US3883213A - Connectors - Google Patents

Connectors Download PDF

Info

Publication number
US3883213A
US3883213A US431389A US43138974A US3883213A US 3883213 A US3883213 A US 3883213A US 431389 A US431389 A US 431389A US 43138974 A US43138974 A US 43138974A US 3883213 A US3883213 A US 3883213A
Authority
US
United States
Prior art keywords
contacts
sheet
resistance
superimposed
ohms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US431389A
Inventor
Frank J Glaister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chomerics Inc
Original Assignee
Chomerics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chomerics Inc filed Critical Chomerics Inc
Priority to US431389A priority Critical patent/US3883213A/en
Application granted granted Critical
Publication of US3883213A publication Critical patent/US3883213A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2407Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means
    • H01R13/2414Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means conductive elastomers

Definitions

  • ABSTRACT An electrical connector which normally has a high resistance when uncompressed but which when pressure is applied to compress a volume thereof exhibits a low resistance through the compressed volume.
  • the present invention provides a connector which is both simple and inexpensive to manufacturer and extremely simple to use in order to couple contacts of one electrical device to contacts of a second electrical device.
  • the connector of the present invention can be termed an electrical insulator which becomes highly electrically conductive, i.e., has a low resistance between volumes under compression but remains highly electrically resistant, i.e., has a high resistance in the plane at right angles to the compressed volumes.
  • the present invention can be used as a sheet connector and placed between aligned or superimposed contacts on either side of the sheet.
  • low pressure that is the squeezing of the aligned contacts together to compress the volume of the sheet connector therebetween
  • the resistance between aligned contacts drops sharply so that it is highly electrically conductive whereas the resistance between adjacent contacts positioned along the surface of the sheet connector or through the uncompressed volume of sheet connector remains high, i.e., the resistance is so high that it may be termed an insulator, and thus adjacent contacts on the same side of the sheet are electrically isolated.
  • the connector of the invention in its preferred form comprises a layer or sheet of material comprising a binder and electrically conductive particles.
  • the material is normally non-conductive and could be termed an insulator.
  • the resistance of the compressed volume between the points substantially decreases to such a degree so that the connector is useful for electrically coupling the points on opposite sides of said sheet to each other.
  • the binder is of a low durometer, such as between 30 to 60 durometers, with a durometer of 40 to 50 being most preferred so that it may easily be compressed under pressure.
  • the thickness of the layer or sheet of material is preferably between 5 mils to I00 mils with a thickness of 10 to 30 mils being preferred and a thickness of 15 to 25 mils being most preferred so that the resistance switching effect under pressure will readily manifest itself. If the material becomes too thick, too much pressure is required to product the resistance switching effect, and if the material is too thin then it is difficult to work with.
  • the present invention discloses the use of nickel powder to produce the above resistance switching and isolation effect.
  • the effect is reproducable by controlling the amount of nickel relative to the binder between certain limits.
  • the preferred range for nickel powder is between 250 to 450 pbw, with 300 to 350 pbw being more preferred and about 320-330 pbw being most preferred.
  • the particle size in terms of its maximum dimension is preferably between 50 to 600 microns with 75 to 300 microns being more preferred and to 1 75 microns being most preferred.
  • the particle size is preferably less then the thickness of the layer or sheet of material so that the particles do not extend above or below the plane of the layer or sheet of material.
  • the binder materials suitable for the practice of the invention include materials having elastomeric-like properties, e.g., elastomers I such as silicone rubber, ethylene propylenediene monomer, ethylene propylene monomer, BUNA N (nitrile rubber), polyurethane rubber, styrene butadiene rubber, natural rubber and neoprene rubber, or plastics, e.g., polyethylene, polypropylene, etc., when modified with plastisizers.
  • elastomers I such as silicone rubber, ethylene propylenediene monomer, ethylene propylene monomer, BUNA N (nitrile rubber), polyurethane rubber, styrene butadiene rubber, natural rubber and neoprene rubber, or plastics, e.g., polyethylene, polypropylene, etc., when modified with plastisizers.
  • the present invention does not precludethe use of fillers, plasticizers, catalysts, accelerators, pigments, smoothing agents commonly utilized in conductive plastics or elastomers such as silica (useful for its mechanical binding properties) so long as these materials do not severely affect the desireable properties of the connector.
  • connector of this invention need not be in sheet form and can take many other physical shapes.
  • FIG. 1 is a top view of a connector sheet or layer according to the invention
  • FIG. 2 is a sectional view taken along line 22 in FIG. 1i I
  • FIG. 3 is a top view of the connector layer or sheet having a portion cutout therein prior to placement into the structure shown in FIGS. 4-8;
  • FIG. 4 illustrates the sheet of FIG. 4 positioned between first and second electrical devices such as a liquid crystal display and circuit board;
  • FIG. 5 illustrates a watch containing the connector as well as the other members shown in FIG. 4;
  • FIG. 6 is a sectional view taken at line 6-6 in FIG. 5 illustrating pressure being applied to the connector sheet
  • FIG. 7 is an alternate embodiment for supporting the connector sheet in a watch or other device
  • FIG. 8 is a sectional view taken along line 8-8 in FIG. 7;
  • FIG. 9 illustrates schematically the physical properties of the connector of this disclosure.
