US3883398A - Microculture slide chamber - Google Patents

Microculture slide chamber Download PDF

Info

Publication number
US3883398A
US3883398A US357991A US35799173A US3883398A US 3883398 A US3883398 A US 3883398A US 357991 A US357991 A US 357991A US 35799173 A US35799173 A US 35799173A US 3883398 A US3883398 A US 3883398A
Authority
US
United States
Prior art keywords
matrix
slide
microculture
plate
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US357991A
Inventor
Kazuyuki Ray Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bellco Glass Inc
Original Assignee
Bellco Glass Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bellco Glass Inc filed Critical Bellco Glass Inc
Priority to US357991A priority Critical patent/US3883398A/en
Application granted granted Critical
Publication of US3883398A publication Critical patent/US3883398A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/04Flat or tray type, drawers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements

Definitions

  • a microculture slide chamber for simultaneously growing a plurality of mono-layer cell cultures on a slide includes a matrix which defines a plurality of generally parallel holes extending therethrough so that a plurality of wells for containing the culture bearing fluid are provided when the matrix is in abutment with a slide.
  • a gasket Surrounding each hole on one side of the matrix is a gasket that is integral with the matrix and serves to seal the fluid in each well.
  • a pressure plate with mating holes overlies the opposite side of each matrix and spring clips hold the plate, matrix and slide in assembled relation.
  • a cover for the microculture slide chamber is provided.
  • This invention relates to a microculture slide chamber. More particularly, this invention relates to a microculture slide chamber for simultaneously growing a plurality of mono-layer cell cultures on a slide or similar structure.
  • the present invention overcomes the disadvantages of such prior art devices by providing a readily assemblable and disassemblable microculture slide chamber for simultaneously forming two or more culture cells or the like on a slide.
  • Such cell cultures may be, but need not be, mono-layer cell cultures.
  • the microculture slide chamber comprising the present invention is designed so that it will have the advantages of consistency from slide to slide, convenience in use, be economical to purchase and maintain, and can be readily stored.
  • the advantage of forming a plurality of cell cultures on a single slide is that there can be consistency in cell staining, consistent histochemistry, and identical manipulation.
  • Such a device is convenient because it provides efficiency in processing and examination of all cells on a single slide and also allows for storing the cells in racks that can be readily identified.
  • Economy is achieved because the microculture slide chamber is recyclable except, of course, for the slide itself.
  • the microculture slide chamber comprises a slide on which the cultures are to be grown together with a matrix made of resilient material through which extend a plurality of holes.
  • the matrix is positioned in abutting relation to the slide so that each hole defines a well or chamber within which the culture bearing fluid can be maintained.
  • the side of the matrix which abuts the slide includes gaskets integral therewith and surrounding each of the holes. The gaskets provide a fluid tight seal for each well thus formed preventing leakage from well to well.
  • Overlying the opposite side of the hole is a plate serving as a pressure plate.
  • the plate has a plurality of holes extending therethrough which holes are arranged on the plate so as to align with the matrix holes.
  • a pair of spring clips engage the side edges of the surface of the slide and plate to retain the same in abutting relation with the matrix.
  • a cover is provided for closing the wells while the cell cultures are being formed.
  • a microculture slide chamber constructed in accordance with what is described and claimed herein has many uses and applications. Among these are the following:
  • Viral titrations can be rapidly and easily performed in the chambers.
  • Cytotoxic antibody titrations can be done as well.
  • lmmunoflourescence methods are especially easy with this invention.
  • the detection of anti-nuclear antibodies (ANA) for testing for lupus erythematosis is very easy.
  • Viral diagnosis could be accomplished in this system by titrating for immunoflourescence of the patients serum against preinfected cell mono-layers.
  • FIG. 1 is an exploded perspective view of a microculture slide chamber in accordance with the present invention.
  • FIG. 2 is a transverse sectional view of the microculture slide chamber showing the same in assembled relation.
  • microculture slide chamber designated generally as 10.
  • the microculture slide chamber 10 is provided with a slide 12 which may be made of glass, as is conventional.
  • the slide 12 is somewhat longer than the microculture slide chamber 10 so that a frosted portion 13 upon which identifying marks can be made protrudes outwarding from the cell.
  • Overlying the slide 12 is a matrix 14 best shown in FIG. 1.
  • the matrix 14 is made of a resilient material such as silicone rubber. Of course, other resilient materials may be substituted provided that they are autoclavable.
  • Extending through the matrix 14 are a plurality of holes 16 in generally parallel relation to each other.
  • the matrix 14 may take any form, such as circular or even toroidal, it is shown as being generally in the shape of a rectangular parallel-piped having opposed planar surfaces 18 and 20 between which the holes 16 extend. Ten holes 16 are shown extending from surface 18 to surface 20.
  • each of the holes 16 defines a well or chamber for containing the culture bearing fluid.
  • a gasket 22 surrounds each of the holes 16.
  • the gaskets 22 are integrally formed with the matrix 14 and provide a fluid tight seal when the slide 12 is held in abutting relation with the matrix 14 under the force of the spring clips 24 and 26.
  • the advantage of making the gaskets 22 integral with the matrix 14 is that they are simultaneously removed when the matrix is separated from the slide, thus avoiding the danger that their individual removal with forceps would result in damage to the cell cultures.
  • a pressure plate 28 Overlying the matrix 14 is a pressure plate 28 whose function is to cooperate with the clips 24 and 26 to apply a compression force on the matrix 14 to retain the gaskets 22 in good contact with the slide 12.
  • Plate 28 is preferably made of stainless steel or an autoclavable polymer such as polycarbonate.
  • the plate 28 is dimensioned to have the same width as the matrix 14 just as the matrix 14 has a width approximately equal to the width of the slide 12.
  • the plate 28 is provided with holes 30 extending therethrough which holes are positioned in the plate 28 so as to align with the holes 16 in the matrix 14. Thus, the holes 30 permit ready access to the holes 16 and the wells thus defined when the microculture slide chamber is in its assembled condition.
  • plate 28 may be permanently fixed to matrix 14.
  • Clips 24 and 26 provide a resilient means for main taining the microculture slide chamber in its assembled relation.
  • each of the clips 24 and 26 is made of a tempered spring metal, such as stainless steel, and it is provided with curved dependent edge engaging sections 32 and 34.
  • the edge engaging sections 32 and 34 depend from a medially curved or bent intermediate section such that the distance between the edge sections 32 and 34 is normally less than the thickness of the assembled microculture slide chamber including the slide 12, matrix 14 and plate 28 when each clip is in an unstressed condition.
  • Each of the clips 24 and 26 slides over the edges of the slide 12 and the plate 28 and thereby compresses them toward the matrix 14, thus retaining the microculture slide chamber in its assembled relation without interferring with access to the holes 30.
  • a cover 36 is made of polycarbonate polymer or some other autoclavable material and preferably is light transparent so that the interior of the hole 16 can be observed. Cover 36 is dimensioned to overlie the entire surface of plate 28 and, of course, the matrix 16 thereby protecting the culture fluid when placed in the holes 16.
  • the number of holes 16 in matrix 14 can be varied as desired. Moreover, the dimensions can also be varied. in one preferred embodiment, the holes 16 are sized to contain culture fluid of 0.4 ml maximum with a recommended amount of approximately O.2 ml.
  • the slide 12 is preferably of stan dard dimensions for microscope slides which are approximately 09 mm to 1.09 mm in thickness.
  • the microculture slide chamber is assembled and the appropriate culture bearing fluids are placed in two or more of the holes 16.
  • the cultures are innoculated, the cover 36 is placed on top of the microculture slide chamber, and the entire device is placed in a CO incubator.
  • the cells attach to the base of the glass slide 12 to form a monolayer cell culture at the bottom of each of the wells defined by the combination of the slide 12 and the holes 16 in the matrix 14.
  • the cells can be innoculated with viruses, or any of the procedures outlined above can be effected.
  • the use of the invention is not limited to glass microscope slides.
  • Other types of slides such as plastic slides to which the cells will adhere, can be used.
  • One such plastic is a polyester sold under the trade name Melinex" and manufactured by Imperial Chemical Industries, Inc.
  • Melinex a polyester sold under the trade name Melinex" and manufactured by Imperial Chemical Industries, Inc.
  • a microculture slide chamber for growing cultures comprising:
  • a matrix having a plurality of generally parallel matrix holes extending therethrough, said matrix being made of a resilient material
  • said matrix holes when positioned over said slide defining a plurality of wells for containing a culture bearing fluid
  • each said gasket being integral with said matrix, and each said gasket providing a fluid-tight seal between said slide and said matrix for retaining fluid in said wells;
  • a plate having openings therethrough aligned to permit access to said matrix holes when said plate is in overlying relation to said matrix;
  • resilient clip means for retaining said microculture slide chamber in assembled relation for growing cultures therein, said assembled relation comprising said slide in abutting relation with the gasket side of said matrix and said plate in abutting and aligned relation with the opposite side of said matrix, and
  • a microculture slide chamber in accordance with claim 1 wherein said matrix, said clip means. said plate and said cover are made of autoclavable substances.
  • a microculture slide chamber for growing cultures on a slide comprising:
  • a matrix having a plurality of generally parallel matrix holes extending therethrough, said matrix being made of a resilient material
  • said matrix holes when positioned over a slide defining a plurality of chambers for containing a culture bearing fluid
  • each said gasket being integral with said matrix, and each said gasket being capable of providing a fluid-tight seal between a slide and said matrix for retaining fluid in said chambers when a slide is placed against the gasket side of the matrix;
  • a pressure plate having openings therethrough aligned to permit access to said matrix holes when said plate is in overlying relation to said matrix;
  • resilient clip means for retaining said microculture slide chamber in assembled relation with a slide for growing cultures on the slide, said assembled rela tion comprising a slide in abutting relation with the gasket side of said matrix and said plate in abutting and aligned relation with the opposite side of said matrix.

