US3889896A - Hose coiling apparatus - Google Patents

Hose coiling apparatus Download PDF

Info

Publication number
US3889896A
US3889896A US45338074A US3889896A US 3889896 A US3889896 A US 3889896A US 45338074 A US45338074 A US 45338074A US 3889896 A US3889896 A US 3889896A
Authority
US
United States
Prior art keywords
arm
axis
hose
rotation
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Arthur C O'hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OHARA ARTHUR C
Original Assignee
OHARA ARTHUR C
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OHARA ARTHUR C filed Critical OHARA ARTHUR C
Priority to US45338074 priority Critical patent/US3889896A/en
Application granted granted Critical
Publication of US3889896A publication Critical patent/US3889896A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/34Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables
    • B65H75/38Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/34Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables
    • B65H75/36Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables without essentially involving the use of a core or former internal to a stored package of material, e.g. with stored material housed within casing or container, or intermittently engaging a plurality of supports as in sinuous or serpentine fashion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/33Hollow or hose-like material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/6851With casing, support, protector or static constructional installations
    • Y10T137/6918With hose storage or retrieval means
    • Y10T137/6932With retrieval means
    • Y10T137/6943Biased to retracted position

Definitions

  • ABSTRACT Apparatus for assisting in uncoiling and coiling a flexible hose, cord, or the like, in even layers on a fixed drum.
  • the hose is uncoiled by pulling the free end in a direction more or less parallel to the axis of the drum on which it is coiled as an arm carrying a guide pulley rotates to follow the tangent of hose leaving the coil about the fixed drum.
  • Springs tensioned by the uncoiling movement provide a biasing force for rewinding the hose, rotating the guide pulley and arm in the opposite direction.
  • Novel motion transfer means are disclosed for producing traversing movement of the guide pulley along the length of the fixed drum as the arm carrying the pulley rotates thereby coiling the hose in even layers.
  • the present invention relates to apparatus for winding and unwinding a flexible hose, rope, or the like on a non-rotating drum and, more specifically, to novel means for laying the flexible element in even layers along the length of the drum.
  • hose The present invention is illustrated and described in the context of a garden hose reel, although the invention is not limited by the nature of the flexible element used in connection therewith.
  • the flexible element will hereafter be referred to as hose.
  • Self-winding hose drums may be generally classified by the direction of movement of the hose with respect to the drum as it is wound and unwound.
  • the hose is moved tangentially on and off the drum with no significant change in direction, i.e., it is moved substantially transversely to the drum axis.
  • the drum is mounted for rotation about its own axis, and is rotated in one direction by hose removal and in the opposite direction by the spring force as the hose is rewound.
  • the drum does not rotate, but rather is fixedly mounted, and the hose passes over a change of direction guide which is itself rotatable about the drum periphery. The hose is moved, after passing over the guide, in a direction generally parallel to the drum axis.
  • the present invention relates entirely to self-winding drums of the latter type and has as a principal object the provision of novel and improved means for insuring that the hose is wound upon the drum in evenly spaced layers. That is, each revolution of the hose about the drum is guided to lay adjacent the immediately preceding revolution to form even layers with no buildup of the thickness of coiled hose at any point along the drum.
  • the object of the invention is to provide an improved, self-winding mechanism for replacing an elongated, flexible element on a cylindrical drum after manual removal of the element from the drum.
  • the invention comprises a fixedly mounted, cylindrical drum having end flanges of considerably larger diameter.
  • a hose, or other flexible element is anchored at one end, wound around the drum between the flanges, and passes over a rotatable guide member, to a free end.
  • the guide member is in the form of a pulley mounted for rotation about its own axis on one end of an arm which is rotatable about the drum axis to move the pulley about the periphery of the drum, in spaced relation thereto.
  • a second arm is also rotatable about the drum axis and carries a wheel frictionally engaging an outer surface of one of the end flanges of the drum. As the second arm is rotated, the wheel carried thereby turns, effecting rotation of a worm gear, also carried by the second arm.
  • the first arm carrying the pulley guide member at one end, carries at the other end an eccentric gear meshed with the worm gear.
  • the first arm is moved reciprocally about an axis transverse to the drum axis, thereby moving the end carrying the pulley guide transversely and reciprocally with respect to the drum surface.
  • the gear ratios and dimensions of the respective elements are such that the pulley guide moves transversely a distance substantially equal to the diameter of the hose with each revolution about the drum. Also, the direction of traverse of the pulley guide is reversed after each movement thereby of a distance equal to the spacing between the end flanges of the base.
