US3875515A - Automatic equalizer with decision directed feedback - Google Patents

Automatic equalizer with decision directed feedback Download PDF

Info

Publication number
US3875515A
US3875515A US371510A US37151073A US3875515A US 3875515 A US3875515 A US 3875515A US 371510 A US371510 A US 371510A US 37151073 A US37151073 A US 37151073A US 3875515 A US3875515 A US 3875515A
Authority
US
United States
Prior art keywords
output
tap
delay line
automatic equalizer
input connected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US371510A
Inventor
Richard L Stuart
Steven A Tretter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Case Communications Inc
Original Assignee
Rixon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rixon filed Critical Rixon
Priority to US371510A priority Critical patent/US3875515A/en
Application granted granted Critical
Publication of US3875515A publication Critical patent/US3875515A/en
Assigned to CASE COMMUNICATIONS, INC. reassignment CASE COMMUNICATIONS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CASE RIXON COMMUNICATIONS INC.,
Assigned to CASE RIXON COMMUNICATIONS, INC. reassignment CASE RIXON COMMUNICATIONS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: RIXON INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03114Arrangements for removing intersymbol interference operating in the time domain non-adaptive, i.e. not adjustable, manually adjustable, or adjustable only during the reception of special signals
    • H04L25/03146Arrangements for removing intersymbol interference operating in the time domain non-adaptive, i.e. not adjustable, manually adjustable, or adjustable only during the reception of special signals with a recursive structure

