US3876720A - Internal olefin - Google Patents

Internal olefin Download PDF

Info

Publication number
US3876720A
US3876720A US274319A US27431972A US3876720A US 3876720 A US3876720 A US 3876720A US 274319 A US274319 A US 274319A US 27431972 A US27431972 A US 27431972A US 3876720 A US3876720 A US 3876720A
Authority
US
United States
Prior art keywords
vinylidene
mixture
percent
product
tetramer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US274319A
Inventor
William J Heilman
Thomas J Lynch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Gulf Research and Development Co
Original Assignee
Gulf Research and Development Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gulf Research and Development Co filed Critical Gulf Research and Development Co
Priority to US274319A priority Critical patent/US3876720A/en
Priority to US525720A priority patent/US3907922A/en
Priority to US05/532,157 priority patent/US3957664A/en
Application granted granted Critical
Publication of US3876720A publication Critical patent/US3876720A/en
Assigned to CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA. A CORP. OF DE. reassignment CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA. A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GULF RESEARCH AND DEVELOPMENT COMPANY, A CORP. OF DE.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M3/00Liquid compositions essentially based on lubricating components other than mineral lubricating oils or fatty oils and their use as lubricants; Use as lubricants of single liquid substances
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/06Halogens; Compounds thereof
    • C07C2527/08Halides
    • C07C2527/12Fluorides
    • C07C2527/1213Boron fluoride
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/022Well-defined aliphatic compounds saturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/024Well-defined aliphatic compounds unsaturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/04Well-defined cycloaliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/025Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with condensed rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/067Polyaryl amine alkanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/041Siloxanes with specific structure containing aliphatic substituents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/12Gas-turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/12Gas-turbines
    • C10N2040/13Aircraft turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/135Steam engines or turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Definitions

  • l-olefins having from about six to about 14 carbon atoms including olefins having an odd number of carbon atoms and mixtures of these l-olefins.
  • These starting l-olefins can either be straight chain olefins or branched chain olefins provided that there is at least one hydrogen atom on the 2-carbon atom.
  • the preferred starting olefins have from eight to 12 carbon atoms.
  • the most preferred olefins are l-octene, 1- decene and mixtures of these.
  • additives can be an anti-wear agent such as tricresyl phosphate, oxidation inhibitors, and the like.
  • the l-olefin tetramer described herein will comprise from about to about 98 percent of the total jet lubricant and preferably about percent.
  • the substantially pure l-olefin tetramer of this invention has been thoroughly characterized from the reaction mechanism and by infrared spectroscopy, nuclear magnetic resonance analysis, gas chromatography and vapor pressure osmometry.
  • the infrared and nuclear magnetic resonance analysis identifies the location of the double bond and identifies other functional groups, if any.
  • Gas chromatography establishes carbon number purity.
  • Vapor pressure osmometry establishes the molecular weight of the product.
  • EXAMPLE 17 Two 50 gram portions of the vinylidene mixture prepared from a mixture containing 60 mol percent 1- octene and 40 mol percent l-decene were separately dimerized in the presence of 2.5 g. and 1.9 g. of the BF n-butanol complex at 45 C. for 22 and 22.5 hours, respectively. The yields of product tetramer conforming with structural formula (2) were 70 and 34 percent, respectively, based on the vinylidene reaction mixture.

Abstract

A novel internal olefin or mixture of internal olefins having the formula R--(CH.sub.2).sub.2 --C(R)=CH--C(R)(CH.sub.3)--(CH.sub.2).sub.2 -R, where each R group is an alkyl group having from four to 12 carbon atoms, is prepared substantially free of olefin isomers by the dimerization of a vinylidene compound in the presence of boron trifluoride complexed with a lower alkyl alcohol. The dimer of 2-octyl-1-dodecene is 11,13-dioctyl-13-methyl-11-tricosene. This vinylidene dimer is useful as a high temperature lubricant.

