Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUS3886310 A
Type de publicationOctroi
Date de publication27 mai 1975
Date de dépôt22 août 1973
Date de priorité22 août 1973
Numéro de publicationUS 3886310 A, US 3886310A, US-A-3886310, US3886310 A, US3886310A
InventeursGuldberg Jens, Nathanson Harvey C
Cessionnaire d'origineWestinghouse Electric Corp
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Electrostatically deflectable light valve with improved diffraction properties
US 3886310 A
Résumé
An electrostatically deflectable light valve adapted for use in an array for producing television pictures as a projected image upon a large display screen. The light valve structure is such that a plurality of reflective wing portions are free to be deflected along directional axes which are at an angle to the prime directional axes of the overall array, so that light which is predominantly diffracted along the array axes may be decoupled or separated from the signal light produced by activated light valves and used to project the image. The contrast ratio of signal light to background light for the system is significantly improved, using this method of discrimination.
Images(2)
Previous page
Next page
Description  (Le texte OCR peut contenir des erreurs.)

United States Patent Guldberg et al.

1 1 ELECTROSTATICALLY DEFLECTABLE LIGHT VALVE WITH IMPROVED DIFFRACTION PROPERTIES [75] Inventors: Jens Guldberg; Harvey C.

Nathanson, both of Pittsburgh, Pa.

[73] Assignee: Westinghouse Electric Corp.,

Pittsburgh, Pa.

[22] Filed: Aug. 22, 1973 [21] Appl. No.: 390,470

[52] 11.8. CI 178I7.5 D; 313/465; 315/372;

[51] Int. Cl. H04n 3/16; l-lOlj 29/12; G02f 1/28 [58] Field of Search 315/21 R; 313/91, 465;

l78/7.5 D, 5.4 BD; 350/161 [56] References Cited UNITED STATES PATENTS 2,681,423 6/1954 Auphan 313/91 X 2,682,010 6/1954 Orthuber 313/91 X 2,733,501 2/1956 Orthuber et a]. 313/91 X [451 May 27, 1975 Roltmiller 313/91 X Nathanson et a1. 315/21 R [57] ABSTRACT An electrostatically deflectable light valve adapted for use in an array for producing television pictures as a projected image upon a large display screen. The light valve structure is such that a plurality of reflective wing portions are free to be deflected along directional axes which are at an angle to the prime directional axes of the overall array, so that light which is predominantly diffracted along the array axes may be decoupled or separated from the signal light produced by activated light valves and used to project the image. The contrast ratio of signal light to background light for the system is significantly improved, using this method of discrimination.

11 Claims, 6 Drawing Figures PATENTED HAY 2 7 I975 SHEET j mm 'Ill'l/II'I PATENTEDMY 2 7 ms l I I I I 1 I l I VIAIVIA 40 K223 mlm K I I I I I I I 1 z 1 I FIG. 4

D FIG. 5 3f ELECTROSTATICALLY DEFLECTABLE LIGHT VALVE WITH IMPROVED DIFFRACTION PROPERTIES BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to electrostatically deflectable light valves which are adpated for use with a cathode ray tube, and in conjunction with schlieren optics forming a system for projecting television images upon a large display screen, and which may be operated either as a real-time or a storage mode device.

2, Description of the Prior Art A considerable effort has been expended in researching and developing systems for projecting television images upon a large screen. Such systems are aimed at expanding the usage of closed circuit television entertainment systems, as well as simply providing a greatly increased display area with its obvious advantages. The present commercial systems utilize an oil film surface as the target of a cathode ray tube, with the electron beam being used to produce a diffraction pattern on the film. An external light source is directed upon the film and an optical system with schlieren bars is utilized to project the desired image upon the display screen correspondence to the informational pattern upon the film. This oil film system is expensive and suffers from the inherent problem of having a fluid film operate within an evacuated cathode ray tube.

A variety of other display systems have tried to circumvent the problems associated with the use of oil films. Substitution of elastomer layers for the oil fiim results in very small deflections and consequently requires a sophisticated and expensive optical projection system. Techniques utilizing electro-optical materials, primarily KD PO, crystals, suffer from a basic problem of incompatibility in using the material in a vacuum. Another approach uses a taut metal membrane suspended on thin metal ribs and segmented to form an array of picture elements addressable by an electron beam. Energetic electrons of about 20 kilovolt potential penetrate the film and deposit a charge on the transparent glass substrate. The resulting electrostatic forces will deflect the metal membrane and the image is read out with ordinary schlieren optics.

Another feasible system utilizes an array of electrostatically deflectable light valves or very small mirrors, which are deflectable corresponding to the informational pattern. Such a system is disclosed in US. Pat. No. 3,746,91 1. In such systems an array of the deflectable light valves form the target of a cathode ray tube. An external light source is directed onto this target which is modulated to deflect individual valves of the array in an informational pattern. The light is reflected from the light valves, and for deflected valves the light is stopped while for deflected valves the light passes the schlieren stop and is projected upon the display screen with suitable magnification.

A problem with these prior art television image pro jection systems is the poor screen contrast caused by optical diffraction effects related to the target array. In general, such arrays have rows and columns of light valves which define an array having an X and a Y axes. The electrostatic deflection of each light valve modifies the diffraction pattern of the reflected light by tilting of the reflective plane as well as bending or bowing of the reflective surface. Because of constructional constraints the deflection of the light valves is also along one of these major axes. This diffraction effect causes light to pass about the schlieren optical stop primarily along one of the major axes of the array.

Consequently, a high contrast ratio with low background illumination can only be achieved with extremely large deflection angles.

This same problem exists for arrays other than rectangular arrays and for light valves other than simple square elements.

SUMMARY OF THE INVENTION A reflective light valve element is provided having a structure which permits the elimination of transmission of background light to the screen to provide significantly improved contrast for the display. The light reflective element is adapted for use in an array as part of a projection system for displaying television images. The light reflective element comprises a central core portion supported by a central post member which extends from the underside of the core portion. A plurality of symmetrically spaced and shaped deformable reflective wing portions extend outwardly from the cen tral core portion. The extending ends of the wing por tions have slits therebetween. When such reflective elements are arrayed as a target, the slits are aligned with the predominant axes of the array, The wing portions are then free to bend or deflect along an axis which is at an angle to the predominant axes of the array. A method of providing this improved light valve structure is also detailed.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic overall view ofa projection system of the present invention.