Definitions

  • ABSTRACT An automatic equalizer for use in digital data modems employs decision directed feedback to cancel the intersymbol interference caused by symbols which have already been decoded. In an equalizer using a minimum mean-square-error algorithm the channel impulse reponse of each decoded symbol is subtracted from the delay line to effectively eliminate the effects thereof. Two schemes for impulse response identification are disclosed.
  • Another approach concerns the use of quantized feedback to provide the complete cancellation of the intersymbol interference due to the trailing portion of the received pulse using decisions made regarding previously decoded symbols and measuremcnts of the pulse response of the channel, the intersymbol interference caused by previous pulses being subtracted from the present pulse.
  • an automatic equalizer for use in digital data modems and the like which employs decision directed feedback to cancel intersymbol interference caused by already decoded symbols.
  • the equalizer of the invention cancels the intersymbol interference before equalization rather than after and effectively subtracts out both future and past effects of a decoded symbol rather than just the future effects as is the case with the prior art techniques discussed above.
  • This approach eliminates the distortion caused by intersymbol interference beforehand and enables a better estimate of symbol presently being decoded.
  • the feedback provided increases the eye opening of the equalizer, resulting in a smaller error rate and in some cases permitting operation over channels where the equalizer would normally fail.
  • the invention is incorporated in an equalizer which comprises a tapped delay line wherein a minimum meansquare-error adjustment algorithm is utilized, the equalizer adjusting the tap gains C,, C ofa tapped delay line to drive to zero the correlation between the error B,, Bl and the data E .E,,,, where B is the transmitted symbol,
  • the impulse response sample for a given tap is estimated as where S is the average data power and M is the number of symbols.
  • the signal power need not be known and correlation can be provided with only a few bits or using polarity correlation.
  • the estimated impulse response samples are updated each time a new symbol is received by a term proportional to their error.
  • the quantity 01E, (n+1) B is used to estimate the error, a being a parameter which is chosen to control the speed and precision of estimation.
  • the parameter a is preferably varied during operation from a large value which provides relatively rapid convergence to a small valve which provides precise estimates.
  • FIG. 1 is a schematic circuit diagram of a generalized automatic equalizer incorporating the invention.
  • FIG. 2 is a schematic circuit diagram of a preferred embodiment of the circuitry used in estimating the channel impulse response.
  • an automatic equalizer which employs decision-directed feedback to cancel the intersymbol interference caused by previously decoded symbols.
  • the automatic equalizcr basically comprises a tapped delay line (TDL) which is generally denoted 10 and is formed by series of blocks labeled 2.".
  • TDL tapped delay line
  • the received data enters the delay line I0 at an input terminal denoted 11 (and marked r[(n N K)T] for reasons which will be apparent later) and progresses down the delay line 10, each block Z providing a delay of T seconds, where T is the symbol period.
  • the channel from baseband input to baseband output can be modelled by a linear time invariant system with band limited noise added to the output.
  • the output is sampled at the symbol rate and thus the sampled channel output is N w 5 k n+ K k WW where r(nT) is the received signal, B is the input symbol at time nT, ⁇ Q are the channel impulse response samples.
  • w(nT) is the noise sample and T is, as stated, the symbol period.
  • the data stored at the taps of delay line is denoted E E- E z .E .E E as indicated and normally the timing is adjusted so that the tap E is the center of delay line and corresponds to the transmitted symbol B
  • the taps of delay line 10 are connected to the inputs of first and second multipliers, with output of tap E connected to the inputs of multipliers M and N and the outputs of remaining taps being similarly connected to the inputs of respective pairs of multipliers M M M .M .M M (collectively denoted l2) and N- N-- N--- .N,,-.
  • the second input to multipliers 12 is derived as discussed hereinbelow and the outputs are connected to a corresponding accumulator A A A .A,,. .A A, (collectively denoted l6 and represented by the conventional symbol 2), as indicated.
  • the outputs of accumulators 16 form the second I inputs to the multipliers 14.
  • the outputs of multipliers 14 are summed in a summing network or summer 18.
  • the output, B1, of summer 18 is connected to a slicing circuit or slicer 20 and to one input of an adder 22.
  • the parameter D forms one input ofa multiplier 24 connected to the ER output of adder 22 and it is the output of multiplier 24 which is connected to multipliers 12.
  • .0 are estimates of the channel impulse response.
  • the outputs of the multipliers 26 are subtracted from the delay line 10 as indicated in FIG. 1 by the adder circuits 28 connected between the blocks Z".
  • n+N 3 1 N 1 n+N j 1 w ((n N 3 KlT) for 3 1, N 1 and EN 5 Q B and input to adder 22 and the outppt, ER, of the latter represents the difference between B,. and B1.
  • the data at that tap is correlated against the detected data 3,. If 8,, has been estimated correctly and the impulse response estimate is accurate, the intersymbol interference due to B will be eliminated in detecting future data. This will, of course, result in more open eye pattern.
  • the impulse response identification approach described hereinabove has several advantages as compared with that described above in connection with FIG. 1. Specifically, the impulse response identification approach previously described requires that a large number of sumbols, M, be received before an estimate can be made. Further, more symbols must be received before a new estimate is made. In addition, the signal power S, must be known and analog or multi-bit correlation must be used to produce accurate estimates. In the approach illustrated in FIG. 2, the estimated impulse response samples are up-dated each time a new symbol is received. The quantity, 5. representing the signal power, is not used and correlation can be provided with only a few bits or, alternatively, polarity correlation can even be used.
  • Multipliers 30 form the product aE (n-i-l) [3,, from the inputs shown.
  • the outputs of multipliers 30 are connected through corresponding accumulators 32 to multipliers 26, which correspond to multipliers 2 6 of FIG. I and are similarly connectedto receive the 8,, output of slicer 20.
  • the impulse response sample estimates are thus incremented by the term aE m-i-l) B which is proportional to the error, after each error symbol is received, as set forth above.
  • the quantity 0 which, as stated, controls the speed and precision of estimation, is chosen as desired. Small values of a provide slow convergence but the steady state estimates are precise. On the other hand, for large values of a, the convergence is rapid but highly variable steady state estimates are produced. The estimates tend to converge to their steady state values exponentially in time with at determining the time constant. To obtain rapid, precise estimates, the quantity or can be chosen large initially and then changed to a small value. For example, it has been indicated that with a 0.01 for the first 1,000 received signals and a 0.001 for the next 2,000 additional received symbols, accurate identification is achieved. It is noted that it may be desirable
  • the first estimation scheme described for the channel impulse samples requires nearly analog correlation for true identification. The approach just described is based on incrementing the estimates in the direction of the error. Crude correlation can be used instead of precise correlation to find the polarity of the error although at the penalty of slower convergence. in fact,
  • polarity correlation i.e., sign E (n+l sign E, can be used and this can be implemented using simple binary devices.
  • An automatic equalizer for the receiver of a digital data system comprising a tapped delay line having an input connected to receive the baseband output of the receiver demodulator, and a plurality of outout taps; means for combining the outputs at the output taps of the delay line at the symbol time to produce an output Bl; means for quantizing the output B1 to the nearest transmitted level 3,, where B,, is the symbol transmitted at time nT and T is the symbol period; and feedback means including multiplying means for multiplying the 9,, output of the quantizing means with estimated impulse response samples for each tap of the delay line and means for subtracting the output of each multiplying means from the data at the corresponding tap of the delay line to cancel the intersymbol interference caused by the decoded symbol on the future decoded symbol.
  • An automatic equalizer as claimed in claim 1 fur ther comprising means for controlling the gain at each of the taps of said delay line, comparison means for comparing Bl with 8,, to produce an error signal and means for connecting the error signal output of said comparison means back to the tap gain controlling means.
  • An automatic equalizer as claimed in claim 2 further comprising multiplying means for multiplying said error signal with a further parameter to control the convergence rate and accuracy of the error signal.
  • said tap gain controlling means comprises a first plurality of multipliers each having a first input connected to a corresponding tap of the delay line and a second input connected to the output of said multiplying means; a like plurality of accumulators each connected to the output of a corresponding one of said first plurality of multipliers; and a second plurality of multipliers each having a first input connected to a corresponding tap of the delay line and a second input M
  • An automatic equalizer as claimed in claim 1 further comprising correlating means at each tap comprising means for incrementing the present impulse response sample estimate with a term proportional to the error after each symbol is received 7.
  • the correlating means at the tap containing the data E in comprises a first multiplier having a first input connected to receive the input E (n+l a second input connected to receive the control parameter a and a third input connected to receive the detected data signal B an accumulator connected to the output of said first multiplier, and a second multiplier having a first input connected to receive the detected data signal Q and a second input connected to the output of said accumulator the output of said second multiplier being subtracted from the data E (n) at that tap.

