US3889115A - Ion microanalyzer - Google Patents

Ion microanalyzer Download PDF

Info

Publication number
US3889115A
US3889115A US341846A US34184673A US3889115A US 3889115 A US3889115 A US 3889115A US 341846 A US341846 A US 341846A US 34184673 A US34184673 A US 34184673A US 3889115 A US3889115 A US 3889115A
Authority
US
United States
Prior art keywords
specimen
ion
secondary ions
mass
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US341846A
Inventor
Hifumi Tamura
Toshio Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of US3889115A publication Critical patent/US3889115A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/252Tubes for spot-analysing by electron or ion beams; Microanalysers
    • H01J37/256Tubes for spot-analysing by electron or ion beams; Microanalysers using scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • H01J49/142Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers using a solid target which is not previously vapourised

Definitions

  • ABSTRACT An ion microanalyzer which detects and mass analyzes the secondary ions emitted from a specimen surface when it is scanned with an ion beam, comprising a cathode ray tube the electron beam of which is scanned synchronously with the scanning of the above-mentioned ion beam, the intensity of the electron beam being modulated by the directly detected signal of the secondary ions.
  • PRIOR ART PATEI ⁇ ITED 3,889,115
  • the present invention relates to an ion microana lyzer, and more particularly to an ion microanalyzer which can display the image of the secondary ions emitted by a specimen on the face plate of a cathode ray tube.
  • the ion microanalyzer of the type described is for the purpose of obtaining an image of the surface ofa specimen, potential distribution, atomic number contrast (the contrast resulting from the difference in the secondary ion emitting power of elements), or the like on the face plate of a cathode ray tube and/or on the recorder by detecting secondary ions emitted from a specimen by being scanned with an ion beam.
  • FIG. 1 is a schematic construction of a prior art ion microanalyzer
  • FIG. 2 is a schematic construction of an ion microanalyzer according to the present invention.
  • FIG. 3 is a secondary ion image on the face plate of a cathode ray tube.
  • FIG. 4 is a photograph of a secondary ion image.
  • the prior art ion microanalyzer shown in FIG. 1 includes a primary ion irradiation system, a double focussing type mass-spectrometer, a secondary ion detecting system, and a cathode ray tube.
  • the primary ion irradiation system consists of an ion source 1, a primary ion separator 3 for ions 2 emitted by the ion source 1, a condenser lens 4, an objective lens 6 and deflection electrodes 5.
  • An ion beam emitted by the ion source 1 is converged by the condenser lens 4 onto a specimen 7 to a diameter of several microns or less, and scanned by the deflection electrodes synchronously with a cathode ray tube 18 for observation.
  • a part of the secondary ions emitted by the specimen 7 passes through an electrostatic lens 9 and enters the mass-spectrometer which consists of an electric field device 10, a magnetic field device 12 and slits l6 and 17.
  • the mass-analyzed ions pass through a deflector 13, are detected and amplified by a detector such as a secondary electron multiplier 14, and supplied as a video signal to the cathode ray tube 18 and a recorder to provide an image for the concentration distribution of a particular element in the surface of the specimen 7.
  • a detector such as a secondary electron multiplier 14
  • a video signal supplied to the cathode ray tube 18 and a recorder to provide an image for the concentration distribution of a particular element in the surface of the specimen 7.
  • This ion microanalyzer can display an image ofa particular element as described above, but the image is not clear and distinct because the intensity of the video signal for forming the image is low due to the fact that the video signal is obtained by detecting the ions analyzed by the mass-spectrometer. That is, this image forming method has the following disadvantages:
  • An object of the present invention is to provide an ion microanalyzer which overcomes the abovedescribed disadvantages of the prior art ion microanalyzer,
  • the abovedescribed disadvantages are overcome by directly detecting secondary ions emitted by a specimen to supply a video signal.
  • the present invention provides an ion microanalyzer comprising means for producing an ion beam, means for scanning the surface of a specimen with the ion beam, means for detecting secondary ions emitted by the specimen, a cathode ray tube having means for scanning the electron beam thereof synchronously with the scanning of the ion beam, means for mass-analyzing the secondary ions, and means for modulating the intensity of the electron beam of the cathode ray tube by the detected signal from the secondary ion detecting means.
  • a primary ion irradiation system consists of, similarly to the prior art one described with reference to FIG. 1, an ion source or gun I, a condenser lens 4, an objective lens 6, and deflection electrodes 5 for scanning.
  • a cathode ray tube 18 for the observation ofa specimen image and a massspectrometer are the same as those of the prior art.
  • a secondary ion detector To directly detect secondary ions 24 emitted from a specimen 7 placed on a support 8, a secondary ion detector consists of a photosensitive surface 20 and an electrode 19 for secondary ion deflection maintained at the same potential as a shielding electrode (mesh or perforated metal electrode) 25 arranged around the specimen 7.
  • the shielding electrode 25 is not always necessary, it has the function of maintaining the frontal space of the specimen 7 at zero electric field to prevent an adverse effect by the deflection of secondary ions.