  • FIGS. 1 and 2 illustrate a layer or sheet of the connector material 10 which can in the configuration shown be placed between aligned contacts of two electrical devices.
  • the sheet When low pressure is applied usually greater than 20 psi to less than about 500 psi, the sheet will exhibit dramatically reduced resistance in the 10- calized volume between aligned contacts on either side of the sheet.
  • the sheet of connector material is between about 5 to I mils in thickness where the thickness X is shown in FIG. 9.
  • the resistance of the material without pressure applied, i.e., between the bottom and top surfaces along the bottom or top surface is greater than 10 ohms, very often greater than ohms, and often greater than 10 ohms.
  • the resistance between probe tips 11a and 11b for the material at thickness of about mils is less than 10 ohms and is usually less than I ohm. At greater thicknesses proportionally greater pressure is applied to reduce the resistance through the material to less than 10 ohms.
  • the Simpson 260 series ohmeter is made by Simpson Electrical Company, Chicago, Illinois.
  • FIG. 3 there is shown a cutout 12 in the sheet connector so that the connector 10 may be positioned as shown in FIGS. 4-6 in a watch or other electrical system to couple contacts 15a-15f of a first electrical device 15 e.g., a liquid crystal display to the contacts 16a-16f of a second electrical device 16 such as a circuit board supporting other circuitry not shown e.g., on the underside thereof.
  • a first electrical device 15 e.g., a liquid crystal display
  • a second electrical device 16 such as a circuit board supporting other circuitry not shown e.g., on the underside thereof.
  • the circuitry may comprise circuit patterns, passive devices e.g., resistors, and active devives such as transistors to provide at contacts 16a-16f etc., the signals to drive the liquid crystal package via contacts 15a-l5f, etc.
  • the contacts 15a and 15b are shown aligned with contacts 16a and 16b.
  • Pressure is applied to the connector sheet 10 by means of pressure snap means 19 of the watch casing halves 17a and .17b.
  • the application of pressure compresses the voldifferent pathways to the non-aligned contacts 16a or 16b.
  • FIGS. 7 and 8 there is shown a plastic frame 20 e.g., of polypropylene for'holding the connector sheets 10 (in the form of strips) by way of a slot 20a formed in the frame.
  • the frame 20 may then be placed between the electrical devices of FIG. 4 to perform the same function as the connector sheet having the cutout 12.
  • FIG. 9 illustrates'in schematic form the use of the connector of the invention.
  • the connector is in the form of a sheet having a thickness X e.g., 20 mils and the contacts A,B,C,D etc., to be interconnected are shown on opposite sides of the sheet.
  • contacts A and B are aligned or superimposed at opposite sides of the sheet to compress a volume 10a therebetween and contacts C and D are also aligned at opposite sides of the sheet to compress another volume 10b of the sheet.
  • the distance between contacts A and C, and B and D along the surfaces of the sheet are also set at a distance X e.g., 20 mils although obviously this may vary.
  • the resistance between contacts A to D or A to C is 10 to 10 ohms greater than the resistance between contacts A to B.
  • the volume between the contacts remains high so as to effectively electrically isolate the contacts D or C from contacts A or B.
  • a source e.g. a battery
  • an indicator light shown at 23 to illuminate.
  • other electrical devices may be supplied with energy in a like manner.
  • a connector sheet is prepared from:
  • Varox peroxide catalyst l pbw bank is produced between the mill rolls. At this time the dry intermixed materials are added to the silicone gum before it proceeds through the rolls to force the dry materials into the gum. The gum with the dry materials is periodically cut as it comes out of the rolls and is refed through the rolls until a homogenous mixture is obtained. Fifteen passes have been found to be sufficient. The rolls of the mill are spaced apart to provide a sheet of about 16 mil thickness. The sheet is then placed in a compression mold at 4,000 psi pressure for 20 minutes at 325 F to cure. The sheet is then post baked for 3 hours at 300F to complete the cure.
  • the sheet thus obtained has a thickness of about 16 mils.
  • Example II The formulation of Example I was used as was the prodecure of Example I except that the following pigments were added to provide color as well as to enhance the smoothness of the finished sheet and to make it more sensitive to the application of pressure:
  • Iron oxide supplied by Harwick Chemical as Stan-tone Color D820 red oxide l0 pbw Zinc oxide XX4 supplied by New Jersey Zinc Co. l0 pbw Cobalt pigment supplied by Harwick Chemical D4900 Blue l0 pbw The sheet formed was also about 16 mils in thickness.
  • Epcar 306 supplied by B. F. Goodrich I00 pbw Agerite Resin D supplied by Vanderbilt l pbw Zinc oxide 2 pbw Sunpar 2280 supplied by Sun Oil Co. 2 pbw Stearic Acid 1 pbw Nickel 00224 powder 100 mesh 325 pbw Varox Caralyst 8 pbw EXAMPLE IV at least one of said plurality of contacts comprising raised land portions, a one piece sheet connector having elastomeric-like properties positioned between the devices and overlapping superimposed contacts of said first and second devices, means to compress the sheet connector between superimposed contacts of said first and second devices on opposite surfaces of said sheet connector, said sheet connector having a low resistance through the volume between superimposed contacts where compressed and a high resistance where not directly compressed between said superimposed contacts so that each pair of superimposed contacts are electrically isolated from every other pair of superimposed contacts, said sheet connector of a thickness X and has the property that when adjacent contacts on opposite sides of said sheet are positioned as close as the distance X
  • the first device is a liquid crystal display.
  • said sheet connector includes conductive particles which are nickel, said nickel partiles being in the amount of 250 to 450 parts by weight based on parts by weight of the binder material.
  • the thickness X is 10 to 30 mils and the maximum dimension of the nickel particles is 50 to 600 microns provided that the particle size is less than the thickness of the sheet.