Abstract

An automatic equalizer for use in digital data modems employs decision directed feedback to cancel the intersymbol interference caused by symbols which have already been decoded. In an equalizer using a minimum mean-square-error algorithm the channel impulse response of each decoded symbol is subtracted from the delay line to effectively eliminate the effects thereof. Two schemes for impulse response identification are disclosed.

Description

United States Patent 1 1 Stuart et a1.
[ AUTOMATIC EQUALIZER WITH DECISION DIRECTED FEEDBACK [75] Inventors: Richard L. Stuart, Beltsville; Steven A. Tretter, Silver Spring. both of [73] Assignee: Rixon Inc., Silver Spring. Md.
[22] Filed: June 19. I973 [21] Appl. No; 371,510
[52] US. Cl 325/323, 325/42. 333/18 R, 178/88 [51] Int. Cl. H03k 5/18 {58] Field of Search 325/323-326,
325/42, 65; 328/162-164; 179/15 AE', 178/88; 333/18, 28 R, 70 T [56] References Cited UNITED STATES PATENTS Proakis et al. 325/42 1 Apr. 1, 1975 3.614.622 10/1971 Holsinger 325/42 3.696.203 10/1972 Leonardum... 325/324 3.764.914 10/1973 Karvaugh 333/18 X 3,792,356 2/1974 Kobayashi et a1. 325/323 X Primary ExaminerBenedict V. Safourek Assistant Examiner-Aristotelis M. Psitos Attorney. Agent, or Firm-Larson, Taylor & Hinds [57] ABSTRACT An automatic equalizer for use in digital data modems employs decision directed feedback to cancel the intersymbol interference caused by symbols which have already been decoded. In an equalizer using a minimum mean-square-error algorithm the channel impulse reponse of each decoded symbol is subtracted from the delay line to effectively eliminate the effects thereof. Two schemes for impulse response identification are disclosed.
9 Claims, 2 Drawing Figures AUTOMATIC EQUALIZER WITH DECISION DIRECTED FEEDBACK FIELD OF THE INVENTION The present invention relates to automatic equalizers for digital data communication systems.
BACKGROUND OF THE INVENTION There has been a great deal published in recent years on the design of receivers for digital data transmission through channels wherein intersymbol interference limits the transmission rate. Much of the literature directed to implementation of a practical receiver is concerned with an adaptive receiver which is capable of high-speed signaling over band-limited channels and which basically comprises a tapped delay line filter with automatically adjustable gain at each tap. One popular technique employing such a filter involves adjusting the tap gains of the filter to minimize the mean-square error due to the combination of intersymbol interference and additive noise. Another approach concerns the use of quantized feedback to provide the complete cancellation of the intersymbol interference due to the trailing portion of the received pulse using decisions made regarding previously decoded symbols and measuremcnts of the pulse response of the channel, the intersymbol interference caused by previous pulses being subtracted from the present pulse. Reference is made to the following articles for a good discussion of the prior art as well as an extensive bibliography of other work done in this field: Proakis et al., An Adaptive Receiver fiif Digital Signaling 'l'hrough Channels With Inrersymbol Interference, IEEE Transactions on Information Theory, VOL. lT-l 5, No. 4, JULY I969 and George et al., An Adaptive Decision Feedback Equalizer, IEEE Transactions on Communication Technology, VOL COM-l9, No. 3, JUNE i971.
SUMMARY OF THE INVENTION In accordance with the invention, an automatic equalizer for use in digital data modems and the like is provided which employs decision directed feedback to cancel intersymbol interference caused by already decoded symbols. The equalizer of the invention cancels the intersymbol interference before equalization rather than after and effectively subtracts out both future and past effects of a decoded symbol rather than just the future effects as is the case with the prior art techniques discussed above. This approach eliminates the distortion caused by intersymbol interference beforehand and enables a better estimate of symbol presently being decoded. More generally, the feedback provided increases the eye opening of the equalizer, resulting in a smaller error rate and in some cases permitting operation over channels where the equalizer would normally fail.
According to a preferred embodiment thereof, the invention is incorporated in an equalizer which comprises a tapped delay line wherein a minimum meansquare-error adjustment algorithm is utilized, the equalizer adjusting the tap gains C,, C ofa tapped delay line to drive to zero the correlation between the error B,, Bl and the data E .E,,,, where B is the transmitted symbol,
III
is the linear estimate of B and E ,E is the data in the delay line. Since 8,, is not known in practice, an estimate thereof is provided by slicing Bl to the nearest symbol level, I3 and it is this estimate that is fed back to be subtracted from the tapped delay line. The estimated symbol I3,, is multiplied by estimates of the channel impulse response at each tap and each result subtracted from the data at the corresponding tap. With 8,, equal to the transmitted symbol B the intersymbol interference is reduced thereby resulting in a more open "eye."
Two different techniques for impulse response identification are provided. In a first of these, the impulse response sample for a given tap is estimated as where S is the average data power and M is the number of symbols. In a preferred approach, the signal power need not be known and correlation can be provided with only a few bits or using polarity correlation. Specifically, in accordance with the second approach, the estimated impulse response samples are updated each time a new symbol is received by a term proportional to their error. The quantity 01E, (n+1) B is used to estimate the error, a being a parameter which is chosen to control the speed and precision of estimation. The parameter a is preferably varied during operation from a large value which provides relatively rapid convergence to a small valve which provides precise estimates.
Other features and advantages of the invention will be set forth in, or apparent from, the detailed description of the preferred embodiments found hereinafter.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic circuit diagram of a generalized automatic equalizer incorporating the invention; and