FIG. 2 is an enlarged plan view of a single light valve of the present invention.

FIG. 3 is a sectional view taken along line Ill-Ill of FIG. 2 of the light valve.

FIG. 4 illustrates the various stages of preparation of the light valve of the present invention.

FIG. 5 illustrates the various stages of another method of construction of the present light valve.

FIG. 6 is a perspective view of the schlieren stop used in the projection system of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention can be best understood by reference to the exemplary embodiment shown in the drawings.

The projection system comprises an electron beam tube 10. A high intensity light source 12 of preferably well balanced light is provided for illumination. The light from source 12 is focused by a lens 14 and refracted by a 45 angle reflective schlieren mirror 15. The reflected light is collimated by lens 18 onto target 20 associated with the faceplate of cathode ray tube 10. In the absence of actuation or deformation of individual light valve elements 22, the light will be reflected back from element 22 to be focused on the schlieren mirror 15 and remain within the original light cone. Deflection or deformation of a light valve element due to electrostatic forces as will be explained, will result in the light passing the schlieren mirror 15 and being projected through lens system 24 to the enlarged display screen 26. In this manner, a light image will be procluced upon the screen 26, which corresponds to the informational pattern established upon target 20 by deformation of the individual light valve elements 22. The deformation of the elements 22 corresponds to the applied video signal.

The schlieren mirror or stop I5 is shown in an em larged view in FIG. 6, and comprises a generally square shaped mirror member 16 and rod support means 17. The mirror member is inclined at the proper angle to direct the light onto the light valve target. The support means 17 here comprise opaque rods which facilitate support of the mirror member 16, and extend from the ends of each side of mirror member I6 along the major X, Y axes corresponding to the X, Y directional axes of the mirror array. The opaque rods I7 then serve to block scattered light which can be expected along these axes, which light represents a background level that substantially degrades the display contrast.

The electron beam tube 10 comprises an outer envelope 30 having a tubular body portion 32, and a base portion 34. The base portion 34 is provided with lead ins 36 for applying potential to the operative electrodes. The faceplate portion 38 is sealed to the oppo site end of the body portion 32. The target is disposed on the interior surface of the faceplate 38. An internal focusing electrode 27 is provided within envelope 30. and external focusing and deflection means 28 are disposed about envelope 30.

The target structure 20 comprises a plurality of light valve elements 22, such as seen in greater detail in FIGS. 2 and 3. The light valve elements 22 form an ar ray, which is typically rows and columns of identical elements 22, with the total array including typically hundreds of thousands of the very small elements 22, which have a dimension of about -70 microns on a side. The elements 22 seen in FIG. I, are thus shown greatly enlarged in a schematic sense to facilitate understanding of the device.

The light valve elements 22, seen in greater detail in FIGS. 2 and 3 comprise a generally planar reflective portion 40, which comprises a central core portion 42, and a plurality of symmetrically spaced and shaped, deformable, reflective wing portions 44, which extend outwardly from the central core portion 42. An opening or slit 46 separates the wing portions 44. In this embodiment, the portion 40 is generally of square configuration, and the four slits 46, define four wings or quadrants. The slits 46 extend in the direction of the axes of the array of elements 22, which for this embodiment would consist of horizontal rows and vertical columns. The elements 22 are supported upon a light transmissive substrate 38, which serves as the faceplate of the cathode ray tube 10. The substrate 38 may be formed of a vitreous material such as quartz, sapphire or spinel. A support or spacer post member 48 extends from the substrate to the underside of the central core portion 42. The post member 48 is typically a semi-insulator such as silicon, but can also be a conductor or insulator, and has a cross-sectional dimension of less than about 5 microns on a side, and a height of about L5 to 10 microns. The reflective array elements 22 are typically comprised of an electrical insulator, such as silicon dioxide, with a thin reflective layer 52 of metal, such as aluminum thereon. The material can also be metal or semiinsulating. The thickness of the planar portion 40 of element 22 is about 1,000-5000 Angstrorns.

An electrically conductive grid 50 is provided on the interior surface of substrate 38 running between the spaced apart light valve elements 22. The grid 50 is typically formed of a thin metal film of suitable material, such as gold or aluminum, which is preferably thin enough to be light transmissive. The grid is connected to an external potential source 54. The potential source 54 may be a video signal source when the grid 50 is utilized to modulate the target voltage with the electron beam merely being a flood beam which charges the individual planar portion 40 of the light valves 22 to or near equilibrium with grid 62 which is typically located in close proximity to the target array. The grid 62 is connected to potential source 64.

The electron beam may also be modulated, with the video signal applied via grid 56 proximate the cathode or beam source 60. A fixed bias would then be applied to electrode 27, grid 62, and grid 50. In this case the grid 50 on the target 20 merely serves as a reference electrode necessary to produce electrostatic deflection of the planar portion 40 of light valves 22. The electrostatic bias is determined by the amount of charge deposited by the beam in accordance with the instantaneous value of the video signal.

The array of light valve elements 22 may be fabricated according to the method outlined in the aforementioned U.S. Pat. No. 3,746,91 l but with the modification as outlined in FIG. 4. The substrate 38 has a heteroepitaxially grown layer of silicon 68 which is oxidized to a thickness of 3,0008,000 Angstrom to provide silicon dioxide layer 70 thereon. The oxide layer is delineated by a photoresist process to define the generally square configuration of element 22, and the slits 46 within elements 22 as seen in FIG. 4C. A reoxidation is carried out to a thickness of 2,000-4,000 Angstroms to partially close the slits and the spacing between elements 22 as seen in FIG. 4D. The oxide between elements 22 is then removed by another photoresist operation which does not effect the oxide at the central core of the elements 22 or of the slit areas as seen in FIG. 4E. The silicon dioxide is then undercut by etching with a solution of nitric, acetic, and hydrofluoric acid in a ratio of approximately 25/10/1. A slight oxide etch follows to ensure that any oxide between the slits is removed to provide the structure of FIG. 4F. The reflective metal layer 52 is then deposited upon the planar portions 40, and also upon substrate 38 to form grid 50 as seen in FIG. 4G.