  • the arms are caused to rotate as the pulley guide follows the rotation of the hose.
  • One or more springs are connected at one end to a shaft rotated by the arms. The springs are tensioned by rotation of the shaft in the direction of removal of the hose from the drum. The energy stored in the springs causes counterrotation of the shaft and arms, thereby moving the pulley guide in the opposite direction about the drum with the same transverse motion.
  • the hose is wound on the drum in even layers.
  • the pulley guide may be provided with two grooves to allow the hose to shift from one groove to the other, seeking a lateral position providing a more direct tangential relationship to the diameter of the coil as this diameter varies with the amount of hose wound on the drum.
  • FIG. 1 is a front elevational view of a self-winding mechanism for a hose, or the like, embodying the present invention
  • FIG. 2 is a plan view of the mechanism of FIG. I with an alternate construction of one element
  • FIG. 3 is an elevational view of a gear element of the mechanism of FIGS. 1 and 2;
  • FIG. 4 is a plan view in section on the line 4-4 of FIG. 1;
  • FIG. 5 is an elevational view of the interior of the mechanism, taken on the line 5-5 of FIG. 4.
  • FIG. 2 The flexible element to be wound and unwound with the assistance of the present invention is illustrated in FIG. 2 in the form of a common garden hose, denoted generally by reference numeral 10.
  • Hose 10 extends from a fixed end, connected to a water spigot or faucet (not shown), to wrap around a fixed cylindrical element or drum 12, seen in section in FIG. 4.
  • Affixed to each end of drum 12 are front and rear flanges l4 and 16, respectively, essentially comprising flat, circular plates of somewhat larger diameter than drum 12, as clearly seen in FIGS. 2 and 4.
  • Hose 10 is wound upon drum 12 between flanges l4 and 16 which provide lateral constraints for the coil of hose, the difference in diameter between the drum and the flanges being a matter of design in accordance with the amount of hose to be stored thereon. Any convenient means (not shown) may be provided for mounting the unit to a wall or other support, normally by or through flange 16.
  • First arm 18 carries at one end a generally U-shaped bracket 20, fixedly attached to arm 18 and bent at an angle from the axis thereof.
  • Pulley 22 is rotatably mounted on an axle carried by the spaced sides of U- bracket 20.
  • hose extends tangentially outward from the portion wound on drum l2, thence over pulley 22, to a free end (not shown), the fragment of hose extending past the pulley toward the free end being denoted by reference numeral 24.
  • arm 18 carries gear element 26, mounted for free rotation about axle 28.
  • the end of arm 18 carrying gear 26 may be split or notched to accomodate the gear and provide a mounting for the axle.
  • Gear 26 is meshed with worm gear 30, carried by or formed integrally with second arm 32. The latter is journaled at one end in bearing support 34 for rotation about its own axis and carries at the other end wheel 36, mounted coaxially with arm 32. Wheel 36 is fixedly attached to arm 32, whereby rotation of the wheel is transmitted to the arm.
  • Shaft 38 is rotatably mounted on the axis of drum 12, extending at opposite ends through the centers of both flanges l4 and 16. Suitable bearings, such as diagrammatically indicated at 40, may be provided as required to assist proper rotation of shaft 38.
  • Both arms 18 and 32 are connected to shaft 38 for rotation therewith.
  • Arm 32 is connected to the shaft by fixed mounting of bearing support 34 directly thereon, while arm 18 is connected through hinge element 42, having legs 44 and 46 affixed to arm 18 and shaft 38, respectively.
  • the legs are relatively movable about pin 48, whereby arm 18 is rotatable both about the axis of shaft 38 and the axis of pin 48.
  • shaft 38 is affixed to central spring drum 50.
  • One end of each of springs 52 is attached to central spring drum 50 and the other end to respective ones of individual spring drums 54, each rotatably mounted upon one of spindles 56.
  • All of drums 50 and 54, and springs 52 are mounted within drum l2, spindles 56 being supported between flange I4 and plate 58 (FIG. 4), also mounted within drum l2 and supported thereby in spaced relation to flange 14.
  • central drum 50 rotates therewith.
  • Springs 52 are of the negator type, being so formed that they are naturally biased toward coiling in a particular direction.
  • springs 52 are biased toward coiling about individual drums 54, i.e., in a clockwise direction about drums 54 as seen in FIG. 5. Rotation of central dum 50 in a clockwise direction causes counterclockwise rotation of individual drums 54, due to the reverse connection of springs 52, thus tensioning the springs.
  • the natural bias of the springs toward coiling in a clockwise direction about drums 54 produces a force tending to rotate central drum 50 in a counterclockwise direction.
  • wheel 36 remains in frictional engagement with the outer surface of flange M as arm 32 rotates about the shaft axis. This engagement causes wheel 36 to turn about its own axis with revolution of arm 32 about the axis of shaft 38. Since wheel 36 is fixedly connected to arm 32, rotation of the wheel produces rotation of arm 32 and worm gear 30 about the axis of the arm as the latter rotates about the axis of shaft 38. This, in turn, will produce rotation of gear 26 by a distance equal to the pitch of worm gear 30 with each revolution thereof.