FIG. 2 is a schematic circuit diagram of a preferred embodiment of the circuitry used in estimating the channel impulse response.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, an automatic equalizer is shown which employs decision-directed feedback to cancel the intersymbol interference caused by previously decoded symbols. The automatic equalizcr basically comprises a tapped delay line (TDL) which is generally denoted 10 and is formed by series of blocks labeled 2.". The received data enters the delay line I0 at an input terminal denoted 11 (and marked r[(n N K)T] for reasons which will be apparent later) and progresses down the delay line 10, each block Z providing a delay of T seconds, where T is the symbol period. Considering the received or input signal, it is assumed that the channel from baseband input to baseband output can be modelled by a linear time invariant system with band limited noise added to the output. The output is sampled at the symbol rate and thus the sampled channel output is N w 5 k n+ K k WW where r(nT) is the received signal, B is the input symbol at time nT,{Q are the channel impulse response samples. w(nT) is the noise sample and T is, as stated, the symbol period. The data stored at the taps of delay line is denoted E E- E z .E .E E as indicated and normally the timing is adjusted so that the tap E is the center of delay line and corresponds to the transmitted symbol B The taps of delay line 10 are connected to the inputs of first and second multipliers, with output of tap E connected to the inputs of multipliers M and N and the outputs of remaining taps being similarly connected to the inputs of respective pairs of multipliers M M M .M .M M (collectively denoted l2) and N- N-- N-- .N,,-. .N N (collectively denoted 14), as indicatedv The second input to multipliers 12 is derived as discussed hereinbelow and the outputs are connected to a corresponding accumulator A A A .A,,. .A A, (collectively denoted l6 and represented by the conventional symbol 2), as indicated. The outputs of accumulators 16 form the second I inputs to the multipliers 14. The outputs of multipliers 14 are summed in a summing network or summer 18. The output, B1, of summer 18 is connected to a slicing circuit or slicer 20 and to one input of an adder 22. The output of slicer 20, which representsBl quantized to the accuracy and convergence rate of the tap gains C ,C As indicated in FIG. I, the parameter D forms one input ofa multiplier 24 connected to the ER output of adder 22 and it is the output of multiplier 24 which is connected to multipliers 12.
The circuitry described so far is conventional and reference is made to the Proakis et al article referred to above for a further discussion of adaptive equalizers which minimize the mean square error (MSE).
In accordance with an important feature of the present invention, once a symbol has been detected the impulse response of that symbol is subtracted from the tapped delay line 10. This is done by feeding back the 8,, output of slicer circuit 20 as shown in FIG. 1. As illustrated, this output forms one input for each a plurality of multipliers P P .P P .P, which are collectively denoted 26. The second inputs to multipliers 26, which are denoted (3 Q- ,G
.0 are estimates of the channel impulse response. The outputs of the multipliers 26 are subtracted from the delay line 10 as indicated in FIG. 1 by the adder circuits 28 connected between the blocks Z". In temis of the input data, channel impulse response, and estimated impulse response, the data in the delay line at the nearest allowed transmitted level B,,, forms the sectap N-j iS N-j N A E (n)= 2: Q.B .+g [Q.B -6.s .1, N 3 i=1 1. n+N 3 1 j 1. n+N 3 1 N 1 n+N j 1 w ((n N 3 KlT) for 3 1, N 1 and EN 5 Q B and input to adder 22 and the outppt, ER, of the latter represents the difference between B,. and B1.
To backtrack for a moment, it can be shown that given the data E,, ,E stored in a delay line, then is the linear minimum mean-square-error estimate of the transmitted symbol l3, if the error B BI is uncorrelated with the data E ,E,,,, and C ,C are the tap gains of the delay line. In the operation of the equalizer formed by circuitry discussed above, the tap gains C ,C are adjusted to drive the correlation to zero. This is done using the error signal ER I? Bl which is fed back to form the second input to each of the multipliers 12. As stated hereinabove the outputs of delay line 10 are set so that C l and all other gains 5 are zero. Subsequently, at each unit in time, the tap gains of delay line 10 are incremented by the scaled noisy estimate of the negative gradient D X E,,.X ER for i=1, ,N. The parameter D is a scale factor which is used to scale down the error signal ER and to control Assuming that the equalizer is operating well so that 8,, B,,, the equations become If 8,, is correlated against E- ,(n), it follows e{E--, (n)B,,} Q, S where 5 denotes statistical averaging and S=e {Bf} is the average data power. Thus, the impulse response samples can be estimated as forj=0,. N-l.
Therefore, to estimate the impulse response sample for a given delay line tap, the data at that tap is correlated against the detected data 3,. If 8,, has been estimated correctly and the impulse response estimate is accurate, the intersymbol interference due to B will be eliminated in detecting future data. This will, of course, result in more open eye pattern.
Referring to FIG. 2, an alternate approach to the impulse response identification scheme described hereinabove is shown. This approach has several advantages as compared with that described above in connection with FIG. 1. Specifically, the impulse response identification approach previously described requires that a large number of sumbols, M, be received before an estimate can be made. Further, more symbols must be received before a new estimate is made. In addition, the signal power S, must be known and analog or multi-bit correlation must be used to produce accurate estimates. In the approach illustrated in FIG. 2, the estimated impulse response samples are up-dated each time a new symbol is received. The quantity, 5. representing the signal power, is not used and correlation can be provided with only a few bits or, alternatively, polarity correlation can even be used.
