Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUS3880211 A
Type de publicationOctroi
Date de publication29 avr. 1975
Date de dépôt19 juil. 1973
Date de priorité18 oct. 1971
Numéro de publicationUS 3880211 A, US 3880211A, US-A-3880211, US3880211 A, US3880211A
InventeursGess Larry C
Cessionnaire d'origineGess Larry C
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Apparatus for filling containers
US 3880211 A
Résumé
This invention relates to apparatus for filling medicinal syringes. The apparatus includes a pump arrangement for filling individual syringes automatically and includes a mechanical adjustment for easily changing the amount of medicinal liquid fed to each syringe. The individual syringes are then labeled with appropriate indicia showing the contents.
Images(3)
Previous page
Next page
Revendications  disponible en
Description  (Le texte OCR peut contenir des erreurs.)

'United States Patent 1191 1111 3,880,211 Gess 1 Apr. 29, 1975 1 APPARATUS FOR FILLING CONTAINERS 3,630,242 12/1971 Schieseret a1 141/183 3, [76] Inventor: Larry C. Gess, 1255 Fir Dr., 665 980 5/1972 Croslm et al 141/183 Toledo, Ohio 43612 [22] Filed: July 19, 1973 Primary Examiner-Houston S. Bell, Jr. 1 pp NO: 380,685 Attorney, Agent, or F1rm-Allen D. Gutchess, Jr.

Related US. Application Data [62] Division of Set. No. 190210, Oct. 18. 1971, Pat. No.

3,835,897. ABSTRACT [52] US. Cl 141/258; 141/183 This invention relates to apparatus for filling medici- [51] Int. Cl. B67c 3/12 nal syringes. The apparatus includes a pump arrange- [58] Field of Search 23/253, 259; 141/98, 18, ment for filling individual syringes automatically and 141/165, 170, 171, 191, 130, 183-191, includes a mechanical adjustment for easily changing 258-262; 53/1393 the amount of medicinal liquid fed to each syringe.

The individual syringes are then labeled with appropri- [56] References Cited ate indicia showing the contents.

UNITED STATES PATENTS 3.304.966 2/1967 Reed 141/258 7 Claims, 3 Drawing Figures FATEN TED EPR 2 9 I975 sum 3 BF 3 APPARATUS FOR FILLING CONTAINERS This is a division of application Ser. No. 190,210, now U.S. Pat. No. 3,835,897 filed Oct. 18, 1971.

This invention relates to apparatus for filling containers and specifically medicinal syringes.

Disposable syringes are more and more commonly used in hospitals, a principal advantage being the added assurance against infection. Commonly syringes are manually filled from a supply container having a rubber diaphragm through which the syringe needle is projected into the container. Such containers are relatively small, being capable of only supplying doses for eight or ten syringes. Otherwise, too many holes result in the diaphragm as the result of the needles, and the contents can be exposed to the air and contaminated. Additionally, the needles of the syringes have a greater chance of being contaminated by this supply technique. The relatively small supply containers are also uneconomical and present a handling and storage problem. Particularly in larger hospitals using large numbers of syringes daily, the manual filling of each represents many costly man-hours on the part of nurses or doctors who are already overworked.

The present invention provides a machine for filling a number of syringes automatically and for labeling them at the same time. This assures that the proper label is applied to the proper medicine to reduce the possibility of errors. Further, a larger container of the medicine can be used, if desired, for greater economy, as well as to reduce handling and storage problems. The syringes can be filled without the needles thereon with the needles being applied later, to further reduce the possibility of contamination.

The new machine is also compact, reliable, and can be used by an unskilled operator. It also employs relatively inexpensive and simplified mechanical components to reduce the overall cost and maintenance requirements.

The new machine has a four-station indexing wheel or turntable. The syringe is fed by hand or by suitable automatic supply means to a first station of the turntable with a narrow neck to receive the needle extending upwardly. The lower end of the syringe has a plunger previously inserted into the barrel thereof to seal that end of the syringe. The syringe is then moved to a second station at which a predetermined amount of medicinal liquid is supplied through the narrow neck of the syringe in a predetermined, changeable amount. The syringe intercepts a printed label at the third station which wraps around the syringe barrel and is adhered together at the back. The syringe is then automatically removed from the indexing wheel to a discharge trough at the fourth station. A removable cap can then be placed over the narrow neck of the syringe and the filled syringe stored until ready for use. At that time, the cap can be removedand a sterilized needle applied to the narrow neck, with a plunger rod inserted into the plunger located in the syringe barrel.