Description

United States Patent Heilman et a].
INTERNAL OLEFIN Inventors: William J. Heilman, Allison Park;
Thomas J. Lynch, H'a'rmar Township, both of Pa.
Gulf Research & Development Company, Pittsburgh, Pa.
Filed: July 24, 1972 Appl. No.: 274,319
Assignee:
US. Cl. 260/677 R; 252/59; 260/683.l5 B Int. Cl. C07c 11/02 Field of Search 260/677 R, 683.15 B;
References Cited UNITED STATES PATENTS 5/1968 Brennan 260/683.15 B
[ Apr. 8, 1975 $576,898 4/1971 Blake et al 260/676 Primary E.\'aminer-Paul M. Coughlan, Jr.
57 ABSTRACT A novel internal olefin or mixture of internal olefins having the formula 2)2 (R)=CH-C( 3)( 2)zwhere each R group is an alkyl group having from four to 12 carbon atoms, is prepared substantially free of 7 Claims, No Drawings INTERNAL OLEFIN This invention relates to olefinic dimers of vinylidene compounds and mixtures of vinylidene compounds which are particularly useful under extreme conditions of temperature as engine lubricants, hydraulic fluids, bases for greases, and the like. The invention also relates to a novel method for forming thes'e olefinic dimers by coupling the vinylidene compounds in the presence of boron trifluoride complexed with a lower alkyl alcohol.
Recent years have seen an increasing demand for lubricants and other working fluids which are able to function satisfactorily at extreme conditions of temperature such as encountered in gas turbine engines and in aircraft jet engines. Not only must these high performance materials possess suitable viscosity properties to perform their intended function at temperatures above 350 F. and below 40 F., but in addition they must possess additional desirable characteristics which are required for continued use, including low volatility at the high temperatures encountered, relative inertness in an oxidizing environment, noncorrosiveness to the metallic and nonmetallic components contacted, and the like. The modern jet aircraft engines are particularly demanding in the severity of conditions encountered.
As aircraft jet engines are designed for and are used at increasingly more rigorous conditions including high operating temperatures and high altitudes, the specifications for the lubricants and related working fluids become more rigorous. Particularly demanding are the specifications relating to stability, evaporation loss, pour point and viscosity. The lubricant must meet specific requirements on viscosity over a wide temperature range if it is to function as a useful lubricant. It must possess an exceptionally low pour point so that cold engines can be started in northern winters and to permit sump storage at great altitudes without excessive thickening of the lubricant. It must be stable to decomposition at the high engine temperatures of modern jet engines and it must resist evaporation at the low pressures encountered at the high altitudes conventionally flown by these aircraft. For example, the viscosity specification for Type ll jet turbine lubricants is determined from -40 F. to 400 F., and the evaporation loss is determined at 5.5 inches Hg. and 450 F. Type II jet turbine lubricant is used as a general term to refer to a class of materials which meets several closely related specifications. Pratt and Whitney Aircraft Corp. specification No. PWA 521-3 and MIL-L-23699A are specifications for Type II aircraft jet engine lubricants. Although these specifications do not restrict the source of the lubricant, it has been found that naturally occurring materials from petroleum cannot meet the rigid specifications, therefore, synthetically prepared materials are required for jet engine and other high performance applications.
It is generally recognized that olefinic unsaturation must be eliminated from these high temperature lubricants. Olefinically unsaturated molecules have been found to be chemically unstable under the conditions at which the high temperature lubricant is normally used. This instability of olefins is due to the high reactivity of the olefinic double bond with atmospheric oxygen at the high operating temperatures in jet engines resulting in cleavage at the double bond and leading to acid groups on the molecular fragments. The cleavage of the molecules results in a reduction in the oils viscosity while the acid groups resulting from the oxida' tion are highly corrosive to engine components. Those skilled in the field of extreme temperature lubricants have stated that synthetic hydrocarbon lubricants must be completely hydrogenated to provide oxidation and thermal stability for use as aircraft jet engine lubricants.
Notwithstanding the expressed requirement that olefinic unsaturation be avoided in high temperature lubricants, we have unexpectedly discovered an excellent synthetic lubricant that possesses an olefinic double bond in the molecule yet is as stable to degradation and oxidation, as determined by rigid specifications, as related molecular structures without olefinic unsaturation. We have discovered that the double bond in the molecule of our novel compound is substantially inert to degradation and oxidation as a result of the molecular structure and its position within the molecule. Any other location of the double bond in the molecule would subject it to easy oxidative attack. Our novel compound which includes a double bond located within the structure in the one position in which it is substantially free from attack, is made substantially quantitatively by our novel method of preparing it without significant contamination by undesired isomeric molecular structures which would be subject to oxidative attack. The resulting product is directly usable as a high temperature lubricant without requiring expensive hydrogenation or purification procedures.
lt is known that l-olefins and mixtures of l-olefins can be dimerized in good conversion and selectivity to vinylidene compounds. For example, US. Pat. No. 2,695,327 discloses the dimerization of l-olefins in the presence of a catalyst such as a trialkyl aluminum. By this method, for example, l-decene dimerizes to 2- octyl-l-dodecene. The vinylidene compound can then be easily recovered in good yield by a procedure which includes fractional distillation. This vinylidene compound can be further reacted using aluminum chloride as described in US. Pat. No. 3,576,898 to produce a material having a greater molecular weight than the vinylidene compound. The direct product of this second reaction is then hydrogenated and purified to remove substantial amounts of undesired structures which degrade its properties. Alpha-olefin oligomers which are produced by other processes are also hydrogenated for use as extreme temperature lubricants.
We have found that when 2-octyl-l-dodecene, the vinylidene dimer of l-decene, is reacted in the presence of anhydrous aluminum chloride in nitromethane, not only tetramers of the l-decene, but also substantial amounts of pentamer-like material are produced. The tetramers are a mixture of olefinic isomers having a substantial proportion of the olefinic unsaturation in side chains where it is readily attacked under oxidizing conditions. The pentamer-like material, which is evidence of significant isomerization and dealkylation or fragmentation during the reaction, effects a substantial increase in the viscosity of the tetramer product and is very difficult to remove from the tetramer product. We have also found the presence of a substantial amount of hydroxyl groups in the product of this method. The presence of hydroxyl groups in the molecule is undesired because hydroxyl tends to directly oxidize to the acid or dehydrate to olefin which can then cleave and oxidize to acid, as described. This olefinic isomerization and hydroxylation requires that the composition be hydrogenated to substantially remove this unsaturation and hydroxylation inherent in the process otherwise the resulting composition is unstable under oxidizing conditions. Consistent results were not obtained with repeated experiments by this method.
Unexpectedly, we have discovered a novel process for dimerizing the vinylidene compound in which a novel dimer of the vinylidene compound, that is, a tetramer of the l-olefin, is routinely and consistently produced in substantially quantitative yield and substantially free of any pentamer. Furthermore, we have discovered that this novel dimer of the vinylidene compound, which is produced by our process in substantially quantitative yield, contains the double bond in a position within the molecule at which it is essentially free from degradation and oxidative attack. We have also found that this l-olefin tetramer is substantially completely free of hydroxyl contaminant. Thus, we have discovered a novel process which unexpectedly produces a sterically hindered l-olefin tetramer, in substantially pure form, that is, it is free of unhindered isomers or other undesired molecular structures and is free of nontetramer products. This unsaturated l-olefin tetramer as prepared by our process is itself a novel composition of matter which unexpectedly is useful without hydrogenation as an extreme temperature lubricant such as in aircraft jet engines. The substantially pure, hydroxyl-free, unsaturated dimer of 2-octyl-ldodecene produced by our novel process is 11,13- dioctyl- 1 3-methyl-l l-tricosene.
We have discovered that our process can be used as the second step in a two-stage dimerization process for producing substantially pure, unsaturated tetramers from l-olefins having from about six to about 14 carbon atoms including olefins having an odd number of carbon atoms and mixtures of these l-olefins. These starting l-olefins can either be straight chain olefins or branched chain olefins provided that there is at least one hydrogen atom on the 2-carbon atom. The preferred starting olefins have from eight to 12 carbon atoms. The most preferred olefins are l-octene, 1- decene and mixtures of these.
The l-olefin is dimerized by known methods and the vinylidene dimer is purified in a conventional manner. The vinylidene dimer of the l-olefin which is the starting material in our process possesses the structural formula:
R- (CH2) 2-(I2=CH2 (l) in which each R group is an alkyl group independently having from four to 12 carbon atoms. This vinylidene compound is dimerized by our process to produce a dimer of the vinylidene compound, which is a tetramer of the starting l-olefin, having the structural formula:
(CH2) 2'? (CH2) 2' (2) in which each R group is an alkyl group independently having from four to 12 carbon atoms as described above. In this formula and the formula 1 for the vinylidene compound each R group possesses two less carbon atoms than the starting olefin from which it originated. Thus, when l-decene is the starting olefin, R- is 3( 2)1- When the starting olefin is a mixture, such as a 50/50 molar mixture of l-octene and l-decene, R- is either CH (Cl-l or CH (Cl-l The likelihood of an alkyl group occurring in any specific position is directly related to the molar proportion of the l-olefin from which the group is derived in the initial olefin mixture. By substantially pure l-olefin tetramer or substantially pure vinylidene dimer as used herein, we mean a reaction product consisting of one or more molecular species conforming with the above structural formula (2) and substantially free of molecular species which do not conform with the above structural formula (2). Therefore, a substantially pure mixture of l-olefin tetramers conforming with structural formula (2) and varying only in the alkyl groups is produced when a mixture of l-olefins is used to make the vinylidene dimer.
The catalyst which we have discovered to be required for the specific dimerization of the vinylidene compound of formula (1 to produce the l-olefin tetramer in substantial purity as represented by the above structural formula (2) is boron trifluoride in a 1:1 molar complex with a lower alkyl alcohol, namely, methanol, ethanol, n-propanol, n-butanol, n-pentanol, n-hexanol, their branched chained isomers, such as isopropanol and the like, and mixtures of these alcohols. These BF lower alcohol complexes are conveniently prepared by passing BF gas through the liquid alcohol. When the alcohol stops absorbing BF the formation of the 1:1 molar complex of the alcohol with BF is completed. If the absorption of BF is incomplete, a 1:2 molar BF to lower alcohol can be produced. However, we have found the 1:2 BF lower alcohol complex to be substantially inert for the desired dimerization reaction. The 1:1 molar complex will catalyze the reaction when mixed with the 1:2 molar complex, however, the latter is generally avoided as being of no particular advantage.
The molar ratio of BF;,. alcohol complex to vinylidene compound for the dimerization to the tetramer can conveniently be between about 0.01:1 to about 1:1 and preferably about 0.05:1 to about 0.211. The dimerization of the vinylidene compound can be successfully carried out using a molar ratio of BF alcohol complex to vinylidene compound even broader than the above ratios but less effectively. 1n broad terms it is necessary to use a catalytic amount of BF alcohol complex or an amount which is catalytically effective to dimerize the vinylidene compound.
The dimerization of the vinylidene compound using the BF alcohol complex is carried out at moderate temperatures. The reaction can be carried out at a temperature of about -l0 C. to about 200 C., preferably at a temperature between about 0 C. and about 150 C., and most preferably a temperature between about 30 C. and about C.
The reaction vessel is preferably closed or separated from the atmosphere to keep moisture from contacting the BF alcohol complex and interfering with its catalytic effectiveness. Pressure does not have a significant effect on the reaction, therefore, the reactor can conveniently be about atmospheric pressure or a lower or higher pressure if such is convenient, however, there is no advantage to excessively low or excessively high pressures.
As indicated, the process of the present invention is directed to the dimerization of vinylidene dimers of 1- olefins having from about six to about 14 carbon atoms. If a pure l-olefin is used, the ultimate tetramer will be a compound having from about 24 to about 56 carbon atoms, depending on the starting olefin. If a mixture of l-olefins is used, the tetramer product will be a mixture of isomers and homologs having a carbon number within the specified range. For example, the tetramer product obtained by the dimerization of a mixture of l-octene and l-decene and the dimerization of the resulting mixture of vinylidene compounds by the process as described herein will contain a mixture of olefinically unsaturated molecules including isomers having 32, 34, 36, 38 and 40 carbon atoms.
Although any composition coming within the above formula (2) for l-olefin tetramers or mixtures thereof is stable as a lubricant against oxidative and other degradation, we have found that specific formulations are preferred to meet specific lubricant formulations. For example, we have found that about a 60:40 molar ratio of l-octene to l-decene produces a mixed tetramer product which is particularly effective in accordance with Pratt and Whitney Aircraft Corporation specification No. PWA 521-8 for Type 11 jet engine lubricants.
The dimerization of the vinylidene compound in the presence of the B1 lower alkyl alcohol complex is time dependent. With increasing time the reaction rate decreases. At the time that the reaction is substantially completed or that further reaction is not desired, the catalyst is deactivated with a base such as by the addition of a sodium hydroxide solution. The organic product can be recovered and separated from the aqueous phase with water washing, decantation and/or vacuum distillation. Unreacted vinylidene compound, if any, and l-olefin dimer impurities are separated by distillation. The resulting product is the tetramer of the initial l-olefin substantially free of impurities which do not come within the above formula (2).
The dimerization of the l-olefin to form the vinylidene compound is well described in the prior art. The dimerization is conveniently carried out at a temperature between about 60 C. and about 350 C., preferably about 100 to about 250 C. in the presence of a catalytic amount of a compound of a metal such as aluminum, gallium, indium and beryllium with monovalent aliphatic radicals, hydrogen or mixtures of these. We have found that this procedure for making the vinylidene compound consistently results in a dimer fraction comprising about 85 to about 90 percent or more of the desired vinylidene structure with the remainder being saturated dimer and an internal unsaturated dimer fraction which is substantially nonreactive in the second stage reaction. These l-olefin dimer impurities can be removed from the tetramer product by distillation or other convenient separative procedure. The reaction to produce the tetramer as described herein can be substantially quantitative based on the vinylidene compound or compounds in the vinylidene feed mixture which have reacted. Regardless of the method of preparation of the vinylidene compound it is important that it be substantially free of any compound, including any compound of undesired carbon number which could result in an undesired fraction which would be difficult to separate from the desired tetramer product.
These olefinically unsaturated l-olefin tetramer compositions as defined by formula (2) are directly usable as base stocks for engine lubricants or in other high temperature applications without requiring the considerable expense of hydrogenation. Not only is hydrogenation expensive due to the capital equipment and labor required, but also as a result of the significant reduction in ultimate yield occasioned by this additional processing step. Specific compositions coming within the broad class defined by structural formula (2) are able to meet the particular requirements of various specifications for jet engine lubricants. They are as stable against oxidation, cracking and other degradation as determined by Type II specifications, as the saturated composition corresponding with structural formula (2). When used as lubricants in jet engines, conventional additives are added to provide specific properties as desired or as required by the specifications. These additives can be an anti-wear agent such as tricresyl phosphate, oxidation inhibitors, and the like. The l-olefin tetramer described herein will comprise from about to about 98 percent of the total jet lubricant and preferably about percent.