Abstract

A microculture slide chamber for simultaneously growing a plurality of mono-layer cell cultures on a slide includes a matrix which defines a plurality of generally parallel holes extending therethrough so that a plurality of wells for containing the culture bearing fluid are provided when the matrix is in abutment with a slide. Surrounding each hole on one side of the matrix is a gasket that is integral with the matrix and serves to seal the fluid in each well. A pressure plate with mating holes overlies the opposite side of each matrix and spring clips hold the plate, matrix and slide in assembled relation. A cover for the microculture slide chamber is provided.

Description

United States Patent [1 1 Ono [ May 13, 1975 MICROCULTURE SLIDE CHAMBER [75] Inventor: Kazuyuki Ray Ono, Bridgeton, NJ. [73] Assignee: Bellco Glass, lnc., Vineland, NJ. [22] Filed: May 7, 1973 [21] Appl. No.: 357,991
[52] US. Cl 195/127; 195/139 [51] Int. Cl Cl2b 1/00 [58] Field of Search l95/l39, I27
[56] References Cited UNITED STATES PATENTS 3,745.09] 7/1973 McCormick 195/139 3,791,933 2/1974 Moyer ct al. [95/127 Primary Examiner-Alvin E. Tanenholtz Attorney, Agent, or FirmSeidel, Gonda & Goldhammer [57] ABSTRACT A microculture slide chamber for simultaneously growing a plurality of mono-layer cell cultures on a slide includes a matrix which defines a plurality of generally parallel holes extending therethrough so that a plurality of wells for containing the culture bearing fluid are provided when the matrix is in abutment with a slide. Surrounding each hole on one side of the matrix is a gasket that is integral with the matrix and serves to seal the fluid in each well. A pressure plate with mating holes overlies the opposite side of each matrix and spring clips hold the plate, matrix and slide in assembled relation. A cover for the microculture slide chamber is provided.
10 Claims, 2 Drawing Figures MICROCULTURE SLIDE CHAMBER This invention relates to a microculture slide chamber. More particularly, this invention relates to a microculture slide chamber for simultaneously growing a plurality of mono-layer cell cultures on a slide or similar structure.
There are many types of laboratory tests, particularly in the biological sciences, wherein it is desirable to form cell cultures on a slide. Among these are monolayer cell cultures for which the present invention is particularly suited, although those skilled in the art will recognize that it may have other uses. For various reasons, it is desirable that two or more cell cultures be grown on the same slide. For example, an advantage of growing multiple cell cultures on the same slide is that different viruses can be used to innoculate the same type of cells or, in the alternative, one virus can be used to innoculate different types of cell cultures. There are, of course, other advantages as hereinafter described. The present invention provides a microculture slide chamber which enables such persons to gain these advantages.
Prior attempts have been made to provide microculture slide chambers for growing a plurality of cell cultures on the same slide. Among these is a tissue culture chamber-slide sold by Miles Laboratory, Inc. under Lab-Tek Catalog No. D2270. This device consists of a glass slide with a removable non-toxic gasket and an attached optically clear plastic sample chamber. The chamber-slide has proven to be quite unsatisfactory for several reasons. Among these is that the fluid occasionally leaks from chamber to chamber. Worse still, the separation of the slide from the remaining parts of the device requires the application of pressure to break the gasket seal followed by the removal of the gasket with forcep. In use, the breaking action or the removal of the gasket results in the removal of parts of the culture cells, a wholly unacceptable result.
The present invention overcomes the disadvantages of such prior art devices by providing a readily assemblable and disassemblable microculture slide chamber for simultaneously forming two or more culture cells or the like on a slide. Such cell cultures may be, but need not be, mono-layer cell cultures.
The microculture slide chamber comprising the present invention is designed so that it will have the advantages of consistency from slide to slide, convenience in use, be economical to purchase and maintain, and can be readily stored. The advantage of forming a plurality of cell cultures on a single slide is that there can be consistency in cell staining, consistent histochemistry, and identical manipulation. Such a device is convenient because it provides efficiency in processing and examination of all cells on a single slide and also allows for storing the cells in racks that can be readily identified. Economy is achieved because the microculture slide chamber is recyclable except, of course, for the slide itself.
In accordance with the present invention, the microculture slide chamber comprises a slide on which the cultures are to be grown together with a matrix made of resilient material through which extend a plurality of holes. The matrix is positioned in abutting relation to the slide so that each hole defines a well or chamber within which the culture bearing fluid can be maintained. The side of the matrix which abuts the slide includes gaskets integral therewith and surrounding each of the holes. The gaskets provide a fluid tight seal for each well thus formed preventing leakage from well to well. Overlying the opposite side of the hole is a plate serving as a pressure plate. The plate has a plurality of holes extending therethrough which holes are arranged on the plate so as to align with the matrix holes. A pair of spring clips engage the side edges of the surface of the slide and plate to retain the same in abutting relation with the matrix. A cover is provided for closing the wells while the cell cultures are being formed.
A microculture slide chamber constructed in accordance with what is described and claimed herein has many uses and applications. Among these are the following:
Screening for effects of compounds on cellular morphology, replication, viability and differentiation.
2. Study of the effects of compounds on the cellular uptake of a variety of radio isotopic substrates. This application requires the use of a polymer substrate or slide.
3. Autoradiographic studies permit the localization of radio isotopic tracers in the cells.
4. Viral titrations can be rapidly and easily performed in the chambers.
5. Cytotoxic antibody titrations can be done as well.
6. Lymphocytotoxic assays using either optical or radio-isotopic end points are easily performed.
7. lmmunoflourescence methods are especially easy with this invention. The detection of anti-nuclear antibodies (ANA) for testing for lupus erythematosis is very easy. Viral diagnosis could be accomplished in this system by titrating for immunoflourescence of the patients serum against preinfected cell mono-layers.
8. It is theoretically possible to perform the macrophage inhibition factor assay using this invention.
For the purpose of illustrating the invention, there are shown in the drawings forms which are presently preferred; it being understood, however, that this invention is not limited to the precise arrangements and instrumentalities shown.
FIG. 1 is an exploded perspective view of a microculture slide chamber in accordance with the present invention.
FIG. 2 is a transverse sectional view of the microculture slide chamber showing the same in assembled relation.
Referring now to the drawings in detail, wherein like numerals indicate like elements, there is shown a microculture slide chamber designated generally as 10.
The microculture slide chamber 10 is provided with a slide 12 which may be made of glass, as is conventional. The slide 12 is somewhat longer than the microculture slide chamber 10 so that a frosted portion 13 upon which identifying marks can be made protrudes outwarding from the cell. Overlying the slide 12 is a matrix 14 best shown in FIG. 1. The matrix 14 is made of a resilient material such as silicone rubber. Of course, other resilient materials may be substituted provided that they are autoclavable. Extending through the matrix 14 are a plurality of holes 16 in generally parallel relation to each other. Although the matrix 14 may take any form, such as circular or even toroidal, it is shown as being generally in the shape of a rectangular parallel-piped having opposed planar surfaces 18 and 20 between which the holes 16 extend. Ten holes 16 are shown extending from surface 18 to surface 20.