Even with four stations, including the filling apparatus and the label printing and applying apparatus, the entire machine is very compact, being less than about 16 inches wide and inches long.

it is, therefore, a principal object of the invention to provide a machine for automatically filling syringes.

Another object of the invention is to provide a machine for filling and labeling syringes which is compact in size, reliable, and low in cost.

Yet another object of the invention is to provide a container-filling machine with accurate and easily adjustable means for changing the quantity of medicinal liquid supplied to the container.

Many other objects and advantages of the invention will be apparent from the following detailed description of a preferred embodiment thereof, reference being made to the accompanying drawings, in which:

FIG. 1 is an overall view in perspective from above of a machine for filling and labeling syringes according to the invention;

FIG. 2 is an enlarged view in perspective, taken from the opposite direction, of indexing means for a turntable and of apparatus for filling syringes with predetermined, changeable amounts of medicinal liquid; and

FIG. 3 is a view in perspective, with parts broken away and with parts in section, of drive means for certain components of the machine and particularly the filling apparatus.

Referring to the drawings, and particularly to FIG. 1, an overall syringe filling and labeling machine embodying the invention is indicated at 10 and includes a base 12 containing the drive system and controls for the machine. The overall machine is compact, being only about 16 inches wide and 20 inches long so that space requirements are kept to a minimum. The machine is also relatively light in weight, less than about pounds, to provide portability so that the machine can be positioned in the most efficient or needed location. However, the machine is commonly used in a sanitary hood which supplies filtered, germ-free air over the apparatus to prevent possible contamination by air-borne bacteria.

Syringes handled by the machine 10 are indicated at 14. These preferably are of the disposable type'which can be readily commercially obtained in several different styles. As shown in FIG. 2, the syringe 14 includes a main barrel 16 containing the usual graduations and an upper neck 18 over which can be fitted a suitable cap when the syringe is filled. The cap can subsequently be removed and a needle placed on the neck 18. At the lower end of the syringe 14 is an annular flange 20 for fingers, used in combination with the thumb on a plunger rod, to push the plunger rod into the syringe and move a plunger 22 through the barrel 16 toward the neck 18 to dispensethe contents. The plunger 22 is placed in the barrel 16 before the syringe 14 is placed in the machine. Commonly, the syringes 14 including the plungers 22 are purchased assembled and in a sterilized condition from the manufacturer.

The syringes 14 are moved from a suitable supply source sequentially to an indexing wheel or turntable 24. The turntable 24 includes an upper disc 26 and a spaced, lower disc 28 connected together by a central hub (not shown). Referring particularly to FIG. 3, the upper disc 26 includes a notch 30 which positions an upper portion of the syringe barrel 16. The lower disc 28 has a horizontally-extending peripheral lip 32, above which is a thin metal plate 34 of smaller diameter, with a space indicated at 36 between the lower disc and the plate. A notch 38 is formed in the plate 34 to receive a lower portion of the barrel 16, the notches 30 and 38 being in alignment, there being four of each of the notches for the four stations of the turntable 24. A chamfer 40 is formed around the lower notch 38 at the bottom surface of the plate 34. The flange 20 of the syringe 14 is inserted in the space 36 and is held between the disc 28 and the plate 34, the latter being somewhat resilient to firmly engage the flange.

The syringes 14 are loaded at a first station indicated at 42 and are then carried by the turntable to a second station indicated at 44 when the turntable is indexed in a clockwise direction through 90 increments or steps. At the second station 44, the syringes 14 receive a predetermined quantity of a medicinal liquid from filling apparatus indicated at 46. The syringes 14 are then transferred to a third station, indicated at 48, where labels 50 carrying appropriate indicia designating the medicine in the syringes are applied, The syringes then move to a fourth station 52 and are stripped from the turntable and specifically from the notches 30 and 38 as they move beyond the station 52. This is accom plished by a side wall 54 of a discharge chute or trough indicated at 56, the side wall extending into the space between the discs 26 and 28 to engage and push outwardly that portion of the barrel 16 between the discs.