The above described process requires accurate successive alignment of the exposure mask in first delineating the elements, and then redelineating them following the reoxidation process, which ensures proper junction of the central post 48 and the planar portion 40. The fabrication can also be arranged with other materials and deposition materials, and the material temporarily closing the slits does not have to coincide with the material chosen for the planar portion 40.

Another process which obviates this realignment problem is to use a self-alignment technique which is generally depicted in FIG. 5. The substrate 38 has the silicon layer 68 thereon.

Through a process of successive depositions and appropriate photolithographic operations a mask matrix can be built upon the silicon 40. The mask comprises a thin silicon dioxide layer 72, a silicon nitride layer 74 thereon, and a top thin layer 76 of silicon dioxide. These three mask layers are typically vapor deposited over the substrate and the silicon. The mask is photolithographically delineated, removing selected portions of the three layers to provide the matrix as seen in FIG. 5A. The silicon layer is then thermally oxidized to provide the planar portions 40 for light valve 22 as seen in FIG. 5B. The remaining mask portions can then be etched away, and the silicon dioxide undercut to the final shape and to form the support post as seen in FIGS. 5C and 5D. The slits are opened by a separate etch, which is followed by metallization of the surface of light valve 22 to ensure high reflectivity.

In the self-aligning mask technique the silicon dioxide layer 72, silicon nitride layer 74, and silicon dioxide layer 76, have typical layer thicknesses of 200-500 Angstroms, LOGO-3,000 Angstroms, and l,000-3,000 Angstroms, respectively. The etching is carried out with conventional solutions. The generally planar silicon dioxide portion 40 is produced by thermal oxidation to a thickness of for example 3,000l0,000 Angstroms. This thermally grown layer 40 is only produced in windows in the nitride mask. In the presence of the thin intermediate silicon dioxide layer 72 the edges of portions 40 will grow and merge in the slit area 46 as seen in FIG. 53. After removal of the silicon nitride layer 74, the structure can be further etched to open the slit areas 46, while also forming the post 48 from layer 68. In general the slit widths should be less than 2a, while the grids between light valve elements is larger than 2-3;.4. for this technique to work.

We claim:

1. An electrostatically deflectable light valve system comprising an array of spaced apart, deformable, light reflective elements supported upon a substrate, each of said reflective elements comprising a central core portion supported by a centrally located post member which extends from one side of the reflective elements to the supporting substrate, a plurality of generally planar, symmetrically spaced apart and shaped independently deformable and reflective wing portions extending outwardly from the central core portion, which wing portions are defined by an equal plurality of thin slits provided between said wing portions which slits extend from the central core portion to the outer edge of the wing portions.

2. The system specified in claim 1, wherein an electrode grid is disposed upon the supporting substrate.

3. The system specified in claim 1, wherein the substrate is a light transmissive material.

4. The system specified in claim 1 wherein four generally square wing portions are provided with thin slits separating the wing portions.

5. The system specififled in claim 4, wherein the slits are aligned with the axes of the array pattern in which the light valves are arranged.

6. The system specified in claim 5 when the planar portion of the light valve is substantially square and the slits extend from the edges of each wing to the central core portion.

7. The system specified in claim I, wherein a light reflective coating is provided on the top surface of the central core portion and the wing portions.

8. The system specified in claim 3, in combination with a light source, an optical system for directing light through the transmissive substrate to the surface of the reflective light valves, said optical system including an opaque stop disposed in the optical path between the array of light valves and a display screen, so that when the wing portions of the light valves are nondeflected the light reflected is substantially totally reflected off or blocked by the stop and no light reaches the display screen, while when the wing portions are deflected a portion of the light reflected therefrom passes around the central stop and produces a large, displayed image.

9. A light reflective element adapted for use as an electrostatically deflectable light valve which element comprises;

a central core portion supported by a post member which extends from one side of the core portion, and

a plurality of generally planar, symmetrically spaced and shaped independently deformable reflective wing portions extending outwardly from the central core portion, which wing portions are defined by an equal plurality of thin slits provided between said wing portions which slits extend from the central core portion to the outer edge of the wing portions.

10. The light reflective element specified in claim 9, with four generally square wing portions provided, with thin slits separating the wing portions.

11. An electrostatically deflectable light valve system comprising an array of spaced apart, deformable light reflective elements supported upon a substrate, the elements being arrayed along X and Y orthogonal axes, each of said reflective elements comprising a central core portion supported by a centrally located post member which extends from one side of the reflective elements to the supporting substrate, and four spaced apart, generally planar, symmetrically spaced and shaped deformable and reflective wing portions extending outwardly from a common central core portion, which four wing portions are spaced apart by slits extending in the direction of the X and Y axes of the array pattern.