However, any number of such holes, as desired, may be provided.
When matrix 14 is brought into abutting relation with the upper surface of slide 12, each of the holes 16 defines a well or chamber for containing the culture bearing fluid. To be certain that the fluid does not leak from well to well, a gasket 22 surrounds each of the holes 16. The gaskets 22 are integrally formed with the matrix 14 and provide a fluid tight seal when the slide 12 is held in abutting relation with the matrix 14 under the force of the spring clips 24 and 26. The advantage of making the gaskets 22 integral with the matrix 14 is that they are simultaneously removed when the matrix is separated from the slide, thus avoiding the danger that their individual removal with forceps would result in damage to the cell cultures.
Overlying the matrix 14 is a pressure plate 28 whose function is to cooperate with the clips 24 and 26 to apply a compression force on the matrix 14 to retain the gaskets 22 in good contact with the slide 12. Plate 28 is preferably made of stainless steel or an autoclavable polymer such as polycarbonate. The plate 28 is dimensioned to have the same width as the matrix 14 just as the matrix 14 has a width approximately equal to the width of the slide 12. Moreover, the plate 28 is provided with holes 30 extending therethrough which holes are positioned in the plate 28 so as to align with the holes 16 in the matrix 14. Thus, the holes 30 permit ready access to the holes 16 and the wells thus defined when the microculture slide chamber is in its assembled condition. If desired, plate 28 may be permanently fixed to matrix 14.
Clips 24 and 26 provide a resilient means for main taining the microculture slide chamber in its assembled relation. As shown, each of the clips 24 and 26 is made of a tempered spring metal, such as stainless steel, and it is provided with curved dependent edge engaging sections 32 and 34. The edge engaging sections 32 and 34 depend from a medially curved or bent intermediate section such that the distance between the edge sections 32 and 34 is normally less than the thickness of the assembled microculture slide chamber including the slide 12, matrix 14 and plate 28 when each clip is in an unstressed condition. Each of the clips 24 and 26 slides over the edges of the slide 12 and the plate 28 and thereby compresses them toward the matrix 14, thus retaining the microculture slide chamber in its assembled relation without interferring with access to the holes 30. A cover 36 is made of polycarbonate polymer or some other autoclavable material and preferably is light transparent so that the interior of the hole 16 can be observed. Cover 36 is dimensioned to overlie the entire surface of plate 28 and, of course, the matrix 16 thereby protecting the culture fluid when placed in the holes 16.
It should be understood that the number of holes 16 in matrix 14 can be varied as desired. Moreover, the dimensions can also be varied. in one preferred embodiment, the holes 16 are sized to contain culture fluid of 0.4 ml maximum with a recommended amount of approximately O.2 ml. The slide 12 is preferably of stan dard dimensions for microscope slides which are approximately 09 mm to 1.09 mm in thickness.
In use, the microculture slide chamber is assembled and the appropriate culture bearing fluids are placed in two or more of the holes 16. The cultures are innoculated, the cover 36 is placed on top of the microculture slide chamber, and the entire device is placed in a CO incubator. As is known, the cells attach to the base of the glass slide 12 to form a monolayer cell culture at the bottom of each of the wells defined by the combination of the slide 12 and the holes 16 in the matrix 14. The cells can be innoculated with viruses, or any of the procedures outlined above can be effected.
Once the monolayer culture has been formed, it is a straightforward procedure to disassemble the microculture slide chamber, fix and stain the cells, thereafter examine them under an appropriate microscope. Cover slips can also be fastened to the cells to make a permanent record of the culture.
The use of the invention is not limited to glass microscope slides. Other types of slides, such as plastic slides to which the cells will adhere, can be used. One such plastic is a polyester sold under the trade name Melinex" and manufactured by Imperial Chemical Industries, Inc. The advantage of using a plastic is that it can be readily divided, if desired after formation of the cells. This may be advantageous when it is desirable to measure the radioactivity of each cell monolayer.
The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof and, accordingly, reference should be made to the appended claims, rather than to the foregoing specification as indicating the scope of the invention.
I claim:
1. A microculture slide chamber for growing cultures comprising:
a slide on which said cultures are to be grown;
a matrix having a plurality of generally parallel matrix holes extending therethrough, said matrix being made of a resilient material;
said matrix holes when positioned over said slide defining a plurality of wells for containing a culture bearing fluid;
a gasket surrounding the end of each matrix hole adjacent said slide, each said gasket being integral with said matrix, and each said gasket providing a fluid-tight seal between said slide and said matrix for retaining fluid in said wells;
a plate having openings therethrough aligned to permit access to said matrix holes when said plate is in overlying relation to said matrix;
resilient clip means for retaining said microculture slide chamber in assembled relation for growing cultures therein, said assembled relation comprising said slide in abutting relation with the gasket side of said matrix and said plate in abutting and aligned relation with the opposite side of said matrix, and
a cover for said microculture slide chamber.
2. A microculture slide chamber in accordance with claim 1 wherein said clip means comprise first and sec ond resilient clips for engaging the edges of said slide and plate and Compressing them into engagement with said matrix.
3. A microculture slide chamber in accordance with claim 1 wherein said matrix is made of a silicone polymer.
4. A microculture slide chamber in accordance with claim 1 wherein said matrix, said clip means. said plate and said cover are made of autoclavable substances.
5. A microculture slide chamber in accordance with claim 4 wherein said cover is made of a polycarbonate polymer.
6. A microculture slide chamber in accordance with claim 4 wherein said clip means is made of a stainless steel.
7. A microculture slide chamber in accordance with claim 4 wherein said plate is made of stainless steel.
8. A microculture slide chamber in accordance with claim 1 wherein said plate is permanently fixed to said matrix.
9. A microculture slide chamber in accordance with claim 1 wherein said slide is made of a polymer material.
10. A microculture slide chamber for growing cultures on a slide comprising:
a matrix having a plurality of generally parallel matrix holes extending therethrough, said matrix being made of a resilient material;
said matrix holes when positioned over a slide defining a plurality of chambers for containing a culture bearing fluid;
a gasket surrounding one end of each matrix hole on one side of said matrix, each said gasket being integral with said matrix, and each said gasket being capable of providing a fluid-tight seal between a slide and said matrix for retaining fluid in said chambers when a slide is placed against the gasket side of the matrix;
a pressure plate having openings therethrough aligned to permit access to said matrix holes when said plate is in overlying relation to said matrix; and
resilient clip means for retaining said microculture slide chamber in assembled relation with a slide for growing cultures on the slide, said assembled rela tion comprising a slide in abutting relation with the gasket side of said matrix and said plate in abutting and aligned relation with the opposite side of said matrix.