  • a variable electric source 26 is connected to the shielding electrode 25 so that the potential Va of the shielding electrode 25 is made variable over a range of from several volts to several hundreds of volts relative to the specimen 7.
  • the photosensitive surface 20 consists of a scintillator coated with an electrically conductive film.
  • the output light of the photosensitive surface 20 is received by a photomultiplier 21 to be subjected to photoelectric conversion.
  • the electric signal produced by the conversion is amplified by an amplifier 22 and modulates the intensity of the electron beam of the cathode ray tube 18.
  • the photosensitive surface 20 is arranged such that it cannot directly be viewed from the beam irradiated point on the specimen 7 so that the reduction of the sensitivity of the photosensitive surface 24 due to the deposition thereon of particles sputtered by the specimen 7 is prevented.
  • an electric source 27 is connected to the electrically conductive film on the photosensitive surface 20 so that a negative potential Vs is applied thereto relative to the opposing electrode 19 when positive secondary ions are to be detected, and a positive potential +Vs is applied thereto when negative secondary ions are to be detected to deflect the ions so that they impinge upon the photosensitive surface 20.
  • a secondary electron multiplier may be used instead of the scintillator and photomultiplier 21 .
  • the thus obtained secondary ion image represents the atomic number contrast between different kinds of elements present in the surface of a specimen, which could not be observed by the prior art apparatus.
  • the output of the secondary electron multiplier 14 may be superimposed on the output of the amplifier 22 through a comparator 28.
  • an element having a particular mass for example M can be specially brightly displayed on a cathode ray tube as shown in FIG. 3. Consequently, an image of the entire surface of a specimen can be displayed brightly irrespective of the composition ofthe specimen surface, and yet it is possible by scanning the mass-spectrometer to know which regions of the image corresponds to what mass.
  • reference numeral 23 designates a power source for scanning.
  • FIG. 4 is a photograph of a secondary ion image of a specimen consisting of an iron plate and an aluminum film evaporated thereon to a thickness of about 200 Angstroms. The atomic number contrast between aluminum and iron is clearly observed in FIG. 4.
  • An ion microanalyzer comprising:
  • a cathode ray tube having means for scanning the electron beam thereof synchronously with the scanning of said ion beam
  • a mass spectrometer for mass-analyzing a second portion of said secondary ions and for providing a signal representative of the mass-analysis
  • An ion microanalyzer according to claim 1 further, comprising shielding means surrounding the specimen.
  • An ion microanalyzer according to claim 1, further comprising deflection means for deflecting the secondary ions to direct them to said means for directly detecting a first portion of the secondary ions emitted from said specimen.
  • said deflection means for deflecting the secondary ions consists of a pair of electrodes one of which is made of a conductive film deposited on a scintillator, and said means for directly detecting a first portion of the secondary ions emitted from said specimen is constituted by said deflection means and a photomultiplier opposed to said scintillator.
  • An ion microanalyzer includes means for maintaining one of said electrodes at the same electric potential as said specimen and shielding means surrounding said specimen, and further includes means for changing over the polarity of an electric potential ap plied to the other of said electrodes.
  • an ion microanalyzer including: first means for producing an ion beam; second means for scanning the surface of a specimen with said ion beam; a cathode ray tube having means for scanning the electron beam thereof in synchronism with the scanning of said ion beam; and third means receiving a principal ion beam which includes a portion of the secondary ions emitted from said specimen for mass-analyzing said principal ion beam and for providing a first signal representative of the mass-analysis thereof; the improvement comprising fourth means, disposed separately from said third means, for directly detecting secondary ions emitted from said specimen separate from the portion of the secondary ions included in said principal ion beam and for providing a second signal representative of the directly detected secondary ions; and
  • fifth means coupled to said fourth means and said cathode ray tube for modulating the intensity of said electron beam in accordance with said second signal provided by said fourth means, and including means for superimposing said first signal on said second signal for modulating the intensity of said electron beam in accordance with said superimposed signals.
  • said third means comprises a mass analyzer and a comparator having first and second inputs and an output, said first input being connected to said mass analyzer,
  • said second input being connected to a reference voltage and said output being coupled to the output of said fourth means.
  • said fourth means comprises deflection means for defleeting the secondary ions and directing the secondary ions into an ion detector.
  • said deflection means comprises a pair of electrodes. one of which is made of a conductive film deposited on a scintillator. and said ion detector comprises a photomultiplier disposed opposite said scintillator.
  • a method of analyzing a specimen surface by an ion microanalyzer comprising the steps of:

Abstract

An ion microanalyzer which detects and mass analyzes the secondary ions emitted from a specimen surface when it is scanned with an ion beam, comprising a cathode ray tube the electron beam of which is scanned synchronously with the scanning of the abovementioned ion beam, the intensity of the electron beam being modulated by the directly detected signal of the secondary ions.