The turntable is driven through a central shaft 58 and an electromagnetic clutch C1 by means to be discussed subsequently. The table is precisely indexed to each of the four stations by means of four recesses 60 located on the lower surface of the lower disc 38 at the four notch positions of the turntable. A detent 62 (FIG. 2) extends upwardly through a platform 64 of the machine base 12 and has a downwardly-extending rod 66 therebelow which is spring-loaded in the upward direction by a coil spring 68. The rod 66 extends into a solenoid 70 and is pulled downwardly when the solenoid is actuated. The solenoid 70 is supported by a mounting plate 72 extending from a depending wall 74 of the base 12.

When a new syringe is placed at the first station 42 of the turntable 24, and the turntable is to be indexed, a start switch, whether handor foot-operated, is closed. A timer is then actuated which actuates the solenoid 70 to move the detent 62 out of the recess 60 for a very short period of time. The clutch Cl is also energized, enabling the turntable to be indexed to the next station. When the detent is released, the spring 68 moves it up against the lower surface of the disc 28 again where it can enter the next one of the recesses 60 when the turntable completes its 90 movement to the next station. When the detent has so indexed, and the detent 62 has moved into the next recess 60, an arm 76 extending outwardly from a collar 78 of the rod 66 operates a limit switch designated LS1 which de-energizes the clutch Cl and stops the drive for the turntable.

Referring to FIGS. 1 and 2, the filling apparatus 46 at the second station 44 includes a vertically reciprocable member 80 slidably mounted on two vertical posts or guides 82 and 84. The member.80 has ears 86 pivotally connected by a pin 88 to a crank arm 90 which is driven in a manner to be subsequently discussed. The arm moves the member 80 with a vertical reciprocating motion over a predetermined distance. The member 80 also includes an outwardly extending flange 92 supporting a supply needle or elongate hollow member which extends downwardly and is in alignment with the neck 18 of the syringe 14 when at the second station 44.

The supply needle 94 is connected through a flexible supply tube 96 to a neck 98 of a pump cylinder 100. The cylinder 100 is held in a fixed position in a recess 102 ofa stand 104 by means ofa clamping bar 106 held in clamping engagement through a pin 108 and a thumbscrew 110. A pump plunger 112 is located within the cylinder and is connected to a plunger rod 114 extending downwardly to an end flange 116, which is held by means of clamping plates 118, screws 120, and springs 122 on a back-up plate 124. The plate 124, in turn, is affixed to the upper end of a gear rack 126 which is reciprocably guided in a groove or gib 128 in the side of the stand 104.

When the rack 126 is moved up a predetermined distance, it moves the plunger 112 accordingly and dispenses a predetermined quantity of medicinal liquid from the cylinder 100 through the tube 96 and the needle 94 into the syringe 14. The cylinder 100 contains a relatively large amount of the medicinal liquid so that the plunger 112 can be moved upwardly incrementally a number of times to fill a corresponding number of the syringes 14 before the cylinder 100 is empty. When the cylinder is empty, it can be removed and replaced by a full one or it can be filled in place with the apparatus shown in FIG. 2. In this instance, when the cylinder 100 is empty, a three-way valve 130 is turned to enable the cylinder 100 to communicate with an upwardlyextending neck 132 of the valve 130 rather than with the line 96. The neck 132 is connected through a needle 134 with the interior of a medicinal supply container 136, the needle 134 projecting through a rubber diaphragm 138 on top of the container. When the rack 126 is then moved downwardly to retract the plunger 112, it draws a new supply of medicinal liquid from the container 136 into the cylinder 100 without removing the cylinder. The valve 130 can then be turned back to connect the cylinder with the line 96 and the operation can begin again. With the relatively small medicinal supply containers now commercially available, several may be needed to fill the cylinder 100. However, the machine according to the invention will make larger supply containers possible and practical since the diaphragm is pierced only once, by the needle 134, rather than by a multiplicity of syringe needles.

The plunger 112 is moved incrementally upwardly in the cylinder 100 through a unique, variable drive arrangement. Accordingly, the rack 126 projects through an opening 140 in the platform 64 of the base 12 and is backed up by a lower wall 142. A pinion 144 meshes with the rack 126 and is connected through a commercially-available one-way clutch 146 with a drive shaft 148. The clutch 146 is designed so that when the shaft 148 rotates in a clockwise direction, as viewed in FIG. 3, it accordingly rotates the pinion 144 which moves the rack 126 and the plunger 112 upwardly. When the shaft 148 is moved in a counterclockwise direction, however, the pinion 144 remains stationary. Rather than the clutch 146, the shaft 148 can be in two parts and connected by an electromagnetically-operated clutch which can be selectively operated.