Abstract

An electrical connector which normally has a high resistance when uncompressed but which when pressure is applied to compress a volume thereof exhibits a low resistance through the compressed volume.

Description

United States Glaister CONNECTORS [75] Inventor: Frank J. Glaister, Ipswich, Mass.
[73] Assignee: Chomerics, 1nc., Woburn, Mass.
[22] Filed: Jan. 7, 1974 [21] Appl. No.: 431,389
[52] U.S. Cl. 339/61 M; 339/DIG. 3 [51] Int. Cl ..H0lr13/24 [58] Field of Search 339/59, DIG. 3, 6l M [56] References Cited UNITED STATES PATENTS 2,95l,8l7 9/l960 Myers 339/DIG. 3 3,760,342 9/1973 Prouty et al. 339/DIG. 3
OTHER PUBLICATIONS IBM Technical Disclosure Bulletin, Vol. 13, No. 6,
111 3,883,213 451 May 13, 1975 Nov., 1970, Extender-Type Pluggable Electrical lnterconnector, by D. W. Rice.
Primary E.\'aminerR0y Lake Assistant Examiner-E. F. Desmond Attorney, Agent, or FirmDonald Brown; Dike, Bronstein, Roberts, Cushman & Pfund [57] ABSTRACT An electrical connector which normally has a high resistance when uncompressed but which when pressure is applied to compress a volume thereof exhibits a low resistance through the compressed volume.
9 Claims, 9 Drawing Figures 1 VCONNECTORS BACKGROUNG OF THE DISCLOSURE This invention is directed to connectors useful for coupling contacts of a first electrical device to the contacts of a second electrical device.
It is still conventional practice to couple contacts of one device to the contacts ofa second device by soldering wires to the contacts. More recently other schemes have been proposed such as a plurality of electrically conductive plastic or rubber pads supported by an insulator e.g., along slots on the sides thereof or in holes formed therein. In this case the contacts of the devices to be connected are positioned on opposite ends of the pads and the assembly is then held togetherin a conventional manner.
While the aforementioned schemes are quite useful they are expensive due to the costs associated therewith. Obviously soldering is time consuming and thus labor costs are high. In the second scheme manufacturing costs are high because of the steps needed to construct the insulator support and to then fill the slots or holes thereof in a molding process.
Accordingly a new and improved connector was needed which would be comparitively inexpensive in terms of materials used as well as in the cost of manufacture.
The present invention provides a connector which is both simple and inexpensive to manufacturer and extremely simple to use in order to couple contacts of one electrical device to contacts of a second electrical device.
The connector of the present invention can be termed an electrical insulator which becomes highly electrically conductive, i.e., has a low resistance between volumes under compression but remains highly electrically resistant, i.e., has a high resistance in the plane at right angles to the compressed volumes.
Thus the present invention can be used as a sheet connector and placed between aligned or superimposed contacts on either side of the sheet. Upon application of low pressure, that is the squeezing of the aligned contacts together to compress the volume of the sheet connector therebetween the resistance between aligned contacts drops sharply so that it is highly electrically conductive whereas the resistance between adjacent contacts positioned along the surface of the sheet connector or through the uncompressed volume of sheet connector remains high, i.e., the resistance is so high that it may be termed an insulator, and thus adjacent contacts on the same side of the sheet are electrically isolated.
BRIEF DESCRIPTION OF THE DISCLOSURE The connector of the invention in its preferred form comprises a layer or sheet of material comprising a binder and electrically conductive particles. The material is normally non-conductive and could be termed an insulator. Upon application of pressure to points on opposite sides of said material, the resistance of the compressed volume between the points substantially decreases to such a degree so that the connector is useful for electrically coupling the points on opposite sides of said sheet to each other.
In addition, if pressureis also applied as above to the same material at points closely adjacent the first mentioned point the resistance between the first mentioned and second mentioned points remain high such that the first and second mentioned points are in effect electrically isolated from each other.
In the preferred form of this invention the binder is of a low durometer, such as between 30 to 60 durometers, with a durometer of 40 to 50 being most preferred so that it may easily be compressed under pressure. In addition, the thickness of the layer or sheet of material is preferably between 5 mils to I00 mils with a thickness of 10 to 30 mils being preferred and a thickness of 15 to 25 mils being most preferred so that the resistance switching effect under pressure will readily manifest itself. If the material becomes too thick, too much pressure is required to product the resistance switching effect, and if the material is too thin then it is difficult to work with.
The present invention discloses the use of nickel powder to produce the above resistance switching and isolation effect. In particular it has been found that the effect is reproducable by controlling the amount of nickel relative to the binder between certain limits.
In terms of parts by weight of nickel powder based on parts by weight (pbw) of the binder, the preferred range for nickel powder is between 250 to 450 pbw, with 300 to 350 pbw being more preferred and about 320-330 pbw being most preferred.