Description

United States Patent 1 Tamura et al.
[ June 10, 1975 i 1 ION MICROANALYZER [75] Inventors: Hifumi Tamura, Hachioji: Toshio Kondo, Sagamihara, both of Japan [73] Assignee: Hitachi, Ltd., Japan [22] Filed: Mar. 16, 1973 [21] Appl. No; 341,846
[30] Foreign Application Priority Data Mar. 17. 1972 Switzerland ..2656l/72 [52] U.S. Cl. 250/307; 250/309; 250/397 [51] Int. Cl. H0lj 37/26 [58] Field of Search 250/309, 307. 306, 310,
[56] References Cited UNITED STATES PATENTS 3,644,044 2/1972 Tolk 250/307 3,686,499 8/1972 Omura 250/309 OTHER PUBLICATIONS Ion Microprobe Mass Analyzer, Liebl, Journal of Applied Physics, Vol. 38, No. 13, 5277-5283, Dec, 1967.
Primary Examiner.lames W. Lawrence Assistant Examiner-C. E. Church Attorney, Agent, or Firm-Craig & Antonelli [57] ABSTRACT An ion microanalyzer which detects and mass analyzes the secondary ions emitted from a specimen surface when it is scanned with an ion beam, comprising a cathode ray tube the electron beam of which is scanned synchronously with the scanning of the above-mentioned ion beam, the intensity of the electron beam being modulated by the directly detected signal of the secondary ions.
15 Claims, 4 Drawing Figures p agrmmua 0 ms 3 8 89 ,1 l5
FIG.| PRIOR ART PATEI\ITED 3,889,115
SHEET 5 F I G. 4
Fe Al i l ATOMIC NUMBER CONTRAST (Al Fe ION MICROANALYZER The present invention relates to an ion microana lyzer, and more particularly to an ion microanalyzer which can display the image of the secondary ions emitted by a specimen on the face plate of a cathode ray tube.
The ion microanalyzer of the type described is for the purpose of obtaining an image of the surface ofa specimen, potential distribution, atomic number contrast (the contrast resulting from the difference in the secondary ion emitting power of elements), or the like on the face plate of a cathode ray tube and/or on the recorder by detecting secondary ions emitted from a specimen by being scanned with an ion beam.
A prior art ion microanalyzer for the preparation of a description of the present invention and a preferred embodiment of the present invention will be described with reference to the accompanying drawings, in which FIG. 1 is a schematic construction of a prior art ion microanalyzer;
FIG. 2 is a schematic construction of an ion microanalyzer according to the present invention;
FIG. 3 is a secondary ion image on the face plate of a cathode ray tube; and
FIG. 4 is a photograph of a secondary ion image.
As a preparatory description for the present invention a prior art ion microanalyzer will first be described with reference to FIG. 1. The prior art ion microanalyzer shown in FIG. 1 includes a primary ion irradiation system, a double focussing type mass-spectrometer, a secondary ion detecting system, and a cathode ray tube. The primary ion irradiation system consists of an ion source 1, a primary ion separator 3 for ions 2 emitted by the ion source 1, a condenser lens 4, an objective lens 6 and deflection electrodes 5. An ion beam emitted by the ion source 1 is converged by the condenser lens 4 onto a specimen 7 to a diameter of several microns or less, and scanned by the deflection electrodes synchronously with a cathode ray tube 18 for observation. A part of the secondary ions emitted by the specimen 7 passes through an electrostatic lens 9 and enters the mass-spectrometer which consists of an electric field device 10, a magnetic field device 12 and slits l6 and 17. The mass-analyzed ions pass through a deflector 13, are detected and amplified by a detector such as a secondary electron multiplier 14, and supplied as a video signal to the cathode ray tube 18 and a recorder to provide an image for the concentration distribution of a particular element in the surface of the specimen 7.
This ion microanalyzer can display an image ofa particular element as described above, but the image is not clear and distinct because the intensity of the video signal for forming the image is low due to the fact that the video signal is obtained by detecting the ions analyzed by the mass-spectrometer. That is, this image forming method has the following disadvantages:
1. Though this method is relatively effective for an element having a high secondary ion emissivity (the ratios of emitted ions to atoms) and having a concentration of several percent to 100 percent in a specimen such Al, Fe, Cr, Na or K, other elements are only with difficulty observed as images.
2. It is difficult to distinguish between the image of the surface of a specimen and the atomic number contrast due to the concentration of the element because the contrast due to the unevenness of the surface of the speciman is observed superposed on a particular element.
3. It is not practical to utilize the secondary ion image for the location of the analyzing position because the intensity of signal is low for that purpose.
An object of the present invention is to provide an ion microanalyzer which overcomes the abovedescribed disadvantages of the prior art ion microanalyzer,
According to the present invention the abovedescribed disadvantages are overcome by directly detecting secondary ions emitted by a specimen to supply a video signal.
To achieve this purpose, the present invention provides an ion microanalyzer comprising means for producing an ion beam, means for scanning the surface of a specimen with the ion beam, means for detecting secondary ions emitted by the specimen, a cathode ray tube having means for scanning the electron beam thereof synchronously with the scanning of the ion beam, means for mass-analyzing the secondary ions, and means for modulating the intensity of the electron beam of the cathode ray tube by the detected signal from the secondary ion detecting means.
