US3882855A - Retractor for soft tissue for example brain tissue - Google Patents

Retractor for soft tissue for example brain tissue Download PDF

Info

Publication number
US3882855A
US3882855A US414909A US41490973A US3882855A US 3882855 A US3882855 A US 3882855A US 414909 A US414909 A US 414909A US 41490973 A US41490973 A US 41490973A US 3882855 A US3882855 A US 3882855A
Authority
US
United States
Prior art keywords
retractor according
peripheral edge
tissue
retractor
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US414909A
Inventor
Rudolf R Schulte
Harold D Portnoy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heyer Schulte Corp
Original Assignee
Heyer Schulte Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heyer Schulte Corp filed Critical Heyer Schulte Corp
Priority to US414909A priority Critical patent/US3882855A/en
Application granted granted Critical
Publication of US3882855A publication Critical patent/US3882855A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/048Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L31/125Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix

Definitions

  • ABSTRACT A retractor for tissue comprising a deformable metal blade having a pair of opposite faces and a peripheral edge bounding and interconnecting the faces.
  • a sheath comprising a flexible material which is nonadherent to brain tissue, such as silicon elastomer, includes a cover portion that covers at least part of the blade, having an exposed bearing face for bearing against soft tissue, such as brain tissue, and a flexible' skirt portion extending from the said cover portion and projecting beyond the peripheral edge.
  • the sheath may be reinforced by a mesh and have an irregular surface, if desired.
  • I RETRACTGR FUR SOFT TISSUE FOR EXAWLE BRAIN TISSUE This invention relates to a retractor for tissue. Among other uses, it is useful in the process of dissecting the brain during surgery on the brain.
  • This invention utilizes a deformable metal blade with a sheath enveloping at least the part of it which contacts the tissue.
  • the sheath is made of a flexible material which is not adherent to brain tissue.
  • a flexible skirt portion of the sheath projects beyond the peripheral edge of the metal blade.
  • Silicone elastomer, Kel-F, teflon, mylar, and polyethylene are examples.
  • a retractor covered with any of these materials can readily be moved along the surface of brain tissue without damaging it.
  • a drill is used adjacent to such materials, the materials will not adhere to the whirling tip of the drill and will not be moved in such a manner as to damage surrounding tissue.
  • FIG. 1 is an edge view, partly in cutaway crosssection, of the presently preferred embodiment of the invention
  • FIG. 2 is a top view of FIG. 1;
  • FIG. 3 is a top view of an alternate embodiment of the invention with part of one of its cover portions and skirt portion removed for purposes of illustration;
  • FIG. 4 is an enlarged view of a portion of FIG. 1.
  • FIG. 1 The presently preferred embodiment of the invention is shown in FIG. 1 wherein a retractor for brain tissue is shown which includes a deformable metal plate 11 having a pair of opposite faces 12, 13 and a peripheral edge 14 which bounds and interconnects faces 12 and 13.
  • deformable is meant an inherently shaperetaining metal blade which is sufficiently malleable that it can be bent to any shape desired by the surgeon.
  • An annealed iron plate is an example.
  • a sheath envelops at least that part of the blade which is intended to make contact with brain tissue. In most practical embodiments, the entire plate will be enveloped.
  • the sheath includes a cover portion 21 which is defined as that portion of the sheath which makes contact with the parts of the opposite faces of the plate which are covered by the sheath.
  • the cover portion provides exposed bearing faces 22, 23.
  • the entire bearing surfaces are irregular in surface contour. The irregularities may be formed by depressions such as pits 24 in a regular pattern.
  • the sheath also includes a flexible skirt portion 30 which extends from the cover portion.
  • the skirt portion and cover portion are preferably integral.
  • the skirt portion projects beyond the peripheral edge of the plate. As best shown in FIG. 4, it is thicker adjacent to the peripheral edge than it is at its free edge 31. It may be said to be feathered at its edge.
  • the sheath may be formed by dipping the metal plate into an uncured silicone elastomer, and then curing it to the illustrated shape, with or without using a mold, it may more readily be constructed from a pair of sheets 35, 36, comprising a material such as silicone elastomer, within which there are embedded respective reinforced mesh reinforcements 37, 38, preferably of woven dacron thread.
  • the shape of this weave will cause the-pits in the bearing surface already described when the coating of the silicone elastomer over the mesh is suitably thin.
  • the mesh reinforcement is optional. Sheets of material without reinforcement may be used instead.
  • the sheets include extensions 39, 40 which project beyond the peripheral edge. They are joined beyond the peripheral edge by adhesives or the like to form the skirt portion. Sheet 36 projects farther from the peripheral edge than sheet 35. By this means, the thickness of the skirt portion is greater adjacent to the peripheral edge than it is at the free edge 31 of the skirt, at least by the difference of thickness of one of the sheets.
  • the sheets are shown tapered at their edges, which accentuates the difference in thickness, and makes the edges more flexible. Instead of a tapered edge as illustrated, the edges may be cut square as by a shear. The objective of flexibility will still be attained.
  • thethickness of the sheath has been exaggerated compared to the thickness of the metal plate.
  • the metal plate may be on the order of 0.020 inch thick, while the sheets 35 and 36 may each be on the order of approximately 0.005 inch.
  • the free edge of sheet 36 may project approximately 3mm beyond the peripheral edge, and the free edge of sheet 35 approximately 1.5mm beyond the peripheral edge.
  • the thickness of the sheath adjacent to the peripheral edge will therefore be about 0.010 inch, and at the free edge about 0.005 inch (and less if tapered as shown).
  • the material of the sheath must be non-adherent to brain tissue, and in thin sections sufficiently flexible as not to cut or tear soft tissue, such as brain tissue, and to bend to spread the force exerted by the surgeon over a substantial area. This, of course, excludes unyielding metal surfaces which do not deflect to spread the applied force. Many materials have the property of nonadherence and inherent flexibility. An elastomer seems to provide this property better than most other substances, and the preferred elastomer is medical grade silicone elastomer. The hardness of the elastomer is selected relative to the dimensions of the skirt portion so the skirt portion is unlikely to damage the brain tissue. Generally, it will be sufficiently rigid to tend to return to its original shape, but not so unyielding as to bruise or to cut the tissue. The dacron mesh reinforcement resists tearing of the sheath and provides the surface irregularity already mentioned.
  • elastomers In addition to elastomers, other sterilizable materials may also be used which are non-adherent to brain tissue, and flexible in the dimensions used, and will not bruise or cut the tissue.
  • Other suitable materials are the fluorinated hydrocarbons known as teflon, mylar and Kel-F, and polyethylene. Therefore, the material may advantageously be one selected from the group consisting of silicone elastomer, polyethylene, mylar, teflon and Kel-F.
  • FIG. 3 shows an attachment rod 45 attached to the metal plate 46 of retractor 47, and projecting beyond its sheath 48.
  • This rod is attached to the plate by weld 49. In use, it can be attached to a mounting means to hold the retractor in place.
  • the retractor of FIG. 1 is intended to be hand-held, and the retractor of FIG. 3 is intended to be held by an implement. The invention is suited for use in both ways.
  • the retractor of FIG. 3 is identical to that of FIG. 1, except for the attachment rod. Part of one of the sheets has been removed in FIG. 3 to illustrate the attachment of the rod to the plate. It is, of course, provided in the complete device.
  • the padded retractor is wetted and used with a thin strip of material which will not adhere to brain tissue, such as silicone elastomer.
  • a wetted strip of this material is placed as far forward as possible toward the area to be exposed, and the retractor of the invention is then used to elevate the brain, after which tension may be released and the retractor slid forwardly, using the strip as a fulcrum.
  • a retractor provided with means such as shown in FIG. 3 may be substituted for the hand-held retractor to hold it in place during the remainder of the operation.
  • the material of the sheath does not include fibrous portions which can adhere to and abrade tissue of the brain, nor will it adhere to or be grabbed by a rotating driill tip. It is readily sterilizable.
  • the flexible skirt portion enables the retractor readily to be moved into restricted areas, and to bend to avoid bruising the brain tissue.
  • the metal blade provides adequate support for the sheath.
  • the size of the metal blade is variable. In an example such as FIG. 3, a blade /2 inch wide by 2% inches long is suitable, while in a device according to FIG. 2, one as long as 7 inches and approximately /8 inch wide may be utilized.
  • the material may be soft malleable iron, or any other suitably deformable metal.
  • a retractor for tissue comprising: a deformable metal blade having a pair of opposite faces and a peripheral edge bounding and interconnecting said faces; and a sheath enveloping at least a part of said blade, said sheath comprising a cover portion covering at least said part of both faces of said blade and having an exposed bearing face for bearing against brain tissue, and a skirt portion extending from said cover portion and projecting to a free edge beyond said peripheral edge, said portions comprising a material which is nonadherent to brain tissue the skirt being thinner adjacent to its free edge than it is adjacent to the peripheral edge of the blade and being sufficiently flexible as to bend upon contact with soft tissue such as brain tissue without cutting, tearing, or bruising said tissue.
  • a retractor according to claim 4 in which the cover portion includes a mesh reinforcement which is contained within said silicone elastomer.
  • a retractor according to claim 1 in which the sheath comprises a pair of sheets of silicone elastomer, each overlaying a said part of a respective face, and including an extension that projects beyond said peripheral edge, said extensions being joined together to form said skirt portion.
  • a retractor according to claim 7 in which the extension of one layer projects farther beyond the peripheral edge than the extension of the other layer, whereby the skirt is thicker adjacent to the peripheral edge than at the free edge of the skirt.
  • a retractor according to claim 8 in which the bearing face is irregular in surface contour.