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US2681423 *28 juil. 195015 juin 1954Electronique Soc GenLight reflecting screen for cathode-ray tubes
US2682010 *31 oct. 195222 juin 1954Us Air ForceCathode-ray projection tube
US2733501 *1 févr. 19527 févr. 1956 Electrostatic shutter mosaic and method of manufacture
US3667830 *8 avr. 19706 juin 1972Stromberg Datagraphix IncDisplay system utilizing a selectively deformable light-reflecting element
US3746911 *13 avr. 197117 juil. 1973Westinghouse Electric CorpElectrostatically deflectable light valves for projection displays
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
US4065840 *17 déc. 19763 janv. 1978International Business Machines CorporationMethod for fabricating a DSDT target
US4229081 *26 juin 197821 oct. 1980The United States Of America As Represented By The Secretary Of The ArmyElectro-mechanical image converter
US4229732 *11 déc. 197821 oct. 1980International Business Machines CorporationMicromechanical display logic and array
US4317611 *19 mai 19802 mars 1982International Business Machines CorporationOptical ray deflection apparatus
US4322134 *4 avr. 197530 mars 1982Director, National U.S. Government, Security AgencyElectronic lens
US4356730 *8 janv. 19812 nov. 1982International Business Machines CorporationElectrostatically deformographic switches
US4380373 *6 oct. 198019 avr. 1983Xerox CorporationConformable proximity coupled electro-optic devices
US4441791 *7 juin 198210 avr. 1984Texas Instruments IncorporatedDeformable mirror light modulator
US4492435 *2 juil. 19828 janv. 1985Xerox CorporationMultiple array full width electro mechanical modulator
US4564836 *25 juin 198214 janv. 1986Centre Electronique Horloger S.A.Miniature shutter type display device with multiplexing capability
US4592628 *1 juil. 19813 juin 1986International Business MachinesMirror array light valve
US4615595 *10 oct. 19847 oct. 1986Texas Instruments IncorporatedFrame addressed spatial light modulator
US4662746 *30 oct. 19855 mai 1987Texas Instruments IncorporatedSpatial light modulator and method
US4680579 *8 sept. 198314 juil. 1987Texas Instruments IncorporatedOptical system for projection display using spatial light modulator device
US4710732 *31 juil. 19841 déc. 1987Texas Instruments IncorporatedSpatial light modulator and method
US4728185 *20 févr. 19871 mars 1988Texas Instruments IncorporatedImaging system
US4755013 *29 oct. 19875 juil. 1988Canon Kabushiki KaishaLight scanning optical system of an image output scanner using an electro mechanical light modulator
US4775204 *22 janv. 19864 oct. 1988Canon Kabushiki KaishaLight scanning optical system of an image output scanner using an electro-mechanical light modulator
US4784448 *16 janv. 198715 nov. 1988Messerschmitt-Bolkow-Blohm GmbhRetromodulator
US4786149 *20 mai 198722 nov. 1988Siemens AktiengesellschaftArrangement for optical image processing
US4842396 *26 juin 198527 juin 1989Canon Kabushiki KaishaLight modulation element and light modulation apparatus
US4954789 *28 sept. 19894 sept. 1990Texas Instruments IncorporatedSpatial light modulator
US4956619 *28 oct. 198811 sept. 1990Texas Instruments IncorporatedSpatial light modulator
US5005968 *29 août 19899 avr. 1991Asahi Kogaku Kogyo Kabushiki KaishaContrast decreasing apparatus in image forming optical system
US5142405 *29 juin 199025 août 1992Texas Instruments IncorporatedBistable dmd addressing circuit and method
US5148157 *28 sept. 199015 sept. 1992Texas Instruments IncorporatedSpatial light modulator with full complex light modulation capability
US5150250 *27 sept. 199122 sept. 1992Canon Kabushiki KaishaLight scanning optical system for an image output scanner using an electro-mechanical light modulator
US5172262 *16 avr. 199215 déc. 1992Texas Instruments IncorporatedSpatial light modulator and method
US5216537 *2 janv. 19921 juin 1993Texas Instruments IncorporatedForming a spatial light modulator
US5287215 *17 juil. 199115 févr. 1994Optron Systems, Inc.Membrane light modulation systems
US5307082 *28 oct. 199226 avr. 1994North Carolina State UniversityElectrostatically shaped membranes
US5408355 *30 oct. 199218 avr. 1995Labor Dr. Hans SteinbichlerMicromechanical transducer
US5457566 *30 déc. 199210 oct. 1995Texas Instruments IncorporatedFor scanning an image
US5471584 *18 nov. 199128 nov. 1995Rank Brimar LimitedSpatial light modulator with sub-divided modulation elements
US5488505 *1 oct. 199230 janv. 1996Engle; Craig D.Enhanced electrostatic shutter mosaic modulator
US5579151 *17 févr. 199526 nov. 1996Texas Instruments IncorporatedMicromechanical device
US5581393 *23 mars 19943 déc. 1996Daewoo Electronics Co., Ltd.Mirror array and method for the manufacture thereof
US5600383 *7 juin 19954 févr. 1997Texas Instruments IncorporatedMulti-level deformable mirror device with torsion hinges placed in a layer different from the torsion beam layer
US5610438 *8 mars 199511 mars 1997Texas Instruments IncorporatedMicro-mechanical device with non-evaporable getter
US5610773 *25 avr. 199511 mars 1997Daewoo Electronic Co. Ltd.Actuated mirror array and method for the manufacture thereof
US5612753 *27 janv. 199518 mars 1997Texas Instruments IncorporatedFull-color projection display system using two light modulators
US5640214 *30 sept. 199417 juin 1997Texas Instruments IncorporatedPrinter and display systems with bidirectional light collection structures
US5640266 *11 août 199517 juin 1997Engle; Craig D.Electrostatic spatial light modulator
US5696619 *27 févr. 19959 déc. 1997Texas Instruments IncorporatedSpatial light modulators; high strength, less relaxation
US5719695 *5 déc. 199617 févr. 1998Texas Instruments IncorporatedSpatial light modulator with superstructure light shield
US5734492 *20 mai 199431 mars 1998Daewoo Electronics Co LtdPiezoelectric actuated mirror array
US5768009 *18 avr. 199716 juin 1998E-BeamLight valve target comprising electrostatically-repelled micro-mirrors
US5808797 *26 avr. 199615 sept. 1998Silicon Light MachinesMethod and apparatus for modulating a light beam
US5839808 *26 juil. 199624 nov. 1998Nikon CorporationProjection optical system
US5841579 *7 juin 199524 nov. 1998Silicon Light MachinesFlat diffraction grating light valve
US5926309 *29 avr. 199820 juil. 1999Memsolutions, Inc.Light valve target comprising electrostatically-repelled micro-mirrors