The substantially pure l-olefin tetramer of this invention has been thoroughly characterized from the reaction mechanism and by infrared spectroscopy, nuclear magnetic resonance analysis, gas chromatography and vapor pressure osmometry. The infrared and nuclear magnetic resonance analysis identifies the location of the double bond and identifies other functional groups, if any. Gas chromatography establishes carbon number purity. Vapor pressure osmometry establishes the molecular weight of the product.
The following examples are set out to illustrate the novel process and compositions of the present invention and to provide a better understanding of its details and advantages.
EXAMPLE 1 Thirty cc. of ethanol are placed in a 100 ml. flask under a nitrogen atmosphere. The flask is placed in a wet ice bath to dissipate the 17K cal./mol of heat evolved in the reaction. BF gas is introduced into the ethanol at a rate such that the heat of reaction can be controlled. The bubbling was reduced as Bl} gas appeared at the vent and was stopped when it was no longer absorbed by the ethanol. The product was 0.51 mol of BF and ethanol in a 1:1 molar complex.
EXAMPLE 2 Fifty grams of 2-octyl-l-dodecene were introduced into a 250 cc. flask under nitrogen at atmospheric pressure. The 2-octyl-1-dodecene was prepared by dimerizing l-decene in the presence of triisobutyl aluminum. lt analyzed 85.2 mol percent 2-octyl-l-dodecene, 7.1 percent 2-octyldodecane, and 7.6 percent C internal olefins. The saturated compound was inert in the dimerization reaction and the internal olefins exhibited substantially no reactivity in the second dimerization reaction.
At room temperature (25 C.) 7.5 cc. of BF ethanol complex was added to the flask. The solution immediately heated about 10 to 15 C. and additional heat was added to maintain a constant temperature of about 45 C. The mixture was continuously stirred for the full time of the reaction. The reaction was stopped after about 21.5 hours by the addition of about 2.5 cc. of a 10 percent sodium hydroxide solution and the stirring was continued. The hydrocarbon and aqueous layers were separated by decantation and the hydrocarbon oil was then vacuum distilled in a rotating disk molecular still at 120 C. and 50 microns pressure. This procedure separated unreacted 2-octyl-l-dodecene, the C internal olefins and the 2-octyldodecane from the product. The yield of 1 1,13-dictyl-13-methyl-1 l-tricosene was 71 percent based on the total feed and 83.3 percent based on the 2-octyl-l-dodecene in the feed. No compounds having more than 40 carbon atoms were detected in the product.
EXAMPLE 3 The previous example was repeated except that the reaction was carried out at a constant temperature of 67 C. for 21.5 hours. The yield of 11,13-dioctyl-13- methyl-1 l-tricosene was 70 percent based on the total feed and 82 percent based on the 2-octyl-l-dodecene in the feed.
EXAMPLE 4 Example 2 was repeated except that the reaction was carried out at a constant temperature of 101 C. for 22 hours. The yield of 1 l,l3-dioctyl-l3-methyl-1 ltricosene was 63 percent, based on the total feed and 74 percent based on the 2-octyl-l-dodecene in the feed.
EXAMPLE 5 1n the same procedures used in the preceding examples 400 grams of 2-hexyl-l -decene were mixed with 30 cc. of the BF;,. ethanol complex and the reaction was carried out at a constant temperature of 48 C. for 21.5 hours. The yield of 9-1 l-dihexyl-l l-methyl-9- nonadecene was 77 percent based on the total feed and about 90 percent based on the 2-hexyl-l-decene in the feed.
EXAMPLE 6 A mixture of vinylidene dimers was prepared by dimerizing a l-octene and l-decene mixture containing 60 mol percent l-octene using triisobutyl aluminum as the catalyst. After removing unreacted monomer, the mixture was determined to contain 31.9 weight percent of l6-carbon compounds, 47.1 percent of l8-carbon compounds and 21.0 percent of 20-carbon compounds by gas chromatographic analysis. A six kilogram portion of this mixture was introduced into a 12 liter resinflask under a nitrogen atmosphere. The resin-flask was equipped with a thermometer, a heating mantle and a mechanical stirrer. Without supplemental heating, 450 cc. of a BF ethanol complex was added to the flask. The temperature was maintained at 45 C. for 22 hours with stirring during reaction. The hydrocarbon and aqueous layers were separated by decantation following treatment of the reaction product mixture with aqueous sodium hydroxide. Unreacted C to C dimer was removed from the hydrocarbon portion by vacuum distillation in a rotating disk molecular still. The product was a mixture of unsaturated compounds having 32, 34, 36, 38 and 40 carbon atoms and conforming with structural formula (2) in which the R group was randomly either n-hexyl or n-octyl. This product was recovered in 76 weight percent yield based on the initial vinylidene mixture.
This tetramer mixture was compared with specification No. PWA 52l-B according to Table I:
The sample also passed the Pratt and Whitney rubber deterioration test (AMS-7280).
EXAMPLE 7 A vinylidene dimer mixture (7,523.6 grams) prepared from a mixture containing 60 mol percent 1- octene and 40 mol percent l-decene was charged to a 12 liter pot under a nitrogen atmosphere. The BF ethanol catalyst (376 cc.) was added with stirring over a 24 minute period. Stirring was continued while a reaction temperature of 45 C. was maintained for four hours. At the end of the 4-hour period 1,500 cc. of distilled water was added to stop the reaction. The hydrocarbon phase was washed with water until the wash water was neutral. The tetramer product, separated from the unreacted vinylidene reaction mixture, was obtained in 65.7 percent yield based on the total feed to the reactor. The mixture of tetramer isomers and homologs was compared with MlL-L-23699 specification for Type II jet engine lubricants.
A tetramer product was made using the same procedure described in Example 6 starting with 8,296 grams of the vinylidene mixture and 415 cc. of the BF ethanol catalyst at 45 C. for 20 hours. The product containing homologous and isomeric olefin tetramers with molecular weights of 32, 34, 36, 38 and 40 and conforming with structural formula (2) was obtained in percent yield based on the initial mixture containing the vinylidene compounds. The pase straw-yellow tetramer product mixture was clay treated by passing it through a column of attapulgus clay to remove any impurities conventionally removed by clay treating. The tetramer product was made water white by this treatment. The specifications for the product before and after clay treating are set out in Table III.
Table III After Clay Treating Before Clay Treating Viscosity 40 F., cs. 6991 6906 100 F., cs. 31.0 31.05 210 F., cs. 5.46 5.48 400 F., cs. 1.33 1.33 Viscosity index 124 124 Pour point. F. 95 95 Evaporation loss at 29.9 in.Hg.. 400 F. 11.3 10.4
EXAMPLE 9 EXAMPLE Three 50 gram samples of the vinylidene mixture as described in Example 9 were reacted at 0 C., 45 C., and 70 C. for 22, 21.5, and 21.5 hours, respectively, using 2.5 cc. of BFg. ethanol complex with each sample. The yields of the tetramers conforming with structural formula (2) from each of the three samples was 67, 73 and 65 weight percent, respectively, based on the vinylidene reaction mixture.
EXAMPLE 1 l A tetramer product was made from a vinylidene mixture which was prepared from a mixture of 70 mol percent l-octene and 30 mol percent l-decene as described in Example 2. A 300 gram sample of the vinylidene mixture and 22.5 cc. of BF;,. ethanol complex were reacted at 45 C. for 21.5 hours. The yield of tetramer product mixture conforming with structural formula (2) was 69 percent based on the vinylidene reaction mixture. The tetramer product mixture had a viscosity of 6,148 cs. at 40 F., 28.95 cs. at 100 F., 5.21 cs. at 210 F., and 1.29 cs. at 400 F., and a pour point of 85 F.
EXAMPLE 12 A tetramer product was made by reacting 26.3 cc. of a BF ethanol complex with 175 grams of a vinylidene mixture, obtained from a mixture of l-octene and ldecene, containing 43.8 weight percent of l6-carbon compounds, 45.2 percent 18-carbon compounds and 11.0 percent -carbon compounds. The reaction was carried out at 45 C. for 21 hours. The tetramer product conforming with structural formula (2) was 72 percent based on the vinylidene mixture and it possessed a 210 F. viscosity of 5.46 cs.
EXAMPLE 13 A vinylidene mixture containing 16-, 18-, and 20- carbon vinylidene compounds was made from a 50/50 molar mixture of l-octene and l-decene. A 600 gram portion of this vinylidene mixture was dimerized in the presence of 45 cc. of BF ethanol complex at a temperature of 49 C. for 21.5 hours. The reaction yielded 73 weight percent of the tetramers defined by structural formula (2) based on the total vinylidene mixture reacted.
EXAMPLE 14 The l8-carbon fraction was fractionated from a vinylidene mixture which had been prepared from a mixture of mol percent l-octene and 30 mol percent 1- decene. Seventy-five grams of this l8-carbon fraction were dimerized in the presence of 1 1.2 cc. of BF ethanol complex at 45 C. for 21.5 hours. The yield of 36- carbon tetramer isomers was 74 percent based on the vinylidene reaction mixture. The product had a 210 F. viscosity of 5 .86'cs.
EXAMPLE 15 In like manner Example 14 was repeated using 26.3 cc. of BF;,. ethanol complex and grams of the 18- carbon fraction fractionated from the vinylidene mixture. The yield of the tetramer isomers was 74 percent based on the vinylidene feed mixture. The isomer mixture exhibited a 210 F. viscosity of 5.69 cs.
EXAMPLE 16 A 1:1 complex of boron trifluoride and n-butanol was prepared by bubbling boron trifluoride into n-butanol. The introduction of the boron trifluoride was stopped after the reaction to the 1:1 BF butanol complex was completed. Three 50 gram portions of a vinylidene dimer mixture prepared from a 50/50 mixture of 1- octene and l-decene were separately dimerized in the presence of 4.21 g., 2.11 g. and 1.40 g., respectively, of the BF;,. n-butanol complex at 45 C. for 21.5 hours. The yields of product conforming with structural formula (2) and based on the vinylidene reaction mixture were 69, 36 and 14 percent, respectively.
EXAMPLE 17 Two 50 gram portions of the vinylidene mixture prepared from a mixture containing 60 mol percent 1- octene and 40 mol percent l-decene were separately dimerized in the presence of 2.5 g. and 1.9 g. of the BF n-butanol complex at 45 C. for 22 and 22.5 hours, respectively. The yields of product tetramer conforming with structural formula (2) were 70 and 34 percent, respectively, based on the vinylidene reaction mixture.
EXAMPLE 18 Four 50 gram portions of a vinylidene mixture prepared by dimerization from a mixture containing 50 mol percent l-octene and 50 mol percent l-decene were separately dimerized in the presence of 4.63 g., 3.24 g., 2.32 g., and 1.53 g. of a BF n-pentanol complex at a temperature of 45 C. for 21.5, 21.5, 22 and 22 hours, respectively. The yields of tetramer product conforming with structural formula (2) were 69, 56, 29 and 12 weight percent, respectively, based on the vinylidene mixture used.
EXAMPLE l9 Fifty grams of the vinylidene mixture used in the preceding example was dimerized in the presence of 5.04 grams of a BF n-hexanol complex at a temperature of 45 C. for 21.5 hours. The yield of tetramer product conforming with structural formula (2) was 70 weight percent based on the vinylidene reaction mixture.
EXAMPLE A 4,629 gram portion of the vinylidene dimer mixture from l-decene as described in Example 2 was dimerized in the presence of 240 cc. of BF;;. ethanol complex at a temperature of 51 C. for 22.5 hours. The yield to ll,l3-dioctyl-l3-methyl-ll-tricosene was 73 weight percent based on the feed mixture. The viscosity of the tetramer was 6.67 cs. at 210 F.
EXAMPLE 21 Example 20 was repeated except that 10 kilograms of the vinylidene dimer were dimerized in the presence of 500 cc. of BF ethanol complex for 23 hours. The yield of l 1,13-dioctyl-l3-methyl-l l-tricosene was 74 weight percent based on the feed mixture. This product was compared with Ford Motor Company specifications for primary mover turbine oils.
2-butyl-l-octene was prepared by dimerizing lhexene in the presence of triisobutyl aluminum. After removing unreacted l-hexene, the product analyzed about 85 percent 2-butyl-l-octene with the remainder being 2-butyloctane and 12 carbon internal olefins. A 150 gram portion of the 2-butyl-l-octene product was dimerized in the presence of BF;;. n-butanol complex for 22 hours at 45 C. After washing and separating out the 12 carbon hydrocarbons, the 7,9-dibutyl-9-methyl- 7-pentadecene product was subjected to analysis. The infrared spectra revealed that the product possessed only one type of double bond with no unhindered double bond detected and further showed that no hydroxyl group was present in the product. Nuclear magnetic resonance spectroscopy revealed that there was only one type of double bond present in the product and that only one proton was present on the double bond. Gas chromatography and vapor pressure osmometry verified the carbon number of the product at 24.
The tetramer produced from 2-hexyl-1-dodecene in other experiments showed similar spectra at reduced intensity. In many dozens of experiments using a vinylidene dimer of a l-olefin and a BF alcohol complex as described herein, we obtained consistent results including yield of product with no showing of trimer or pentamer of the initial olefin.
EXAMPLE 23 The reaction was carried out in a 500 ml. fournecked flask equipped with a stirrer, a thermocouple and a nitrogen bubbler. After purging the reaction flask for 24 hours with dry nitrogen, 100 ml. of nitromethane was first added and then 13.3 grams of aluminum chloride was added with stirring while maintaining the reactors contents at 5 C. in an ice bath. After solution was obtained, a 168 gram portion of 2-butyl-l-octene, as described in the preceding example, was slowly added over a period of 30 minutes at 3 to 5 C. After addition of the dimer was completed, the temperature was maintained at a temperature of 5 C. with stirring for 3.5 hours.
The mixture was then poured into 500 ml. of water followed by 100 ml. of hexane. The organic layer was washed in succession with 500 cc. of water, 500 cc. of 10 percent HCl in water, 500 cc. of 10 percent NaOH in water and 500 cc. water. The organic phase was then separated out, filtered and distilled to remove hexane and 12 carbon compounds.
The resulting product was 95.7 grams of a 24-carbon tetramer cut boiling at 162 C. at 1 mm. Hg. and having a refractive index of 1.4556. The bottoms fraction of 36.8 grams was identified as a tetramer-pentamer mixture by gas chromatography. The yield of tetramer and pentamer based on the dimer feed material was 78.9 percent with about seven percent being pentamer.
The product was subjected to infrared spectroscopy and found to have a strong showing of hydroxyl groups and a strong carbon to carbon double bond showing in an unhindered position. Nuclear magnetic resonance analysis disclosed double bond in the product with two protons on the double bond and four protons on carbon adjacent to the double bond with no showing percent limit of detection) of a double bond with only one proton on the double bond.
EXAMPLE 24 Example 23 was repeated except that 277.7 grams of the 20-carbon vinylidene compound mixture prepared from l-decene as described in Example 2 was introduced into the reactor instead of the l-hexene dimer. A product was obtained which analyzed by gas chromatographic analysis as about nine percent l-decene trimer, about 31 percent l-decene tetramer and at least about one percent l-decene pentamer. The infrared and nuclear magnetic resonance spectra of this product were similar to those described in the preceding exam-.
ple at reduced intensity. This experiment was duplicated several times with erratic results including lower yields than described in this example.
EXAMPLE 25 A 50 gram portion of a l-decene dimer as described in Example 2 was placed in a ml. flask under a nitrogen atmosphere. A 1:1 BF diethyl ether complex was made from diethyl ether which had been purified from ketone, aldehyde, peroxide and alcohol and five cc. were added to the flask. A temperature of 45 C. was maintained on the contents of the flask by a heating mantle. After 21.5 hours the contents of the flask were analyzed showing a yield to tetramer of less than one percent.
It is to be understood that the above disclosure is by way of specific example and that numerous modificawherein each R group is a saturated alkyl group independently having from about four to about 12 carbon atoms.
2. The composition in accordance with claim 1 in which each R group is a saturated alkyl group having six or eight carbon atoms.
3. The composition in accordance with claim 1 in which R is 8.
4. The composition in accordance with claim 1 in which each R group is the same R group selected from alkyl groups having from about four to about 12 carbon atoms.
5. The composition in accordance with claim 1 which is substantially free of a fraction not conforming with the said structural formula.
6. The composition in accordance with claim 1 in which R is six.
7. The composition in accordance with claim 6 in which about 40 percent of the R groups have eight carbon atoms and about 60 percent have six carbon atoms. l=
UNITED STATES PATENT OFFICE CERTIFICATE OF CGRRECTWN PATENT NO. 3, 75,720 DATED April 8, 1975 INVENTOR(S) William J. Heilman and Thomas J. Lynch It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below;
Column 5, line 66 "could" should read -would--.
Column 8, line 63, "pase" should read pale-.
Column 14 line 14, "claim 6" should read claim 2.
Signed and sealed this lst day of July 1"37- w MEAL RUTH C. I-iASON Commissioner of Fatenrs Attestinz Officer and Trademarks