Claims (10)

1. A MICROSULTURE SLIDE CHAMBER FOR GROWING CULTURES COMPRISING: A SLIDE ON WHICH SAID CULTURES ARE TO BE GROWN, A MATRIX HAVING A PLURALITY OF GENERALLY PARALLEL MATRIX HOLES EXTENDING THERETHROUGH, SAID MATRIX BEING MADE OF A RESILIENT MATERIAL, SAID MATRIX HOLES WHEN POSITIONED OVER SAID SLIDE DEFINING A PLURALITY OF WELLS FOR CONTAINING A CULTURE BEARING FLUID, A GASKET SURROUNDING THE END OF EACH MATRIX HOLE ADJACENT SAID SLIDE, EACH SAID GASKET BEING INTEGRAL WITH SAID MATRIX, AND EACH SAID GASKET PROVIDING A FLUID-TIGHT SEAL BETWEEN SAID SLIDE AND SAID MATRIX FOR RETAINING FLUID IN SAID WELLS; A PLATE HAVING OPENINGS THERETHROUGH ALIGNED TO PERMIT ACCESS TO SAID MATRIX HOLES WHEN SAID PLATE IS IN OVERLYING RELATION TO SAID MATRIX;
2. A microculture slide chamber in accordance with claim 1 wherein said clip means comprise first and second resilient clips for engaging the edges of said slide and plate and compressing them into engagement with said matrix.
3. A microculture slide chamber in accordance with claim 1 wherein said matrix is made of a silicone polymer.
4. A microculture slide chamber in accordance with claim 1 wherein said matrix, said clip means, said plate and said cover are made of autoclavable substances.
5. A microculture slide chamber in accordance with claim 4 wherein said cover is made of a polycarbonate polymer.
6. A microculture slide chamber in accordance with claim 4 wherein said clip means is made of a stainless steel.
7. A microculture slide chamber in accordance with claim 4 wherein said plate is made of stainless steel.
8. A microculture slide chamber in accordance with claim 1 wherein said plate is permanently fixed to said matrix.
9. A microculture slide chamber in accordance with claim 1 wherein said slide is made of a polymer material.
10. A microculture slide chamber for growing cultures on a slide comprising: a matrix having a plurality of generally parallel matrix holes extending therethrough, said matrix being made of a resilient material; said matrix holes when positioned over a slide defining a plurality of chambers for containing a culture bearing fluid; a gasket surrounding one end of each matrix hole on one side of said matrix, each said gasket being integral with said matrix, and each said gasket being capable of providing a fluid-tight seal between a slide and said matrix for retaining fluid in said chambers when a slide is placed against the gasket side of the matrix; a pressure plate having openings therethrough aligned to permit access to said matrix holes when said plate is in overlying relatioN to said matrix; and resilient clip means for retaining said microculture slide chamber in assembled relation with a slide for growing cultures on the slide, said assembled relation comprising a slide in abutting relation with the gasket side of said matrix and said plate in abutting and aligned relation with the opposite side of said matrix.
US357991A 1973-05-07 1973-05-07 Microculture slide chamber Expired - Lifetime US3883398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US357991A US3883398A (en) 1973-05-07 1973-05-07 Microculture slide chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US357991A US3883398A (en) 1973-05-07 1973-05-07 Microculture slide chamber

Publications (1)

Publication Number Publication Date
US3883398A true US3883398A (en) 1975-05-13

Family

ID=23407855

Family Applications (1)

Application Number Title Priority Date Filing Date
US357991A Expired - Lifetime US3883398A (en) 1973-05-07 1973-05-07 Microculture slide chamber

Country Status (1)

Country Link
US (1) US3883398A (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039247A (en) * 1974-12-17 1977-08-02 National Research Development Corporation Device for use in testing of fluid samples on microscope slides
DE2743799A1 (en) * 1976-10-05 1978-04-06 Byrnes Sen PROTECTIVE GLOVES AND THREAD FOR THEIR PRODUCTION
EP0014007A1 (en) * 1979-01-19 1980-08-06 J. Hinrich Dr. Peters Biological container
US4284725A (en) * 1976-08-13 1981-08-18 Dynasciences Corporation Virus titration and identification system
US4396717A (en) * 1980-07-25 1983-08-02 Biotest-Serum-Institut Gmbh Nutrient medium carrier system
FR2594844A1 (en) * 1986-02-26 1987-08-28 Cassou Robert APPARATUS AND METHOD FOR FERTILIZING IN-VITRO OOCYTES, AND FERTILIZER AND CELL CULTURE ENFORCEMENT USED IN THIS APPARATUS AND METHOD
US4728607A (en) * 1984-03-22 1988-03-01 J. K. And Susie L. Wadley Research Institute And Blood Bank Miniaturized yeast identification system
US4847128A (en) * 1984-03-22 1989-07-11 Wadley Technologies, Inc. Miniaturized yeast identification system
US5081033A (en) * 1984-03-22 1992-01-14 Wadley Technologies, Inc. Miniaturized yeast identification system
US5192503A (en) * 1990-05-23 1993-03-09 Mcgrath Charles M Probe clip in situ assay apparatus
US5328843A (en) * 1990-02-27 1994-07-12 Hitachi, Ltd. Method for allocating cells and cell allocation device