A travel arm 150 is affixed to the shaft 148 and moves in an arcuate manner as the shaft rotates in either direction. When the shaft 148 is driven, and the arm 150 is in the position shown in FIG. 2, the shaft rotates until the arm 150 moves downwardly to a position in which an end 152 engages a positive stop in the form of an adjusting block 154. The block 154, in turn, is connected through a slot 156 of a vertical bar 158 to an indicator block 160 by means of an adjusting thumbscrew 162. When the screw 162 is loosened, the indicator block 160 and the stop block 154 can be moved up and down to any predetermined position. The position is shown by a pointer 164 on the block 160 associated with indicia indicated at 166 located on a side wall 168 of the base 12. When the shaft 148 is disengaged from the drive, the arm 150 is then moved back to its original position by a spring 169 connected between the arm and the platform 64. The original position of the arm 150 is determined by a fixed stop 170 extending inwardly from the bar 158.

From the above, it will be seen that when the shaft 148 is driven in a clockwise direction, it similarly moves the plunger 144 and causes liquid to be dispensed from the cylinder 100 through the tube 96 to the syringe 14, until the arm 150 moves into contact with the stop block 154. When the drive for the shaft 148 is disengaged, the spring 169 returns the arm 150 to the upper position against the stop 170. During this counterclockwise movement of the arm 150, the shaft 148 is similarly rotated, but the pinion 144 remains stationary and so does the rack 126 and the plunger 112. Consequently, through each reciprocatory motion of the arm 150 and each incremental drive of the shaft 148, the plunger 112 moves upwardly a predetermined distance in the cylinder 100 and dispenses a predetermined amount of medicinal liquid to the syringe aligned with the needle 94. The dispensing of the liquid through the needle 94 only occurs when the needle is in the syringe and the member 80 is in the lower positron.

When the cylinder 100 is empty and is to be refilled, the plunger rod 114 is retracted to its lowest position to draw a fresh supply ofliquid into the cylinder. To accomplish this, the shaft 148 is moved inwardly toward the right, as viewed in FIGS. 2 and 3, to move the pinion 144 out of engagement with the rack 126 so that the rack can be pushed downwardly. This can be accomplished by a suitable handle 171 of FIG. 3 which is pushed in by the operator. When the handle is released, a spring 172 of FIG. 3 moves the shaft 148 and the pinion 144 back to the original position with the pinion and the rack 126 again engaged.

The filling operation of the syringe begins when one of the syringes 14 moves into the filling position at the station 44. At that time, a feeler arm of a limit switch LS2 engages the syringe barrel 16 and closes the switch; The limit switch causes a pulse to be fed to a solenoid SOL.l (FIG. 3) which retracts a dog 174 from an offset 176 in a control disc 178. The release of the dog 174 from the offset 176 causes a commerciallyavailable wrap spring clutch 180 to engage and connect a drive shaft 182 with a drive train, to be discussed subsequently. The shaft 182 is then driven through an angle of 180 until the dog 174, which was immediately released after being retracted, contacts another offset diametrically opposite the offset 176 in the control disc 178. This accordingly stops the shaft 182.

During this movement, the crank arm 90, connected to a cam 184 on the shaft 182, moves the reciprocable member 80 downwardly to move the needle 94 into the syringe 14 at the station 44. In this position, a control arm 186 on the shaft 182 contacts a feeler arm of a limit switch LS3 which closes to energize an electromagnetic clutch C2 to engage the drive train with the shaft 148. At the same time, the limit switch LS3 energizes a timer which, when timed out, de-energizes the clutch C2. The time that the clutch is energized, however, is sufficient for the shaft 148 to be driven to the extent that the arm 150 moves a distance sufficient for the end 152 to contact the stop block 154 where it remains-until the timer times out and the clutch C2 is disengaged. At that time, the spring 169 returns the arm and the shaft 148 to the original position, ready for the next reciprocatory filling motion.

When the timer which dis-engages the clutch C2 times out, it also pulses the solenoid SOL.l again to temporarily retract the dog 174 and to enable the shaft 182 to again rotate and raise the supply needle 94 from the syringe 14 at the station 44. At this time, the control arm 186 contacts a fourth limit switch LS4 which readies the machine for another cycle. The turntable control is in series with the limit switch LS4 to prevent indexing unless the switch LS4 is closed. This prevents possible indexing when the supply needle 94 is in one of the syringes 14.