Abstract

A retractor for tissue comprising a deformable metal blade having a pair of opposite faces and a peripheral edge bounding and interconnecting the faces. A sheath comprising a flexible material which is non-adherent to brain tissue, such as silicon elastomer, includes a cover portion that covers at least part of the blade, having an exposed bearing face for bearing against soft tissue, such as brain tissue, and a flexible skirt portion extending from the said cover portion and projecting beyond the peripheral edge. The sheath may be reinforced by a mesh and have an irregular surface, if desired.

Description

United States Patent 1 Schulte et al.
[ RETRACTOR FOR SOFT TISSUE FOR EXAMPLE BRAIN TISSUE [75] Inventors: Rudolf R. Schulte, Goleta, Calif;
Harold D. Portnoy, Bloomfield Hills, Mich.
[73] Assignee: Heyer-Schulte Corporation, Goleta,
Calif.
[22] Filed: Nov. 12, 1973 [21] Appl. No.: 414,909
[52] U.S. Cl. 128/20 [51] Int. Cl A61b 17/02 [58] Field of Search 128/20 [56] References Cited UNITED STATES PATENTS 1,944,009 l/l934 Homer 128/20 Garland [4 1 May 13, 1975 Primary Examiner-Richard A. Gaudet Assistant Examiner-Henry S. Laylon Attorney, Agent, or FirmDona1d D. Mon
[57] ABSTRACT A retractor for tissue comprising a deformable metal blade having a pair of opposite faces and a peripheral edge bounding and interconnecting the faces. A sheath comprising a flexible material which is nonadherent to brain tissue, such as silicon elastomer, includes a cover portion that covers at least part of the blade, having an exposed bearing face for bearing against soft tissue, such as brain tissue, and a flexible' skirt portion extending from the said cover portion and projecting beyond the peripheral edge. The sheath may be reinforced by a mesh and have an irregular surface, if desired.
12 Claims, 4 Drawing Figures PATENTED HAY I 3|975 3.882.855
I RETRACTGR FUR SOFT TISSUE FOR EXAWLE BRAIN TISSUE This invention relates to a retractor for tissue. Among other uses, it is useful in the process of dissecting the brain during surgery on the brain.
The usual method of protecting the brain when using brain retractors is by padding the area with cottonoid paddies. The use of such cottonoids poses significant problems. Among these is their tendency to adhere to the brain tissue and cause bruising of the underlying brain. Also, because cottonoids do not slide, it is necessary to use numerous of them during a dissection, thereby forming a wad beneath the retractor which can obscure the area which must be visualized. Moving a retractor under these circumstances is complicated by the necessity of concurrently readjusting the position of these paddies. It is not infrequent that the edge of a cottonoid paddy used to protect the leading edge of the retractor may obscure the surgeon s vision, particularly when working in a small area, and this is a hazardous situation. Additionally, cottonoid paddies constitute a substantial hazard when the surgeon is working with a drill, because they tend to adhere to its rotating tip, and can then be whipped about, damaging the surrounding tissues.
The foregoing problems and objections have been overcome by this invention. This invention utilizes a deformable metal blade with a sheath enveloping at least the part of it which contacts the tissue. The sheath is made of a flexible material which is not adherent to brain tissue. A flexible skirt portion of the sheath projects beyond the peripheral edge of the metal blade. Silicone elastomer, Kel-F, teflon, mylar, and polyethylene are examples. When suitably wetted, a retractor covered with any of these materials can readily be moved along the surface of brain tissue without damaging it. Similarly, when a drill is used adjacent to such materials, the materials will not adhere to the whirling tip of the drill and will not be moved in such a manner as to damage surrounding tissue.
The invention will be fully understood from the following detailed description and the accompanying drawings in which:
FIG. 1 is an edge view, partly in cutaway crosssection, of the presently preferred embodiment of the invention;
FIG. 2 is a top view of FIG. 1;
FIG. 3 is a top view of an alternate embodiment of the invention with part of one of its cover portions and skirt portion removed for purposes of illustration; and
FIG. 4 is an enlarged view of a portion of FIG. 1.
The presently preferred embodiment of the invention is shown in FIG. 1 wherein a retractor for brain tissue is shown which includes a deformable metal plate 11 having a pair of opposite faces 12, 13 and a peripheral edge 14 which bounds and interconnects faces 12 and 13. By deformable" is meant an inherently shaperetaining metal blade which is sufficiently malleable that it can be bent to any shape desired by the surgeon. An annealed iron plate is an example.
A sheath envelops at least that part of the blade which is intended to make contact with brain tissue. In most practical embodiments, the entire plate will be enveloped. The sheath includes a cover portion 21 which is defined as that portion of the sheath which makes contact with the parts of the opposite faces of the plate which are covered by the sheath. The cover portion provides exposed bearing faces 22, 23. In the preferred embodiment of the invention, as schematically shown in FIGS. 2 and 3 by surface shading, the entire bearing surfaces are irregular in surface contour. The irregularities may be formed by depressions such as pits 24 in a regular pattern.
The sheath also includes a flexible skirt portion 30 which extends from the cover portion. The skirt portion and cover portion are preferably integral. The skirt portion projects beyond the peripheral edge of the plate. As best shown in FIG. 4, it is thicker adjacent to the peripheral edge than it is at its free edge 31. It may be said to be feathered at its edge.
While the sheath may be formed by dipping the metal plate into an uncured silicone elastomer, and then curing it to the illustrated shape, with or without using a mold, it may more readily be constructed from a pair of sheets 35, 36, comprising a material such as silicone elastomer, within which there are embedded respective reinforced mesh reinforcements 37, 38, preferably of woven dacron thread. The shape of this weave will cause the-pits in the bearing surface already described when the coating of the silicone elastomer over the mesh is suitably thin. The mesh reinforcement is optional. Sheets of material without reinforcement may be used instead.
The sheets include extensions 39, 40 which project beyond the peripheral edge. They are joined beyond the peripheral edge by adhesives or the like to form the skirt portion. Sheet 36 projects farther from the peripheral edge than sheet 35. By this means, the thickness of the skirt portion is greater adjacent to the peripheral edge than it is at the free edge 31 of the skirt, at least by the difference of thickness of one of the sheets.
The sheets are shown tapered at their edges, which accentuates the difference in thickness, and makes the edges more flexible. Instead of a tapered edge as illustrated, the edges may be cut square as by a shear. The objective of flexibility will still be attained. In the draw ings, especially in FIG. 4, thethickness of the sheath has been exaggerated compared to the thickness of the metal plate. In practice, the metal plate may be on the order of 0.020 inch thick, while the sheets 35 and 36 may each be on the order of approximately 0.005 inch. The free edge of sheet 36 may project approximately 3mm beyond the peripheral edge, and the free edge of sheet 35 approximately 1.5mm beyond the peripheral edge. The thickness of the sheath adjacent to the peripheral edge will therefore be about 0.010 inch, and at the free edge about 0.005 inch (and less if tapered as shown).
The material of the sheath must be non-adherent to brain tissue, and in thin sections sufficiently flexible as not to cut or tear soft tissue, such as brain tissue, and to bend to spread the force exerted by the surgeon over a substantial area. This, of course, excludes unyielding metal surfaces which do not deflect to spread the applied force. Many materials have the property of nonadherence and inherent flexibility. An elastomer seems to provide this property better than most other substances, and the preferred elastomer is medical grade silicone elastomer. The hardness of the elastomer is selected relative to the dimensions of the skirt portion so the skirt portion is unlikely to damage the brain tissue. Generally, it will be sufficiently rigid to tend to return to its original shape, but not so unyielding as to bruise or to cut the tissue. The dacron mesh reinforcement resists tearing of the sheath and provides the surface irregularity already mentioned.
In addition to elastomers, other sterilizable materials may also be used which are non-adherent to brain tissue, and flexible in the dimensions used, and will not bruise or cut the tissue. Other suitable materials are the fluorinated hydrocarbons known as teflon, mylar and Kel-F, and polyethylene. Therefore, the material may advantageously be one selected from the group consisting of silicone elastomer, polyethylene, mylar, teflon and Kel-F.
FIG. 3 shows an attachment rod 45 attached to the metal plate 46 of retractor 47, and projecting beyond its sheath 48. This rod is attached to the plate by weld 49. In use, it can be attached to a mounting means to hold the retractor in place. The retractor of FIG. 1 is intended to be hand-held, and the retractor of FIG. 3 is intended to be held by an implement. The invention is suited for use in both ways. The retractor of FIG. 3 is identical to that of FIG. 1, except for the attachment rod. Part of one of the sheets has been removed in FIG. 3 to illustrate the attachment of the rod to the plate. It is, of course, provided in the complete device.
In use, the padded retractor is wetted and used with a thin strip of material which will not adhere to brain tissue, such as silicone elastomer. A wetted strip of this material is placed as far forward as possible toward the area to be exposed, and the retractor of the invention is then used to elevate the brain, after which tension may be released and the retractor slid forwardly, using the strip as a fulcrum. When the desired dissection has been completed, a retractor provided with means such as shown in FIG. 3 may be substituted for the hand-held retractor to hold it in place during the remainder of the operation.
Of major importance to this invention is the fact that the material of the sheath does not include fibrous portions which can adhere to and abrade tissue of the brain, nor will it adhere to or be grabbed by a rotating driill tip. It is readily sterilizable. The flexible skirt portion enables the retractor readily to be moved into restricted areas, and to bend to avoid bruising the brain tissue. The metal blade provides adequate support for the sheath.
The size of the metal blade is variable. In an example such as FIG. 3, a blade /2 inch wide by 2% inches long is suitable, while in a device according to FIG. 2, one as long as 7 inches and approximately /8 inch wide may be utilized. The material may be soft malleable iron, or any other suitably deformable metal.
This invention is not to be limited by the embodiments shown in the drawings and described in the description, which are given by way of example and not of limitation, but only in accordance with the scope of the appended claims.
We claim:
1. A retractor for tissue comprising: a deformable metal blade having a pair of opposite faces and a peripheral edge bounding and interconnecting said faces; and a sheath enveloping at least a part of said blade, said sheath comprising a cover portion covering at least said part of both faces of said blade and having an exposed bearing face for bearing against brain tissue, and a skirt portion extending from said cover portion and projecting to a free edge beyond said peripheral edge, said portions comprising a material which is nonadherent to brain tissue the skirt being thinner adjacent to its free edge than it is adjacent to the peripheral edge of the blade and being sufficiently flexible as to bend upon contact with soft tissue such as brain tissue without cutting, tearing, or bruising said tissue.
2. A retractor according to claim 1 in which the bearing face is irregular in surface contour.
3. A retractor according to claim 1 in which the material is one selected from the group consisting of silicone elastomer, polyethylene, mylar, teflon and Kel-F.
4. A retractor according to claim 1 in which the material is silicone elastomer.
5. A retractor according to claim 4 in which the cover portion includes a mesh reinforcement which is contained within said silicone elastomer.
6. A retractor according to claim 5 in which the mesh is dacron.
7. A retractor according to claim 1 in which the sheath comprises a pair of sheets of silicone elastomer, each overlaying a said part of a respective face, and including an extension that projects beyond said peripheral edge, said extensions being joined together to form said skirt portion.
8. A retractor according to claim 7 in which the extension of one layer projects farther beyond the peripheral edge than the extension of the other layer, whereby the skirt is thicker adjacent to the peripheral edge than at the free edge of the skirt.
9. A retractor according to claim 8 in which the bearing face is irregular in surface contour.
10. A retractor according to claim 7 in which the cover portion includes a mesh reinforcement which is contained within said silicone elastomer.
11. A retractor according to claim 10 in which the mesh reinforcement extends into the skirt portion.
12. A retractor according to claim 11 in which the bearing face is irregular in surface contour.