US5364790A (en) * 1993-02-16 1994-11-15 The Perkin-Elmer Corporation In situ PCR amplification system
EP0681024A2 (en) * 1994-05-05 1995-11-08 ERIE SCIENTIFIC COMPANY (a Delaware Corporation) Improved biological culture slide and method of making same
US5484731A (en) * 1993-05-26 1996-01-16 Becton, Dickinson And Company Multiwell in-vitro fertilization plate
US5552321A (en) * 1993-08-24 1996-09-03 Bioptechs Inc. Temperature controlled culture dish apparatus
US5619428A (en) * 1995-05-31 1997-04-08 Neopath, Inc. Method and apparatus for integrating an automated system to a laboratory
WO1998015656A1 (en) * 1996-10-09 1998-04-16 University Of New Mexico In situ hybridization slide processes
DE19923584A1 (en) * 1999-05-21 2000-12-07 Memorec Medical Molecular Res Incubation container for samples on object carriers, useful for carrying out polymerase chain reactions, comprising chamber formed by plate, cover and seal, containing reservoir to minimize evaporation
US20020173033A1 (en) * 2001-05-17 2002-11-21 Kyle Hammerick Device and method or three-dimensional spatial localization and functional interconnection of different types of cells
US6486401B1 (en) 1999-02-22 2002-11-26 Tekcel, Inc. Multi well plate cover and assembly
US20030026739A1 (en) * 2001-06-13 2003-02-06 Macbeath Gavin Interface between substrates having microarrays and microtiter plates
WO2004046337A2 (en) * 2002-11-19 2004-06-03 The Board Of Trustees Of The University Of Illinois Multilayered microcultures
KR100434452B1 (en) * 2002-03-05 2004-06-04 한국생명공학연구원 Multitest-Microslide of living cell cultures and culture slide assembly and their preparation
US20040179973A1 (en) * 1998-02-10 2004-09-16 Angros Lee H. Analytic plate with containment border and method
US20050031489A1 (en) * 1998-02-10 2005-02-10 Angros Lee H. Analytic plate with containment border
US6896848B1 (en) * 2000-12-19 2005-05-24 Tekcel, Inc. Microplate cover assembly
US20060141446A1 (en) * 2002-05-22 2006-06-29 Christopher Murphy Substrates, devices, and methods for cellular assays
US20060233943A1 (en) * 2005-04-15 2006-10-19 Angros Lee H Analytic substrate coating apparatus and method
US20080056951A1 (en) * 2006-08-25 2008-03-06 Angros Lee H Analytic plates with markable portions and methods of use
US20080160539A1 (en) * 2006-08-07 2008-07-03 Platypus Technologies, Llc Substrates, devices, and methods for cellular assays
WO2008021071A3 (en) * 2006-08-07 2008-10-09 Platypus Technologies Llc Substrates, devices, and methods for cellular assays
WO2008147783A2 (en) * 2007-05-24 2008-12-04 Boston Scientific Limited Apparatus and method of performing high-throughput cell-culture studies on biomaterials
WO2009103416A1 (en) * 2008-02-20 2009-08-27 Eth Zurich Multiwell culture plate for three-dimensional cultures
US20100009344A1 (en) * 2003-07-25 2010-01-14 Platypus Technologies, Llc Liquid crystal based analyte detection
US7662572B2 (en) 2005-08-25 2010-02-16 Platypus Technologies, Llc. Compositions and liquid crystals
US20100072272A1 (en) * 2005-10-26 2010-03-25 Angros Lee H Microscope slide coverslip and uses thereof
US20100073766A1 (en) * 2005-10-26 2010-03-25 Angros Lee H Microscope slide testing and identification assembly
US20100110541A1 (en) * 2005-10-26 2010-05-06 Angros Lee H Microscope slide coverslip and uses thereof
WO2010062310A1 (en) * 2008-10-28 2010-06-03 Millipore Corporation Biological culture assembly
US7731909B1 (en) 2002-01-22 2010-06-08 Grace Bio-Labs, Inc. Reaction surface array diagnostic apparatus
US7736594B1 (en) 2002-01-22 2010-06-15 Grace Bio-Labs, Inc. Reaction surface array diagnostic apparatus
US20100300216A1 (en) * 1998-02-10 2010-12-02 Angros Lee H Method of applying a biological specimen to an analytic plate
US8034306B1 (en) 2004-02-20 2011-10-11 Grace Bio-Labs, Inc. Reaction surface array diagnostic apparatus including a flexible microtitre plate
US8268614B2 (en) 2002-05-22 2012-09-18 Platypus Technologies, Llc Method for assaying cell movement
CN104614514A (en) * 2014-01-09 2015-05-13 南通大学 Detachable slide incubator ensuring experimental steps to be carried out conveniently and efficiently
US9103794B2 (en) 2001-08-27 2015-08-11 Platypus Technologies Llc Substrates, devices, and methods for quantitative liquid crystal assays
US9968935B2 (en) 2007-08-20 2018-05-15 Platypus Technologies, Llc Devices for cell assays
US20190011689A1 (en) * 2017-07-05 2019-01-10 West Virginia University Systems and methods for supporting and positioning body tissue samples in a microscope
EP3695903A1 (en) * 2014-02-18 2020-08-19 Drugarray, Inc. Multi-well separation apparatus and reagent delivery device
EP3711859A1 (en) 2019-03-19 2020-09-23 Miltenyi Biotec B.V. & Co. KG Specimen slide chamber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3745091A (en) * 1970-11-18 1973-07-10 Miles Lab Biological reaction chamber apparatus
US3791933A (en) * 1971-02-25 1974-02-12 Geomet Rapid methods for assay of enzyme substrates and metabolites