Claims (5)

1. THE COMPOSITION OF MATTER HAVING THE STRUCTURAL FORMULA
2. The composition in accordance with claim 1 in which each R group is a
4. The composition in accordance with claim 1 in which each R group is the same R group selected from alkyl groups having from about four to about 12
5. The composition in accordance with claim 1 which is substantially free
7. The composition in accordance with claim 6 in which about 40 percent of the R groups have eight carbon atoms and about 60 percent have six carbon atoms.
US274319A 1972-07-24 1972-07-24 Internal olefin Expired - Lifetime US3876720A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US274319A US3876720A (en) 1972-07-24 1972-07-24 Internal olefin
US525720A US3907922A (en) 1972-07-24 1974-11-21 Process for dimerizing vinylidene compounds
US05/532,157 US3957664A (en) 1972-07-24 1974-12-12 Lubricant and hydraulic fluid compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US274319A US3876720A (en) 1972-07-24 1972-07-24 Internal olefin

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/532,157 Division US3957664A (en) 1972-07-24 1974-12-12 Lubricant and hydraulic fluid compositions

Publications (1)

Publication Number Publication Date
US3876720A true US3876720A (en) 1975-04-08

Family

ID=23047701

Family Applications (1)

Application Number Title Priority Date Filing Date
US274319A Expired - Lifetime US3876720A (en) 1972-07-24 1972-07-24 Internal olefin

Country Status (1)

Country Link
US (1) US3876720A (en)