As set forth, with the equalizer operating well so that B B,,, the data in the delay line at tap Nj is given by the equation Since the data is an uncorrelated sequence it follows represents statistical averaging and S=e {B as above, since all other terms become zero with statistical averaging. From the expression given it can be seen that the error between the actual impulse response sample Q and the estimated impulse response sample Q is proportional to the correlation between E- n+l and the data symbol B,,. The quantity E (n+1 B is a noisy estimate of the true correlation. To estimate the error, let Q, (n) be the estimate of Q at the 30 time n, so that the estimation scheme is n+1 ,,,(n a E,, n+1 B,, fOrFI, ,N-l. The philosophy here is to increment each present impulse sample estimate by a term proportional to the error after each symbol is received and the term aE- ,(n+l B, is a noisy estimate of the required increment. The quantity or determines the speed and precision of estimation.
Referring specifically to FIG. 2, the approach discussed above is implemented using a further series of multipliers 30. Multipliers 30 form the product aE (n-i-l) [3,, from the inputs shown. The outputs of multipliers 30 are connected through corresponding accumulators 32 to multipliers 26, which correspond to multipliers 2 6 of FIG. I and are similarly connectedto receive the 8,, output of slicer 20. With this arrangement, the impulse response sample estimates are thus incremented by the term aE m-i-l) B which is proportional to the error, after each error symbol is received, as set forth above.
The quantity 0:, which, as stated, controls the speed and precision of estimation, is chosen as desired. Small values of a provide slow convergence but the steady state estimates are precise. On the other hand, for large values of a, the convergence is rapid but highly variable steady state estimates are produced. The estimates tend to converge to their steady state values exponentially in time with at determining the time constant. To obtain rapid, precise estimates, the quantity or can be chosen large initially and then changed to a small value. For example, it has been indicated that with a 0.01 for the first 1,000 received signals and a 0.001 for the next 2,000 additional received symbols, accurate identification is achieved. It is noted that it may be desirable The first estimation scheme described for the channel impulse samples requires nearly analog correlation for true identification. The approach just described is based on incrementing the estimates in the direction of the error. Crude correlation can be used instead of precise correlation to find the polarity of the error although at the penalty of slower convergence. in fact,
to "shift gears" in this manner, i.e., between high and 5 low values, more than once.
polarity correlation, i.e., sign E (n+l sign E, can be used and this can be implemented using simple binary devices.
Although the invention has been described relative to exemplary embodiments thereof, it will be understood by those skilled in the art that variations and modifications can be effected in these embodiments without departing from the scope and spirit of the invention.
We claim:
1. An automatic equalizer for the receiver of a digital data system, said equalizer comprising a tapped delay line having an input connected to receive the baseband output of the receiver demodulator, and a plurality of outout taps; means for combining the outputs at the output taps of the delay line at the symbol time to produce an output Bl; means for quantizing the output B1 to the nearest transmitted level 3,, where B,, is the symbol transmitted at time nT and T is the symbol period; and feedback means including multiplying means for multiplying the 9,, output of the quantizing means with estimated impulse response samples for each tap of the delay line and means for subtracting the output of each multiplying means from the data at the corresponding tap of the delay line to cancel the intersymbol interference caused by the decoded symbol on the future decoded symbol.
2. An automatic equalizer as claimed in claim 1 fur ther comprising means for controlling the gain at each of the taps of said delay line, comparison means for comparing Bl with 8,, to produce an error signal and means for connecting the error signal output of said comparison means back to the tap gain controlling means.
3. An automatic equalizer as claimed in claim 2 further comprising multiplying means for multiplying said error signal with a further parameter to control the convergence rate and accuracy of the error signal.
4. An automatic equalizer as claimed in claim 3 wherein said tap gain controlling means comprises a first plurality of multipliers each having a first input connected to a corresponding tap of the delay line and a second input connected to the output of said multiplying means; a like plurality of accumulators each connected to the output of a corresponding one of said first plurality of multipliers; and a second plurality of multipliers each having a first input connected to a corresponding tap of the delay line and a second input M A 1 Nj SM =1 N-j for j=(), ,N-l, where O is the impulse response at the tap N-j and S is the average data power, M is the number of symbols and E- is data in the tap N-j.
6. An automatic equalizer as claimed in claim 1 further comprising correlating means at each tap comprising means for incrementing the present impulse response sample estimate with a term proportional to the error after each symbol is received 7. An automatic equalizer as claimed in claim 6 wherein said correlating means increments the present impulse response sample estimate using a noisy esti mate aE- ,(n+l) 3,, where a is a control parameter.
8. An automatic equalizer as claimed in claim 7 wherein the correlating means at the tap containing the data E in) comprises a first multiplier having a first input connected to receive the input E (n+l a second input connected to receive the control parameter a and a third input connected to receive the detected data signal B an accumulator connected to the output of said first multiplier, and a second multiplier having a first input connected to receive the detected data signal Q and a second input connected to the output of said accumulator the output of said second multiplier being subtracted from the data E (n) at that tap.
9. An automatic equalizer as claimed in claim 8 where a is varied to control the rate of convergence and precision of the steady state estimates.