There is another prior art ion microanalyzer which displays a secondary electron image instead of a secondary ion image. However, the secondary ion emissivity of an element is far higher than the secondary electron emissivity. Consequently, according to the present invention which employs secondary ions a very clear and distinct atomic number contrast can be observed. Also, since a secondary ion image is far less affected by scattered electrons than a secondary electron image, the present invention can provide an essentially low noise image.
An embodiment of the present invention will now be described with reference to FIG. 2. A primary ion irradiation system consists of, similarly to the prior art one described with reference to FIG. 1, an ion source or gun I, a condenser lens 4, an objective lens 6, and deflection electrodes 5 for scanning. A cathode ray tube 18 for the observation ofa specimen image and a massspectrometer are the same as those of the prior art.
To directly detect secondary ions 24 emitted from a specimen 7 placed on a support 8, a secondary ion detector consists of a photosensitive surface 20 and an electrode 19 for secondary ion deflection maintained at the same potential as a shielding electrode (mesh or perforated metal electrode) 25 arranged around the specimen 7. Though the shielding electrode 25 is not always necessary, it has the function of maintaining the frontal space of the specimen 7 at zero electric field to prevent an adverse effect by the deflection of secondary ions. In some cases, to perform energy analysis of the secondary ions to be detected a variable electric source 26 is connected to the shielding electrode 25 so that the potential Va of the shielding electrode 25 is made variable over a range of from several volts to several hundreds of volts relative to the specimen 7. The photosensitive surface 20 consists of a scintillator coated with an electrically conductive film. The output light of the photosensitive surface 20 is received by a photomultiplier 21 to be subjected to photoelectric conversion. The electric signal produced by the conversion is amplified by an amplifier 22 and modulates the intensity of the electron beam of the cathode ray tube 18. The photosensitive surface 20 is arranged such that it cannot directly be viewed from the beam irradiated point on the specimen 7 so that the reduction of the sensitivity of the photosensitive surface 24 due to the deposition thereon of particles sputtered by the specimen 7 is prevented. For this purpose an electric source 27 is connected to the electrically conductive film on the photosensitive surface 20 so that a negative potential Vs is applied thereto relative to the opposing electrode 19 when positive secondary ions are to be detected, and a positive potential +Vs is applied thereto when negative secondary ions are to be detected to deflect the ions so that they impinge upon the photosensitive surface 20.
Instead of the scintillator and photomultiplier 21 a secondary electron multiplier may be used.
By the above-described structure according to the present invention an amount of secondary ions about times as high as that provided by a prior art apparatus could be detected for primary argon ions Ar" having an energy of IO Kev and an ion current of 10 A. As a result, a clear and distinct secondary ion image of a resolution of 0.5 micron or less could be observed on the cathode ray tube.
The thus obtained secondary ion image represents the atomic number contrast between different kinds of elements present in the surface of a specimen, which could not be observed by the prior art apparatus.
In the apparatus according to the present invention the output of the secondary electron multiplier 14 may be superimposed on the output of the amplifier 22 through a comparator 28. By doing so an element having a particular mass, for example M can be specially brightly displayed on a cathode ray tube as shown in FIG. 3. Consequently, an image of the entire surface of a specimen can be displayed brightly irrespective of the composition ofthe specimen surface, and yet it is possible by scanning the mass-spectrometer to know which regions of the image corresponds to what mass. In FIG. 2, reference numeral 23 designates a power source for scanning.
FIG. 4 is a photograph of a secondary ion image of a specimen consisting of an iron plate and an aluminum film evaporated thereon to a thickness of about 200 Angstroms. The atomic number contrast between aluminum and iron is clearly observed in FIG. 4.
What we claim is:
1. An ion microanalyzer comprising:
means for producing an ion beam;
means for scanning the surface of a specimen with said ion beam;
means for directly detecting a first portion of the secondary ions emitted from said specimen;
a cathode ray tube having means for scanning the electron beam thereof synchronously with the scanning of said ion beam;
a mass spectrometer for mass-analyzing a second portion of said secondary ions and for providing a signal representative of the mass-analysis;
means for modulating the intensity of the electron beam of said cathode ray tube by the detected signal from said means for directly detecting a first portion of the secondary ions emitted from said specimen; and