Claims (12)

1. A retractor for tissue comprising: a deformable metal blade having a pair of opposite faces and a peripheral edge bounding and interconnecting said faces; and a sheath enveloping at least a part of said blade, said sheath comprising a cover portion covering at least said part of both faces of said blade and having an exposed bearing face for bearing against brain tissue, and a skirt portion extending from said cover portion and projecting to a free edge beyond said peripheral edge, said portions comprising a material which is non-adherent to brain tissue the skirt being thinner adjacent to its free edge than it is adjacent to the peripheral edge of the blade and being sufficiently flexible as to bend upon contact with soft tissue such as brain tissue without cutting, tearing, or bruising said tissue.
2. A retractor according to claim 1 in which the bearing face is irregular in surface contour.
3. A retractor according to claim 1 in which the material is one selected from the group consisting of silicone elastomer, Polyethylene, mylar, teflon and Kel-F.
4. A retractor according to claim 1 in which the material is silicone elastomer.
5. A retractor according to claim 4 in which the cover portion includes a mesh reinforcement which is contained within said silicone elastomer.
6. A retractor according to claim 5 in which the mesh is dacron.
7. A retractor according to claim 1 in which the sheath comprises a pair of sheets of silicone elastomer, each overlaying a said part of a respective face, and including an extension that projects beyond said peripheral edge, said extensions being joined together to form said skirt portion.
8. A retractor according to claim 7 in which the extension of one layer projects farther beyond the peripheral edge than the extension of the other layer, whereby the skirt is thicker adjacent to the peripheral edge than at the free edge of the skirt.
9. A retractor according to claim 8 in which the bearing face is irregular in surface contour.
10. A retractor according to claim 7 in which the cover portion includes a mesh reinforcement which is contained within said silicone elastomer.
11. A retractor according to claim 10 in which the mesh reinforcement extends into the skirt portion.
12. A retractor according to claim 11 in which the bearing face is irregular in surface contour.
US414909A 1973-11-12 1973-11-12 Retractor for soft tissue for example brain tissue Expired - Lifetime US3882855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US414909A US3882855A (en) 1973-11-12 1973-11-12 Retractor for soft tissue for example brain tissue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US414909A US3882855A (en) 1973-11-12 1973-11-12 Retractor for soft tissue for example brain tissue

Publications (1)

Publication Number Publication Date
US3882855A true US3882855A (en) 1975-05-13

Family

ID=23643531

Family Applications (1)

Application Number Title Priority Date Filing Date
US414909A Expired - Lifetime US3882855A (en) 1973-11-12 1973-11-12 Retractor for soft tissue for example brain tissue

Country Status (1)

Country Link
US (1) US3882855A (en)

