3 wherein another of said metal layers comprises a second layer in contact with said first layer, said second layer comprising copper.
5. The microwave circulator of claim 4 wherein another of said metal layers comprises a third layer in contact with said second layer, said third layer comprising gold.
6. The microwave circulator of claim 5 further comprising a layer of solder in contact with both said third layer and said metal wall.
7. The microwave circulator of claim 6 wherein said solder comprises indium.
8. The microwave circulator of claim 6 wherein said solder comprises a mixture of lead and tin.
9. The microwave circulator of claim 4 wherein another of said metal layers comprises a final layer comprising a mixture of solder and gold, said final layer being in contact with both said second layer and said metal wall.
10. The microwave circulator of claim 9 wherein said solder comprises indium.
11. The microwave circulator of claim 9 wherein said solder comprises a mixture of lead and tin.
12. In a microwave transmission system, a circulator comprising a metal wall, a gyromagnetic ferrite button, a bond affixing said button to said wall, said bond comprising at least three metal layers, each of said layers comprising a different metal from the others of said layers, and means for applying a magnetic field to said button.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION 3, 873 944 March 25, 1975 Patent No Dated Inventor(s) VICTOR A. VAGUINE and DENNIS R. NICHOLS It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
column 6, line 24: change "wall" (second occurrence) to -bond-.
Signed and Sealed this twenty-second Day 0f July 1975 [SEAL] A ttes I.
RUTH C. MASON C. MARSHALL DANN Alresling Officer Commixxioner of Parents and Trademarks USCOMM-DC 60376-P69 U 3 GOVERNMENT PRINTING OFFICE

Claims (12)

1. A MICROWAVE CIRCULATOR COMPRISING A METAL WALL, A GYROMAGNETIC FERRITE BUTTON, AND A BOND AFFIXING SAID BUTTON TO SAID WALL, SAID WALL COMPRISING AT LEAST THREE METAL LAYERS, EACH OF SAID LAYERS COMPRISING A DIFFERENT METAL FROM THE OTHERS OF SAID LAYERS.
2. The microwave circulator of claim 1 wherein said button is made of garnet.
3. The microwave circulator of claim 1 wherein one of said metal layers comprises a first layer in contact with said button, said first layer comprising a metal selected from the group consisting of nichrome, molybdenum and chromium.
4. The microwave circulator of claim 3 wherein another of said metal layers comprises a second layer in contact with said first layer, said second layer comprising copper.
5. The microwave circulator of claim 4 wherein another of said metal layers comprises a third layer in contact with said second layer, said third layer comprising gold.
6. The microwave circulator of claim 5 further comprising a layer of solder in contact with both said third layer and said metal wall.
7. The microwave circulator of claim 6 wherein said solder comprises indium.
8. The microwave circulator of claim 6 wherein said solder comprises a mixture of lead and tin.
9. The microwave circulator of claim 4 wherein another of said metal layers comprises a final layer comprising a mixture of solder and gold, said final layer being in contact with both said second layer and said metal wall.
10. The microwave circulator of claim 9 wherein said solder comprises indium.
11. The microwave circulator of claim 9 wherein said solder comprises a mixture of lead and tin.
12. In a microwave transmission system, a circulator comprising a metal wall, a gyromagnetic ferrite button, a bond affixing said button to said wall, said bond comprising at least three metal layers, each of said layers comprising a different metal from the others of said layers, and means for applying a magnetic field to said button.
US337059A 1973-03-01 1973-03-01 Bonding of ferrite to metal for high-power microwave applications Expired - Lifetime US3873944A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US337059A US3873944A (en) 1973-03-01 1973-03-01 Bonding of ferrite to metal for high-power microwave applications
US05/513,030 US3960512A (en) 1973-03-01 1974-10-08 Ferrite to metal bond for high-power microwave applications
US05/513,021 US3969086A (en) 1973-03-01 1974-10-08 Metallized gyromagnetic ferrite
US05/513,195 US3940051A (en) 1973-03-01 1974-10-08 Bonding of ferrite to metal for high-power microwave applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US337059A US3873944A (en) 1973-03-01 1973-03-01 Bonding of ferrite to metal for high-power microwave applications

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US05/513,021 Division US3969086A (en) 1973-03-01 1974-10-08 Metallized gyromagnetic ferrite
US05/513,030 Division US3960512A (en) 1973-03-01 1974-10-08 Ferrite to metal bond for high-power microwave applications