In addition, the particle size in terms of its maximum dimension is preferably between 50 to 600 microns with 75 to 300 microns being more preferred and to 1 75 microns being most preferred. In addition, the particle size is preferably less then the thickness of the layer or sheet of material so that the particles do not extend above or below the plane of the layer or sheet of material.
For example, with a sheet thickness of 20 mils it is preferred that the particles be of a size of at least less than about 10 mils (about 250 microns). The binder materials suitable for the practice of the invention include materials having elastomeric-like properties, e.g., elastomers I such as silicone rubber, ethylene propylenediene monomer, ethylene propylene monomer, BUNA N (nitrile rubber), polyurethane rubber, styrene butadiene rubber, natural rubber and neoprene rubber, or plastics, e.g., polyethylene, polypropylene, etc., when modified with plastisizers.
In addition, the present invention does not precludethe use of fillers, plasticizers, catalysts, accelerators, pigments, smoothing agents commonly utilized in conductive plastics or elastomers such as silica (useful for its mechanical binding properties) so long as these materials do not severely affect the desireable properties of the connector.
It should be understood that the connector of this invention need not be in sheet form and can take many other physical shapes.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a top view of a connector sheet or layer according to the invention;
FIG. 2 is a sectional view taken along line 22 in FIG. 1i I FIG. 3 is a top view of the connector layer or sheet having a portion cutout therein prior to placement into the structure shown in FIGS. 4-8;
FIG. 4 illustrates the sheet of FIG. 4 positioned between first and second electrical devices such as a liquid crystal display and circuit board;
FIG. 5 illustrates a watch containing the connector as well as the other members shown in FIG. 4;
FIG. 6 is a sectional view taken at line 6-6 in FIG. 5 illustrating pressure being applied to the connector sheet;
FIG. 7 is an alternate embodiment for supporting the connector sheet in a watch or other device;
FIG. 8 is a sectional view taken along line 8-8 in FIG. 7; and
FIG. 9 illustrates schematically the physical properties of the connector of this disclosure.
DETAILED DESCRIPTION OF THE DISCLOSURE FIGS. 1 and 2 illustrate a layer or sheet of the connector material 10 which can in the configuration shown be placed between aligned contacts of two electrical devices. When low pressure is applied usually greater than 20 psi to less than about 500 psi, the sheet will exhibit dramatically reduced resistance in the 10- calized volume between aligned contacts on either side of the sheet.
(The sheet of connector material is between about 5 to I mils in thickness where the thickness X is shown in FIG. 9.)
The resistance of the material without pressure applied, i.e., between the bottom and top surfaces along the bottom or top surface is greater than 10 ohms, very often greater than ohms, and often greater than 10 ohms.
With pressure applied such as by the pointed tips 110 and 1112 (see FIG. 2) of the probe of a Simpson Model 260 ohmeter at about 50 psi pressure, the resistance between probe tips 11a and 11b for the material at thickness of about mils is less than 10 ohms and is usually less than I ohm. At greater thicknesses proportionally greater pressure is applied to reduce the resistance through the material to less than 10 ohms. The Simpson 260 series ohmeter is made by Simpson Electrical Company, Chicago, Illinois.
In FIG. 3 there is shown a cutout 12 in the sheet connector so that the connector 10 may be positioned as shown in FIGS. 4-6 in a watch or other electrical system to couple contacts 15a-15f of a first electrical device 15 e.g., a liquid crystal display to the contacts 16a-16f of a second electrical device 16 such as a circuit board supporting other circuitry not shown e.g., on the underside thereof.
The circuitry may comprise circuit patterns, passive devices e.g., resistors, and active devives such as transistors to provide at contacts 16a-16f etc., the signals to drive the liquid crystal package via contacts 15a-l5f, etc.
It should be quite ovbious to those skilled in the art that the present invention in not limited to the interconnection of the contacts of any specific or particular electrical devices and accordingly the invention herein should be construed to cover the interconnection of any types of electrical devices in which the invention could obviously be utilized.
As may be seen in FIG. 6 the contacts 15a and 15b are shown aligned with contacts 16a and 16b. Pressure is applied to the connector sheet 10 by means of pressure snap means 19 of the watch casing halves 17a and .17b. The application of pressure compresses the voldifferent pathways to the non-aligned contacts 16a or 16b.
In FIGS. 7 and 8 there is shown a plastic frame 20 e.g., of polypropylene for'holding the connector sheets 10 (in the form of strips) by way of a slot 20a formed in the frame. The frame 20 may then be placed between the electrical devices of FIG. 4 to perform the same function as the connector sheet having the cutout 12.
FIG. 9 illustrates'in schematic form the use of the connector of the invention. In this FIGURE the connector is in the form of a sheet having a thickness X e.g., 20 mils and the contacts A,B,C,D etc., to be interconnected are shown on opposite sides of the sheet.
As may be seen contacts A and B are aligned or superimposed at opposite sides of the sheet to compress a volume 10a therebetween and contacts C and D are also aligned at opposite sides of the sheet to compress another volume 10b of the sheet. The distance between contacts A and C, and B and D along the surfaces of the sheet are also set at a distance X e.g., 20 mils although obviously this may vary.