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4226228A (en) * 1978-11-02 1980-10-07 Shin Hee J Multiple joint retractor with light
EP0018209A2 (en) * 1979-04-20 1980-10-29 CODMAN & SHURTLEFF, INC. Pressure-responsive surgical tool assembly
US4340060A (en) * 1980-06-16 1982-07-20 Joseph J. Berke Flexible craniotome footplate
US4421107A (en) * 1980-10-15 1983-12-20 Estes Roger Q Surgical retractor elements and assembly
US5651762A (en) * 1993-07-09 1997-07-29 Bridges; Doye R. Apparatus for holding intestines out of an operative field
WO1997040738A1 (en) * 1996-04-26 1997-11-06 Genzyme Corporation Coronary stabilizing retractor
US5709646A (en) * 1994-09-23 1998-01-20 Lange; Nancy Erin Surgical retractor covers
WO1998034544A1 (en) * 1997-02-10 1998-08-13 Aesculap Ag & Co. Kg Brain spatula
US5795290A (en) * 1993-07-09 1998-08-18 Bioplexus Corporation Apparatus for holding intestines out of an operative field
US5891018A (en) * 1997-09-19 1999-04-06 Genzyme Corporation Ball joint retractor
US6063025A (en) * 1993-07-09 2000-05-16 Bioenterics Corporation Apparatus for holding intestines out of an operative field
EP1011462A1 (en) * 1997-02-03 2000-06-28 Applied Medical Resources Corporation Surgical instruments with improved traction
US6090043A (en) * 1999-05-17 2000-07-18 Applied Medical Technology, Inc. Tissue retractor retention band
US6093145A (en) * 1997-02-10 2000-07-25 Aesculap Ag & Co. Kg Brain spatula
US6152874A (en) * 1996-04-26 2000-11-28 Genzyme Corporation Adjustable multi-purpose coronary stabilizing retractor
WO2000078234A1 (en) * 1999-06-18 2000-12-28 Novare Surgical Systems, Inc. Surgical clamp pads with elastomer impregnated mesh
US6199556B1 (en) 1998-05-01 2001-03-13 Cardiothoracic Systems, Inc. Xyphoid access for cardiac surgical procedures
US6231506B1 (en) 1999-05-04 2001-05-15 Cardiothoracic Systems, Inc. Method and apparatus for creating a working opening through an incision
US6254535B1 (en) 1996-04-26 2001-07-03 Genzyme Corporation Ball and socket coronary stabilizer
US6283912B1 (en) * 1999-05-04 2001-09-04 Cardiothoracic Systems, Inc. Surgical retractor platform blade apparatus
US6315717B1 (en) 1996-02-20 2001-11-13 Cardiothoracic Systems, Inc. Surgical instruments for stabilizing the beating heart during coronary artery bypass graft surgery
US6348036B1 (en) 1999-01-24 2002-02-19 Genzyme Corporation Surgical retractor and tissue stabilization device
US6394951B1 (en) 1996-02-20 2002-05-28 Cardiothoracic Systems, Inc. Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft surgery
US20020065451A1 (en) * 1997-09-17 2002-05-30 Spence Paul A. Device to permit offpump beating heart coronary bypass surgery
US6406424B1 (en) 1999-09-16 2002-06-18 Williamson, Iv Warren P. Tissue stabilizer having an articulating lift element
US6428472B1 (en) 2000-08-08 2002-08-06 Kent Haas Surgical retractor having a malleable support
US20030009081A1 (en) * 1999-07-08 2003-01-09 Chase Medical, Lp Device and method for isolating a surface of a beating heart during surgery
US6511416B1 (en) 1999-08-03 2003-01-28 Cardiothoracic Systems, Inc. Tissue stabilizer and methods of use
US6626830B1 (en) 1999-05-04 2003-09-30 Cardiothoracic Systems, Inc. Methods and devices for improved tissue stabilization
US6656113B2 (en) 1996-02-20 2003-12-02 Cardiothoracic System, Inc. Surgical instruments and procedures for stabilizing a localized portion of a beating heart
US6685632B1 (en) 1999-05-04 2004-02-03 Cardiothoracic Systems, Inc. Surgical instruments for accessing and stabilizing a localized portion of a beating heart
US6719766B1 (en) 2000-08-24 2004-04-13 Novare Surgical Systems, Inc. Surgical clamp pads having surface overlay
US6730022B2 (en) 1999-01-24 2004-05-04 Thomas E. Martin Surgical retractor and tissue stabilization device having an adjustable sled member
WO2004037092A1 (en) 2002-10-21 2004-05-06 Seacost Technologies, Inc. Accessory for surgical instrument
US20040092798A1 (en) * 1997-09-17 2004-05-13 Spence Paul A. Device to permit offpump beating heart coronary bypass surgery
US6758808B2 (en) 2001-01-24 2004-07-06 Cardiothoracic System, Inc. Surgical instruments for stabilizing a localized portion of a beating heart
US20050010197A1 (en) * 2003-07-08 2005-01-13 Liming Lau Organ manipulator apparatus
US6849044B1 (en) * 2000-01-07 2005-02-01 Larry Voss Organ stabilizer and method
US6852075B1 (en) 1996-02-20 2005-02-08 Cardiothoracic Systems, Inc. Surgical devices for imposing a negative pressure to stabilize cardiac tissue during surgery
EP1547528A1 (en) * 1997-02-03 2005-06-29 Applied Medical Resources Corporation Surgical instruments with improved traction
US20050148825A1 (en) * 1997-09-17 2005-07-07 Spence Paul A. Device to permit offpump beating heart coronary bypass surgery
US20050148822A1 (en) * 2003-12-30 2005-07-07 Willis Geoffrey H. Organ manipulator and positioner and methods of using the same
US20050148824A1 (en) * 2003-12-30 2005-07-07 Morejohn Dwight P. Transabdominal surgery system
US20050192605A1 (en) * 1997-02-03 2005-09-01 Hart Charles C. Surgical instruments with improved traction
US20050228315A1 (en) * 2002-07-09 2005-10-13 George Washington University Brain retraction sensor
US20060052669A1 (en) * 2003-01-24 2006-03-09 Hart Charles C Internal tissue retractor
US20060287583A1 (en) * 2005-06-17 2006-12-21 Pool Cover Corporation Surgical access instruments for use with delicate tissues
US7219671B2 (en) 1995-04-10 2007-05-22 Cardiothoracic Systems, Inc. Method for coronary artery bypass
EP1787599A1 (en) * 2005-11-18 2007-05-23 BVBA Este Cover for wrapping a surgical instrument
US20090105546A1 (en) * 2007-10-23 2009-04-23 Zimmer Spine, Inc. Surgical access system and method of using the same
US20100022844A1 (en) * 2005-06-22 2010-01-28 Mangiardi John R Surgical Access Instruments for Use with Spinal or Orthopedic Surgery
US20110021879A1 (en) * 2009-07-21 2011-01-27 Applied Medical Resources Corporation Surgical access device comprising internal retractor
US7931590B2 (en) 2002-10-29 2011-04-26 Maquet Cardiovascular Llc Tissue stabilizer and methods of using the same
US8083664B2 (en) 2005-05-25 2011-12-27 Maquet Cardiovascular Llc Surgical stabilizers and methods for use in reduced-access surgical sites
US8313430B1 (en) 2006-01-11 2012-11-20 Nuvasive, Inc. Surgical access system and related methods
DE102011117413A1 (en) 2011-11-02 2013-05-02 Aesculap Ag Atraumatic sternal plate
US20130267988A1 (en) * 2012-04-04 2013-10-10 Glenn R. Sussman Devices, Systems, and Methods For Pupil Expansion
US20140046137A1 (en) * 2012-08-08 2014-02-13 Ronda Duke Brown Retractor Cover Apparatus and Associated Methods
US9022998B2 (en) 2010-02-26 2015-05-05 Maquet Cardiovascular Llc Blower instrument, apparatus and methods of using
US20150148614A1 (en) * 2012-05-08 2015-05-28 Protego Medical Pty Limited Apparatus For Covering An Exposed End Of A Severed Sternum
CN104856768A (en) * 2015-06-04 2015-08-26 浙江省肿瘤医院 Scald-preventing silicon rubber case for medical retractor
US9131938B2 (en) 2007-03-29 2015-09-15 Nobles Medical Technologies, Inc. Suturing devices and methods for closing a patent foramen ovale
US20150282799A1 (en) * 2014-04-03 2015-10-08 Shah-Naz Khan Neural tissue retractor sheath
US9186145B2 (en) 2010-10-12 2015-11-17 Evan Richard Geller Device and method to facilitate safe, adhesion-free surgical closures
US9216015B2 (en) 2004-10-28 2015-12-22 Vycor Medical, Inc. Apparatus and methods for performing brain surgery
US9326764B2 (en) 2008-05-09 2016-05-03 Nobles Medical Technologies Inc. Suturing devices and methods for suturing an anatomic valve
US9398907B2 (en) 1999-07-02 2016-07-26 Quickpass, Inc. Suturing device
US9642616B2 (en) 2005-06-20 2017-05-09 Nobles Medical Technologies, Inc. Method and apparatus for applying a knot to a suture
US9649106B2 (en) 2011-04-15 2017-05-16 Heartstitch, Inc. Suturing devices and methods for suturing an anatomic valve
US9655605B2 (en) 2010-06-14 2017-05-23 Maquet Cardiovascular Llc Surgical instruments, systems and methods of use
US9706988B2 (en) 2012-05-11 2017-07-18 Heartstitch, Inc. Suturing devices and methods for suturing an anatomic structure
US9737287B2 (en) 2014-05-13 2017-08-22 Vycor Medical, Inc. Guidance system mounts for surgical introducers
US10376258B2 (en) 2016-11-07 2019-08-13 Vycor Medical, Inc. Surgical introducer with guidance system receptacle
US10512458B2 (en) 2013-12-06 2019-12-24 Med-Venture Investments, Llc Suturing methods and apparatuses
US10543016B2 (en) 2016-11-07 2020-01-28 Vycor Medical, Inc. Surgical introducer with guidance system receptacle
US10687801B2 (en) 2016-04-11 2020-06-23 Nobles Medical Technologies Ii, Inc. Suture spools for tissue suturing device
US10828022B2 (en) 2013-07-02 2020-11-10 Med-Venture Investments, Llc Suturing devices and methods for suturing an anatomic structure
US11202624B2 (en) 2017-08-18 2021-12-21 Nobles Medical Technologies Ii, Inc. Apparatus for applying a knot to a suture
US11395658B2 (en) 2014-07-11 2022-07-26 Cardio Medical Solutions, Inc. Device and method for assisting end-to-side anastomosis
US11826036B2 (en) 2021-12-03 2023-11-28 Lsi Solutions, Inc. Epigastric retractor
US11839370B2 (en) 2017-06-19 2023-12-12 Heartstitch, Inc. Suturing devices and methods for suturing an opening in the apex of the heart
US11957331B2 (en) 2019-12-12 2024-04-16 Heartstitch, Inc. Suturing systems and methods for suturing body tissue