means for superimposing the signal obtained from said mass spectrometer on the signal obtained from said means for directly detecting a first portion of the secondary ions emitted from said specimen. 2. An ion microanalyzer according to claim 1, further, comprising shielding means surrounding the specimen.
3. An ion microanalyzer according to claim 2, in which the secondary ion detecting means is provided outside the shielding means.
4. An ion microanalyzer according to claim 1, wherein said means for directly detecting a first portion of the secondary ions emitted from said specimen is a secondary electron multiplier.
5. An ion microanalyzer according to claim 1, further comprising deflection means for deflecting the secondary ions to direct them to said means for directly detecting a first portion of the secondary ions emitted from said specimen.
6. An ion microanalyzer according to claim 5, wherein said deflection means for deflecting the secondary ions consists of a pair of electrodes one of which is made of a conductive film deposited on a scintillator, and said means for directly detecting a first portion of the secondary ions emitted from said specimen is constituted by said deflection means and a photomultiplier opposed to said scintillator.
7. An ion microanalyzer according to claim 6, wherein said ion microanalyzer includes means for maintaining one of said electrodes at the same electric potential as said specimen and shielding means surrounding said specimen, and further includes means for changing over the polarity of an electric potential ap plied to the other of said electrodes.
8. In an ion microanalyzer including: first means for producing an ion beam; second means for scanning the surface of a specimen with said ion beam; a cathode ray tube having means for scanning the electron beam thereof in synchronism with the scanning of said ion beam; and third means receiving a principal ion beam which includes a portion of the secondary ions emitted from said specimen for mass-analyzing said principal ion beam and for providing a first signal representative of the mass-analysis thereof; the improvement comprising fourth means, disposed separately from said third means, for directly detecting secondary ions emitted from said specimen separate from the portion of the secondary ions included in said principal ion beam and for providing a second signal representative of the directly detected secondary ions; and
fifth means, coupled to said fourth means and said cathode ray tube for modulating the intensity of said electron beam in accordance with said second signal provided by said fourth means, and including means for superimposing said first signal on said second signal for modulating the intensity of said electron beam in accordance with said superimposed signals.
9. The improvement according to claim 8, wherein said fourth means comprises a secondary electron multiplier.
10. The improvement according to claim 8, wherein said third means comprises a mass analyzer and a comparator having first and second inputs and an output, said first input being connected to said mass analyzer,
said second input being connected to a reference voltage and said output being coupled to the output of said fourth means.
11. The improvement according to claim 8, wherein said fourth means comprises deflection means for defleeting the secondary ions and directing the secondary ions into an ion detector.
12. The improvement according to claim 1 1, wherein said deflection means comprises a pair of electrodes. one of which is made of a conductive film deposited on a scintillator. and said ion detector comprises a photomultiplier disposed opposite said scintillator.
13. The improvement according to claim 12, further comprising shielding means surrounding said specimen with said fourth means located outside said shielding means.
14. The improvement according to claim 13, further comprising means for maintaining one of said electrodes at the same electric potential as said specimen and means for reversing the polarity of the electric potential applied to the other of said electrodes.
15. A method of analyzing a specimen surface by an ion microanalyzer comprising the steps of:
a. generating a primary ion beam;
b. continuously scanning a specimen surface with said primary ion beam;
c. directly detecting a first portion of the secondary ions emitted from said specimen;
d. scanning the electron beam of a cathode ray tube synchronously with the scanning of said primary ion beam;
e. mass-analyzing a second portion of the secondary ion emitted from said specimen and providing a signal representative thereof;
f. modulating the intensity of the electron beam of said cathode ray tube by the detected signal of said mass-analyzed secondary ions; and
g. superimposing the signal obtained from said massanalyzing of said second portion of the secondary ions on the signal obtained by directly detecting the first portion of the secondary ions emitted from the specimen.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3, 889, 115 Dated June 10, 1975 (s) Hifumi TAMURA, Toshio KONDO It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Title page as it reads now:
[30] Foreign Application Priority Data March 17 1972 Switzerland. 26561/72 Title page as it should read:
[30] Foreign Application Priority Data March 17, 1972 Japan ............26561/72 Signed and Scaled this eighteenth Day Of November 1975 [SEALI Arrest:
RUTH C. MASON C. MARSHALL DANN llrvsring ()jfiver Commissioner of Parents and Trademarks