US5982553 *20 mars 19979 nov. 1999Silicon Light MachinesDisplay device incorporating one-dimensional grating light-valve array
US5991066 *15 oct. 199823 nov. 1999Memsolutions, Inc.Membrane-actuated charge controlled mirror
US6025951 *27 nov. 199615 févr. 2000National Optics InstituteLight modulating microdevice and method
US6028696 *15 oct. 199822 févr. 2000Memsolutions, Inc.Charge controlled mirror with improved frame time utilization and method of addressing the same
US6031657 *9 déc. 199829 févr. 2000Memsolutions, Inc.Membrane-actuated charge controlled mirror (CCM) projection display
US6034810 *15 oct. 19987 mars 2000Memsolutions, Inc.Field emission charge controlled mirror (FEA-CCM)
US6038058 *15 oct. 199814 mars 2000Memsolutions, Inc.Grid-actuated charge controlled mirror and method of addressing the same
US6059416 *31 août 19949 mai 2000Daewoo Electronics Co., Ltd.Actuated mirror array and method for the fabricating thereof
US6088102 *31 oct. 199711 juil. 2000Silicon Light MachinesDisplay apparatus including grating light-valve array and interferometric optical system
US6101036 *23 juin 19988 août 2000Silicon Light MachinesEmbossed diffraction grating alone and in combination with changeable image display
US6123985 *28 oct. 199826 sept. 2000Solus Micro Technologies, Inc.Method of fabricating a membrane-actuated charge controlled mirror (CCM)
US6130770 *23 juin 199810 oct. 2000Silicon Light MachinesElectron gun activated grating light valve
US6147789 *4 mai 199814 nov. 2000Gelbart; DanielHigh speed deformable mirror light valve
US621557924 juin 199810 avr. 2001Silicon Light MachinesMethod and apparatus for modulating an incident light beam for forming a two-dimensional image
US623308718 déc. 199815 mai 2001Eastman Kodak CompanyElectro-mechanical grating device
US6233088 *10 août 200015 mai 2001McncMethods for modulating a radiation signal
US62718085 juin 19987 août 2001Silicon Light MachinesStereo head mounted display using a single display device
US634677610 juil. 200012 févr. 2002Memsolutions, Inc.Field emission array (FEA) addressed deformable light valve modulator
US635637824 juil. 200012 mars 2002Reflectivity, Inc.Double substrate reflective spatial light modulator
US636993126 oct. 19989 avr. 2002Robert Bosch GmbhMethod for manufacturing a micromechanical device
US6437903 *20 févr. 200220 août 2002Intel CorporationLight modulator with two mirror sets
US65239617 déc. 200025 févr. 2003Reflectivity, Inc.Projection system and mirror elements for improved contrast ratio in spatial light modulators
US65388009 janv. 200225 mars 2003Reflectivity, Inc.Reflective spatial light modulator with deflectable elements formed on a light transmissive substrate
US66231441 oct. 200223 sept. 2003Genlyte Thomas Group LlcHigh intensity lighting projectors
US663972215 août 200128 oct. 2003Silicon Light MachinesStress tuned blazed grating light valve
US669050220 mai 200210 févr. 2004Reflectivity, Inc.Double substrate reflective spatial light modulator with self-limiting micro-mechanical elements
US670759115 août 200116 mars 2004Silicon Light MachinesAngled illumination for a single order light modulator based projection system
US671248027 sept. 200230 mars 2004Silicon Light MachinesControlled curvature of stressed micro-structures
US671433728 juin 200230 mars 2004Silicon Light MachinesMethod and device for modulating a light beam and having an improved gamma response
US672802328 mai 200227 avr. 2004Silicon Light MachinesOptical device arrays with optimized image resolution
US67477812 juil. 20018 juin 2004Silicon Light Machines, Inc.Method, apparatus, and diffuser for reducing laser speckle
US676487524 mai 200120 juil. 2004Silicon Light MachinesMethod of and apparatus for sealing an hermetic lid to a semiconductor die
US676775128 mai 200227 juil. 2004Silicon Light Machines, Inc.Integrated driver process flow
US678220515 janv. 200224 août 2004Silicon Light MachinesMethod and apparatus for dynamic equalization in wavelength division multiplexing
US679856129 déc. 200328 sept. 2004Reflectivity, IncDouble substrate reflective spatial light modulator with self-limiting micro-mechanical elements
US680023815 janv. 20025 oct. 2004Silicon Light Machines, Inc.Method for domain patterning in low coercive field ferroelectrics
US680135420 août 20025 oct. 2004Silicon Light Machines, Inc.2-D diffraction grating for substantially eliminating polarization dependent losses
US680699728 févr. 200319 oct. 2004Silicon Light Machines, Inc.Patterned diffractive light modulator ribbon for PDL reduction
US681305320 oct. 20002 nov. 2004The Regents Of The University Of CaliforniaApparatus and method for controlled cantilever motion through torsional beams and a counterweight
US681305928 juin 20022 nov. 2004Silicon Light Machines, Inc.Reduced formation of asperities in contact micro-structures
US682279731 mai 200223 nov. 2004Silicon Light Machines, Inc.Light modulator structure for producing high-contrast operation using zero-order light
US682907728 févr. 20037 déc. 2004Silicon Light Machines, Inc.Diffractive light modulator with dynamically rotatable diffraction plane
US682925826 juin 20027 déc. 2004Silicon Light Machines, Inc.Rapidly tunable external cavity laser
US68653465 juin 20018 mars 2005Silicon Light Machines CorporationFiber optic transceiver
US687298424 juin 200229 mars 2005Silicon Light Machines CorporationMethod of sealing a hermetic lid to a semiconductor die at an angle
US690820128 juin 200221 juin 2005Silicon Light Machines CorporationMicro-support structures
US691471122 mars 20035 juil. 2005Active Optical Networks, Inc.Spatial light modulator with hidden comb actuator
US692227214 févr. 200326 juil. 2005Silicon Light Machines CorporationMethod and apparatus for leveling thermal stress variations in multi-layer MEMS devices
US692227328 févr. 200326 juil. 2005Silicon Light Machines CorporationPDL mitigation structure for diffractive MEMS and gratings
US692789123 déc. 20029 août 2005Silicon Light Machines CorporationTilt-able grating plane for improved crosstalk in 1×N blaze switches
US692820712 déc. 20029 août 2005Silicon Light Machines CorporationApparatus for selectively blocking WDM channels
US693407018 déc. 200223 août 2005Silicon Light Machines CorporationChirped optical MEM device