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1944009A (en) * 1932-06-14 1934-01-16 Ralph W Homer Intra-abdominal retractor
US3288131A (en) * 1964-01-10 1966-11-29 Edgar A Garland Surgical retractor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1944009A (en) * 1932-06-14 1934-01-16 Ralph W Homer Intra-abdominal retractor
US3288131A (en) * 1964-01-10 1966-11-29 Edgar A Garland Surgical retractor

Cited By (197)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4226228A (en) * 1978-11-02 1980-10-07 Shin Hee J Multiple joint retractor with light
EP0018209A2 (en) * 1979-04-20 1980-10-29 CODMAN & SHURTLEFF, INC. Pressure-responsive surgical tool assembly
EP0018209A3 (en) * 1979-04-20 1981-02-18 Codman & Shurtleff, Inc. Pressure-responsive surgical tool assembly
US4263900A (en) * 1979-04-20 1981-04-28 Codman And Shurtleff, Inc. Pressure-responsive surgical tool assembly
US4340060A (en) * 1980-06-16 1982-07-20 Joseph J. Berke Flexible craniotome footplate
US4421107A (en) * 1980-10-15 1983-12-20 Estes Roger Q Surgical retractor elements and assembly
US5795290A (en) * 1993-07-09 1998-08-18 Bioplexus Corporation Apparatus for holding intestines out of an operative field
US5651762A (en) * 1993-07-09 1997-07-29 Bridges; Doye R. Apparatus for holding intestines out of an operative field
US6063025A (en) * 1993-07-09 2000-05-16 Bioenterics Corporation Apparatus for holding intestines out of an operative field
US5976078A (en) * 1993-07-09 1999-11-02 Bioenterics Corporation Apparatus and method for holding intestines out of an operative field
US5709646A (en) * 1994-09-23 1998-01-20 Lange; Nancy Erin Surgical retractor covers
US7219671B2 (en) 1995-04-10 2007-05-22 Cardiothoracic Systems, Inc. Method for coronary artery bypass
US6701930B2 (en) 1996-02-20 2004-03-09 Cardiothoracic Systems, Inc. Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft surgery
US20020111537A1 (en) * 1996-02-20 2002-08-15 Taylor Charles S. Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft surgery
US20070055108A1 (en) * 1996-02-20 2007-03-08 Taylor Charles S Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft surgery
US20040230099A1 (en) * 1996-02-20 2004-11-18 Taylor Charles S. Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft surgery
US6394951B1 (en) 1996-02-20 2002-05-28 Cardiothoracic Systems, Inc. Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft surgery
US6852075B1 (en) 1996-02-20 2005-02-08 Cardiothoracic Systems, Inc. Surgical devices for imposing a negative pressure to stabilize cardiac tissue during surgery
US20040087834A1 (en) * 1996-02-20 2004-05-06 Benetti Federico J. Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft surgery
US8382654B2 (en) 1996-02-20 2013-02-26 Maquet Cardiovascular Llc Surgical devices for imposing a negative pressure to stabilize the cardiac tissue during surgery
US7497824B2 (en) 1996-02-20 2009-03-03 Maquet Cardiovasculer, Llc Surgical devices for imposing a negative pressure to stabilize cardiac tissue during surgery
US7056287B2 (en) 1996-02-20 2006-06-06 Cardiothoracic Systems, Inc. Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft surgery
US20050038316A1 (en) * 1996-02-20 2005-02-17 Taylor Charles S. Surgical devices for imposing a negative pressure to stabilize cardiac tissue during surgery
US7335158B2 (en) 1996-02-20 2008-02-26 Cardiothoracic Systems, Inc. Surgical devices for imposing a negative pressure to stabilize the cardiac tissue during surgery
US6673013B2 (en) 1996-02-20 2004-01-06 Cardiothoracic Systems, Inc. Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft surgery
US6656113B2 (en) 1996-02-20 2003-12-02 Cardiothoracic System, Inc. Surgical instruments and procedures for stabilizing a localized portion of a beating heart
US7485090B2 (en) 1996-02-20 2009-02-03 Maquet Cardiovascular Llc Surgical devices for imposing a negative pressure to stabilize cardiac tissue during surgery
US8277476B2 (en) 1996-02-20 2012-10-02 Maguet Cardiovascular LLC Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft
US6315717B1 (en) 1996-02-20 2001-11-13 Cardiothoracic Systems, Inc. Surgical instruments for stabilizing the beating heart during coronary artery bypass graft surgery
US6893391B2 (en) 1996-02-20 2005-05-17 Cardiothoracic Systems, Inc. Surgical devices for imposing a negative pressure to stabilize cardiac tissue during surgery
US7585277B2 (en) 1996-02-20 2009-09-08 Maquet Cardiovascular Llc Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft surgery
US6743169B1 (en) 1996-02-20 2004-06-01 Cardiothoracic Systems, Inc. Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft surgery
US6071235A (en) * 1996-04-26 2000-06-06 Genzyme Corporation Coronary stabilizing retractor with occluding means
US6152874A (en) * 1996-04-26 2000-11-28 Genzyme Corporation Adjustable multi-purpose coronary stabilizing retractor
WO1997040738A1 (en) * 1996-04-26 1997-11-06 Genzyme Corporation Coronary stabilizing retractor
US6254535B1 (en) 1996-04-26 2001-07-03 Genzyme Corporation Ball and socket coronary stabilizer
EP1547528A1 (en) * 1997-02-03 2005-06-29 Applied Medical Resources Corporation Surgical instruments with improved traction
US20050192605A1 (en) * 1997-02-03 2005-09-01 Hart Charles C. Surgical instruments with improved traction
EP1011462A1 (en) * 1997-02-03 2000-06-28 Applied Medical Resources Corporation Surgical instruments with improved traction
EP1011462A4 (en) * 1997-02-03 2001-06-13 Applied Med Resources Surgical instruments with improved traction
WO1998034544A1 (en) * 1997-02-10 1998-08-13 Aesculap Ag & Co. Kg Brain spatula
DE19704997A1 (en) * 1997-02-10 1998-08-27 Aesculap Ag & Co Kg Brain spatula
DE19704997C2 (en) * 1997-02-10 1999-01-28 Aesculap Ag & Co Kg Brain spatula
US6093145A (en) * 1997-02-10 2000-07-25 Aesculap Ag & Co. Kg Brain spatula
US7404792B2 (en) 1997-09-17 2008-07-29 Origin Medsystems, Inc. Device to permit offpump beating heart coronary bypass surgery
US20040092798A1 (en) * 1997-09-17 2004-05-13 Spence Paul A. Device to permit offpump beating heart coronary bypass surgery
US20070179344A1 (en) * 1997-09-17 2007-08-02 Spence Paul A Device to permit offpump beating heart coronary bypass surgery
US8317695B2 (en) 1997-09-17 2012-11-27 Maquet Cardiovascular Llc Device to permit offpump beating heart coronary bypass surgery
US6705988B2 (en) 1997-09-17 2004-03-16 Origin Medsystems, Inc. Device to permit offpump beating heart coronary bypass surgery
US7377895B2 (en) 1997-09-17 2008-05-27 Origin Medsystems, Inc. Device to permit offpump beating heart coronary bypass surgery
US8753266B2 (en) 1997-09-17 2014-06-17 Maquet Cardiovascular Llc Device to permit offpump beating heart coronary bypass surgery
US7195591B2 (en) 1997-09-17 2007-03-27 Origin Medsystems, Inc. Device to permit offpump beating heart coronary bypass surgery
US20020065451A1 (en) * 1997-09-17 2002-05-30 Spence Paul A. Device to permit offpump beating heart coronary bypass surgery
US20090099412A1 (en) * 1997-09-17 2009-04-16 Spence Paul A Device to Permit Offpump Beating Heart Coronary Bypass Surgery
US20090099411A1 (en) * 1997-09-17 2009-04-16 Spence Paul A Device to permit offpump beating heart coronary bypass surgery
US20040225195A1 (en) * 1997-09-17 2004-11-11 Spence Paul A. Device to permit offpump beating heart coronary bypass surgery
US8162817B2 (en) 1997-09-17 2012-04-24 Maquet Cardiovascular Llc Device to permit offpump beating heart coronary bypass surgery
US6969349B1 (en) 1997-09-17 2005-11-29 Origin Medsystem, Inc. Device to permit offpump beating heart coronary bypass surgery
US6743170B1 (en) 1997-09-17 2004-06-01 Cardiothoracic Systems, Inc. Device to permit offpump beating heart coronary bypass surgery
US7476199B2 (en) 1997-09-17 2009-01-13 Maquet Cardiovascular, Llc. Device to permit offpump beating heart coronary bypass surgery