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3745091A (en) * 1970-11-18 1973-07-10 Miles Lab Biological reaction chamber apparatus
US3791933A (en) * 1971-02-25 1974-02-12 Geomet Rapid methods for assay of enzyme substrates and metabolites

Cited By (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039247A (en) * 1974-12-17 1977-08-02 National Research Development Corporation Device for use in testing of fluid samples on microscope slides
US4284725A (en) * 1976-08-13 1981-08-18 Dynasciences Corporation Virus titration and identification system
DE2743799A1 (en) * 1976-10-05 1978-04-06 Byrnes Sen PROTECTIVE GLOVES AND THREAD FOR THEIR PRODUCTION
EP0014007A1 (en) * 1979-01-19 1980-08-06 J. Hinrich Dr. Peters Biological container
US4396717A (en) * 1980-07-25 1983-08-02 Biotest-Serum-Institut Gmbh Nutrient medium carrier system
US4847128A (en) * 1984-03-22 1989-07-11 Wadley Technologies, Inc. Miniaturized yeast identification system
US4728607A (en) * 1984-03-22 1988-03-01 J. K. And Susie L. Wadley Research Institute And Blood Bank Miniaturized yeast identification system
US5081033A (en) * 1984-03-22 1992-01-14 Wadley Technologies, Inc. Miniaturized yeast identification system
EP0239450A1 (en) * 1986-02-26 1987-09-30 Robert Cassou Method and device for in vitro fecundation and incubator for fecundation, and cellular culture used in this device and this method
FR2594844A1 (en) * 1986-02-26 1987-08-28 Cassou Robert APPARATUS AND METHOD FOR FERTILIZING IN-VITRO OOCYTES, AND FERTILIZER AND CELL CULTURE ENFORCEMENT USED IN THIS APPARATUS AND METHOD
US5328843A (en) * 1990-02-27 1994-07-12 Hitachi, Ltd. Method for allocating cells and cell allocation device
US5192503A (en) * 1990-05-23 1993-03-09 Mcgrath Charles M Probe clip in situ assay apparatus
US5675700A (en) * 1993-02-16 1997-10-07 The Perkin-Elmer Corporation Assembly system for in situ per amplification
US5364790A (en) * 1993-02-16 1994-11-15 The Perkin-Elmer Corporation In situ PCR amplification system
US5527510A (en) * 1993-02-16 1996-06-18 The Perkin-Elmer Corporation In situ PCR amplification system
US5681741A (en) * 1993-02-16 1997-10-28 The Perkin-Elmer Corporation In situ PCR amplification system
US5484731A (en) * 1993-05-26 1996-01-16 Becton, Dickinson And Company Multiwell in-vitro fertilization plate
US5552321A (en) * 1993-08-24 1996-09-03 Bioptechs Inc. Temperature controlled culture dish apparatus
EP0681024A2 (en) * 1994-05-05 1995-11-08 ERIE SCIENTIFIC COMPANY (a Delaware Corporation) Improved biological culture slide and method of making same
US5571721A (en) * 1994-05-05 1996-11-05 Erie Scientific Company Improved biological culture slide and method of making same
EP0681024A3 (en) * 1994-05-05 1998-06-17 ERIE SCIENTIFIC COMPANY (a Delaware Corporation) Improved biological culture slide and method of making same
US5619428A (en) * 1995-05-31 1997-04-08 Neopath, Inc. Method and apparatus for integrating an automated system to a laboratory
WO1998015656A1 (en) * 1996-10-09 1998-04-16 University Of New Mexico In situ hybridization slide processes
US20050031489A1 (en) * 1998-02-10 2005-02-10 Angros Lee H. Analytic plate with containment border
US20040179973A1 (en) * 1998-02-10 2004-09-16 Angros Lee H. Analytic plate with containment border and method
US9176029B2 (en) 1998-02-10 2015-11-03 Lee H. Angros Method of applying a biological specimen to an analytic plate
US20100300216A1 (en) * 1998-02-10 2010-12-02 Angros Lee H Method of applying a biological specimen to an analytic plate
US8192994B2 (en) 1998-02-10 2012-06-05 Angros Lee H Method of applying a biological specimen to an analytic plate
US8450116B2 (en) 1998-02-10 2013-05-28 Lee H. Angros Method of applying a biological specimen to an analytic plate
US6486401B1 (en) 1999-02-22 2002-11-26 Tekcel, Inc. Multi well plate cover and assembly
DE19923584C2 (en) * 1999-05-21 2002-01-24 Memorec Medical Molecular Res incubation system
DE19923584A1 (en) * 1999-05-21 2000-12-07 Memorec Medical Molecular Res Incubation container for samples on object carriers, useful for carrying out polymerase chain reactions, comprising chamber formed by plate, cover and seal, containing reservoir to minimize evaporation
US6896848B1 (en) * 2000-12-19 2005-05-24 Tekcel, Inc. Microplate cover assembly
US20020173033A1 (en) * 2001-05-17 2002-11-21 Kyle Hammerick Device and method or three-dimensional spatial localization and functional interconnection of different types of cells
WO2002092778A2 (en) * 2001-05-17 2002-11-21 The Board Of Trustees Of The Leland Stanford Junior University Device and method for three-dimensional spatial localization and functional interconnection of different types of cells
WO2002092778A3 (en) * 2001-05-17 2003-05-30 Univ Leland Stanford Junior Device and method for three-dimensional spatial localization and functional interconnection of different types of cells
US7063979B2 (en) 2001-06-13 2006-06-20 Grace Bio Labs., Inc. Interface between substrates having microarrays and microtiter plates
US20030026739A1 (en) * 2001-06-13 2003-02-06 Macbeath Gavin Interface between substrates having microarrays and microtiter plates
US9797843B2 (en) 2001-08-27 2017-10-24 Platypus Technologies, Llc Substrates, devices, and methods for quantitative liquid crystal assays
US9103794B2 (en) 2001-08-27 2015-08-11 Platypus Technologies Llc Substrates, devices, and methods for quantitative liquid crystal assays
US8287822B2 (en) 2002-01-22 2012-10-16 Grace Bio-Labs, Inc. Reaction surface array diagnostic apparatus
US7731909B1 (en) 2002-01-22 2010-06-08 Grace Bio-Labs, Inc. Reaction surface array diagnostic apparatus
US20100267590A1 (en) * 2002-01-22 2010-10-21 Grace Bio-Labs, Inc. Reaction Surface Array Diagnostic Apparatus
US7736594B1 (en) 2002-01-22 2010-06-15 Grace Bio-Labs, Inc. Reaction surface array diagnostic apparatus
KR100434452B1 (en) * 2002-03-05 2004-06-04 한국생명공학연구원 Multitest-Microslide of living cell cultures and culture slide assembly and their preparation