Cited By (191)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0010372A1 (en) * 1978-10-16 1980-04-30 Allied Corporation Recyclable boron trifluoride catalyst and method of using same
US4239930A (en) * 1979-05-17 1980-12-16 Pearsall Chemical Company Continuous oligomerization process
US4406800A (en) * 1982-03-23 1983-09-27 The United States Of America As Represented By The Secretary Of The Air Force Grease composition containing poly(alpha-olefin)
US5095172A (en) * 1991-03-20 1992-03-10 Ethyl Corporation Olefin purification process
US5171909A (en) * 1990-09-04 1992-12-15 Texaco Chemical Company Synthetic lubricant base stocks from long-chain vinylidene olefins and long-chain alpha- and/or internal-olefins
US5180866A (en) * 1991-03-28 1993-01-19 Texaco Chemical Company Process for preparing synthetic lubricant base stocks having improved viscosity from vinylcyclohexene and long-chain olefins
US5284988A (en) * 1991-10-07 1994-02-08 Ethyl Corporation Preparation of synthetic oils from vinylidene olefins and alpha-olefins
US5498815A (en) * 1991-12-13 1996-03-12 Albemarle Corporation Preparation of synthetic oils from vinylidene olefins and alpha-olefins
US6004256A (en) * 1995-05-26 1999-12-21 Townsend; Phillip Catalytic distillation oligomerization of vinyl monomers to make polymerizable vinyl monomer oligomers uses thereof and methods for same
US20020193650A1 (en) * 2001-05-17 2002-12-19 Goze Maria Caridad B. Low noack volatility poly alpha-olefins
US6689723B2 (en) 2002-03-05 2004-02-10 Exxonmobil Chemical Patents Inc. Sulfide- and polysulfide-containing lubricating oil additive compositions and lubricating compositions containing the same
US20040033908A1 (en) * 2002-08-16 2004-02-19 Deckman Douglas E. Functional fluid lubricant using low Noack volatility base stock fluids
US20050059563A1 (en) * 2003-09-13 2005-03-17 Sullivan William T. Lubricating fluids with enhanced energy efficiency and durability
EP1669380A2 (en) 2004-12-09 2006-06-14 Afton Chemical Corporation Grafted functionalized olefin polymer dispersant and uses thereof
EP1144349B1 (en) * 1999-11-04 2006-06-28 Innovene USA LLC Isomerization process
WO2006132964A2 (en) 2005-06-03 2006-12-14 Exxonmobil Research And Engineering Company Ashless detergents and formulated lubricating oil contraining same
US20070043248A1 (en) * 2005-07-19 2007-02-22 Wu Margaret M Process to produce low viscosity poly-alpha-olefins
US20070249756A1 (en) * 2005-06-24 2007-10-25 Fuji Xerox Co., Ltd. Flame-retardant resin composition and flame-retardant resin-molded article
US20070298990A1 (en) * 2006-06-06 2007-12-27 Carey James T High viscosity metallocene catalyst pao novel base stock lubricant blends
WO2008013698A1 (en) 2006-07-21 2008-01-31 Exxonmobil Research And Engineering Company Method for lubricating heavy duty geared apparatus
US20080146469A1 (en) * 2005-05-12 2008-06-19 Idemitsu Kosan Co., Ltd. Process for producing saturated aliphatic hydrocarbon compound, and lubricant composition
US20080177121A1 (en) * 2005-07-19 2008-07-24 Margaret May-Som Wu Process to produce high viscosity fluids
EP1975222A1 (en) 2007-03-20 2008-10-01 ExxonMobil Research and Engineering Company Lubricant compositions with improved properties
WO2008121304A1 (en) 2007-04-03 2008-10-09 Exxonmobil Research And Engineering Company Lubricating compositions containing ashless catalytic antioxidant additives
US20090036725A1 (en) * 2007-08-01 2009-02-05 Wu Margaret M Process To Produce Polyalphaolefins
US20090221775A1 (en) * 2008-01-31 2009-09-03 Mark Hagemeister Utilization Of Linear Alpha Olefins In The Production Of Metallocene Catalyzed Poly-Alpha Olefins
US20090240012A1 (en) * 2008-03-18 2009-09-24 Abhimanyu Onkar Patil Process for synthetic lubricant production
US7595365B2 (en) 2004-10-08 2009-09-29 Exxonmobil Chemical Patents Inc. Combinations of tackifier and polyalphaolefin oil
US20090318640A1 (en) * 2008-06-20 2009-12-24 Patrick Brant Polymacromonomer And Process For Production Thereof
US20090318646A1 (en) * 2008-06-20 2009-12-24 Patrick Brant Functionalized High Vinyl Terminated Propylene Based Oligomers
US20090318647A1 (en) * 2008-06-20 2009-12-24 Hagadorn John R Olefin Functionalization By Metathesis Reaction
US20090318644A1 (en) * 2008-06-20 2009-12-24 Patrick Brant High Vinyl Terminated Propylene Based Oligomers
US20100048438A1 (en) * 2008-08-22 2010-02-25 Carey James T Low Sulfur and Low Metal Additive Formulations for High Performance Industrial Oils
US20100087349A1 (en) * 2008-10-03 2010-04-08 Lee Gordon H HVI-PAO bi-modal lubricant compositions
WO2010065129A1 (en) 2008-12-05 2010-06-10 Exxonmobil Research And Engineering Company Lubricants having alkyl cyclohexyl 1,2-dicarboxylates
US20100292424A1 (en) * 2005-07-19 2010-11-18 Wu Margaret M Lubricants from Mixed Alpha-Olefin Feeds
US20110082063A1 (en) * 2006-06-06 2011-04-07 Exxonmobil Research And Engineering Company Novel Base Stock Lubricant Blends
US20110082061A1 (en) * 2009-10-02 2011-04-07 Exxonmobil Research And Engineering Company Alkylated naphtylene base stock lubricant formulations
US20110136714A1 (en) * 2006-06-06 2011-06-09 Exxonmobil Research And Engineering Company High Viscosity Novel Base Stock Lubricant Viscosity Blends
US20110160107A1 (en) * 2009-12-30 2011-06-30 Exxonmobil Research And Engineering Company Lubricant Base Stocks Based on Block Copolymers and Processes For Making
US20110160502A1 (en) * 2009-12-24 2011-06-30 Wu Margaret M Process for Producing Novel Synthetic Basestocks
WO2011094571A1 (en) 2010-02-01 2011-08-04 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
US8071835B2 (en) 2006-07-19 2011-12-06 Exxonmobil Chemical Patents Inc. Process to produce polyolefins using metallocene catalysts
US8227392B2 (en) 2008-01-25 2012-07-24 Exxonmobil Research And Engineering Company Base stocks and lubricant blends containing poly-alpha olefins
WO2012166571A1 (en) 2011-05-27 2012-12-06 Exxonmobil Research And Engineering Company A method for producing a two phase lubricant composition
WO2012166999A1 (en) 2011-06-01 2012-12-06 Exxonmbil Research And Engineering Company High efficiency lubricating composition
WO2012166575A1 (en) 2011-05-27 2012-12-06 Exxonmobil Research And Engineering Company Oil-in-oil compositions and methods of making
WO2013003406A1 (en) 2011-06-29 2013-01-03 Exxonmobil Research And Engineering Company Low viscosity engine oil with superior engine wear protection
WO2013003405A1 (en) 2011-06-30 2013-01-03 Exxonmobil Research And Engineering Company Lubricating compositions containing polyalkylene glycol mono ethers
WO2013003392A1 (en) 2011-06-30 2013-01-03 Exxonmobil Research And Engineering Company Method of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers
WO2013003394A1 (en) 2011-06-30 2013-01-03 Exxonmobil Research And Engineering Company Lubricating compositions containing polyetheramines
WO2013066915A1 (en) 2011-11-01 2013-05-10 Exxonmobil Research And Engineering Company Lubricants with improved low-temperature fuel economy
WO2013074498A1 (en) 2011-11-14 2013-05-23 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2013096532A1 (en) 2011-12-22 2013-06-27 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US8569216B2 (en) 2011-06-16 2013-10-29 Exxonmobil Research And Engineering Company Lubricant formulation with high oxidation performance
US8586520B2 (en) 2011-06-30 2013-11-19 Exxonmobil Research And Engineering Company Method of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers
US8598103B2 (en) 2010-02-01 2013-12-03 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low, medium and high speed engines by reducing the traction coefficient
WO2013181318A1 (en) 2012-06-01 2013-12-05 Exxonmobil Research And Engineering Company Lubricant compostions and processes for preparing same
WO2014008121A1 (en) 2012-07-02 2014-01-09 Exxonmobil Research And Engineering Company Enhanced durability performance of lubricants using functionalized metal phosphate nanoplatelets
US8642523B2 (en) 2010-02-01 2014-02-04 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
WO2014066444A1 (en) 2012-10-24 2014-05-01 Exxonmobil Research And Engineering Comapny Functionalized polymers and oligomers as corrosion inhibitors and antiwear additives
US8728999B2 (en) 2010-02-01 2014-05-20 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
US8748362B2 (en) 2010-02-01 2014-06-10 Exxonmobile Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed gas engines by reducing the traction coefficient
US8759267B2 (en) 2010-02-01 2014-06-24 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
WO2014107315A1 (en) 2013-01-04 2014-07-10 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US8802797B2 (en) 2008-06-20 2014-08-12 Exxonmobil Chemical Patents Inc. Vinyl-terminated macromonomer oligomerization
US8834705B2 (en) 2006-06-06 2014-09-16 Exxonmobil Research And Engineering Company Gear oil compositions
WO2014158533A1 (en) 2013-03-14 2014-10-02 Exxonmobil Research And Engineering Company Lubricating composition providing high wear resistance
WO2014158602A1 (en) 2013-03-14 2014-10-02 Exxonmobil Research And Engineering Company Method for improving emulsion characteristics of engine oils
WO2014184062A1 (en) 2013-05-17 2014-11-20 Basf Se The use of polytetrahydrofuranes in lubricating oil compositions
WO2014184068A1 (en) 2013-05-14 2014-11-20 Basf Se Lubricating oil composition with enhanced energy efficiency
US8921290B2 (en) 2006-06-06 2014-12-30 Exxonmobil Research And Engineering Company Gear oil compositions
WO2015050690A1 (en) 2013-10-03 2015-04-09 Exxonmobil Research And Engineering Company Compositions with improved varnish control properties
WO2015078707A1 (en) 2013-11-26 2015-06-04 Basf Se The use of polyalkylene glycol esters in lubricating oil compositions
WO2015099820A1 (en) 2013-12-23 2015-07-02 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2015099819A1 (en) 2013-12-23 2015-07-02 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2015099821A1 (en) 2013-12-23 2015-07-02 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
EP2937408A1 (en) 2014-04-22 2015-10-28 Basf Se Lubricant composition comprising an ester of a C17 alcohol mixture
WO2015171981A1 (en) 2014-05-09 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
WO2015171292A1 (en) 2014-05-08 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing engine knock and pre-ignition
WO2015171978A1 (en) 2014-05-09 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
WO2015171980A1 (en) 2014-05-09 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
WO2015183455A1 (en) 2014-05-29 2015-12-03 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
WO2016043944A1 (en) 2014-09-17 2016-03-24 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
WO2016073149A1 (en) 2014-11-03 2016-05-12 Exxonmobil Research And Engineering Company Low transition temperature mixtures or deep eutectic solvents and processes for preparation thereof
US9359573B2 (en) 2012-08-06 2016-06-07 Exxonmobil Research And Engineering Company Migration of air release in lubricant base stocks
US9365663B2 (en) 2008-03-31 2016-06-14 Exxonmobil Chemical Patents Inc. Production of shear-stable high viscosity PAO
WO2016106214A1 (en) 2014-12-24 2016-06-30 Exxonmobil Research And Engineering Company Methods for determining condition and quality of petroleum products
WO2016106211A1 (en) 2014-12-24 2016-06-30 Exxonmobil Research And Engineering Company Methods for authentication and identification of petroleum products
WO2016109382A1 (en) 2014-12-30 2016-07-07 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
WO2016109322A1 (en) 2014-12-30 2016-07-07 Exxonmobil Research And Engineering Company Lubricating oil compositions containing encapsulated microscale particles
WO2016109376A1 (en) 2014-12-30 2016-07-07 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
WO2016138939A1 (en) 2015-03-03 2016-09-09 Basf Se Pib as high viscosity lubricant base stock
WO2016156313A1 (en) 2015-03-30 2016-10-06 Basf Se Lubricants leading to better equipment cleanliness
EP3085757A1 (en) 2015-04-23 2016-10-26 Basf Se Stabilization of alkoxylated polytetrahydrofuranes with antioxidants
US9506008B2 (en) 2013-12-23 2016-11-29 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2016191409A1 (en) 2015-05-28 2016-12-01 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
WO2016200606A1 (en) 2015-06-09 2016-12-15 Exxonmobil Research And Engineering Company Inverse micellar compositions containing lubricant additives
WO2017003634A1 (en) 2015-06-30 2017-01-05 Exxonmobil Chemical Patents Inc. Lubricant compositions comprising diol functional groups and methods of making and using same
WO2017007670A1 (en) 2015-07-07 2017-01-12 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
WO2017146897A1 (en) 2016-02-26 2017-08-31 Exxonmobil Research And Engineering Company Lubricant compositions containing controlled release additives
WO2017146896A1 (en) 2016-02-26 2017-08-31 Exxonmobil Research And Engineering Company Lubricant compositions containing controlled release additives
WO2017172254A1 (en) 2016-03-31 2017-10-05 Exxonmobil Research And Engineering Company Lubricant compositions
US9815915B2 (en) 2010-09-03 2017-11-14 Exxonmobil Chemical Patents Inc. Production of liquid polyolefins
US9885004B2 (en) 2013-12-23 2018-02-06 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2018026982A1 (en) 2016-08-03 2018-02-08 Exxonmobil Research And Engineering Company Lubricating engine oil for improved wear protection and fuel efficiency
WO2018027227A1 (en) 2016-08-05 2018-02-08 Rutgers, The State University Of New Jersey Thermocleavable friction modifiers and methods thereof
US9914893B2 (en) 2014-01-28 2018-03-13 Basf Se Use of alkoxylated polyethylene glycols in lubricating oil compositions
EP3293246A1 (en) 2016-09-13 2018-03-14 Basf Se Lubricant compositions containing diurea compounds
US9926509B2 (en) 2015-01-19 2018-03-27 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection and solubility
WO2018057377A1 (en) 2016-09-20 2018-03-29 Exxonmobil Research And Engineering Company Non-newtonian engine oil with superior engine wear protection and fuel economy
WO2018067906A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company High conductivity lubricating oils for electric and hybrid vehicles
WO2018067905A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company Method for preventing or minimizing electrostatic discharge and dielectric breakdown in electric vehicle powertrains
WO2018067903A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company Method for controlling electrical conductivity of lubricating oils in electric vehicle powertrains
EP3315591A1 (en) 2016-10-28 2018-05-02 Basf Se Energy efficient lubricant compositions
US10000720B2 (en) 2014-05-22 2018-06-19 Basf Se Lubricant compositions containing beta-glucans
WO2018118477A1 (en) 2016-12-19 2018-06-28 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition compression spark ignition engines
WO2018125956A1 (en) 2016-12-30 2018-07-05 Exxonmobil Research And Engineering Company Low viscosity lubricating oil compositions for turbomachines
WO2018144301A1 (en) 2017-02-06 2018-08-09 Exxonmobil Chemical Patents Inc. Low transition temperature mixtures and lubricating oils containing the same
WO2018144166A1 (en) 2017-02-01 2018-08-09 Exxonmobil Research And Engineering Company Lubricating engine oil and method for improving engine fuel efficiency
WO2018156304A1 (en) 2017-02-21 2018-08-30 Exxonmobil Research And Engineering Company Lubricating oil compositions and methods of use thereof
WO2018175830A1 (en) 2017-03-24 2018-09-27 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency and energy efficiency
US10150928B2 (en) 2013-09-16 2018-12-11 Basf Se Polyester and use of polyester in lubricants
WO2018237116A1 (en) 2017-06-22 2018-12-27 Exxonmobil Research And Engineering Company Marine lubricating oils and method of making and use thereof
WO2019014092A1 (en) 2017-07-13 2019-01-17 Exxonmobil Research And Engineering Company Continuous process for the manufacture of grease
WO2019018145A1 (en) 2017-07-21 2019-01-24 Exxonmobil Research And Engineering Company Method for improving deposit control and cleanliness performance in an engine lubricated with a lubricating oil
US10190072B2 (en) 2013-12-23 2019-01-29 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2019040580A1 (en) 2017-08-25 2019-02-28 Exxonmobil Research And Engineering Company Ashless engine lubricants for high temperature applications
WO2019040576A1 (en) 2017-08-25 2019-02-28 Exxonmobil Research And Engineering Company Ashless engine lubricants for high temperature applications
WO2019055291A1 (en) 2017-09-18 2019-03-21 Exxonmobil Research And Engineering Company Hydraulic oil compositions with improved hydrolytic and thermo-oxidative stability
WO2019060144A1 (en) 2017-09-22 2019-03-28 Exxonmobil Research And Engineering Company Lubricating oil compositions with viscosity and deposit control
WO2019089180A1 (en) 2017-10-30 2019-05-09 Exxonmobil Research And Engineering Company Lubricating oil compositions having improved cleanliness and wear performance
WO2019090038A1 (en) 2017-11-03 2019-05-09 Exxonmobil Research And Engineering Company Lubricant compositions with improved performance and methods of preparing and using the same
WO2019094019A1 (en) 2017-11-09 2019-05-16 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition while maintaining or improving cleanliness
WO2019103808A1 (en) 2017-11-22 2019-05-31 Exxonmobil Research And Engineering Company Lubricating oil compositions with oxidative stability in diesel engines
US10316712B2 (en) 2015-12-18 2019-06-11 Exxonmobil Research And Engineering Company Lubricant compositions for surface finishing of materials
WO2019110355A1 (en) 2017-12-04 2019-06-13 Basf Se Branched adipic acid based esters as novel base stocks and lubricants
WO2019112711A1 (en) 2017-12-04 2019-06-13 Exxonmobil Research And Enginerring Company Method for preventing or reducing low speed pre-ignition
WO2019118115A1 (en) 2017-12-15 2019-06-20 Exxonmobil Research And Engineering Company Lubricating oil compositions containing microencapsulated additives
WO2019133191A1 (en) 2017-12-29 2019-07-04 Exxonmobil Research And Engineering Company Lubrication of oxygenated diamond-like carbon surfaces
WO2019133255A1 (en) 2017-12-29 2019-07-04 Exxonmobil Research And Engineering Company Grease compositions with improved performance comprising thixotropic polyamide, and methods of preparing and using the same
WO2019133407A1 (en) 2017-12-28 2019-07-04 Exxonmobil Research And Engineering Company Low traction/energy efficient liquid crystal base stocks
WO2019133218A1 (en) 2017-12-29 2019-07-04 Exxonmobil Research And Engineering Company Lubricating oil compositions with wear and sludge control
WO2019217058A1 (en) 2018-05-11 2019-11-14 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2019240965A1 (en) 2018-06-11 2019-12-19 Exxonmobil Research And Engineering Company Non-zinc-based antiwear compositions, hydraulic oil compositions, and methods of using the same
US10519394B2 (en) 2014-05-09 2019-12-31 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition while maintaining or improving cleanliness
WO2020023430A1 (en) 2018-07-23 2020-01-30 Exxonmobil Research And Engineering Company Lubricating oil compositions with oxidative stability in diesel engines using biodiesel fuel
WO2020023437A1 (en) 2018-07-24 2020-01-30 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine corrosion protection
WO2020068439A1 (en) 2018-09-27 2020-04-02 Exxonmobil Research And Engineering Company Low viscosity lubricating oils with improved oxidative stability and traction performance
US10647936B2 (en) 2016-12-30 2020-05-12 Exxonmobil Research And Engineering Company Method for improving lubricant antifoaming performance and filterability
WO2020096804A1 (en) 2018-11-05 2020-05-14 Exxonmobil Research And Engineering Company Lubricating oil compositions having improved cleanliness and wear performance
WO2020112338A1 (en) 2018-11-28 2020-06-04 Exxonmobil Research And Engineering Company Lubricating oil compositions with improved deposit resistance and methods thereof
WO2020123440A1 (en) 2018-12-10 2020-06-18 Exxonmobil Research And Engineering Company Method for improving oxidation and deposit resistance of lubricating oils
US10689593B2 (en) 2014-08-15 2020-06-23 Exxonmobil Research And Engineering Company Low viscosity lubricating oil compositions for turbomachines
WO2020131439A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Grease compositions having polyurea thickeners made with isocyanate terminated prepolymers
WO2020132166A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Lubricating oil compositions with antioxidant formation and dissipation control
WO2020131515A2 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Lubricant compositions with improved wear control
WO2020132164A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Lubricating oil compositions with viscosity control
WO2020131441A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Grease compositions having improved performance
WO2020131440A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Grease compositions having calcium sulfonate and polyurea thickeners
WO2020131310A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Method for improving high temperature antifoaming performance of a lubricating oil
WO2020139333A1 (en) 2018-12-26 2020-07-02 Exxonmobil Research And Engineering Company Formulation approach to extend the high temperature performance of lithium complex greases
US10712105B1 (en) 2019-06-19 2020-07-14 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020176171A1 (en) 2019-02-28 2020-09-03 Exxonmobil Research And Engineering Company Low viscosity gear oil compositions for electric and hybrid vehicles
US10781397B2 (en) 2014-12-30 2020-09-22 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
EP3712235A1 (en) 2019-03-20 2020-09-23 Basf Se Lubricant composition
US10793801B2 (en) 2017-02-06 2020-10-06 Exxonmobil Chemical Patents Inc. Low transition temperature mixtures and lubricating oils containing the same
US10808196B2 (en) 2017-03-28 2020-10-20 Exxonmobil Chemical Patents Inc. Cold cranking simulator viscosity reducing base stocks and lubricating oil formulations containing the same
US10858610B2 (en) 2017-03-24 2020-12-08 Exxonmobil Chemical Patents Inc. Cold cranking simulator viscosity boosting base stocks and lubricating oil formulations containing the same
WO2020257373A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257371A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257374A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257378A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257377A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257375A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257376A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257379A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257370A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
US10876062B2 (en) 2017-03-24 2020-12-29 Exxonmobil Chemical Patents Inc. Cold cranking simulator viscosity boosting base stocks and lubricating oil formulations containing the same
WO2020264534A2 (en) 2019-06-27 2020-12-30 Exxonmobil Research And Engineering Company Method for reducing solubilized copper levels in wind turbine gear oils
WO2021108160A1 (en) 2019-11-25 2021-06-03 Exxonmobil Chemical Patents Inc. Hot melt pressure-sensitive adhesives and processes for making same
WO2021133583A1 (en) 2019-12-23 2021-07-01 Exxonmobil Research And Engineering Company Method and apparatus for the continuous production of polyurea grease
WO2021154497A1 (en) 2020-01-30 2021-08-05 Exxonmobil Research And Engineering Company Sulfur-free, ashless, low phosphorus lubricant compositions with improved oxidation stability
WO2021194813A1 (en) 2020-03-27 2021-09-30 Exxonmobil Research And Engineering Company Monitoring health of heat transfer fluids for electric systems
WO2021225662A2 (en) 2020-03-31 2021-11-11 Exxonmobil Research And Engineering Company Hydrocarbon compositions useful as lubricants for improved oxidation stability
WO2022010606A1 (en) 2020-07-09 2022-01-13 Exxonmobil Research And Engineering Company Engine oil lubricant compositions and methods for making same with superior engine wear protection and corrosion protection
WO2022072962A1 (en) 2020-09-30 2022-04-07 Exxonmobil Research And Engineering Company Low friction and low traction lubricant compositions useful in dry clutch motorcycles
WO2022099291A1 (en) 2020-11-06 2022-05-12 Exxonmobil Research And Engineering Company Engine oil lubricant compositions and methods for making same with steel corrosion protection
WO2022109521A1 (en) 2020-11-17 2022-05-27 Exxonmobil Chemical Patents Inc. Concurrent isomerization/hydrogenation of unsaturated polyalphaolefin in the presence of a high activity catalyst
WO2023122405A1 (en) 2021-12-21 2023-06-29 ExxonMobil Technology and Engineering Company Engine oil lubricant compostions and methods for making same with superior oil consumption
US11760952B2 (en) 2021-01-12 2023-09-19 Ingevity South Carolina, Llc Lubricant thickener systems from modified tall oil fatty acids, lubricating compositions, and associated methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3382291A (en) * 1965-04-23 1968-05-07 Mobil Oil Corp Polymerization of olefins with bf3
US3576898A (en) * 1961-08-03 1971-04-27 Monsanto Co Synthetic hydrocarbons