Upon application of pressure e.g., 20 to 500 psi, via one or both of the contacts A or B, or C 'or D, (which may for example be a raised square or land and have an area of one-eighth inch by one-eighth inch) in order to compress the volumes 10a and 10b the resistance between contacts A to D or A to C is 10 to 10 ohms greater than the resistance between contacts A to B.
Thus the volume between the contacts remains high so as to effectively electrically isolate the contacts D or C from contacts A or B. Upon the application of pressure to compress the volume 10b between contacts C and D sufficient current can be made to flow between the +and terminals of a source (e.g. a battery) to cause an indicator light shown at 23 to illuminate. Obviously in place of an indicator light other electrical devices may be supplied with energy in a like manner.
The following examples illustrate the connector of the invention. Unless otherwise indicated, all parts are parts by weight (pbw).
EXAMPLE 1 A connector sheet is prepared from:
Dow Corning 440 Silicone Gum Rubber Cabosil MS 7 fumed silica Nickel 00 224 powder lOO pbw 325 pbw supplied by Ventron Corp. .Beverly, Mass.
' Varox peroxide catalyst l pbw bank is produced between the mill rolls. At this time the dry intermixed materials are added to the silicone gum before it proceeds through the rolls to force the dry materials into the gum. The gum with the dry materials is periodically cut as it comes out of the rolls and is refed through the rolls until a homogenous mixture is obtained. Fifteen passes have been found to be sufficient. The rolls of the mill are spaced apart to provide a sheet of about 16 mil thickness. The sheet is then placed in a compression mold at 4,000 psi pressure for 20 minutes at 325 F to cure. The sheet is then post baked for 3 hours at 300F to complete the cure.
The sheet thus obtained has a thickness of about 16 mils.
EXAMPLE II The formulation of Example I was used as was the prodecure of Example I except that the following pigments were added to provide color as well as to enhance the smoothness of the finished sheet and to make it more sensitive to the application of pressure:
Iron oxide supplied by Harwick Chemical as Stan-tone Color D820] red oxide l0 pbw Zinc oxide XX4 supplied by New Jersey Zinc Co. l0 pbw Cobalt pigment supplied by Harwick Chemical D4900 Blue l0 pbw The sheet formed was also about 16 mils in thickness.
In tests with a Simpson 260 ohmeter using the probes thereof as in FIG. 2 the resistance across the sheet in the absence of pressure was greater than about ohms and the resistance through the compressed volume between the probes at about 50 psi pressure was less than 2 ohms.
EXAMPLE III The followiwng ingredients are combined as per the procedure of Example I except that the mill rolls are heated to 135F to provide a sheet:
Epcar 306 supplied by B. F. Goodrich I00 pbw Agerite Resin D supplied by Vanderbilt l pbw Zinc oxide 2 pbw Sunpar 2280 supplied by Sun Oil Co. 2 pbw Stearic Acid 1 pbw Nickel 00224 powder 100 mesh 325 pbw Varox Caralyst 8 pbw EXAMPLE IV at least one of said plurality of contacts comprising raised land portions, a one piece sheet connector having elastomeric-like properties positioned between the devices and overlapping superimposed contacts of said first and second devices, means to compress the sheet connector between superimposed contacts of said first and second devices on opposite surfaces of said sheet connector, said sheet connector having a low resistance through the volume between superimposed contacts where compressed and a high resistance where not directly compressed between said superimposed contacts so that each pair of superimposed contacts are electrically isolated from every other pair of superimposed contacts, said sheet connector of a thickness X and has the property that when adjacent contacts on opposite sides of said sheet are positioned as close as the distance X apart and compression is applied by pressing superimposed contacts on opposite sides of the sheet together, the resistance through the sheet between superimposed contacts is low relative to the resistance between adjacent contacts, where X is 5 to I00 mils and said sheet connector comprises a homogeneous mixture of electrically conductive particles and a nonconductive binder material having elastomeric properties.
2. In a system according to claim 1 in which the system is an electrical watch.
3. In a system according to claim 2 in which the first device is a liquid crystal display.
4. In asysTtem aa rdingioela-im 1 in which the resistance through the volume where compressed between superimposed contacts is less than 10 ohms and wherein the resistance through the volume which is not directly compressed between superimposed contacts is greater than 10 ohms.
5. In a system according to claim 1 wherein the resistance between adjacent contacts compressively engaging the sheet is greater than 10 ohms and wherein the resistancebetween superimposed contacts is less than 10 ohms.
6. In a system according to claim 1 wherein the sheet is of a thickness of 10 to 30 mils.
7. In the system of claim 1 in which said sheet connector includes conductive particles which are nickel, said nickel partiles being in the amount of 250 to 450 parts by weight based on parts by weight of the binder material.
8. In the system of claim 7 in which the thickness X is 10 to 30 mils and the maximum dimension of the nickel particles is 50 to 600 microns provided that the particle size is less than the thickness of the sheet.
9. In the system of claim 8 in which the resistance through the volume where compressed between superimposed contacts is less than 10 ohms and wherein the resistance through the volume which is not directly compressed is greater than I0 ohms.
l= l l