US20060141446A1 (en) * 2002-05-22 2006-06-29 Christopher Murphy Substrates, devices, and methods for cellular assays
US8268614B2 (en) 2002-05-22 2012-09-18 Platypus Technologies, Llc Method for assaying cell movement
WO2004046337A2 (en) * 2002-11-19 2004-06-03 The Board Of Trustees Of The University Of Illinois Multilayered microcultures
US20060141617A1 (en) * 2002-11-19 2006-06-29 The Board Of Trustees Of The University Of Illinois Multilayered microcultures
WO2004046337A3 (en) * 2002-11-19 2004-11-18 Univ Illinois Multilayered microcultures
US9816147B2 (en) 2003-07-25 2017-11-14 Platypus Technologies, Llc Liquid crystal based analyte detection
US8988620B2 (en) 2003-07-25 2015-03-24 Platypus Technologies, Llc Liquid crystal based analyte detection
US20100009344A1 (en) * 2003-07-25 2010-01-14 Platypus Technologies, Llc Liquid crystal based analyte detection
US8512974B2 (en) 2003-11-10 2013-08-20 Platypus Technologies, Llc Method for assaying cell movement
US8034306B1 (en) 2004-02-20 2011-10-11 Grace Bio-Labs, Inc. Reaction surface array diagnostic apparatus including a flexible microtitre plate
US8048472B2 (en) 2005-04-15 2011-11-01 Angros Lee H Analytic substrate coating method
US9909961B2 (en) 2005-04-15 2018-03-06 Lee H. Angros Analytic substrate coating apparatus and method
US7731811B2 (en) 2005-04-15 2010-06-08 Angros Lee H Analytic substrate coating apparatus and method
US11692915B2 (en) 2005-04-15 2023-07-04 Lee H. Angros Analytic substrate coating apparatus and method
US20100248294A1 (en) * 2005-04-15 2010-09-30 Angros Lee H Analytic substrate coating method
US20100248295A1 (en) * 2005-04-15 2010-09-30 Angros Lee H Analytic substrate coating method
US9255863B2 (en) 2005-04-15 2016-02-09 Lee H. Angros Analytic substrate coating apparatus and method
US11307121B2 (en) 2005-04-15 2022-04-19 Lee H. Angros Analytic substrate coating apparatus and method
US20060231023A1 (en) * 2005-04-15 2006-10-19 Angros Lee H Analytic substrate coating apparatus and method
US8048245B2 (en) 2005-04-15 2011-11-01 Angros Lee H Analytic substrate coating method
US8820378B2 (en) 2005-04-15 2014-09-02 Lee H. Angros Analytic substrate coating apparatus and method
US9568401B2 (en) 2005-04-15 2017-02-14 Lee H. Angros Analytic substrate coating apparatus and method
US8006638B2 (en) 2005-04-15 2011-08-30 Angros Lee H Analytic substrate coating apparatus and method
US10996148B2 (en) 2005-04-15 2021-05-04 Lee H. Angros Analytic substrate coating apparatus and method
US10578524B2 (en) 2005-04-15 2020-03-03 Lee H. Angros Analytic substrate coating apparatus and method
US10222306B2 (en) 2005-04-15 2019-03-05 Lee H. Angros Analytic substrate coating apparatus and method
US20060233943A1 (en) * 2005-04-15 2006-10-19 Angros Lee H Analytic substrate coating apparatus and method
US8470264B2 (en) 2005-04-15 2013-06-25 Lee H. Angros Analytic substrate coating method
US8470109B2 (en) 2005-04-15 2013-06-25 Lee H. Angros Analytic substrate coating method
US7662572B2 (en) 2005-08-25 2010-02-16 Platypus Technologies, Llc. Compositions and liquid crystals
US20100110541A1 (en) * 2005-10-26 2010-05-06 Angros Lee H Microscope slide coverslip and uses thereof
US20100073766A1 (en) * 2005-10-26 2010-03-25 Angros Lee H Microscope slide testing and identification assembly
US20100072272A1 (en) * 2005-10-26 2010-03-25 Angros Lee H Microscope slide coverslip and uses thereof
US20080160539A1 (en) * 2006-08-07 2008-07-03 Platypus Technologies, Llc Substrates, devices, and methods for cellular assays
US7842499B2 (en) 2006-08-07 2010-11-30 Platypus Technologies, Llc Substrates, devices, and methods for cellular assays
WO2008021071A3 (en) * 2006-08-07 2008-10-09 Platypus Technologies Llc Substrates, devices, and methods for cellular assays
US20080056952A1 (en) * 2006-08-25 2008-03-06 Angros Lee H Analytic plates with markable portions and methods of use
US11333587B2 (en) 2006-08-25 2022-05-17 Lee H. Angros Analytic plates with markable portions and methods of use
US20090291195A1 (en) * 2006-08-25 2009-11-26 Angros Lee H Analytic plates with markable portions and methods of use
US20080056951A1 (en) * 2006-08-25 2008-03-06 Angros Lee H Analytic plates with markable portions and methods of use
WO2008147783A3 (en) * 2007-05-24 2009-01-22 Boston Scient Scimed Inc Apparatus and method of performing high-throughput cell-culture studies on biomaterials
WO2008147783A2 (en) * 2007-05-24 2008-12-04 Boston Scientific Limited Apparatus and method of performing high-throughput cell-culture studies on biomaterials
US9968935B2 (en) 2007-08-20 2018-05-15 Platypus Technologies, Llc Devices for cell assays
WO2009103416A1 (en) * 2008-02-20 2009-08-27 Eth Zurich Multiwell culture plate for three-dimensional cultures
WO2010062310A1 (en) * 2008-10-28 2010-06-03 Millipore Corporation Biological culture assembly
US9751084B2 (en) 2008-10-28 2017-09-05 Emd Millipore Corporation Biological culture assembly
US20100151511A1 (en) * 2008-10-28 2010-06-17 Millipore Corporation Biological culture assembly
CN104614514A (en) * 2014-01-09 2015-05-13 南通大学 Detachable slide incubator ensuring experimental steps to be carried out conveniently and efficiently
CN104614514B (en) * 2014-01-09 2016-04-20 南通大学 Dismountable microslide couveuse that experimental procedure energy convenience and high-efficiency carries out
EP3695903A1 (en) * 2014-02-18 2020-08-19 Drugarray, Inc. Multi-well separation apparatus and reagent delivery device
US11090654B2 (en) 2014-02-18 2021-08-17 Drugarray, Inc. Multi-well separation apparatus and reagent delivery device
US20190011689A1 (en) * 2017-07-05 2019-01-10 West Virginia University Systems and methods for supporting and positioning body tissue samples in a microscope
US11209638B2 (en) * 2017-07-05 2021-12-28 West Virginia University Systems and methods for supporting and positioning body tissue samples in a microscope
EP3711859A1 (en) 2019-03-19 2020-09-23 Miltenyi Biotec B.V. & Co. KG Specimen slide chamber
US11633741B2 (en) 2019-03-19 2023-04-25 Miltenyi Biotec B.V. & Co. KG Slide chamber