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3576898A (en) * 1961-08-03 1971-04-27 Monsanto Co Synthetic hydrocarbons
US3382291A (en) * 1965-04-23 1968-05-07 Mobil Oil Corp Polymerization of olefins with bf3

Cited By (279)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0010372A1 (en) * 1978-10-16 1980-04-30 Allied Corporation Recyclable boron trifluoride catalyst and method of using same
US4239930A (en) * 1979-05-17 1980-12-16 Pearsall Chemical Company Continuous oligomerization process
US4406800A (en) * 1982-03-23 1983-09-27 The United States Of America As Represented By The Secretary Of The Air Force Grease composition containing poly(alpha-olefin)
US5171909A (en) * 1990-09-04 1992-12-15 Texaco Chemical Company Synthetic lubricant base stocks from long-chain vinylidene olefins and long-chain alpha- and/or internal-olefins
US5095172A (en) * 1991-03-20 1992-03-10 Ethyl Corporation Olefin purification process
US5180866A (en) * 1991-03-28 1993-01-19 Texaco Chemical Company Process for preparing synthetic lubricant base stocks having improved viscosity from vinylcyclohexene and long-chain olefins
US5284988A (en) * 1991-10-07 1994-02-08 Ethyl Corporation Preparation of synthetic oils from vinylidene olefins and alpha-olefins
US5498815A (en) * 1991-12-13 1996-03-12 Albemarle Corporation Preparation of synthetic oils from vinylidene olefins and alpha-olefins
US6004256A (en) * 1995-05-26 1999-12-21 Townsend; Phillip Catalytic distillation oligomerization of vinyl monomers to make polymerizable vinyl monomer oligomers uses thereof and methods for same
EP1144349B1 (en) * 1999-11-04 2006-06-28 Innovene USA LLC Isomerization process
US20020193650A1 (en) * 2001-05-17 2002-12-19 Goze Maria Caridad B. Low noack volatility poly alpha-olefins
US6824671B2 (en) 2001-05-17 2004-11-30 Exxonmobil Chemical Patents Inc. Low noack volatility poly α-olefins
US20050045527A1 (en) * 2001-05-17 2005-03-03 Goze Maria Caridad B. Low noack volatility poly alpha-olefins
US6949688B2 (en) 2001-05-17 2005-09-27 Exxonmobil Chemical Patents Inc. Low Noack volatility poly α-olefins
US6689723B2 (en) 2002-03-05 2004-02-10 Exxonmobil Chemical Patents Inc. Sulfide- and polysulfide-containing lubricating oil additive compositions and lubricating compositions containing the same
US20040033908A1 (en) * 2002-08-16 2004-02-19 Deckman Douglas E. Functional fluid lubricant using low Noack volatility base stock fluids
US6869917B2 (en) 2002-08-16 2005-03-22 Exxonmobil Chemical Patents Inc. Functional fluid lubricant using low Noack volatility base stock fluids
US20050059563A1 (en) * 2003-09-13 2005-03-17 Sullivan William T. Lubricating fluids with enhanced energy efficiency and durability
US7585823B2 (en) 2003-09-13 2009-09-08 Exxonmobil Chemical Patents Inc. Lubricating fluids with enhanced energy efficiency and durability
US7595365B2 (en) 2004-10-08 2009-09-29 Exxonmobil Chemical Patents Inc. Combinations of tackifier and polyalphaolefin oil
EP1669380A2 (en) 2004-12-09 2006-06-14 Afton Chemical Corporation Grafted functionalized olefin polymer dispersant and uses thereof
US20060128875A1 (en) * 2004-12-09 2006-06-15 Bradley Joseph S Graft functionalized olefin polymer dispersant and uses thereof
US7700684B2 (en) 2004-12-09 2010-04-20 Afton Chemical Corporation Graft functionalized olefin polymer dispersant and uses thereof
US20080146469A1 (en) * 2005-05-12 2008-06-19 Idemitsu Kosan Co., Ltd. Process for producing saturated aliphatic hydrocarbon compound, and lubricant composition
US8373011B2 (en) * 2005-05-12 2013-02-12 Idemitsu Kosan Co., Ltd. Process for producing saturated aliphatic hydrocarbon compound, and lubricant composition
EP2363453A1 (en) 2005-06-03 2011-09-07 ExxonMobil Research and Engineering Company Ashless detergents and formulated lubricating oil containing same
EP2366763A1 (en) 2005-06-03 2011-09-21 ExxonMobil Research and Engineering Company Ashless detergents and formulated lubricating oil containing same
EP2366764A1 (en) 2005-06-03 2011-09-21 ExxonMobil Research and Engineering Company Ashless detergents and formulated lubricating oil containing same
WO2006132964A2 (en) 2005-06-03 2006-12-14 Exxonmobil Research And Engineering Company Ashless detergents and formulated lubricating oil contraining same
US20070249756A1 (en) * 2005-06-24 2007-10-25 Fuji Xerox Co., Ltd. Flame-retardant resin composition and flame-retardant resin-molded article
US9409834B2 (en) * 2005-07-19 2016-08-09 Exxonmobil Chemical Patents Inc. Low viscosity poly-alpha-olefins
US20080177121A1 (en) * 2005-07-19 2008-07-24 Margaret May-Som Wu Process to produce high viscosity fluids
US8207390B2 (en) 2005-07-19 2012-06-26 Exxonmobil Chemical Patents Inc. Process to produce low viscosity poly-alpha-olefins
US8921291B2 (en) 2005-07-19 2014-12-30 Exxonmobil Chemical Patents Inc. Lubricants from mixed alpha-olefin feeds
US20090005279A1 (en) * 2005-07-19 2009-01-01 Margaret May-Som Wu Polyalpha-Olefin Compositions and Processes to Produce the Same
US7989670B2 (en) 2005-07-19 2011-08-02 Exxonmobil Chemical Patents Inc. Process to produce high viscosity fluids
US20130158307A1 (en) * 2005-07-19 2013-06-20 Margaret May-Som Wu Low Viscosity Poly-Alpha-Olefins
US8748361B2 (en) 2005-07-19 2014-06-10 Exxonmobil Chemical Patents Inc. Polyalpha-olefin compositions and processes to produce the same
US20070043248A1 (en) * 2005-07-19 2007-02-22 Wu Margaret M Process to produce low viscosity poly-alpha-olefins
US20100292424A1 (en) * 2005-07-19 2010-11-18 Wu Margaret M Lubricants from Mixed Alpha-Olefin Feeds
US9593288B2 (en) 2005-07-19 2017-03-14 Exxonmobil Chemical Patents Inc. Lubricants from mixed alpha-olefin feeds
US8299007B2 (en) 2006-06-06 2012-10-30 Exxonmobil Research And Engineering Company Base stock lubricant blends
US20070298990A1 (en) * 2006-06-06 2007-12-27 Carey James T High viscosity metallocene catalyst pao novel base stock lubricant blends
US8921290B2 (en) 2006-06-06 2014-12-30 Exxonmobil Research And Engineering Company Gear oil compositions
US8535514B2 (en) 2006-06-06 2013-09-17 Exxonmobil Research And Engineering Company High viscosity metallocene catalyst PAO novel base stock lubricant blends
US20110082063A1 (en) * 2006-06-06 2011-04-07 Exxonmobil Research And Engineering Company Novel Base Stock Lubricant Blends
US8834705B2 (en) 2006-06-06 2014-09-16 Exxonmobil Research And Engineering Company Gear oil compositions
US20110136714A1 (en) * 2006-06-06 2011-06-09 Exxonmobil Research And Engineering Company High Viscosity Novel Base Stock Lubricant Viscosity Blends
US8501675B2 (en) 2006-06-06 2013-08-06 Exxonmobil Research And Engineering Company High viscosity novel base stock lubricant viscosity blends
US8071835B2 (en) 2006-07-19 2011-12-06 Exxonmobil Chemical Patents Inc. Process to produce polyolefins using metallocene catalysts
WO2008013698A1 (en) 2006-07-21 2008-01-31 Exxonmobil Research And Engineering Company Method for lubricating heavy duty geared apparatus
EP1975222A1 (en) 2007-03-20 2008-10-01 ExxonMobil Research and Engineering Company Lubricant compositions with improved properties
WO2008121304A1 (en) 2007-04-03 2008-10-09 Exxonmobil Research And Engineering Company Lubricating compositions containing ashless catalytic antioxidant additives
US8513478B2 (en) 2007-08-01 2013-08-20 Exxonmobil Chemical Patents Inc. Process to produce polyalphaolefins
US20090036725A1 (en) * 2007-08-01 2009-02-05 Wu Margaret M Process To Produce Polyalphaolefins
US8227392B2 (en) 2008-01-25 2012-07-24 Exxonmobil Research And Engineering Company Base stocks and lubricant blends containing poly-alpha olefins
US9469704B2 (en) 2008-01-31 2016-10-18 Exxonmobil Chemical Patents Inc. Utilization of linear alpha olefins in the production of metallocene catalyzed poly-alpha olefins
US20090221775A1 (en) * 2008-01-31 2009-09-03 Mark Hagemeister Utilization Of Linear Alpha Olefins In The Production Of Metallocene Catalyzed Poly-Alpha Olefins
US8865959B2 (en) 2008-03-18 2014-10-21 Exxonmobil Chemical Patents Inc. Process for synthetic lubricant production
US20090240012A1 (en) * 2008-03-18 2009-09-24 Abhimanyu Onkar Patil Process for synthetic lubricant production
US9365663B2 (en) 2008-03-31 2016-06-14 Exxonmobil Chemical Patents Inc. Production of shear-stable high viscosity PAO
US20090318646A1 (en) * 2008-06-20 2009-12-24 Patrick Brant Functionalized High Vinyl Terminated Propylene Based Oligomers
US20090318644A1 (en) * 2008-06-20 2009-12-24 Patrick Brant High Vinyl Terminated Propylene Based Oligomers
US8283428B2 (en) 2008-06-20 2012-10-09 Exxonmobil Chemical Patents Inc. Polymacromonomer and process for production thereof
US8283419B2 (en) 2008-06-20 2012-10-09 Exxonmobil Chemical Patents Inc. Olefin functionalization by metathesis reaction
US8802797B2 (en) 2008-06-20 2014-08-12 Exxonmobil Chemical Patents Inc. Vinyl-terminated macromonomer oligomerization
US8653209B2 (en) 2008-06-20 2014-02-18 Exxonmobil Chemical Patents Inc. High vinyl terminated propylene based oligomers
US8372930B2 (en) 2008-06-20 2013-02-12 Exxonmobil Chemical Patents Inc. High vinyl terminated propylene based oligomers
US8779067B2 (en) 2008-06-20 2014-07-15 Exxonmobil Chemical Patents Inc. High vinyl terminated propylene based oligomers
US20090318647A1 (en) * 2008-06-20 2009-12-24 Hagadorn John R Olefin Functionalization By Metathesis Reaction
US20090318640A1 (en) * 2008-06-20 2009-12-24 Patrick Brant Polymacromonomer And Process For Production Thereof
US8431662B2 (en) 2008-06-20 2013-04-30 Exxonmobil Chemical Patents Inc. Polymacromonomer and process for production thereof
US8399725B2 (en) 2008-06-20 2013-03-19 Exxonmobil Chemical Patents Inc. Functionalized high vinyl terminated propylene based oligomers
US8394746B2 (en) 2008-08-22 2013-03-12 Exxonmobil Research And Engineering Company Low sulfur and low metal additive formulations for high performance industrial oils
US20100048438A1 (en) * 2008-08-22 2010-02-25 Carey James T Low Sulfur and Low Metal Additive Formulations for High Performance Industrial Oils
US8476205B2 (en) 2008-10-03 2013-07-02 Exxonmobil Research And Engineering Company Chromium HVI-PAO bi-modal lubricant compositions
US20100105589A1 (en) * 2008-10-03 2010-04-29 Lee Gordon H Chromium HVI-PAO bi-modal lubricant compositions
US20100087349A1 (en) * 2008-10-03 2010-04-08 Lee Gordon H HVI-PAO bi-modal lubricant compositions
US8247358B2 (en) 2008-10-03 2012-08-21 Exxonmobil Research And Engineering Company HVI-PAO bi-modal lubricant compositions
WO2010065129A1 (en) 2008-12-05 2010-06-10 Exxonmobil Research And Engineering Company Lubricants having alkyl cyclohexyl 1,2-dicarboxylates
US20110082061A1 (en) * 2009-10-02 2011-04-07 Exxonmobil Research And Engineering Company Alkylated naphtylene base stock lubricant formulations
US8716201B2 (en) 2009-10-02 2014-05-06 Exxonmobil Research And Engineering Company Alkylated naphtylene base stock lubricant formulations
US9701595B2 (en) 2009-12-24 2017-07-11 Exxonmobil Chemical Patents Inc. Process for producing novel synthetic basestocks
US20110160502A1 (en) * 2009-12-24 2011-06-30 Wu Margaret M Process for Producing Novel Synthetic Basestocks
US8530712B2 (en) 2009-12-24 2013-09-10 Exxonmobil Chemical Patents Inc. Process for producing novel synthetic basestocks
US8598102B2 (en) 2009-12-30 2013-12-03 ExxonMobil Research and Egineering Company Lubricant base stocks based on block copolymers and processes for making
US20110160107A1 (en) * 2009-12-30 2011-06-30 Exxonmobil Research And Engineering Company Lubricant Base Stocks Based on Block Copolymers and Processes For Making
US8759267B2 (en) 2010-02-01 2014-06-24 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
WO2011094571A1 (en) 2010-02-01 2011-08-04 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
US8598103B2 (en) 2010-02-01 2013-12-03 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low, medium and high speed engines by reducing the traction coefficient
EP3527649A1 (en) 2010-02-01 2019-08-21 Exxonmobil Research And Engineering Company Use for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
EP3527650A1 (en) 2010-02-01 2019-08-21 Exxonmobil Research And Engineering Company Use for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
WO2011094566A1 (en) 2010-02-01 2011-08-04 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed gas engines by reducing the traction coefficient
WO2011094575A1 (en) 2010-02-01 2011-08-04 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
US8642523B2 (en) 2010-02-01 2014-02-04 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
WO2011094582A1 (en) 2010-02-01 2011-08-04 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
WO2011094562A1 (en) 2010-02-01 2011-08-04 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low, medium and high speed engines by reducing the traction coefficient
US8748362B2 (en) 2010-02-01 2014-06-10 Exxonmobile Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed gas engines by reducing the traction coefficient
US8728999B2 (en) 2010-02-01 2014-05-20 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
US9815915B2 (en) 2010-09-03 2017-11-14 Exxonmobil Chemical Patents Inc. Production of liquid polyolefins
WO2012166575A1 (en) 2011-05-27 2012-12-06 Exxonmobil Research And Engineering Company Oil-in-oil compositions and methods of making
US8623796B2 (en) 2011-05-27 2014-01-07 Exxonmobil Research And Engineering Company Oil-in-oil compositions and methods of making
WO2012166571A1 (en) 2011-05-27 2012-12-06 Exxonmobil Research And Engineering Company A method for producing a two phase lubricant composition
US9127231B2 (en) 2011-06-01 2015-09-08 Exxonmobil Research And Engineering Company High efficiency lubricating composition
WO2012166999A1 (en) 2011-06-01 2012-12-06 Exxonmbil Research And Engineering Company High efficiency lubricating composition
US8569216B2 (en) 2011-06-16 2013-10-29 Exxonmobil Research And Engineering Company Lubricant formulation with high oxidation performance
WO2013003406A1 (en) 2011-06-29 2013-01-03 Exxonmobil Research And Engineering Company Low viscosity engine oil with superior engine wear protection
WO2013003392A1 (en) 2011-06-30 2013-01-03 Exxonmobil Research And Engineering Company Method of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers
US8586520B2 (en) 2011-06-30 2013-11-19 Exxonmobil Research And Engineering Company Method of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers
WO2013003405A1 (en) 2011-06-30 2013-01-03 Exxonmobil Research And Engineering Company Lubricating compositions containing polyalkylene glycol mono ethers
WO2013003394A1 (en) 2011-06-30 2013-01-03 Exxonmobil Research And Engineering Company Lubricating compositions containing polyetheramines
WO2013066915A1 (en) 2011-11-01 2013-05-10 Exxonmobil Research And Engineering Company Lubricants with improved low-temperature fuel economy
WO2013074498A1 (en) 2011-11-14 2013-05-23 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2013096532A1 (en) 2011-12-22 2013-06-27 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US8703666B2 (en) 2012-06-01 2014-04-22 Exxonmobil Research And Engineering Company Lubricant compositions and processes for preparing same
WO2013181318A1 (en) 2012-06-01 2013-12-05 Exxonmobil Research And Engineering Company Lubricant compostions and processes for preparing same
US9228149B2 (en) 2012-07-02 2016-01-05 Exxonmobil Research And Engineering Company Enhanced durability performance of lubricants using functionalized metal phosphate nanoplatelets
WO2014008121A1 (en) 2012-07-02 2014-01-09 Exxonmobil Research And Engineering Company Enhanced durability performance of lubricants using functionalized metal phosphate nanoplatelets
US9359573B2 (en) 2012-08-06 2016-06-07 Exxonmobil Research And Engineering Company Migration of air release in lubricant base stocks
US9487729B2 (en) 2012-10-24 2016-11-08 Exxonmobil Chemical Patents Inc. Functionalized polymers and oligomers as corrosion inhibitors and antiwear additives
WO2014066444A1 (en) 2012-10-24 2014-05-01 Exxonmobil Research And Engineering Comapny Functionalized polymers and oligomers as corrosion inhibitors and antiwear additives
WO2014107315A1 (en) 2013-01-04 2014-07-10 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2014158602A1 (en) 2013-03-14 2014-10-02 Exxonmobil Research And Engineering Company Method for improving emulsion characteristics of engine oils
WO2014158533A1 (en) 2013-03-14 2014-10-02 Exxonmobil Research And Engineering Company Lubricating composition providing high wear resistance
US9708561B2 (en) 2013-05-14 2017-07-18 Basf Se Lubricating oil composition with enhanced energy efficiency
WO2014184068A1 (en) 2013-05-14 2014-11-20 Basf Se Lubricating oil composition with enhanced energy efficiency
US9938484B2 (en) 2013-05-17 2018-04-10 Basf Se Use of polytetrahydrofuranes in lubricating oil compositions
WO2014184062A1 (en) 2013-05-17 2014-11-20 Basf Se The use of polytetrahydrofuranes in lubricating oil compositions
US10150928B2 (en) 2013-09-16 2018-12-11 Basf Se Polyester and use of polyester in lubricants
WO2015050690A1 (en) 2013-10-03 2015-04-09 Exxonmobil Research And Engineering Company Compositions with improved varnish control properties
WO2015078707A1 (en) 2013-11-26 2015-06-04 Basf Se The use of polyalkylene glycol esters in lubricating oil compositions
US9506008B2 (en) 2013-12-23 2016-11-29 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US9885004B2 (en) 2013-12-23 2018-02-06 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2015099820A1 (en) 2013-12-23 2015-07-02 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2015099819A1 (en) 2013-12-23 2015-07-02 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US10190072B2 (en) 2013-12-23 2019-01-29 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2015099821A1 (en) 2013-12-23 2015-07-02 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US9914893B2 (en) 2014-01-28 2018-03-13 Basf Se Use of alkoxylated polyethylene glycols in lubricating oil compositions
EP2937408A1 (en) 2014-04-22 2015-10-28 Basf Se Lubricant composition comprising an ester of a C17 alcohol mixture
WO2015171292A1 (en) 2014-05-08 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing engine knock and pre-ignition
US9896634B2 (en) 2014-05-08 2018-02-20 Exxonmobil Research And Engineering Company Method for preventing or reducing engine knock and pre-ignition