The drive train for the filling apparatus 46 will now be discussed. Referring to FIG. 3, a motor 324 has a drive shaft 326 which, through a drive sprocket 328, a chain 330, and a driven sprocket 332, rotates an intermediate shaft 334. This rotates an intermediate sprocket 336 which, through a chain 338, drives a sprocket 340 which drives the shaft 182 through each of its 180 movements when the dog 174 is released and the clutch 180 is engaged.

A drive sprocket 342 on the intermediate shaft 334, through a chain 344, drives a sprocket 346 located on a second intermediate shaft 348. A drive sprocket 350 affixed to the shaft 348 then drives, through a chain 352, a sprocket 354 which is rotatably mounted on the shaft 148. When the clutch C2 is engaged, the sprocket 354 drives the shaft 148 and the pinion 144 until the arm end 152 contacts the stop block 154. The clutch C2 then simply slips until it is de-energized.

Various modifications of the above described embodiment of the invention will be apparent to those skilled in the art and it is to be understood that such modifications can be made without departing from the scope of the invention, if they are within the spirit and the tenor of the accompanying claims.

I claim:

1. Apparatus for filling medicinal containers comprising means for holding a medicinal container upright with an opening at the top thereof, a hollow member for directing liquid into the container opening, means for holding said hollow member above the container holding means with the hollow member directed toward the opening, a supply container, plunger means in said supply container, means connecting said supply container with said hollow member, and means for moving said plunger means incremental distances further into said supply container to move amounts of liquid from the supply container through the connecting means and the hollow member when medicinal containers are to be filled.

2. Apparatus according to claim 1 characterized by means for returning said plunger means toward the initial position in said supply container after said plunger means has been moved a number of incremental distances further into said supply container.

3. Apparatus according to claim 1 characterized by said moving means comprises a gear rack connected to said plunger means, a pinion gear, and means for rotating said pinion gear in one direction only through a predetermined angle to incrementally move said plunger means each time one of the medicinal containers is to be filled.

4. Apparatus according to claim 3 characterized by said latter means includes a shaft on which said pinion gear is mounted, an arm affixed to said shaft, and adjustable means for limiting the extent of angular movement of said pinion gear.

5. Apparatus according to claim 4 characterized by a one-way clutch mounting said pinion gear on said shaft to enable said pinion gear to rotate with said shaft in only one direction effective to move said gear rack toward the supply container and said plunger means further into said supply container.