US694393321 déc. 200313 sept. 2005Hewlett-Packard Development Company, L.P.MEM devices having charge induced via focused beam to enter different states
US694720024 sept. 200420 sept. 2005Reflectivity, IncDouble substrate reflective spatial light modulator with self-limiting micro-mechanical elements
US694761311 févr. 200320 sept. 2005Silicon Light Machines CorporationWavelength selective switch and equalizer
US695699528 août 200218 oct. 2005Silicon Light Machines CorporationOptical communication arrangement
US697544424 mars 200513 déc. 2005Reflectivity, Inc.Double substrate reflective spatial light modulator with self-limiting micro-mechanical elements
US6987600 *17 déc. 200217 janv. 2006Silicon Light Machines CorporationArbitrary phase profile for better equalization in dynamic gain equalizer
US699195328 mars 200231 janv. 2006Silicon Light Machines CorporationMicroelectronic mechanical system and methods
US700627528 mai 200428 févr. 2006Reflectivity, IncPackaged micromirror array for a projection display
US700975424 mars 20057 mars 2006Reflectivity, IncDouble substrate reflective spatial light modulator with self-limiting micro-mechanical elements
US701273128 mai 200414 mars 2006Reflectivity, IncPackaged micromirror array for a projection display
US70127331 déc. 200414 mars 2006Reflectivity, IncDouble substrate reflective spatial light modulator with self-limiting micro-mechanical elements
US70158854 juin 200421 mars 2006Active Optical Networks, Inc.MEMS devices monolithically integrated with drive and control circuitry
US701805228 mai 200428 mars 2006Reflectivity, IncProjection TV with improved micromirror array
US702224913 févr. 20024 avr. 2006Teem PhotonicsMethod for making an optical micromirror and micromirror or array of micromirrors obtained by said method
US702360628 mai 20044 avr. 2006Reflectivity, IncMicromirror array for projection TV
US70236071 déc. 20044 avr. 2006Reflectivity, IncDouble substrate reflective spatial light modulator with self-limiting micro-mechanical elements
US702720228 févr. 200311 avr. 2006Silicon Light Machines CorpSilicon substrate as a light modulator sacrificial layer
US702720724 mars 200511 avr. 2006Reflectivity, IncDouble substrate reflective spatial light modulator with self-limiting micro-mechanical elements
US70426113 mars 20039 mai 2006Silicon Light Machines CorporationPre-deflected bias ribbons
US70491649 oct. 200223 mai 2006Silicon Light Machines CorporationMicroelectronic mechanical system and methods
US705451530 mai 200230 mai 2006Silicon Light Machines CorporationDiffractive light modulator-based dynamic equalizer with integrated spectral monitor
US705779520 août 20026 juin 2006Silicon Light Machines CorporationMicro-structures with individually addressable ribbon pairs
US705781917 déc. 20026 juin 2006Silicon Light Machines CorporationHigh contrast tilting ribbon blazed grating
US706837228 janv. 200327 juin 2006Silicon Light Machines CorporationMEMS interferometer-based reconfigurable optical add-and-drop multiplexor
US70711096 avr. 20054 juil. 2006Active Optical Networks, Inc.Methods for fabricating spatial light modulators with hidden comb actuators
US707570123 nov. 200511 juil. 2006Active Optical Networks, Inc.micro electro mechanical systems(MEMS) mirror layouts monolithically integrated with complementary metal oxides semiconductors (CMOS) for controlling microelectronics; integrated circuits; heat resistance
US707570230 août 200511 juil. 2006Reflectivity, IncMicromirror and post arrangements on substrates
US708849315 avr. 20048 août 2006Institut National D'optiqueLight modulating microdevice
US709214319 oct. 200415 août 2006Reflectivity, IncMicromirror array device and a method for making the same
US709906513 mai 200329 août 2006Reflectivity, Inc.Micromirrors with OFF-angle electrodes and stops
US711332221 sept. 200426 sept. 2006Reflectivity, IncMicromirror having offset addressing electrode
US716729728 mai 200423 janv. 2007Reflectivity, IncMicromirror array
US717229628 mai 20046 févr. 2007Reflectivity, IncProjection display
US71770818 mars 200113 févr. 2007Silicon Light Machines CorporationHigh contrast grating light valve type device
US7183618 *14 août 200427 févr. 2007Fusao IshiiHinge for micro-mirror devices
US719674028 mai 200427 mars 2007Texas Instruments IncorporatedProjection TV with improved micromirror array
US72628175 août 200428 août 2007Texas Instruments IncorporatedRear projection TV with improved micromirror array
US726893327 avr. 200511 sept. 2007Hewlett-Packard Development Company, L.P.Discharge of MEM devices having charge induced via focused beam to enter different states
US72862787 avr. 200523 oct. 2007Texas Instruments IncorporatedMethods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates
US72867643 févr. 200323 oct. 2007Silicon Light Machines CorporationReconfigurable modulator-based optical add-and-drop multiplexer
US72953638 avr. 200513 nov. 2007Texas Instruments IncorporatedOptical coating on light transmissive substrates of micromirror devices
US730016228 mai 200427 nov. 2007Texas Instruments IncorporatedProjection display
US73491393 mai 200625 mars 2008Idc, LlcSystem and method of illuminating interferometric modulators using backlighting
US73491414 févr. 200525 mars 2008Idc, LlcMethod and post structures for interferometric modulation
US735578011 févr. 20058 avr. 2008Idc, LlcSystem and method of illuminating interferometric modulators using backlighting
US736249330 août 200522 avr. 2008Texas Instruments IncorporatedMicromirror and post arrangements on substrates
US737587421 juin 200620 mai 2008Active Optical Mems Inc.Light modulator with integrated drive and control circuitry
US739197328 févr. 200324 juin 2008Silicon Light Machines CorporationTwo-stage gain equalizer
US740332425 janv. 200622 juil. 2008Texas Instruments IncorporatedDouble substrate reflective spatial light modulator with self-limiting micro-mechanical elements
US74058609 mars 200529 juil. 2008Texas Instruments IncorporatedSpatial light modulators with light blocking/absorbing areas
US753561931 juil. 200719 mai 2009Hewlett-Packard Development Company, L.P.Discharge of MEM devices having charge induced via focused beam to enter different states
US756132317 juin 200514 juil. 2009Idc, LlcOptical films for directing light towards active areas of displays