Claims (15)

1. An ion microanalyzer comprising: means for producing an ion beam; means for scanning the surface of a specimen with said ion beam; means for directly detecting a first portion of the secondary ions emitted from said specimen; a cathode ray tube having means for scanning the electron beam thereof synchronously with the scanning of said ion beam; a mass spectrometer for mass-analyzing a second portion of said secondary ions and for providing a signal representative of the mass-analysis; means for modulating the intensity of the electron beam of said cathode ray tube by the detected signal from said means for directly detecting a first portion of the secondary ions emitted from said specimen; and means for superimposing the signal obtained from said mass spectrometer on the signal obtained from said means for directly detecting a first portion of the secondary ions emitted from said specimen.
2. An ion microanalyzer according to claim 1, further, comprising shielding means surrounding the specimen.
3. An ion microanalyzer according to claim 2, in which the secondary ion detecting means is provided outside the shielding means.
4. An ion microanalyzer according to claim 1, wherein said means for directly detecting a first portion of the secondary ions emitted from said specimen is a secondary electron multiplier.
5. An ion microanalyzer according to claim 1, further comprising deflection means for deflecting the secondary ions to direct them to said means for directly detecting a first portion of the secondary ions emitted from said specimen.
6. An ion microanalyzer according to claim 5, wherein said deflection means for deflecting the secondary ions consists of a pair of electrodes one of which is made of a conductive film deposiTed on a scintillator, and said means for directly detecting a first portion of the secondary ions emitted from said specimen is constituted by said deflection means and a photomultiplier opposed to said scintillator.
7. An ion microanalyzer according to claim 6, wherein said ion microanalyzer includes means for maintaining one of said electrodes at the same electric potential as said specimen and shielding means surrounding said specimen, and further includes means for changing over the polarity of an electric potential applied to the other of said electrodes.
8. In an ion microanalyzer including: first means for producing an ion beam; second means for scanning the surface of a specimen with said ion beam; a cathode ray tube having means for scanning the electron beam thereof in synchronism with the scanning of said ion beam; and third means receiving a principal ion beam which includes a portion of the secondary ions emitted from said specimen for mass-analyzing said principal ion beam and for providing a first signal representative of the mass-analysis thereof; the improvement comprising fourth means, disposed separately from said third means, for directly detecting secondary ions emitted from said specimen separate from the portion of the secondary ions included in said principal ion beam and for providing a second signal representative of the directly detected secondary ions; and fifth means, coupled to said fourth means and said cathode ray tube for modulating the intensity of said electron beam in accordance with said second signal provided by said fourth means, and including means for superimposing said first signal on said second signal for modulating the intensity of said electron beam in accordance with said superimposed signals.
9. The improvement according to claim 8, wherein said fourth means comprises a secondary electron multiplier.
10. The improvement according to claim 8, wherein said third means comprises a mass analyzer and a comparator having first and second inputs and an output, said first input being connected to said mass analyzer, said second input being connected to a reference voltage and said output being coupled to the output of said fourth means.
11. The improvement according to claim 8, wherein said fourth means comprises deflection means for deflecting the secondary ions and directing the secondary ions into an ion detector.
12. The improvement according to claim 11, wherein said deflection means comprises a pair of electrodes, one of which is made of a conductive film deposited on a scintillator, and said ion detector comprises a photomultiplier disposed opposite said scintillator.
13. The improvement according to claim 12, further comprising shielding means surrounding said specimen with said fourth means located outside said shielding means.
14. The improvement according to claim 13, further comprising means for maintaining one of said electrodes at the same electric potential as said specimen and means for reversing the polarity of the electric potential applied to the other of said electrodes.
15. A method of analyzing a specimen surface by an ion microanalyzer comprising the steps of: a. generating a primary ion beam; b. continuously scanning a specimen surface with said primary ion beam; c. directly detecting a first portion of the secondary ions emitted from said specimen; d. scanning the electron beam of a cathode ray tube synchronously with the scanning of said primary ion beam; e. mass-analyzing a second portion of the secondary ion emitted from said specimen and providing a signal representative thereof; f. modulating the intensity of the electron beam of said cathode ray tube by the detected signal of said mass-analyzed secondary ions; and g. superimposing the signal obtained from said mass-analyzing of said second portion of the secondary ions on the signal obtained by directly detecting the first portion of the Secondary ions emitted from the specimen.
US341846A 1972-03-17 1973-03-16 Ion microanalyzer Expired - Lifetime US3889115A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP47026561A JPS5221909B2 (en) 1972-03-17 1972-03-17

Publications (1)