Claims (10)

1. IN AN ELECTRICAL SYSTEM COMPRISING FIRST AND SECOND ELECTRICAL DEVICES, EACH OF SAID FIRST AND SECOND ELECTRICAL DEVICES
1. A DIELECTRIC OPTICAL WAVEGUIDE COMPRISING: A GAAS SUBSTRATE HAVING FIRST AND SECOND MAJOR SURFACES, HAVING A PLURALITY OF SPACED APART CONTACTS, AT LEAST ONE OF SAID PLURALITY OF CONTACTS COMPRISING RAISED LAND PORTIONS, A ONE A MULTILAYERED STRUCTURE COMPRISING THE FOLLOWING LAYERS PIECE SHEET CONNECTOR HAVING ELASTOMERIC-LIKE PROPERTIES POSIEPITAXIALLY GROWN ON SAID FIRST MAJOR SURFACE IN THE ORDER TIONED BETWEEN THE DEVICES AND OVERLAPPING SUPERIMPOSED RECITED: A ALXGA1-XAS FIRST LAYER AT LEAST ONE ALY GA1-YAS CONTACTS OF SAID FIRST AND SECOND DEVICES, MEANS TO COMPRESS MIDDLE LAYER, AND A ALGA1-XAS THIRD LAYER, Y< X AND Z; THE WIDTH OF SAID MIDDLE LAYER MEASURED PARALLEL TO SID THE SHEET CONNECTOR BETWEEN SUPERIMPOSED CONTACTS OF SAID FIRST MAJOR SURFACE, BEING LESS THAN THE CORRESPONDING FIRST AND SECOND DEVICES ON OPPOSITE SURFACES OF SAID SHEET CONNECTOR, SAID SHEET CONNECTOR HAVING A LOW RESISTANCE WIDTH OF SAID FIRST AND THIRD LAYERS SO THAT SAID LATTER LAYERS THROUGH THE VOLUME BETWEEN SUPERIMPOSED CONTACTS WHERE HAVE PORTIONS WHICH OVERHANG THE EDGES OF THE SAID MIDDLE LAYER. COMPRESSED AND A HIGH RESISTANCE WHERE NOT DIRECTLY COMPRESSED BETWEEN SAID SUPERIMPOSED CONTACTS SO THAT EACH PAIR
2. In a system according to claim 1 in which the system is an electrical watch.
3. In a system according to claim 2 in which the first device is a liquid crystal display.
4. In a system according to claim 1 in which the resistance through the volume where compressed between superimposed contacts is less than 10 ohms and wherein the resistance through the volume which is not directly compressed between superimposed contacts is greater than 105 ohms.
5. In a system according to claim 1 wherein the resistance between adjacent contacts compressively engaging the sheet is greater than 105 ohms and wherein the resistance between superimposed contacts is less than 10 ohms.
6. In a system according to claim 1 wherein the sheet is of a thickness of 10 to 30 mils.
7. In the system of claim 1 in which said sheet connector includes conductive particles which are nickel, said nickel partiles being in the amount of 250 to 450 parts by weight based on 100 parts by weight of the binder material.
8. In the system of claim 7 in which the thickness X is 10 to 30 mils and the maximum dimension of the nickel particles is 50 to 600 microns provided that the particle size is less than the thickness of the sheet.
9. In the system of claim 8 in which the resistance through the volume where compressed between superimposed contacts is less than 10 ohms and wherein the resistance through the volume which is not directly compressed is greater than 105 ohms.
US431389A 1974-01-07 1974-01-07 Connectors Expired - Lifetime US3883213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US431389A US3883213A (en) 1974-01-07 1974-01-07 Connectors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US431389A US3883213A (en) 1974-01-07 1974-01-07 Connectors

Publications (1)