Claims (9)

1. An automatic equalizer for the receiver of a digital data system, said equalizer comprising a tapped delay line having an input connected to receive the baseband output of the receiver demodulator, and a plurality of outout taps; means for combining the outputs at the output taps of the delay line at the symbol time to produce an output B1; means for quantizing the output B1 to the nearest transmitted level Bn where Bn is the symbol transmitted at time nT and T is the symbol period; and feedback means including multiplying means for multiplying the Bn output of the quantizing means with estimated impulse response samples for each tap of the delay line and means for subtracting the output of each multiplying means from the data at the corresponding tap of the delay line to cancel the intersymbol interference caused by the decoded symbol on the future decoded symbol.
2. An automatic equalizer as claimed in claim 1 further comprising means for controlling the gain at each of the taps of said delay line, comparison means for comparing B1 with Bn to produce an error signal and means for connecting the error signal output of said comparison means back to the tap gain controlling means.
3. An automatic equalizer as claimed in claim 2 further comprising multiplying means for multiplying said error signal with a further parameter to control the convergence rate and accuracy of the error signal.
4. An automatic equalizer as claimed in claim 3 wherein said tap gain controlling means comprises a first plurality of multipliers each having a first input connected to a corresponding tap of the delay line and a second input connected to the output of said multiplying means; a like plurality of accumulators each conNected to the output of a corresponding one of said first plurality of multipliers; and a second plurality of multipliers each having a first input connected to a corresponding tap of the delay line and a second input connected to the output of a corresponding said accumulator.
5. An automatic equalizer as claimed in claim 1 wherein correlating means are provided at each tap comprising means for estimating samples by correlating the data at that tap against the detected data signal Bn, in accordance with the expression
6. An automatic equalizer as claimed in claim 1 further comprising correlating means at each tap comprising means for incrementing the present impulse response sample estimate with a term proportional to the error after each symbol is received.
7. An automatic equalizer as claimed in claim 6 wherein said correlating means increments the present impulse response sample estimate using a noisy estimate Alpha EN j(n+1) Bn where Alpha is a control parameter.
8. An automatic equalizer as claimed in claim 7 wherein the correlating means at the tap containing the data EK(n) comprises a first multiplier having a first input connected to receive the input EK 1(n+1), a second input connected to receive the control parameter Alpha and a third input connected to receive the detected data signal Bn, an accumulator connected to the output of said first multiplier, and a second multiplier having a first input connected to receive the detected data signal Bn, and a second input connected to the output of said accumulator the output of said second multiplier being subtracted from the data EK(n) at that tap.
9. An automatic equalizer as claimed in claim 8 where Alpha is varied to control the rate of convergence and precision of the steady state estimates.
US371510A 1973-06-19 1973-06-19 Automatic equalizer with decision directed feedback Expired - Lifetime US3875515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US371510A US3875515A (en) 1973-06-19 1973-06-19 Automatic equalizer with decision directed feedback