Publication Number Publication Date
US3889115A true US3889115A (en) 1975-06-10

Family

ID=12196934

Family Applications (1)

Application Number Title Priority Date Filing Date
US341846A Expired - Lifetime US3889115A (en) 1972-03-17 1973-03-16 Ion microanalyzer

Country Status (2)

Country Link
US (1) US3889115A (en)
JP (1) JPS5221909B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004149A (en) * 1974-04-22 1977-01-18 Hitachi, Ltd. Apparatus for displaying image produced by electrically charged particle beam
US4081674A (en) * 1976-01-21 1978-03-28 Hitachi, Ltd. Ion microprobe analyzer
US4100410A (en) * 1975-12-24 1978-07-11 Hitachi, Ltd. Apparatus for selecting the field of view of a sample
US4503329A (en) * 1981-09-30 1985-03-05 Hitachi, Ltd. Ion beam processing apparatus and method of correcting mask defects
EP0179716A2 (en) * 1984-10-19 1986-04-30 Kawasaki Steel Corporation A secondary ion mass spectrometer
US4710639A (en) * 1985-04-18 1987-12-01 Jeol Ltd. Ion beam lithography system
EP0278736A2 (en) * 1987-02-10 1988-08-17 FISONS plc Secondary ion mass spectrometer
US4860225A (en) * 1983-09-30 1989-08-22 Siemens Aktiengesellschaft Method and apparatus for storing measured data from sub-regions of a sputter crater which is generated and analyzed in a secondary ion mass spectrometer
US4874946A (en) * 1985-04-30 1989-10-17 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for analyzing the internal chemistry and compositional variations of materials and devices
USRE33193E (en) * 1981-09-30 1990-04-03 Hitachi, Ltd. Ion beam processing apparatus and method of correcting mask defects
US4968888A (en) * 1989-07-05 1990-11-06 The United States Of America As Represented By The United States Department Of Energy Pulsed field sample neutralization
US5118941A (en) * 1991-04-23 1992-06-02 The Perkin-Elmer Corporation Apparatus and method for locating target area for electron microanalysis
USRE33973E (en) * 1987-01-08 1992-06-23 Management Graphics, Inc. Image generator having automatic alignment method and apparatus
US5347126A (en) * 1992-07-02 1994-09-13 Arch Development Corporation Time-of-flight direct recoil ion scattering spectrometer
US20070158582A1 (en) * 2003-10-16 2007-07-12 Ward Billy W Ion sources, systems and methods
US20080111069A1 (en) * 2006-11-15 2008-05-15 Alis Corporation Determining dopant information
US20080217555A1 (en) * 2003-10-16 2008-09-11 Ward Billy W Systems and methods for a gas field ionization source
US20090114840A1 (en) * 2003-10-16 2009-05-07 Ward Billy W Ion sources, systems and methods
US20090179161A1 (en) * 2003-10-16 2009-07-16 Alis Corporation Ion sources, systems and methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121654A (en) * 1983-12-02 1985-06-29 Hitachi Ltd Ion microbeam device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3644044A (en) * 1970-05-20 1972-02-22 Bell Telephone Labor Inc Method of analyzing a solid surface from photon emissions of sputtered particles
US3686499A (en) * 1969-05-16 1972-08-22 Hitachi Ltd Ion micro-analyzer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3686499A (en) * 1969-05-16 1972-08-22 Hitachi Ltd Ion micro-analyzer
US3644044A (en) * 1970-05-20 1972-02-22 Bell Telephone Labor Inc Method of analyzing a solid surface from photon emissions of sputtered particles