US7476196B2 (en) 1997-09-17 2009-01-13 Maquet Cardiovascular, Llc Device to permit offpump beating heart coronary bypass surgery
US20040138533A1 (en) * 1997-09-17 2004-07-15 Spence Paul A. Device to permit offpump beating heart coronary bypass surgery
US20050148825A1 (en) * 1997-09-17 2005-07-07 Spence Paul A. Device to permit offpump beating heart coronary bypass surgery
US20020161285A1 (en) * 1997-09-17 2002-10-31 Spence Paul A. Device to permit offpump beating heart coronary bypass surgery
US5891018A (en) * 1997-09-19 1999-04-06 Genzyme Corporation Ball joint retractor
US5904650A (en) * 1997-09-19 1999-05-18 Genzyme Corporation Ball joint retractor
US6736774B2 (en) 1998-05-01 2004-05-18 Cardiothoracic Systems, Inc. Xyphoid access for cardiac surgical procedures
US6199556B1 (en) 1998-05-01 2001-03-13 Cardiothoracic Systems, Inc. Xyphoid access for cardiac surgical procedures
US6730022B2 (en) 1999-01-24 2004-05-04 Thomas E. Martin Surgical retractor and tissue stabilization device having an adjustable sled member
US6348036B1 (en) 1999-01-24 2002-02-19 Genzyme Corporation Surgical retractor and tissue stabilization device
US20070156027A1 (en) * 1999-05-04 2007-07-05 Hu Lawrence W Surgical retractor platform blade apparatus
US7736307B2 (en) 1999-05-04 2010-06-15 Maquet Cardiovascular Llc Surgical instruments for accessing and stabilizing a localized portion of a beating heart
US20020004628A1 (en) * 1999-05-04 2002-01-10 Hu Lawrence W. Surgical retractor platform blade apparatus
US6626830B1 (en) 1999-05-04 2003-09-30 Cardiothoracic Systems, Inc. Methods and devices for improved tissue stabilization
US7238155B2 (en) 1999-05-04 2007-07-03 Cardiothoracic Systems, Inc. Method and apparatus for creating a working opening through an incision
US6685632B1 (en) 1999-05-04 2004-02-03 Cardiothoracic Systems, Inc. Surgical instruments for accessing and stabilizing a localized portion of a beating heart
US6652454B2 (en) 1999-05-04 2003-11-25 Lawrence W. Hu Method and apparatus for creating a working opening through an incision
US6231506B1 (en) 1999-05-04 2001-05-15 Cardiothoracic Systems, Inc. Method and apparatus for creating a working opening through an incision
US9498198B2 (en) 1999-05-04 2016-11-22 Maquet Cardiovascular, Llc Surgical instruments for accessing and stabilizing a localized portion of a beating heart
US6283912B1 (en) * 1999-05-04 2001-09-04 Cardiothoracic Systems, Inc. Surgical retractor platform blade apparatus
US20040092799A1 (en) * 1999-05-04 2004-05-13 Hu Lawrence W. Method and apparatus for creating a working opening through an incision
US7220228B2 (en) 1999-05-04 2007-05-22 Cardiothoracic System, Inc. Surgical retractor blade and system
US20100210916A1 (en) * 1999-05-04 2010-08-19 Hu Lawrence W Surgical Instruments for Accessing and Stabilizing a Localized Portion of a Beating Heart
US20040030223A1 (en) * 1999-05-04 2004-02-12 Calafiore Antonio M. Method and devices for improved tissue stabilization
US20040143168A1 (en) * 1999-05-04 2004-07-22 Hu Lawrence W. Surgical instruments for accessing and stabilizing a localized portion of a beating heart
US6331158B1 (en) 1999-05-04 2001-12-18 Cardiothoracic Systems, Inc. Surgical retractor apparatus for operating on the heart through an incision
US6090043A (en) * 1999-05-17 2000-07-18 Applied Medical Technology, Inc. Tissue retractor retention band
WO2000078234A1 (en) * 1999-06-18 2000-12-28 Novare Surgical Systems, Inc. Surgical clamp pads with elastomer impregnated mesh
US10194902B2 (en) 1999-07-02 2019-02-05 Quickpass, Inc. Suturing device
US9398907B2 (en) 1999-07-02 2016-07-26 Quickpass, Inc. Suturing device
US6740029B2 (en) 1999-07-08 2004-05-25 Chase Medical, L.P. Device and method for isolating a surface of a beating heart during surgery
US20030009081A1 (en) * 1999-07-08 2003-01-09 Chase Medical, Lp Device and method for isolating a surface of a beating heart during surgery
US7503891B2 (en) 1999-08-03 2009-03-17 Maquet Cardiovascular, Llc Tissue stabilizer and methods of use
US6511416B1 (en) 1999-08-03 2003-01-28 Cardiothoracic Systems, Inc. Tissue stabilizer and methods of use
US20020165434A1 (en) * 1999-09-16 2002-11-07 Williamson Warren P. Tissue stabilizer having an articulating lift element
US7326177B2 (en) 1999-09-16 2008-02-05 Cardiothoracic Systems, Inc. Tissue stabilizer having an articulating lift element
US6406424B1 (en) 1999-09-16 2002-06-18 Williamson, Iv Warren P. Tissue stabilizer having an articulating lift element
US6849044B1 (en) * 2000-01-07 2005-02-01 Larry Voss Organ stabilizer and method
US6428472B1 (en) 2000-08-08 2002-08-06 Kent Haas Surgical retractor having a malleable support
US6719766B1 (en) 2000-08-24 2004-04-13 Novare Surgical Systems, Inc. Surgical clamp pads having surface overlay
US20040167552A1 (en) * 2000-08-24 2004-08-26 Novare Surgical Systems, Inc. Surgical clamp pads having surface overlay
US6758808B2 (en) 2001-01-24 2004-07-06 Cardiothoracic System, Inc. Surgical instruments for stabilizing a localized portion of a beating heart
US20050228315A1 (en) * 2002-07-09 2005-10-13 George Washington University Brain retraction sensor
US7153279B2 (en) 2002-07-09 2006-12-26 George Washington University Brain retraction sensor
WO2004037092A1 (en) 2002-10-21 2004-05-06 Seacost Technologies, Inc. Accessory for surgical instrument
US6733442B1 (en) 2002-10-21 2004-05-11 Seacoast Technologies, Inc. Accessory for surgical instrument
US20040143166A1 (en) * 2002-10-21 2004-07-22 Seacoast Technologies, Inc. Accessory for surgical instrument
US7931590B2 (en) 2002-10-29 2011-04-26 Maquet Cardiovascular Llc Tissue stabilizer and methods of using the same
US20090227844A1 (en) * 2003-01-24 2009-09-10 Applied Medical Resources Corporation Internal tissue retractor
US20060052669A1 (en) * 2003-01-24 2006-03-09 Hart Charles C Internal tissue retractor
US8308638B2 (en) 2003-01-24 2012-11-13 Applied Medical Resources Corporation Internal tissue retractor
US8641598B2 (en) 2003-07-08 2014-02-04 Maquet Cardiovascular Llc Organ manipulator apparatus
US9402608B2 (en) 2003-07-08 2016-08-02 Maquet Cardiovascular Llc Organ manipulator apparatus
US10383612B2 (en) 2003-07-08 2019-08-20 Maquet Cardiovascular Llc Organ manipulator apparatus
US20050010197A1 (en) * 2003-07-08 2005-01-13 Liming Lau Organ manipulator apparatus
US20090299131A1 (en) * 2003-07-08 2009-12-03 Green Ii Harry Leonard Organ Manipulator Apparatus
US7479104B2 (en) 2003-07-08 2009-01-20 Maquet Cardiovascular, Llc Organ manipulator apparatus
US7179224B2 (en) 2003-12-30 2007-02-20 Cardiothoracic Systems, Inc. Organ manipulator and positioner and methods of using the same
US20050148822A1 (en) * 2003-12-30 2005-07-07 Willis Geoffrey H. Organ manipulator and positioner and methods of using the same
US20050148824A1 (en) * 2003-12-30 2005-07-07 Morejohn Dwight P. Transabdominal surgery system
US9216015B2 (en) 2004-10-28 2015-12-22 Vycor Medical, Inc. Apparatus and methods for performing brain surgery
US9968414B2 (en) 2004-10-28 2018-05-15 Vycor Medical, Inc. Apparatus and methods for performing brain surgery
US9386974B2 (en) 2004-10-28 2016-07-12 Vycor Medical, Inc. Apparatus and methods for performing brain surgery
US9968415B2 (en) 2004-10-28 2018-05-15 Vycor Medical, Inc. Apparatus and methods for performing brain surgery
US8083664B2 (en) 2005-05-25 2011-12-27 Maquet Cardiovascular Llc Surgical stabilizers and methods for use in reduced-access surgical sites
US9675331B2 (en) 2005-06-17 2017-06-13 Vycor Medical, Inc. Tissue retractor apparatus and methods
US9566052B2 (en) 2005-06-17 2017-02-14 Vycor Medical, Inc. Tissue retractor apparatus and methods
US9782157B2 (en) 2005-06-17 2017-10-10 Vycor Medical, Inc. Tissue retractor apparatus and methods
US8608650B2 (en) 2005-06-17 2013-12-17 Vycor Medical, Llc Surgical access instruments for use with delicate tissues
US9307969B2 (en) 2005-06-17 2016-04-12 Vycor Medical, Inc. Tissue retractor apparatus and methods