US75731117 avr. 200511 août 2009Texas Instruments IncorporatedMethods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates
US760300117 févr. 200613 oct. 2009Qualcomm Mems Technologies, Inc.Method and apparatus for providing back-lighting in an interferometric modulator display device
US762314214 sept. 200424 nov. 2009Hewlett-Packard Development Company, L.P.Flexure
US76554927 avr. 20052 févr. 2010Texas Instruments IncorporatedMethods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates
US76714287 avr. 20052 mars 2010Texas Instruments IncorporatedMethods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates
US77060505 mars 200427 avr. 2010Qualcomm Mems Technologies, Inc.Integrated modulator illumination
US771974725 févr. 200818 mai 2010Qualcomm Mems Technologies, Inc.Method and post structures for interferometric modulation
US775088622 juil. 20056 juil. 2010Qualcomm Mems Technologies, Inc.Methods and devices for lighting displays
US776649821 juin 20063 août 2010Qualcomm Mems Technologies, Inc.Linear solid state illuminator
US778717015 juin 200431 août 2010Texas Instruments IncorporatedMicromirror array assembly with in-array pillars
US780748819 août 20055 oct. 2010Qualcomm Mems Technologies, Inc.Display element having filter material diffused in a substrate of the display element
US781302621 janv. 200512 oct. 2010Qualcomm Mems Technologies, Inc.System and method of reducing color shift in a display
US783058624 juil. 20069 nov. 2010Qualcomm Mems Technologies, Inc.Transparent thin films
US783505612 mai 200616 nov. 2010Her Majesty the Queen in Right of Canada, as represented by Institut National d'OptiqueImage projector with flexible reflective analog modulator
US78479999 janv. 20087 déc. 2010Qualcomm Mems Technologies, Inc.Interferometric modulator display devices
US787279226 janv. 200718 janv. 2011Qualcomm Mems Technologies, Inc.Method and device for modulating light with multiple electrodes
US78809543 mai 20061 févr. 2011Qualcomm Mems Technologies, Inc.Integrated modulator illumination
US788498925 janv. 20078 févr. 2011Qualcomm Mems Technologies, Inc.White interferometric modulators and methods for forming the same
US788941517 avr. 200915 févr. 2011Qualcomm Mems Technologies, Inc.Device having a conductive light absorbing mask and method for fabricating same
US78894176 juil. 200915 févr. 2011Qualcomm Mems Technologies, Inc.Electromechanical system having a dielectric movable membrane
US789181812 déc. 200722 févr. 2011Evans & Sutherland Computer CorporationSystem and method for aligning RGB light in a single modulator projector
US7898722 *13 oct. 20061 mars 2011Qualcomm Mems Technologies, Inc.Microelectromechanical device with restoring electrode
US78987232 avr. 20081 mars 2011Qualcomm Mems Technologies, Inc.Microelectromechanical systems display element with photovoltaic structure
US79163788 mars 200729 mars 2011Qualcomm Mems Technologies, Inc.Method and apparatus for providing a light absorbing mask in an interferometric modulator display
US79203193 déc. 20095 avr. 2011Qualcomm Mems Technologies, Inc.Electromechanical device with optical function separated from mechanical and electrical function
US79244944 déc. 200912 avr. 2011Qualcomm Mems Technologies, Inc.Apparatus and method for reducing slippage between structures in an interferometric modulator
US793649728 juil. 20053 mai 2011Qualcomm Mems Technologies, Inc.MEMS device having deformable membrane characterized by mechanical persistence
US79445992 juil. 200717 mai 2011Qualcomm Mems Technologies, Inc.Electromechanical device with optical function separated from mechanical and electrical function
US794460410 févr. 200917 mai 2011Qualcomm Mems Technologies, Inc.Interferometric modulator in transmission mode
US79486714 déc. 200924 mai 2011Qualcomm Mems Technologies, Inc.Apparatus and method for reducing slippage between structures in an interferometric modulator
US79492137 déc. 200724 mai 2011Qualcomm Mems Technologies, Inc.Light illumination of displays with front light guide and coupling elements
US79527875 mai 200931 mai 2011Qualcomm Mems Technologies, Inc.Method of manufacturing MEMS devices providing air gap control
US796963810 avr. 200828 juin 2011Qualcomm Mems Technologies, Inc.Device having thin black mask and method of fabricating the same
US798270019 oct. 200719 juil. 2011Qualcomm Mems Technologies, Inc.Conductive bus structure for interferometric modulator array
US80087363 juin 200530 août 2011Qualcomm Mems Technologies, Inc.Analog interferometric modulator device
US802316725 juin 200820 sept. 2011Qualcomm Mems Technologies, Inc.Backlight displays
US803588320 janv. 201111 oct. 2011Qualcomm Mems Technologies, Inc.Device having a conductive light absorbing mask and method for fabricating same
US803588420 oct. 201011 oct. 2011Qualcomm Mems Technologies, Inc.Method and device for modulating light with semiconductor substrate
US804058825 févr. 200818 oct. 2011Qualcomm Mems Technologies, Inc.System and method of illuminating interferometric modulators using backlighting
US804525220 févr. 200825 oct. 2011Qualcomm Mems Technologies, Inc.Spatial light modulator with integrated optical compensation structure
US804995114 avr. 20091 nov. 2011Qualcomm Mems Technologies, Inc.Light with bi-directional propagation
US805452721 oct. 20088 nov. 2011Qualcomm Mems Technologies, Inc.Adjustably transmissive MEMS-based devices
US805453214 juin 20108 nov. 2011Qualcomm Mems Technologies, Inc.Method and device for providing illumination to interferometric modulators
US805854928 déc. 200715 nov. 2011Qualcomm Mems Technologies, Inc.Photovoltaic devices with integrated color interferometric film stacks
US805932630 avr. 200715 nov. 2011Qualcomm Mems Technologies Inc.Display devices comprising of interferometric modulator and sensor
US806826924 sept. 200929 nov. 2011Qualcomm Mems Technologies, Inc.Microelectromechanical device with spacing layer
US807737812 nov. 200913 déc. 2011Evans & Sutherland Computer CorporationCalibration system and method for light modulation device
US808136920 août 200720 déc. 2011Qualcomm Mems Technologies, Inc.System and method for a MEMS device
US80813705 mai 200920 déc. 2011Qualcomm Mems Technologies, Inc.Support structures for electromechanical systems and methods of fabricating the same