Publication Number Publication Date
US3883213A true US3883213A (en) 1975-05-13

Family

ID=23711731

Family Applications (1)

Application Number Title Priority Date Filing Date
US431389A Expired - Lifetime US3883213A (en) 1974-01-07 1974-01-07 Connectors

Country Status (1)

Country Link
US (1) US3883213A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3965665A (en) * 1975-03-31 1976-06-29 Hughes Aircraft Company Electronic watch construction
US3991463A (en) * 1975-05-19 1976-11-16 Chomerics, Inc. Method of forming an interconnector
US4028798A (en) * 1976-04-09 1977-06-14 General Electric Company Method of making electrical connections
US4065197A (en) * 1974-06-17 1977-12-27 Chomerics, Inc. Isolated paths connector
DE2731050A1 (en) * 1976-07-07 1978-01-12 Minnesota Mining & Mfg CONNECTING CLAMP
US4120147A (en) * 1976-01-08 1978-10-17 Citizen Watch Company Limited Watch module assembly
US4127321A (en) * 1975-09-05 1978-11-28 Hitachi, Ltd. Liquid crystal display apparatus
US4252990A (en) * 1977-10-18 1981-02-24 Shinetsu Polymer Co Electronic circuit parts
US4545647A (en) * 1974-09-30 1985-10-08 Sharp Kabushiki Kaisha Resilient interconnection for exchangeable liquid crystal panel
US4721365A (en) * 1984-11-21 1988-01-26 Canon Kabushiki Kaisha Electronic device including panels with electrical alignment means
US4902234A (en) * 1988-11-03 1990-02-20 International Business Machines Corporation Electrical connector assembly including pressure exertion member
US5059129A (en) * 1991-03-25 1991-10-22 International Business Machines Corporation Connector assembly including bilayered elastomeric member
US5099393A (en) * 1991-03-25 1992-03-24 International Business Machines Corporation Electronic package for high density applications
US5315356A (en) * 1991-03-16 1994-05-24 Kabushiki Kaisha Toshiba Fixing apparatus
US5349423A (en) * 1991-03-16 1994-09-20 Kabushiki Kaisha Toshiba Recording apparatus and heating apparatus for use in recording apparatus
US5428190A (en) * 1993-07-02 1995-06-27 Sheldahl, Inc. Rigid-flex board with anisotropic interconnect and method of manufacture
US5462440A (en) * 1994-03-11 1995-10-31 Rothenberger; Richard E. Micro-power connector
US5502889A (en) * 1988-06-10 1996-04-02 Sheldahl, Inc. Method for electrically and mechanically connecting at least two conductive layers
US5527998A (en) * 1993-10-22 1996-06-18 Sheldahl, Inc. Flexible multilayer printed circuit boards and methods of manufacture
US5727310A (en) * 1993-01-08 1998-03-17 Sheldahl, Inc. Method of manufacturing a multilayer electronic circuit
US5873740A (en) * 1998-01-07 1999-02-23 International Business Machines Corporation Electrical connector system with member having layers of different durometer elastomeric materials
US6255587B1 (en) * 1994-12-20 2001-07-03 At&T Corporation Multi-component electronic devices and methods for making them
US6822720B2 (en) * 2000-03-09 2004-11-23 Advanced Display Inc. Liquid crystal display having improved connection between TFT and TCP
US20140241135A1 (en) * 2013-02-26 2014-08-28 Eta Sa Manufacture Horlogere Suisse Method of aligning a crystal relative to the middle part of a timepiece
US20170012366A1 (en) * 2014-02-04 2017-01-12 Schaeffler Technologies AG & Co. KG Connector, machine element and method for making contact with contact pads on a machine element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2951817A (en) * 1959-07-28 1960-09-06 Thomas E Myers Variable resistance material
US3760342A (en) * 1971-09-17 1973-09-18 Essex International Inc Terminal construction for electrical conductors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2951817A (en) * 1959-07-28 1960-09-06 Thomas E Myers Variable resistance material
US3760342A (en) * 1971-09-17 1973-09-18 Essex International Inc Terminal construction for electrical conductors