US20060287583A1 (en) * 2005-06-17 2006-12-21 Pool Cover Corporation Surgical access instruments for use with delicate tissues
US20090312611A1 (en) * 2005-06-17 2009-12-17 Vycor Medical Llc Surgical Access Methods For Use With Delicate Tissues
US8409083B2 (en) 2005-06-17 2013-04-02 Vycor Medical, Inc. Surgical access methods for use with delicate tissues
US20100010315A1 (en) * 2005-06-17 2010-01-14 Vycor Medical Llc Surgical Access Instruments For Use With Delicate Tissues
US10758223B2 (en) 2005-06-20 2020-09-01 Scarab Technology Services, Llc Method and apparatus for applying a knot to a suture
US9642616B2 (en) 2005-06-20 2017-05-09 Nobles Medical Technologies, Inc. Method and apparatus for applying a knot to a suture
US11744576B2 (en) 2005-06-20 2023-09-05 Scarab Technology Services, Llc Method and apparatus for applying a knot to a suture
US20100022844A1 (en) * 2005-06-22 2010-01-28 Mangiardi John R Surgical Access Instruments for Use with Spinal or Orthopedic Surgery
US8360970B2 (en) 2005-06-22 2013-01-29 Vycor Medical, Inc. Surgical access instruments for use with spinal or orthopedic surgery
EP1787599A1 (en) * 2005-11-18 2007-05-23 BVBA Este Cover for wrapping a surgical instrument
US8827900B1 (en) 2006-01-11 2014-09-09 Nuvasive, Inc. Surgical access system and related methods
US8313430B1 (en) 2006-01-11 2012-11-20 Nuvasive, Inc. Surgical access system and related methods
US10182802B2 (en) 2007-03-29 2019-01-22 Nobles Medical Technologies, Inc. Suturing devices and methods for closing a patent foramen ovale
US9131938B2 (en) 2007-03-29 2015-09-15 Nobles Medical Technologies, Inc. Suturing devices and methods for closing a patent foramen ovale
US11197661B2 (en) 2007-03-29 2021-12-14 Scarab Technology Services, Llc Device for applying a knot to a suture
US20090105546A1 (en) * 2007-10-23 2009-04-23 Zimmer Spine, Inc. Surgical access system and method of using the same
US8641609B2 (en) * 2007-10-23 2014-02-04 Zimmer Spine, Inc. Surgical access system and method of using the same
US9326764B2 (en) 2008-05-09 2016-05-03 Nobles Medical Technologies Inc. Suturing devices and methods for suturing an anatomic valve
US11166712B2 (en) 2008-05-09 2021-11-09 Scarab Technology Services, Llc Suturing devices and methods for suturing an anatomic valve
US10285687B2 (en) 2008-05-09 2019-05-14 Nobles Medical Technologies Inc. Suturing devices and methods for suturing an anatomic valve
US20110021879A1 (en) * 2009-07-21 2011-01-27 Applied Medical Resources Corporation Surgical access device comprising internal retractor
US10456125B2 (en) 2009-07-21 2019-10-29 Applied Medical Resources Corporation Surgical access device comprising internal retractor
US8469883B2 (en) 2009-07-21 2013-06-25 Applied Medical Resources Corporation Surgical access device comprising internal retractor
US9867604B2 (en) 2009-07-21 2018-01-16 Applied Medical Resources Corporation Surgical access device comprising internal retractor
US11278271B2 (en) 2009-07-21 2022-03-22 Applied Medical Resources Corporation Surgical access device comprising internal retractor
US9022998B2 (en) 2010-02-26 2015-05-05 Maquet Cardiovascular Llc Blower instrument, apparatus and methods of using
US9662434B2 (en) 2010-02-26 2017-05-30 Maquet Cardiovascular Llc Blower instrument, apparatus and methods of using
US9655605B2 (en) 2010-06-14 2017-05-23 Maquet Cardiovascular Llc Surgical instruments, systems and methods of use
US10398422B2 (en) 2010-06-14 2019-09-03 Maquet Cardiovascular Llc Surgical instruments, systems and methods of use
US11284872B2 (en) 2010-06-14 2022-03-29 Maquet Cardiovascular Llc Surgical instruments, systems and methods of use
US9186145B2 (en) 2010-10-12 2015-11-17 Evan Richard Geller Device and method to facilitate safe, adhesion-free surgical closures
US9192385B2 (en) 2010-10-12 2015-11-24 Evan Richard Geller Device and method to facilitate safe, adhesion-free surgical closures
US9468705B2 (en) 2010-10-12 2016-10-18 Evan Richard Geller Device and method to facilitate safe, adhesion-free surgical closures
US10624629B2 (en) 2011-04-15 2020-04-21 Heartstitch, Inc. Suturing devices and methods for suturing an anatomic valve
US9649106B2 (en) 2011-04-15 2017-05-16 Heartstitch, Inc. Suturing devices and methods for suturing an anatomic valve
US10610216B2 (en) 2011-04-15 2020-04-07 Heartstitch, Inc. Suturing devices and methods for suturing an anatomic valve
WO2013064354A1 (en) 2011-11-02 2013-05-10 Aesculap Ag Atraumatic sternal plate
DE102011117413A1 (en) 2011-11-02 2013-05-02 Aesculap Ag Atraumatic sternal plate
US20130267988A1 (en) * 2012-04-04 2013-10-10 Glenn R. Sussman Devices, Systems, and Methods For Pupil Expansion
CN104203121A (en) * 2012-04-04 2014-12-10 爱尔康研究有限公司 Devices, systems, and methods for pupil expansion
US8852091B2 (en) * 2012-04-04 2014-10-07 Alcon Research, Ltd. Devices, systems, and methods for pupil expansion
US20150148614A1 (en) * 2012-05-08 2015-05-28 Protego Medical Pty Limited Apparatus For Covering An Exposed End Of A Severed Sternum
US10285681B2 (en) * 2012-05-08 2019-05-14 Protego Medical Pty Limited Apparatus for covering an exposed end of a severed sternum
EP2846678A4 (en) * 2012-05-08 2016-01-20 Protego Medical Pty Ltd Apparatus for covering an exposed end of a severed sternum
US11253244B2 (en) 2012-05-08 2022-02-22 Protego Medical Pty Limited Apparatus for covering an exposed end of a severed sternum
US11051802B2 (en) 2012-05-11 2021-07-06 Heartstitch, Inc. Suturing devices and methods for suturing an anatomic structure
US9706988B2 (en) 2012-05-11 2017-07-18 Heartstitch, Inc. Suturing devices and methods for suturing an anatomic structure
US10420545B2 (en) 2012-05-11 2019-09-24 Heartstitch, Inc. Suturing devices and methods for suturing an anatomic structure
US20140046137A1 (en) * 2012-08-08 2014-02-13 Ronda Duke Brown Retractor Cover Apparatus and Associated Methods
US10828022B2 (en) 2013-07-02 2020-11-10 Med-Venture Investments, Llc Suturing devices and methods for suturing an anatomic structure
US10512458B2 (en) 2013-12-06 2019-12-24 Med-Venture Investments, Llc Suturing methods and apparatuses
US11779324B2 (en) 2013-12-06 2023-10-10 Med-Venture Investments, Llc Suturing methods and apparatuses
US20150282799A1 (en) * 2014-04-03 2015-10-08 Shah-Naz Khan Neural tissue retractor sheath
US11116487B2 (en) 2014-05-13 2021-09-14 Vycor Medical, Inc. Guidance system mounts for surgical introducers
US10327748B2 (en) 2014-05-13 2019-06-25 Vycor Medical, Inc. Guidance system mounts for surgical introducers
US9737287B2 (en) 2014-05-13 2017-08-22 Vycor Medical, Inc. Guidance system mounts for surgical introducers
US11395658B2 (en) 2014-07-11 2022-07-26 Cardio Medical Solutions, Inc. Device and method for assisting end-to-side anastomosis
CN104856768A (en) * 2015-06-04 2015-08-26 浙江省肿瘤医院 Scald-preventing silicon rubber case for medical retractor
US10687801B2 (en) 2016-04-11 2020-06-23 Nobles Medical Technologies Ii, Inc. Suture spools for tissue suturing device
US11517347B2 (en) 2016-11-07 2022-12-06 Vycor Medical, Inc. Surgical introducer with guidance system receptacle
US10543016B2 (en) 2016-11-07 2020-01-28 Vycor Medical, Inc. Surgical introducer with guidance system receptacle
US10376258B2 (en) 2016-11-07 2019-08-13 Vycor Medical, Inc. Surgical introducer with guidance system receptacle
US11045182B2 (en) 2016-11-07 2021-06-29 Vycor Medical, Inc. Surgical introducer with guidance system receptacle
US11839370B2 (en) 2017-06-19 2023-12-12 Heartstitch, Inc. Suturing devices and methods for suturing an opening in the apex of the heart
US11202624B2 (en) 2017-08-18 2021-12-21 Nobles Medical Technologies Ii, Inc. Apparatus for applying a knot to a suture
US11957331B2 (en) 2019-12-12 2024-04-16 Heartstitch, Inc. Suturing systems and methods for suturing body tissue
US11826036B2 (en) 2021-12-03 2023-11-28 Lsi Solutions, Inc. Epigastric retractor