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US371510A US3875515A (en) 1973-06-19 1973-06-19 Automatic equalizer with decision directed feedback

Publications (1)

Publication Number Publication Date
US3875515A true US3875515A (en) 1975-04-01

Family

ID=23464258

Family Applications (1)

Application Number Title Priority Date Filing Date
US371510A Expired - Lifetime US3875515A (en) 1973-06-19 1973-06-19 Automatic equalizer with decision directed feedback

Country Status (1)

Country Link
US (1) US3875515A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969674A (en) * 1974-10-21 1976-07-13 Gte Automatic Electric Laboratories Incorporated Method and apparatus for incoherent adaptive mean-square equalization of differentially phase-modulated data signals
US3974449A (en) * 1975-03-21 1976-08-10 Bell Telephone Laboratories, Incorporated Joint decision feedback equalization and carrier recovery adaptation in data transmission systems
US3984789A (en) * 1974-11-15 1976-10-05 Cselt - Centro Studi E Laboratori Telecomunicazioni Digital equalizer for data-transmission system
US4071827A (en) * 1975-12-09 1978-01-31 Nippon Electric Co., Ltd. Transversal type automatic phase and amplitude equalizer
US4097807A (en) * 1974-12-27 1978-06-27 Fujitsu Limited Automatic equalizing method and system
US4112370A (en) * 1976-08-06 1978-09-05 Signatron, Inc. Digital communications receiver for dual input signal
US4417317A (en) * 1980-02-04 1983-11-22 Westinghouse Electric Corp. Adaptive analog processor
US4468786A (en) * 1982-09-21 1984-08-28 Harris Corporation Nonlinear equalizer for correcting intersymbol interference in a digital data transmission system
US5228058A (en) * 1990-07-17 1993-07-13 Nec Corporation Adaptive equalizer
US5402445A (en) * 1992-08-06 1995-03-28 Nec Corporation Decision feedback equalizer
WO1995022209A1 (en) * 1994-02-10 1995-08-17 International Business Machines Corporation Method and apparatus for multiuser-interference reduction
EP0806852A2 (en) * 1996-05-09 1997-11-12 Texas Instruments Incorporated A multimode digital modem
US6144697A (en) * 1998-02-02 2000-11-07 Purdue Research Foundation Equalization techniques to reduce intersymbol interference
CN1077361C (en) * 1994-02-10 2002-01-02 国际商业机器公司 Method and apparatus for multiuser-interference reduction
US6675562B2 (en) * 2002-02-19 2004-01-13 Robert C. Lawrence Portable modular implement system
US20040240595A1 (en) * 2001-04-03 2004-12-02 Itran Communications Ltd. Equalizer for communication over noisy channels
US20080187078A1 (en) * 2006-10-19 2008-08-07 Suk Kyun Hong Receiver with fast gain control and digital signal processing unit with transient signal compensation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3597541A (en) * 1969-12-23 1971-08-03 Sylvania Electric Prod Decision-directed adapted equalizer circuit
US3614622A (en) * 1968-04-30 1971-10-19 Codex Corp Data transmission method and system
US3696203A (en) * 1970-06-03 1972-10-03 Philco Ford Corp Adaptive modem receiver
US3764914A (en) * 1971-12-27 1973-10-09 Ibm High speed line equalizer
US3792356A (en) * 1971-12-27 1974-02-12 Ibm Receiver structure for equalization of partial-response coded data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3614622A (en) * 1968-04-30 1971-10-19 Codex Corp Data transmission method and system
US3597541A (en) * 1969-12-23 1971-08-03 Sylvania Electric Prod Decision-directed adapted equalizer circuit
US3696203A (en) * 1970-06-03 1972-10-03 Philco Ford Corp Adaptive modem receiver
US3764914A (en) * 1971-12-27 1973-10-09 Ibm High speed line equalizer
US3792356A (en) * 1971-12-27 1974-02-12 Ibm Receiver structure for equalization of partial-response coded data