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118102A (en) * 1974-06-17 1978-10-03 Chomerics, Inc. Isolated path coupling system
US4065197A (en) * 1974-06-17 1977-12-27 Chomerics, Inc. Isolated paths connector
US4545647A (en) * 1974-09-30 1985-10-08 Sharp Kabushiki Kaisha Resilient interconnection for exchangeable liquid crystal panel
US3965665A (en) * 1975-03-31 1976-06-29 Hughes Aircraft Company Electronic watch construction
US3991463A (en) * 1975-05-19 1976-11-16 Chomerics, Inc. Method of forming an interconnector
US4127321A (en) * 1975-09-05 1978-11-28 Hitachi, Ltd. Liquid crystal display apparatus
US4120147A (en) * 1976-01-08 1978-10-17 Citizen Watch Company Limited Watch module assembly
US4028798A (en) * 1976-04-09 1977-06-14 General Electric Company Method of making electrical connections
DE2731050A1 (en) * 1976-07-07 1978-01-12 Minnesota Mining & Mfg CONNECTING CLAMP
US4144648A (en) * 1976-07-07 1979-03-20 Minnesota Mining And Manufacturing Company Connector
JPS5525504B2 (en) * 1976-07-07 1980-07-07
JPS536872A (en) * 1976-07-07 1978-01-21 Minnesota Mining & Mfg Connector
US4252990A (en) * 1977-10-18 1981-02-24 Shinetsu Polymer Co Electronic circuit parts
US4721365A (en) * 1984-11-21 1988-01-26 Canon Kabushiki Kaisha Electronic device including panels with electrical alignment means
US5688584A (en) * 1988-06-10 1997-11-18 Sheldahl, Inc. Multilayer electronic circuit having a conductive adhesive
US5502889A (en) * 1988-06-10 1996-04-02 Sheldahl, Inc. Method for electrically and mechanically connecting at least two conductive layers
US4902234A (en) * 1988-11-03 1990-02-20 International Business Machines Corporation Electrical connector assembly including pressure exertion member
US5315356A (en) * 1991-03-16 1994-05-24 Kabushiki Kaisha Toshiba Fixing apparatus
US5349423A (en) * 1991-03-16 1994-09-20 Kabushiki Kaisha Toshiba Recording apparatus and heating apparatus for use in recording apparatus
US5099393A (en) * 1991-03-25 1992-03-24 International Business Machines Corporation Electronic package for high density applications
US5059129A (en) * 1991-03-25 1991-10-22 International Business Machines Corporation Connector assembly including bilayered elastomeric member
US5727310A (en) * 1993-01-08 1998-03-17 Sheldahl, Inc. Method of manufacturing a multilayer electronic circuit
US5428190A (en) * 1993-07-02 1995-06-27 Sheldahl, Inc. Rigid-flex board with anisotropic interconnect and method of manufacture
US5527998A (en) * 1993-10-22 1996-06-18 Sheldahl, Inc. Flexible multilayer printed circuit boards and methods of manufacture
US5800650A (en) * 1993-10-22 1998-09-01 Sheldahl, Inc. Flexible multilayer printed circuit boards and methods of manufacture
US5462440A (en) * 1994-03-11 1995-10-31 Rothenberger; Richard E. Micro-power connector
US6255587B1 (en) * 1994-12-20 2001-07-03 At&T Corporation Multi-component electronic devices and methods for making them
US5873740A (en) * 1998-01-07 1999-02-23 International Business Machines Corporation Electrical connector system with member having layers of different durometer elastomeric materials
US6822720B2 (en) * 2000-03-09 2004-11-23 Advanced Display Inc. Liquid crystal display having improved connection between TFT and TCP
US20050030467A1 (en) * 2000-03-09 2005-02-10 Advanced Display Inc. Liquid crystal display
US7102721B2 (en) 2000-03-09 2006-09-05 Advanced Display Inc. Liquid crystal display having different shaped terminals configured to become substantially aligned
US20140241135A1 (en) * 2013-02-26 2014-08-28 Eta Sa Manufacture Horlogere Suisse Method of aligning a crystal relative to the middle part of a timepiece
US9471041B2 (en) * 2013-02-26 2016-10-18 Eta Sa Manufacture Horlogere Suisse Method of aligning a crystal relative to the middle part of a timepiece
US20170012366A1 (en) * 2014-02-04 2017-01-12 Schaeffler Technologies AG & Co. KG Connector, machine element and method for making contact with contact pads on a machine element

Similar Documents

Publication Publication Date Title
US3883213A (en) Connectors
US4065197A (en) Isolated paths connector
US3991463A (en) Method of forming an interconnector
US4468074A (en) Solderless connection technique and apparatus
US3721778A (en) Keyboard switch assembly with improved operator and contact structure
JPS6032285B2 (en) Method for manufacturing pressurized conductive elastomer
ES435008A2 (en) Elastomeric connector and its method of manufacture
DE69026992T2 (en) Process of mutual connection of electrode connections
JPS6337463B2 (en)
GB1404692A (en) Screened-joint structures for electromagnetic screening enclosures
GB1501125A (en) Switching assembly
US4801768A (en) Compact electronic device
AU3222689A (en) Flexible circuit and connector
EP0718928A3 (en) Electrical connector assembly
JPS6452305A (en) Continuous flexble electric conductor which can function as electric switch
CA1078479A (en) Isolated paths connector and isolated path coupling system
EP0168227B1 (en) Anisotropic electric conductive rubber connector
JPH0645025A (en) Anisotropic conductive connector
EP0308980A3 (en) Flat wire in silicone rubber or matrix moe
CA1104682A (en) Solderless connection technique and apparatus
JPS6419324A (en) Active matrix type liquid crystal display panel
JPS6435528A (en) Terminal connecting structure
JPH05258640A (en) Sheet-like input device
CN113871236A (en) Electronic switch and flexible electronic equipment
EP0386918A3 (en) An electrical device