Similar Documents

Publication Publication Date Title
US3882855A (en) Retractor for soft tissue for example brain tissue
US5998693A (en) Flexible adhesive element for external medical use in the treatment of hypertrophic or cheloid scars following breast surgery
US4693720A (en) Device for surgically repairing soft tissues and method for making the same
US2472009A (en) Surgical dressing
US4706661A (en) Wound closure and observation device having a no-contact protective covering
US2233209A (en) Surgical dressing
Fassler Fingertip injuries: evaluation and treatment
US5413580A (en) Carpal tunnel knife
WO2000024323A2 (en) A method and a device for marking surfaces
WO2005084250A3 (en) Ultrasonic surgical shears and tissue pad for same
EP0745351A3 (en) Blunt tip surgical needle
EP0913125A3 (en) Ultrasonics scalpel blade and methods of application
JPH07178102A (en) Cutting blade with dull tip and taper cutting needle
US5674234A (en) Flexible surgical razor
US6191337B1 (en) Self-adhesive ready-made bandage for immobilizing the wrist
US5628759A (en) Flexible surgical razor
EP1325721A3 (en) Blade for corneal surgery and corneal surgical apparatus comprising the same
US4185634A (en) Surgical instrument
US4436089A (en) Pressure dressing with cushion
US4340060A (en) Flexible craniotome footplate
Denman Rupture of the extensor pollicis longus—a crush injury
US2519520A (en) Cast cutting device
Ragnell A new method of shaping deformed ears
US5380337A (en) Mesh-type skin biopsy appliance
FI913544A0 (en) A shoe's footbed in the form of a separate insole or shoe sole tied sole