US808137312 oct. 201020 déc. 2011Qualcomm Mems Technologies, Inc.Devices and methods for enhancing color shift of interferometric modulators
US809841614 janv. 201017 janv. 2012Qualcomm Mems Technologies, Inc.Analog interferometric modulator device with electrostatic actuation and release
US809841711 févr. 201117 janv. 2012Qualcomm Mems Technologies, Inc.Electromechanical system having a dielectric movable membrane
US81025905 mai 200924 janv. 2012Qualcomm Mems Technologies, Inc.Method of manufacturing MEMS devices providing air gap control
US811144515 janv. 20087 févr. 2012Qualcomm Mems Technologies, Inc.Spatial light modulator with integrated optical compensation structure
US811598711 juil. 200714 févr. 2012Qualcomm Mems Technologies, Inc.Modulating the intensity of light from an interferometric reflector
US816482122 févr. 200824 avr. 2012Qualcomm Mems Technologies, Inc.Microelectromechanical device with thermal expansion balancing layer or stiffening layer
US81724176 mars 20098 mai 2012Qualcomm Mems Technologies, Inc.Shaped frontlight reflector for use with display
US817475214 avr. 20118 mai 2012Qualcomm Mems Technologies, Inc.Interferometric modulator in transmission mode
US82130755 nov. 20103 juil. 2012Qualcomm Mems Technologies, Inc.Method and device for multistate interferometric light modulation
US824336030 sept. 201114 août 2012Qualcomm Mems Technologies, Inc.Device having a conductive light absorbing mask and method for fabricating same
US82540053 juin 200628 août 2012Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.Arrangement of micromechanical elements
US827005623 mars 200918 sept. 2012Qualcomm Mems Technologies, Inc.Display device with openings between sub-pixels and method of making same
US827006217 sept. 200918 sept. 2012Qualcomm Mems Technologies, Inc.Display device with at least one movable stop element
US828961313 avr. 201116 oct. 2012Qualcomm Mems Technologies, Inc.Electromechanical device with optical function separated from mechanical and electrical function
US83582661 sept. 200922 janv. 2013Qualcomm Mems Technologies, Inc.Light turning device with prismatic light turning features
US835831726 mai 200922 janv. 2013Evans & Sutherland Computer CorporationSystem and method for displaying a planar image on a curved surface
US836899725 mars 20115 févr. 2013Qualcomm Mems Technologies, Inc.Electromechanical device with optical function separated from mechanical and electrical function
US83905477 juin 20115 mars 2013Qualcomm Mems Technologies, Inc.Conductive bus structure for interferometric modulator array
US840589920 juil. 200926 mars 2013Qualcomm Mems Technologies, IncPhotonic MEMS and structures
US848822828 sept. 200916 juil. 2013Qualcomm Mems Technologies, Inc.Interferometric display with interferometric reflector
US8591076 *2 mars 201226 nov. 2013Osram Sylvania Inc.Phosphor sheet having tunable color temperature
US86384919 août 201228 janv. 2014Qualcomm Mems Technologies, Inc.Device having a conductive light absorbing mask and method for fabricating same
US865981625 avr. 201125 févr. 2014Qualcomm Mems Technologies, Inc.Mechanical layer and methods of making the same
US867017118 oct. 201011 mars 2014Qualcomm Mems Technologies, Inc.Display having an embedded microlens array
US869308210 août 20108 avr. 2014Texas Instruments IncorporatedMicromirror array assembly with in-array pillars
US869308427 avr. 20128 avr. 2014Qualcomm Mems Technologies, Inc.Interferometric modulator in transmission mode
US870224811 juin 200922 avr. 2014Evans & Sutherland Computer CorporationProjection method for reducing interpixel gaps on a viewing surface
US87369394 nov. 201127 mai 2014Qualcomm Mems Technologies, Inc.Matching layer thin-films for an electromechanical systems reflective display device
US873694920 déc. 201127 mai 2014Qualcomm Mems Technologies, Inc.Devices and methods for enhancing color shift of interferometric modulators
US879762823 juil. 20105 août 2014Qualcomm Memstechnologies, Inc.Display with integrated photovoltaic device
US879763216 août 20115 août 2014Qualcomm Mems Technologies, Inc.Actuation and calibration of charge neutral electrode of a display device
US879842522 nov. 20115 août 2014Qualcomm Mems Technologies, Inc.Decoupled holographic film and diffuser
US88173578 avr. 201126 août 2014Qualcomm Mems Technologies, Inc.Mechanical layer and methods of forming the same
US20130229784 *2 mars 20125 sept. 2013Osram Sylvania Inc.Phosphor Sheet Having Tunable Color Temperature
DE3108240A1 *5 mars 198129 avr. 1982Centre Electron Horloger"miniatur-anzeigeanordnung"
EP0040302A2 *12 mars 198125 nov. 1981International Business Machines CorporationAn optical ray deflection apparatus
EP0332953A2 *3 mars 198920 sept. 1989Texas Instruments IncorporatedSpatial light modulator and method
EP0594829A1 *7 mai 19934 mai 1994Aura Systems, Inc.Pixel intensity modulator
EP0692728A213 juil. 199517 janv. 1996Texas Instruments IncorporatedImprovements in and relating to spatial light modulators
EP0712022A214 nov. 199515 mai 1996Texas Instruments IncorporatedImprovements in or relating to micromechanical devices
WO1992009001A1 *18 nov. 199129 mai 1992Rank Cintel LtdImprovements relating to spatial light modulators
WO1993002375A1 *10 juil. 19924 févr. 1993Optron Systems IncMembrane light modulating systems
WO1993023959A17 mai 199325 nov. 1993Aura Systems IncPixel intensity modulator
WO1999032919A1 *26 oct. 19981 juil. 1999Bosch Gmbh RobertMethod for producing a micromechanical device
WO2002065186A2 *13 févr. 200222 août 2002Teem PhotonicsPivoting optical micromirror, array for such micromirrors and method for making same
WO2002065187A2 *13 févr. 200222 août 2002Teem PhotonicsMethod for making an optical micromirror and micromirror or array of micromirrors obtained by said method
WO2006020987A2 *15 août 200523 févr. 2006Fusao IshiiHinge for micro-mirror devices
WO2007140731A1 *3 juin 200613 déc. 2007Fraunhofer Ges ForschungArrangement of electrodes with respect to moving micromechanical elements
Classifications
Classification aux États-Unis348/771, 348/E05.14, 315/372, 315/374, 313/465, 359/291
Classification internationaleH01J31/24, H01J29/12, G02B26/08, H01J29/10, H04N5/74, H01J31/10, G09F9/37
Classification coopérativeG09F9/372, H01J29/12, H04N5/7425, G02B26/0841
Classification européenneG09F9/37E, H04N5/74M2, H01J29/12, G02B26/08M4E