Publications (1)

Publication Number Publication Date
US3873944A true US3873944A (en) 1975-03-25

Family

ID=23318942

Family Applications (1)

Application Number Title Priority Date Filing Date
US337059A Expired - Lifetime US3873944A (en) 1973-03-01 1973-03-01 Bonding of ferrite to metal for high-power microwave applications

Country Status (1)

Country Link
US (1) US3873944A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057661A (en) * 1974-05-30 1977-11-08 Contraves Ag Method of manufacturing a thin-film electrode
US4210389A (en) * 1978-11-14 1980-07-01 Mcdonnell Douglas Corporation Bond and method of making the same
US4240049A (en) * 1979-09-24 1980-12-16 Bell Telephone Laboratories, Incorporated Waveguide junction circulator having spurious mode absorbing means
US4457464A (en) * 1981-01-13 1984-07-03 Thomson-Csf Method of fixing a ferrite to a metal piece
US4633199A (en) * 1984-12-05 1986-12-30 Alpha Industries, Inc. High power circulating
US4678868A (en) * 1979-06-25 1987-07-07 Medtronic, Inc. Hermetic electrical feedthrough assembly
US4821404A (en) * 1986-08-02 1989-04-18 Horst Gukkenberger Method of connecting a magnetic head core with a mounting plate
DE3030687C2 (en) * 1979-01-29 1991-06-13 Medtronic, Inc., Minneapolis, Minn., Us
US5450045A (en) * 1993-03-31 1995-09-12 Tdk Corporation Multi-layer microwave circulator
US5818244A (en) * 1992-11-13 1998-10-06 Commissariat A L'energie Atomique Brazed solid material specimen holder for apparatus that measures dielectric and magnetic parameters
US6118351A (en) * 1997-06-10 2000-09-12 Lucent Technologies Inc. Micromagnetic device for power processing applications and method of manufacture therefor
US6255714B1 (en) 1999-06-22 2001-07-03 Agere Systems Guardian Corporation Integrated circuit having a micromagnetic device including a ferromagnetic core and method of manufacture therefor
US6696744B2 (en) 1997-06-10 2004-02-24 Agere Systems, Inc. Integrated circuit having a micromagnetic device and method of manufacture therefor
US20040060967A1 (en) * 2002-09-27 2004-04-01 Zhenguo Yang Gas-tight metal/ceramic or metal/metal seals for applications in high temperature electrochemical devices and method of making
US9374853B2 (en) 2013-02-08 2016-06-21 Letourneau University Method for joining two dissimilar materials and a microwave system for accomplishing the same
CN107225336A (en) * 2017-07-18 2017-10-03 中国工程物理研究院流体物理研究所 A kind of welding method of ferrite and metal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2798577A (en) * 1952-08-01 1957-07-09 Eitel Mccullough Inc Metalized ceramic structure for vacuum tube envelopes and method of making the same
US3010188A (en) * 1953-05-12 1961-11-28 Philips Corp Method of securing ceramic articles to one another or to metal articles
US3136962A (en) * 1963-09-25 1964-06-09 Raytheon Co Biased ferromagnetic multiport microwave circulator
US3793705A (en) * 1972-12-11 1974-02-26 Ibm Process for brazing a magnetic ceramic member to a metal member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2798577A (en) * 1952-08-01 1957-07-09 Eitel Mccullough Inc Metalized ceramic structure for vacuum tube envelopes and method of making the same
US3010188A (en) * 1953-05-12 1961-11-28 Philips Corp Method of securing ceramic articles to one another or to metal articles
US3136962A (en) * 1963-09-25 1964-06-09 Raytheon Co Biased ferromagnetic multiport microwave circulator
US3793705A (en) * 1972-12-11 1974-02-26 Ibm Process for brazing a magnetic ceramic member to a metal member