US10519394B2 (en) 2014-05-09 2019-12-31 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition while maintaining or improving cleanliness
WO2015171981A1 (en) 2014-05-09 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
WO2015171980A1 (en) 2014-05-09 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
WO2015171978A1 (en) 2014-05-09 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
US10000720B2 (en) 2014-05-22 2018-06-19 Basf Se Lubricant compositions containing beta-glucans
US9506009B2 (en) 2014-05-29 2016-11-29 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
WO2015183455A1 (en) 2014-05-29 2015-12-03 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
US10689593B2 (en) 2014-08-15 2020-06-23 Exxonmobil Research And Engineering Company Low viscosity lubricating oil compositions for turbomachines
WO2016043944A1 (en) 2014-09-17 2016-03-24 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
US9944877B2 (en) 2014-09-17 2018-04-17 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
US10920161B2 (en) 2014-11-03 2021-02-16 Exxonmobil Research And Engineering Company Low transition temperature mixtures or deep eutectic solvents and processes for preparation thereof
WO2016073149A1 (en) 2014-11-03 2016-05-12 Exxonmobil Research And Engineering Company Low transition temperature mixtures or deep eutectic solvents and processes for preparation thereof
US9957459B2 (en) 2014-11-03 2018-05-01 Exxonmobil Research And Engineering Company Low transition temperature mixtures or deep eutectic solvents and processes for preparation thereof
WO2016106211A1 (en) 2014-12-24 2016-06-30 Exxonmobil Research And Engineering Company Methods for authentication and identification of petroleum products
WO2016106214A1 (en) 2014-12-24 2016-06-30 Exxonmobil Research And Engineering Company Methods for determining condition and quality of petroleum products
WO2016109325A1 (en) 2014-12-30 2016-07-07 Exxonmobil Research And Engineering Company Lubricating oil compositions containing encapsulated microscale particles
US10000721B2 (en) 2014-12-30 2018-06-19 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
WO2016109322A1 (en) 2014-12-30 2016-07-07 Exxonmobil Research And Engineering Company Lubricating oil compositions containing encapsulated microscale particles
US10781397B2 (en) 2014-12-30 2020-09-22 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
WO2016109382A1 (en) 2014-12-30 2016-07-07 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
US10000717B2 (en) 2014-12-30 2018-06-19 Exxonmobil Research And Engineering Company Lubricating oil compositions containing encapsulated microscale particles
US10066184B2 (en) 2014-12-30 2018-09-04 Exxonmobil Research And Engineering Company Lubricating oil compositions containing encapsulated microscale particles
WO2016109376A1 (en) 2014-12-30 2016-07-07 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
US9926509B2 (en) 2015-01-19 2018-03-27 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection and solubility
WO2016138939A1 (en) 2015-03-03 2016-09-09 Basf Se Pib as high viscosity lubricant base stock
WO2016156313A1 (en) 2015-03-30 2016-10-06 Basf Se Lubricants leading to better equipment cleanliness
EP3085757A1 (en) 2015-04-23 2016-10-26 Basf Se Stabilization of alkoxylated polytetrahydrofuranes with antioxidants
WO2016191409A1 (en) 2015-05-28 2016-12-01 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
US10119093B2 (en) 2015-05-28 2018-11-06 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
WO2016200606A1 (en) 2015-06-09 2016-12-15 Exxonmobil Research And Engineering Company Inverse micellar compositions containing lubricant additives
WO2017003634A1 (en) 2015-06-30 2017-01-05 Exxonmobil Chemical Patents Inc. Lubricant compositions comprising diol functional groups and methods of making and using same
WO2017007670A1 (en) 2015-07-07 2017-01-12 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
US10119090B2 (en) 2015-07-07 2018-11-06 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
US10316712B2 (en) 2015-12-18 2019-06-11 Exxonmobil Research And Engineering Company Lubricant compositions for surface finishing of materials
WO2017146897A1 (en) 2016-02-26 2017-08-31 Exxonmobil Research And Engineering Company Lubricant compositions containing controlled release additives
US10377962B2 (en) 2016-02-26 2019-08-13 Exxonmobil Research And Engineering Company Lubricant compositions containing controlled release additives
WO2017146896A1 (en) 2016-02-26 2017-08-31 Exxonmobil Research And Engineering Company Lubricant compositions containing controlled release additives
US10377961B2 (en) 2016-02-26 2019-08-13 Exxonmobil Research And Engineering Company Lubricant compositions containing controlled release additives
US9951290B2 (en) 2016-03-31 2018-04-24 Exxonmobil Research And Engineering Company Lubricant compositions
WO2017172254A1 (en) 2016-03-31 2017-10-05 Exxonmobil Research And Engineering Company Lubricant compositions
WO2018026982A1 (en) 2016-08-03 2018-02-08 Exxonmobil Research And Engineering Company Lubricating engine oil for improved wear protection and fuel efficiency
US10640725B2 (en) 2016-08-05 2020-05-05 Rutgers, The State University Of New Jersey Thermocleavable friction modifiers and methods thereof
WO2018027227A1 (en) 2016-08-05 2018-02-08 Rutgers, The State University Of New Jersey Thermocleavable friction modifiers and methods thereof
WO2018050484A1 (en) 2016-09-13 2018-03-22 Basf Se Lubricant compositions containing diurea compounds
EP3293246A1 (en) 2016-09-13 2018-03-14 Basf Se Lubricant compositions containing diurea compounds
WO2018057377A1 (en) 2016-09-20 2018-03-29 Exxonmobil Research And Engineering Company Non-newtonian engine oil with superior engine wear protection and fuel economy
US10479956B2 (en) 2016-09-20 2019-11-19 Exxonmobil Research And Engineering Company Non-newtonian engine oil with superior engine wear protection and fuel economy
WO2018067906A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company High conductivity lubricating oils for electric and hybrid vehicles
WO2018067905A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company Method for preventing or minimizing electrostatic discharge and dielectric breakdown in electric vehicle powertrains
WO2018067908A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company Low conductivity lubricating oils for electric and hybrid vehicles
WO2018067902A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company Lubricating oil compositions for electric vehicle powertrains
WO2018067903A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company Method for controlling electrical conductivity of lubricating oils in electric vehicle powertrains
EP3315591A1 (en) 2016-10-28 2018-05-02 Basf Se Energy efficient lubricant compositions
US10829708B2 (en) 2016-12-19 2020-11-10 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
WO2018118477A1 (en) 2016-12-19 2018-06-28 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition compression spark ignition engines
US10647936B2 (en) 2016-12-30 2020-05-12 Exxonmobil Research And Engineering Company Method for improving lubricant antifoaming performance and filterability
WO2018125956A1 (en) 2016-12-30 2018-07-05 Exxonmobil Research And Engineering Company Low viscosity lubricating oil compositions for turbomachines
WO2018144167A1 (en) 2017-02-01 2018-08-09 Exxonmobil Research And Engineering Company Lubricating engine oil and method for improving engine fuel efficiency
WO2018144166A1 (en) 2017-02-01 2018-08-09 Exxonmobil Research And Engineering Company Lubricating engine oil and method for improving engine fuel efficiency
US10793801B2 (en) 2017-02-06 2020-10-06 Exxonmobil Chemical Patents Inc. Low transition temperature mixtures and lubricating oils containing the same
WO2018144301A1 (en) 2017-02-06 2018-08-09 Exxonmobil Chemical Patents Inc. Low transition temperature mixtures and lubricating oils containing the same
US10487289B2 (en) 2017-02-21 2019-11-26 Exxonmobil Research And Engineering Company Lubricating oil compositions and methods of use thereof
WO2018156304A1 (en) 2017-02-21 2018-08-30 Exxonmobil Research And Engineering Company Lubricating oil compositions and methods of use thereof
US10858610B2 (en) 2017-03-24 2020-12-08 Exxonmobil Chemical Patents Inc. Cold cranking simulator viscosity boosting base stocks and lubricating oil formulations containing the same
US10738258B2 (en) 2017-03-24 2020-08-11 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency and energy efficiency
US10876062B2 (en) 2017-03-24 2020-12-29 Exxonmobil Chemical Patents Inc. Cold cranking simulator viscosity boosting base stocks and lubricating oil formulations containing the same
WO2018175830A1 (en) 2017-03-24 2018-09-27 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency and energy efficiency
US10808196B2 (en) 2017-03-28 2020-10-20 Exxonmobil Chemical Patents Inc. Cold cranking simulator viscosity reducing base stocks and lubricating oil formulations containing the same
US10443008B2 (en) 2017-06-22 2019-10-15 Exxonmobil Research And Engineering Company Marine lubricating oils and method of making and use thereof
WO2018237116A1 (en) 2017-06-22 2018-12-27 Exxonmobil Research And Engineering Company Marine lubricating oils and method of making and use thereof
WO2019014092A1 (en) 2017-07-13 2019-01-17 Exxonmobil Research And Engineering Company Continuous process for the manufacture of grease
WO2019018145A1 (en) 2017-07-21 2019-01-24 Exxonmobil Research And Engineering Company Method for improving deposit control and cleanliness performance in an engine lubricated with a lubricating oil
WO2019040576A1 (en) 2017-08-25 2019-02-28 Exxonmobil Research And Engineering Company Ashless engine lubricants for high temperature applications
WO2019040580A1 (en) 2017-08-25 2019-02-28 Exxonmobil Research And Engineering Company Ashless engine lubricants for high temperature applications
WO2019055291A1 (en) 2017-09-18 2019-03-21 Exxonmobil Research And Engineering Company Hydraulic oil compositions with improved hydrolytic and thermo-oxidative stability
WO2019060144A1 (en) 2017-09-22 2019-03-28 Exxonmobil Research And Engineering Company Lubricating oil compositions with viscosity and deposit control
WO2019089180A1 (en) 2017-10-30 2019-05-09 Exxonmobil Research And Engineering Company Lubricating oil compositions having improved cleanliness and wear performance
US10738262B2 (en) 2017-10-30 2020-08-11 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
WO2019089177A1 (en) 2017-10-30 2019-05-09 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
WO2019089181A1 (en) 2017-10-30 2019-05-09 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
WO2019090038A1 (en) 2017-11-03 2019-05-09 Exxonmobil Research And Engineering Company Lubricant compositions with improved performance and methods of preparing and using the same
WO2019094019A1 (en) 2017-11-09 2019-05-16 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition while maintaining or improving cleanliness
WO2019103808A1 (en) 2017-11-22 2019-05-31 Exxonmobil Research And Engineering Company Lubricating oil compositions with oxidative stability in diesel engines
WO2019112711A1 (en) 2017-12-04 2019-06-13 Exxonmobil Research And Enginerring Company Method for preventing or reducing low speed pre-ignition
WO2019110355A1 (en) 2017-12-04 2019-06-13 Basf Se Branched adipic acid based esters as novel base stocks and lubricants
WO2019118115A1 (en) 2017-12-15 2019-06-20 Exxonmobil Research And Engineering Company Lubricating oil compositions containing microencapsulated additives
WO2019133411A1 (en) 2017-12-28 2019-07-04 Exxonmobil Research And Engineering Company Flat viscosity fluids and lubricating oils based on liquid crystal base stocks
WO2019133407A1 (en) 2017-12-28 2019-07-04 Exxonmobil Research And Engineering Company Low traction/energy efficient liquid crystal base stocks
WO2019133409A1 (en) 2017-12-28 2019-07-04 Exxonmobil Research And Engineering Company Friction and wear reduction using liquid crystal base stocks
WO2019133218A1 (en) 2017-12-29 2019-07-04 Exxonmobil Research And Engineering Company Lubricating oil compositions with wear and sludge control
US10774286B2 (en) 2017-12-29 2020-09-15 Exxonmobil Research And Engineering Company Grease compositions with improved performance and methods of preparing and using the same
WO2019133191A1 (en) 2017-12-29 2019-07-04 Exxonmobil Research And Engineering Company Lubrication of oxygenated diamond-like carbon surfaces
WO2019133255A1 (en) 2017-12-29 2019-07-04 Exxonmobil Research And Engineering Company Grease compositions with improved performance comprising thixotropic polyamide, and methods of preparing and using the same
WO2019217058A1 (en) 2018-05-11 2019-11-14 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2019240965A1 (en) 2018-06-11 2019-12-19 Exxonmobil Research And Engineering Company Non-zinc-based antiwear compositions, hydraulic oil compositions, and methods of using the same
WO2020023430A1 (en) 2018-07-23 2020-01-30 Exxonmobil Research And Engineering Company Lubricating oil compositions with oxidative stability in diesel engines using biodiesel fuel
WO2020023437A1 (en) 2018-07-24 2020-01-30 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine corrosion protection
WO2020068439A1 (en) 2018-09-27 2020-04-02 Exxonmobil Research And Engineering Company Low viscosity lubricating oils with improved oxidative stability and traction performance
WO2020096804A1 (en) 2018-11-05 2020-05-14 Exxonmobil Research And Engineering Company Lubricating oil compositions having improved cleanliness and wear performance
WO2020112338A1 (en) 2018-11-28 2020-06-04 Exxonmobil Research And Engineering Company Lubricating oil compositions with improved deposit resistance and methods thereof
WO2020123440A1 (en) 2018-12-10 2020-06-18 Exxonmobil Research And Engineering Company Method for improving oxidation and deposit resistance of lubricating oils
WO2020131441A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Grease compositions having improved performance
WO2020132166A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Lubricating oil compositions with antioxidant formation and dissipation control
WO2020131439A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Grease compositions having polyurea thickeners made with isocyanate terminated prepolymers
WO2020131515A2 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Lubricant compositions with improved wear control
WO2020132164A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Lubricating oil compositions with viscosity control
WO2020131440A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Grease compositions having calcium sulfonate and polyurea thickeners
WO2020131310A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Method for improving high temperature antifoaming performance of a lubricating oil
WO2020139333A1 (en) 2018-12-26 2020-07-02 Exxonmobil Research And Engineering Company Formulation approach to extend the high temperature performance of lithium complex greases
WO2020176171A1 (en) 2019-02-28 2020-09-03 Exxonmobil Research And Engineering Company Low viscosity gear oil compositions for electric and hybrid vehicles
EP3712235A1 (en) 2019-03-20 2020-09-23 Basf Se Lubricant composition
WO2020190859A1 (en) 2019-03-20 2020-09-24 Basf Se Lubricant composition
US11739282B2 (en) 2019-03-20 2023-08-29 Basf Se Lubricant composition
US11066620B2 (en) 2019-03-20 2021-07-20 Basf Se Lubricant composition
US10712105B1 (en) 2019-06-19 2020-07-14 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257374A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257377A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257375A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257376A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257379A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257370A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
US11092393B1 (en) 2019-06-19 2021-08-17 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257368A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257373A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257371A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257378A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020264534A2 (en) 2019-06-27 2020-12-30 Exxonmobil Research And Engineering Company Method for reducing solubilized copper levels in wind turbine gear oils
WO2021108160A1 (en) 2019-11-25 2021-06-03 Exxonmobil Chemical Patents Inc. Hot melt pressure-sensitive adhesives and processes for making same
WO2021133583A1 (en) 2019-12-23 2021-07-01 Exxonmobil Research And Engineering Company Method and apparatus for the continuous production of polyurea grease
WO2021154497A1 (en) 2020-01-30 2021-08-05 Exxonmobil Research And Engineering Company Sulfur-free, ashless, low phosphorus lubricant compositions with improved oxidation stability
WO2021194813A1 (en) 2020-03-27 2021-09-30 Exxonmobil Research And Engineering Company Monitoring health of heat transfer fluids for electric systems
WO2021225662A2 (en) 2020-03-31 2021-11-11 Exxonmobil Research And Engineering Company Hydrocarbon compositions useful as lubricants for improved oxidation stability
WO2022010606A1 (en) 2020-07-09 2022-01-13 Exxonmobil Research And Engineering Company Engine oil lubricant compositions and methods for making same with superior engine wear protection and corrosion protection
WO2022072962A1 (en) 2020-09-30 2022-04-07 Exxonmobil Research And Engineering Company Low friction and low traction lubricant compositions useful in dry clutch motorcycles
WO2022099291A1 (en) 2020-11-06 2022-05-12 Exxonmobil Research And Engineering Company Engine oil lubricant compositions and methods for making same with steel corrosion protection
WO2022109521A1 (en) 2020-11-17 2022-05-27 Exxonmobil Chemical Patents Inc. Concurrent isomerization/hydrogenation of unsaturated polyalphaolefin in the presence of a high activity catalyst
US11760952B2 (en) 2021-01-12 2023-09-19 Ingevity South Carolina, Llc Lubricant thickener systems from modified tall oil fatty acids, lubricating compositions, and associated methods
WO2023122405A1 (en) 2021-12-21 2023-06-29 ExxonMobil Technology and Engineering Company Engine oil lubricant compostions and methods for making same with superior oil consumption