Similar Documents

Publication Publication Date Title
US3883398A (en) Microculture slide chamber
US3745091A (en) Biological reaction chamber apparatus
US4299920A (en) Biological receptacle
US3502437A (en) Identification card
US5800778A (en) Sealant for sample holder
US5650125A (en) Method and apparatus for conducting tests
US8865458B2 (en) Specimen collection and assay container
Federlin et al. A micro-method for peripheral leucocyte migration in tuberculin sensitivity
US3928142A (en) Culture chamber for the study of biological systems and method of fabrication thereof
US2561339A (en) Apparatus for laboratory investigations
US20200399674A1 (en) Devices and methods for sample partitioning and analysis
US4308028A (en) Device and method for the chemical testing and microscopic examination of liquid specimens
US5962250A (en) Split multi-well plate and methods
US4324859A (en) Apparatus and associated methods for use in microbiological, serological, immunological, clinical-chemical and similar laboratory work
US4441793A (en) Microscopic evaluation slide
US4670396A (en) Vertical culture system with removable culture unit
US4595561A (en) Liquid sample holder
US3572892A (en) Multiple well tissue culture slide
US20080019867A1 (en) Urinalysis screening device
CA2486812A1 (en) Substrates, devices, and methods for cellular assays
US3726767A (en) Microbiological reaction chamber apparatus
US5667985A (en) Tissue biopsy cell suspender for cell analysis
WO1989003039A1 (en) Immunoenzymatic detection device
US10384207B2 (en) Assay apparatus and methods
JP4488628B2 (en) Disc assay device with inoculation pad and method of use