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057661A (en) * 1974-05-30 1977-11-08 Contraves Ag Method of manufacturing a thin-film electrode
US4210389A (en) * 1978-11-14 1980-07-01 Mcdonnell Douglas Corporation Bond and method of making the same
DE3030687C2 (en) * 1979-01-29 1991-06-13 Medtronic, Inc., Minneapolis, Minn., Us
US4678868A (en) * 1979-06-25 1987-07-07 Medtronic, Inc. Hermetic electrical feedthrough assembly
US4240049A (en) * 1979-09-24 1980-12-16 Bell Telephone Laboratories, Incorporated Waveguide junction circulator having spurious mode absorbing means
US4457464A (en) * 1981-01-13 1984-07-03 Thomson-Csf Method of fixing a ferrite to a metal piece
US4633199A (en) * 1984-12-05 1986-12-30 Alpha Industries, Inc. High power circulating
US4821404A (en) * 1986-08-02 1989-04-18 Horst Gukkenberger Method of connecting a magnetic head core with a mounting plate
US5818244A (en) * 1992-11-13 1998-10-06 Commissariat A L'energie Atomique Brazed solid material specimen holder for apparatus that measures dielectric and magnetic parameters
US5450045A (en) * 1993-03-31 1995-09-12 Tdk Corporation Multi-layer microwave circulator
US6118351A (en) * 1997-06-10 2000-09-12 Lucent Technologies Inc. Micromagnetic device for power processing applications and method of manufacture therefor
US6163234A (en) * 1997-06-10 2000-12-19 Lucent Technologies Inc. Micromagnetic device for data transmission applications and method of manufacture therefor
US6696744B2 (en) 1997-06-10 2004-02-24 Agere Systems, Inc. Integrated circuit having a micromagnetic device and method of manufacture therefor
US6255714B1 (en) 1999-06-22 2001-07-03 Agere Systems Guardian Corporation Integrated circuit having a micromagnetic device including a ferromagnetic core and method of manufacture therefor
US6649422B2 (en) 1999-06-22 2003-11-18 Agere Systems Inc. Integrated circuit having a micromagnetic device and method of manufacture therefor
US20040060967A1 (en) * 2002-09-27 2004-04-01 Zhenguo Yang Gas-tight metal/ceramic or metal/metal seals for applications in high temperature electrochemical devices and method of making
US6843406B2 (en) * 2002-09-27 2005-01-18 Battelle Memorial Institute Gas-tight metal/ceramic or metal/metal seals for applications in high temperature electrochemical devices and method of making
US9374853B2 (en) 2013-02-08 2016-06-21 Letourneau University Method for joining two dissimilar materials and a microwave system for accomplishing the same
CN107225336A (en) * 2017-07-18 2017-10-03 中国工程物理研究院流体物理研究所 A kind of welding method of ferrite and metal
CN107225336B (en) * 2017-07-18 2019-07-30 中国工程物理研究院流体物理研究所 A kind of welding method of ferrite and metal

Similar Documents

Publication Publication Date Title
US3873944A (en) Bonding of ferrite to metal for high-power microwave applications
US3560893A (en) Surface strip transmission line and microwave devices using same
US4688009A (en) Triple-pane waveguide window
US3456213A (en) Single ground plane junction circulator having dielectric substrate
US3174116A (en) Trough line microstrip circulator with spaced ferrite surrounding transverse conductive rod
US3940051A (en) Bonding of ferrite to metal for high-power microwave applications
US3969086A (en) Metallized gyromagnetic ferrite
US3960512A (en) Ferrite to metal bond for high-power microwave applications
US3614670A (en) Switchable microwave circulator wherein ground planes are comprised of foils having vertically conductive particles
US4457464A (en) Method of fixing a ferrite to a metal piece
US3854106A (en) Depressed-puck microstrip circulator
US4222015A (en) Microwave circulator on a substrate
US4806886A (en) Microstrip resonance isolator
US4757292A (en) Microwave window
US3733563A (en) Microstrip circulator wherein related microstrip patterns are disposed on opposing surfaces of dielectric substrate
US3105946A (en) Asymmetrically conductive transmission system using adjacent dielectric plate to concentrate field in gyromagnetic plate
Brigginshaw et al. Developments of MIC circulators from 1 to 40 GHz
Adam A slot-line MSW signal-to-noise enhancer
US3275957A (en) Microwave energy windows with conductive coating for dissipating static charges
EP0307196A2 (en) Edge coupled magnetostatic wave structures
US3316505A (en) Fast switching microwave circulator utilizing remnant magnetization
US3889213A (en) Double-cavity microwave filter
US3810048A (en) Resistive power load
CN113745784A (en) Gyromagnetic embedded micro-strip circulator
US3098207A (en) Output window for electron tube apparatus