6. Apparatus according to claim 4 characterized furmember by said holding means.

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US3304966 *11 janv. 196521 févr. 1967Reed Jack PAutomatic multi-channel reagent dispenser
US3630242 *18 mars 197028 déc. 1971Corco IncApparatus for automatic filling of liquid containers having semirigid walls
US3665980 *9 déc. 196930 mai 1972Grumman Data Systems CorpDispensing apparatus and associated electronic control for selecting different modes of operation
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
US4188986 *28 avr. 197819 févr. 1980Frank Bertil GMicrosampler
US69158233 déc. 200312 juil. 2005Forhealth Technologies, Inc.Automated apparatus and process for reconstitution and delivery of medication to an automated syringe preparation apparatus
US698623423 juil. 200317 janv. 2006Forhealth Technologies, Inc.System and method for bandoliering syringes
US69910023 déc. 200331 janv. 2006Forhealth Technologies, Inc.Tamper evident syringe tip cap and automated method for preparing tamper-evident syringes
US700744322 juin 20047 mars 2006Forhealth Technologies, Inc.System and method for bandoliering syringes
US701762230 avr. 200328 mars 2006Forhealth Technologies, Inc.Automated means for removing, parking and replacing a syringe tip cap from a syringe
US701762321 juin 200428 mars 2006Forhealth Technologies, Inc.Automated use of a vision system to unroll a label to capture and process drug identifying indicia present on the label
US702509822 janv. 200411 avr. 2006Forhealth Technologies, Inc.Syringe bandoleer with control feature
US71179023 déc. 200310 oct. 2006Forhealth Technologies, Inc.Automated means of storing, dispensing and orienting injectable drug vials for a robotic application
US71281057 avr. 200431 oct. 2006Forhealth Technologies, Inc.Device for reconstituting a drug vial and transferring the contents to a syringe in an automated matter
US716303513 mai 200416 janv. 2007Forhealth Technologies, Inc.Automated use of a vision system to detect foreign matter in reconstituted drugs before transfer to a syringe
US724069915 mai 200610 juil. 2007Forhealth Technologies, IncAutomated means for storing, dispensing and orienting injectable drug vials for a robotic application
US734394317 sept. 200418 mars 2008Forhealth Technologies, Inc.Medication dose underfill detection system and application in an automated syringe preparing system
US749958110 févr. 20053 mars 2009Forhealth Technologies, Inc.Vision system to calculate a fluid volume in a container
US761011522 déc. 200527 oct. 2009Intelligent Hospital Systems Ltd.Automated pharmacy admixture system (APAS)
US768160619 juin 200723 mars 2010Fht, Inc.Automated system and process for filling drug delivery devices of multiple sizes
US77530851 nov. 200613 juil. 2010Forhealth Technologies, Inc.Automated drug preparation apparatus including automated drug reconstitution
US778338327 mars 200624 août 2010Intelligent Hospital Systems Ltd.Automated pharmacy admixture system (APAS)
US781473120 oct. 200619 oct. 2010Forhealth Technologies, Inc.Automated drug preparation apparatus including a bluetooth communications network
US790065820 oct. 20068 mars 2011Fht, Inc.Automated drug preparation apparatus including drug vial handling, venting, cannula positioning functionality
US791372031 oct. 200629 mars 2011Fht, Inc.Automated drug preparation apparatus including serial dilution functionality
US793185922 févr. 200826 avr. 2011Intelligent Hospital Systems Ltd.Using ultraviolet radiation; Automated Pharmacy Admixture System; handles medical containers such as syringes, vials, and IV bags
US80376592 nov. 200918 oct. 2011Forhealth Technologies, Inc.Automated drug preparation apparatus including syringe loading, preparation and filling
US815183521 juin 200710 avr. 2012Fht, Inc.Automated drug delivery bag filling system
US819133919 févr. 20105 juin 2012Fht, Inc.Automated drug preparation apparatus including automated drug reconstitution
US82099412 nov. 20093 juil. 2012Fht, Inc.Automated drug preparation apparatus including syringe loading, preparation and filling
US82205034 mars 201017 juil. 2012Fht, Inc.Automated drug preparation apparatus including drug reconstitution
US822582414 nov. 200824 juil. 2012Intelligent Hospital Systems, Ltd.Method and apparatus for automated fluid transfer operations
US827113811 sept. 200818 sept. 2012Intelligent Hospital Systems Ltd.Gripper device
US8286671 *23 mars 201116 oct. 2012Saverio Roberto StrangisAutomated syringe filler and loading apparatus
US835386911 mars 201115 janv. 2013Baxa CorporationAnti-tampering apparatus and method for drug delivery devices
US83860701 déc. 200926 févr. 2013Intelligent Hospital Systems, LtdAutomated pharmacy admixture system
US867804710 juil. 201225 mars 2014Baxter Corporation EnglewoodAutomated drug preparation apparatus including automated drug reconstitution
US87843779 janv. 201322 juil. 2014Baxter Corporation EnglewoodAnti-tampering apparatus and method for drug delivery devices
US8807177 *10 sept. 201219 août 2014Saverio Roberto StrangisAutomated syringe filler and loading apparatus
US20120241042 *23 mars 201127 sept. 2012Saverio Roberto StrangisAutomated syringe filler and loading apparatus
US20120325365 *10 sept. 201227 déc. 2012Saverio Roberto StrangisAutomated syringe filler and loading apparatus
US20120325368 *10 sept. 201227 déc. 2012Saverio Roberto StrangisAutomated syringe filler and loading apparatus
EP1458503A1 *26 nov. 200222 sept. 2004Forhealth Technologies, Inc.A method and system for cleaning and reusing a cannula
WO2006069361A2 *22 déc. 200529 juin 2006Toric Automation IncAutomated pharmacy admixture system (apas)
Classifications
Classification aux États-Unis141/258, 141/183
Classification internationaleB65B3/10, B65C3/00, B65C3/08, B65B3/12
Classification coopérativeB65B3/12, B65C3/08
Classification européenneB65B3/12, B65C3/08
Événements juridiques
DateCodeÉvénementDescription
24 mai 1984AS02Assignment of assignor's interest
Owner name: GESS, LARRY C.
Effective date: 19840518
Owner name: L.C. GESS INC., A CORP OF OHIO
24 mai 1984ASAssignment
Owner name: L.C. GESS INC., A CORP OF OHIO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GESS, LARRY C.;REEL/FRAME:004266/0503
Effective date: 19840518