Similar Documents

Publication Publication Date Title
US3876720A (en) Internal olefin
US3957664A (en) Lubricant and hydraulic fluid compositions
US5068487A (en) Olefin oligomerization with BF3 alcohol alkoxylate co-catalysts
CA2046937C (en) Olefin oligomerization processes and products and use of dimer products
JP4857269B2 (en) Process for the preparation of linear alpha olefins
US4032591A (en) Preparation of alpha-olefin oligomer synthetic lubricant
WO1992016477A1 (en) Process for oligomerizing c3 and higher olefins using zirconium adducts as catalysts
US5250750A (en) Apparatus and oil compositions containing olefin dimer products
US2906794A (en) Preparation of olefins
EP0449453B1 (en) Process for oligomerizing olefins to prepare base stocks for synthetic lubricants
US5171905A (en) Olefin dimer products
US4417082A (en) Thermal treatment of olefin oligomers via a boron trifluoride process to increase their molecular weight
US4319064A (en) Olefin dimerization
US3907922A (en) Process for dimerizing vinylidene compounds
US2830106A (en) Polymerization process
US5053569A (en) Process for oligomerizing olefins to prepare base stocks for synthetic lubricants
US4469910A (en) Method for the oligomerization of alpha-olefins
US4395578A (en) Oligomerization of olefins over boron trifluoride in the presence of a transition metal cation-containing promoter
US5146030A (en) Process for oligomerizing olefins using halogen-free titanium salts or halogen-free zirconium salts on clays
EP0678493A2 (en) Controlled formation of olefin oligomers using boron trifluoride and a hydroxy carbonyl
US4386229A (en) Olefin dimerization
US3035104A (en) Process for the production of alpha olefins
JP3843140B2 (en) Olefin oligomerization process
US4594469A (en) Method for the oligomerization of alpha-olefins
US2551638A (en) Production of lubricating oils by condensation of olefinic hydrocarbons

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA. A COR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GULF RESEARCH AND DEVELOPMENT COMPANY, A CORP. OF DE.;REEL/FRAME:004610/0801

Effective date: 19860423

Owner name: CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA. A COR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GULF RESEARCH AND DEVELOPMENT COMPANY, A CORP. OF DE.;REEL/FRAME:004610/0801

Effective date: 19860423