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969674A (en) * 1974-10-21 1976-07-13 Gte Automatic Electric Laboratories Incorporated Method and apparatus for incoherent adaptive mean-square equalization of differentially phase-modulated data signals
US3984789A (en) * 1974-11-15 1976-10-05 Cselt - Centro Studi E Laboratori Telecomunicazioni Digital equalizer for data-transmission system
US4097807A (en) * 1974-12-27 1978-06-27 Fujitsu Limited Automatic equalizing method and system
US3974449A (en) * 1975-03-21 1976-08-10 Bell Telephone Laboratories, Incorporated Joint decision feedback equalization and carrier recovery adaptation in data transmission systems
US4071827A (en) * 1975-12-09 1978-01-31 Nippon Electric Co., Ltd. Transversal type automatic phase and amplitude equalizer
US4112370A (en) * 1976-08-06 1978-09-05 Signatron, Inc. Digital communications receiver for dual input signal
US4417317A (en) * 1980-02-04 1983-11-22 Westinghouse Electric Corp. Adaptive analog processor
US4468786A (en) * 1982-09-21 1984-08-28 Harris Corporation Nonlinear equalizer for correcting intersymbol interference in a digital data transmission system
US5228058A (en) * 1990-07-17 1993-07-13 Nec Corporation Adaptive equalizer
US5402445A (en) * 1992-08-06 1995-03-28 Nec Corporation Decision feedback equalizer
WO1995022209A1 (en) * 1994-02-10 1995-08-17 International Business Machines Corporation Method and apparatus for multiuser-interference reduction
US5761237A (en) * 1994-02-10 1998-06-02 International Business Machines Corporation Method and apparatus for multiuser-interference reduction
CN1077361C (en) * 1994-02-10 2002-01-02 国际商业机器公司 Method and apparatus for multiuser-interference reduction
EP0806852A2 (en) * 1996-05-09 1997-11-12 Texas Instruments Incorporated A multimode digital modem
EP0806852A3 (en) * 1996-05-09 2000-04-12 Texas Instruments Incorporated A multimode digital modem
US6144697A (en) * 1998-02-02 2000-11-07 Purdue Research Foundation Equalization techniques to reduce intersymbol interference
US20040240595A1 (en) * 2001-04-03 2004-12-02 Itran Communications Ltd. Equalizer for communication over noisy channels
US6937648B2 (en) * 2001-04-03 2005-08-30 Yitran Communications Ltd Equalizer for communication over noisy channels
US6675562B2 (en) * 2002-02-19 2004-01-13 Robert C. Lawrence Portable modular implement system
US20080187078A1 (en) * 2006-10-19 2008-08-07 Suk Kyun Hong Receiver with fast gain control and digital signal processing unit with transient signal compensation
US7953192B2 (en) * 2006-10-19 2011-05-31 Gct Semiconductor, Inc. Receiver with fast gain control and digital signal processing unit with transient signal compensation

Similar Documents

Publication Publication Date Title
US3875515A (en) Automatic equalizer with decision directed feedback
US4349889A (en) Non-recursive filter having adjustable step-size for each iteration
CA2084034C (en) Adaptive receiver apparatus
US3633105A (en) Digital adaptive equalizer system
US4021738A (en) Adaptive equalizer with fast convergence properties
CA1210471A (en) Echo canceller
CA1211812A (en) Distortion compensation apparatus and method
US3614623A (en) Adaptive system for correction of distortion of signals in transmission of digital data
US5210774A (en) Adaptive equalization system and method for equalizing a signal in a dce
US5164961A (en) Method and apparatus for adapting a viterbi algorithm to a channel having varying transmission properties
US7006564B2 (en) Adaptive equalizer
US4237554A (en) Coefficient tap leakage for fractionally-spaced equalizers
US5031193A (en) Method and apparatus for diversity reception of time-dispersed signals
JP3165437B2 (en) Efficient estimation for fading channels when transmitting symbol sequences
US4789994A (en) Adaptive equalizer using precursor error signal for convergence control
EP0443997B1 (en) A method of reducing the influence of fading of a Viterbi-receiver having at least two antennas
US3524169A (en) Impulse response correction system
EP0624287B1 (en) Modem including an equalizer for amplitude jitter
EP0577901B1 (en) Adaptive equalization system and method
US3651316A (en) Automatic transversal equalizer system
EP0121389B1 (en) Apparatus and method for adjusting the receivers of data transmission channels
EP0368307B1 (en) Demodulator with composite transversal equalizer and eye detection clock synchronizer
US5841809A (en) Access line termination unit
EP0050930B1 (en) Improvements in or relating to data transmission systems
JPH035683B2 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: CASE COMMUNICATIONS, INC.

Free format text: CHANGE OF NAME;ASSIGNOR:CASE RIXON COMMUNICATIONS INC.,;REEL/FRAME:004485/0876

Effective date: 19851115

Owner name: CASE RIXON COMMUNICATIONS, INC.

Free format text: CHANGE OF NAME;ASSIGNOR:RIXON INC.;REEL/FRAME:004485/0858

Effective date: 19840709