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004149A (en) * 1974-04-22 1977-01-18 Hitachi, Ltd. Apparatus for displaying image produced by electrically charged particle beam
US4100410A (en) * 1975-12-24 1978-07-11 Hitachi, Ltd. Apparatus for selecting the field of view of a sample
US4081674A (en) * 1976-01-21 1978-03-28 Hitachi, Ltd. Ion microprobe analyzer
USRE33193E (en) * 1981-09-30 1990-04-03 Hitachi, Ltd. Ion beam processing apparatus and method of correcting mask defects
US4503329A (en) * 1981-09-30 1985-03-05 Hitachi, Ltd. Ion beam processing apparatus and method of correcting mask defects
US4860225A (en) * 1983-09-30 1989-08-22 Siemens Aktiengesellschaft Method and apparatus for storing measured data from sub-regions of a sputter crater which is generated and analyzed in a secondary ion mass spectrometer
US4740697A (en) * 1984-10-19 1988-04-26 Kawasaki Steel Corporation Secondary ion mass spectrometer
EP0179716A3 (en) * 1984-10-19 1987-10-14 Kawasaki Steel Corporation A secondary ion mass spectrometer
EP0179716A2 (en) * 1984-10-19 1986-04-30 Kawasaki Steel Corporation A secondary ion mass spectrometer
US4710639A (en) * 1985-04-18 1987-12-01 Jeol Ltd. Ion beam lithography system
US4874946A (en) * 1985-04-30 1989-10-17 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for analyzing the internal chemistry and compositional variations of materials and devices
USRE33973E (en) * 1987-01-08 1992-06-23 Management Graphics, Inc. Image generator having automatic alignment method and apparatus
EP0278736A2 (en) * 1987-02-10 1988-08-17 FISONS plc Secondary ion mass spectrometer
EP0278736A3 (en) * 1987-02-10 1989-11-29 FISONS plc Secondary ion mass spectrometer
US4968888A (en) * 1989-07-05 1990-11-06 The United States Of America As Represented By The United States Department Of Energy Pulsed field sample neutralization
US5118941A (en) * 1991-04-23 1992-06-02 The Perkin-Elmer Corporation Apparatus and method for locating target area for electron microanalysis
US5347126A (en) * 1992-07-02 1994-09-13 Arch Development Corporation Time-of-flight direct recoil ion scattering spectrometer
US7786452B2 (en) 2003-10-16 2010-08-31 Alis Corporation Ion sources, systems and methods
US20080217555A1 (en) * 2003-10-16 2008-09-11 Ward Billy W Systems and methods for a gas field ionization source
US20090114840A1 (en) * 2003-10-16 2009-05-07 Ward Billy W Ion sources, systems and methods
US20090179161A1 (en) * 2003-10-16 2009-07-16 Alis Corporation Ion sources, systems and methods
US20070158582A1 (en) * 2003-10-16 2007-07-12 Ward Billy W Ion sources, systems and methods
US7786451B2 (en) 2003-10-16 2010-08-31 Alis Corporation Ion sources, systems and methods
US8110814B2 (en) 2003-10-16 2012-02-07 Alis Corporation Ion sources, systems and methods
US8748845B2 (en) 2003-10-16 2014-06-10 Carl Zeiss Microscopy, Llc Ion sources, systems and methods
US9012867B2 (en) 2003-10-16 2015-04-21 Carl Zeiss Microscopy, Llc Ion sources, systems and methods
US9159527B2 (en) 2003-10-16 2015-10-13 Carl Zeiss Microscopy, Llc Systems and methods for a gas field ionization source
US9236225B2 (en) 2003-10-16 2016-01-12 Carl Zeiss Microscopy, Llc Ion sources, systems and methods
US20080111069A1 (en) * 2006-11-15 2008-05-15 Alis Corporation Determining dopant information
US7804068B2 (en) * 2006-11-15 2010-09-28 Alis Corporation Determining dopant information

Also Published As

Publication number Publication date
JPS5221909B2 (en) 1977-06-14
JPS4895293A (en) 1973-12-06

Similar Documents

Publication Publication Date Title
US3889115A (en) Ion microanalyzer
McMullan An improved scanning electron microscope for opaque specimens
US4352985A (en) Scanning ion microscope
US4236073A (en) Scanning ion microscope
US3955084A (en) Electro-optical detector for use in a wide mass range mass spectrometer
US4992661A (en) Method and apparatus for neutralizing an accumulated charge on a specimen by means of a conductive lattice deposited on the specimen
US3660655A (en) Ion probe with means for mass analyzing neutral particles sputtered from a specimen
US2257774A (en) Electronic-optical device
EP0113746B1 (en) An elektrode system of a retarding-field spectrometer for a voltage measuring electron beam apparatus
US4810879A (en) Charged particle energy analyzer
US4132892A (en) Raster scanning ion microscope with quadrupole mass filter
US3629579A (en) Electron probe specimen stage with a scattered electron detector mounted thereon
Long A theoretical assessment of the possibility of selected-area mass-spectrometric analysis using a focused ion beam
US3857034A (en) Scanning charged beam particle beam microscope
Wittmaack Successful operation of a scanning ion microscope with quadrupole mass filter
US4117322A (en) Ion scattering spectrometer including cylindrical mirror analyzer and ion gun axially positioned therewithin
US4107527A (en) Ion-emission microanalyzer microscope
US3733483A (en) Electron spectroscopy
US5086227A (en) Secondary ion mass analyzing apparatus
Gersch et al. Postionization of sputtered neutrals by a focused electron beam
Schuetzle et al. High‐spatial and high‐mass‐resolution SIMS instrument for the surface analysis of chemically complex materials
US2989662A (en) Radiographic device
US3628009A (en) Scanning-type sputtering mass spectrometer
USRE29500E (en) Scanning charged beam particle beam microscope
CN113840441B (en) X-ray beam position information detector based on ion beam high-order ionization principle