  • gear 26 is essentially elliptical in shape, having low sides 60 and High" sides 62.
  • suitable spring biasing means (not shown) may be provided if desired, gear 26 will remain meshed with worm gear 30 as hose is removed due to the force of the hose on pulley 22 tending to rotate arm 18 about pin 48 in a clockwise direction as seen in FIG. 4.
  • the eccentric shape of the gear produces rotation of arm 18 about pin 48, thereby causing traversing movement of pulley 22 with respect to the surface of drum 12, as indicated in FIG. 2 by arrow 64.
  • the pitch of worm gear 30, and dimensions, location of axes, etc., of other elements, is such, that one revolution of arm 18 produces traversing movement of pulley 22 by a distance substantially equal to the diameter of hose 10.
  • gear 26 is so dimensioned and arranged with respect to arm 18 that movement of the portion of the gear meshed with worm gear 30 from the center of one of low sides 60 to the center of one of high sides 62 produces traversing movement of pulley 22 by a distance substantially equal to the length of drum l2, i.e., to the distance between flanges l4 and 16.
  • the direction of traverse automatically changes each time the portion of the gear meshed with the worm changes from high toward low to low toward high, and vice versa.
  • pulley 22 moves to remain substantially on a line perpendicular to the axis of drum l2 and tangent to the point on the periphery of the hose coil from which the hose is being removed.
  • FIG. 4 An additional feature, shown in FIG. 4, which may be utilized if desired, is a centrifugal brake or governor.
  • Arms 66 are pivotally connected to one another by linkage 68 which is pinned at 70 to sleeve 71.
  • the latter is mounted for freely sliding movement on shaft 38, and includes a slot or other appropriate opening to allow pin 72 to pivotally attach arms 66 directly to shaft 38 and allow limited longitudinal movement thereon of sleeve 71.
  • Disc 73 is carried by sleeve 71 and has a brake surface opposing plate 58. Weights 74 are attached to the ends of each of arms 66. When shaft 38 is at rest, the brake surface of disc 73 is spaced from plate 58.
  • Centrifugal force produced by rotation of shaft 38 causes weights 74 to tend to move outwardly, thereby moving arms 66 about their pivotal connection with the shaft and moving sleeve 71 and disc 73 toward plate 58.
  • disc 73 contacts the surface of plate 58 and acts as a friction brake inhibiting further increase in the rotational speed of shaft 38.
  • the braking force increases proportionately to the rotational speed, effectively prohibiting speeds above a desired limit. It is anticipated that the braking effect would be applied only in certain instances on rewinding of the hose, to prevent operation at speeds higher than the limit at which the mechanism can properly function to coil the hose in even layers.
  • pulley 22 is shown in FIG. 1 as having a single groove and in FIG. 3 as having two, side-by-side grooves.
  • the single groove the frictional or binding forces on the hose which must be overcome manually as the hose is unwound, and by the spring force as it is rewound, are decreased by use of the double groove pulley. That is, since the manual force is applied longitudinally in a direction substantially transverse to the tangential direction of removal of the hose from the coil, a portion of the force is transmitted to the pulley in effecting rotation of arm 18.
  • the point along the axis of pulley 22 at which such force is optimally transmitted varies as the total diameter of the hose coil varies, since this changes the position of a tangential line from the periphery of the coil. It will be found that the hose automatically moves from one groove to the other as the total diameter of the coil changes without requiring manual adjustment.
  • the two may be directly joined (e.g., by providing a fixed extension from arm 18 at 90 thereto, or bending arm 18 90 and connecting the end directly to the shaft or using the bent portion as the shaft) and providing sufficient flexibility in the shaft, and/or mounting means therefor, to allow for the traversing movement of pulley 22.
  • Suitable means for transmitting to arm 18 the required movement for reciprocating traverse of the pulley could still, of course, be provided substantially in the manner disclosed.
  • plate 58 need not be attached to drum 12, but instead be a thin, floating plate mounted on spindles 56 to serve as a guide for the springs and provide double braking action.
  • arm 32 such as shown in FIG. 2 is preferred over that shown in FIG. 4. That is, the axis of arm 32 should intersect the axis of shaft 38 substantially at the plane of the surface of flange 14 upon which wheel 36 rotates. Also, attachment of bearing support 34 to shaft 38 by a hinged connection will allow compensating movement of arm 32 due to wear or other facts affecting the diameter of wheel 36, thus reducing twisting forces on shaft 38 and the bearing supports therefor.
  • Apparatus for assisting in the coiling and uncoiling of an elongated, flexible element in a plurality of layers of side-by-side revolutions of the element comprising, in combination:
  • an elongated arm mounted for rotation about the central axis of said cylindrical element and arranged with its own axis transverse to said central axis;
  • pulley means carried by said elongated arm and spaced radially from said outer periphery of said cylindrical element, and having an axis of rotation transverse to both said central axis and said arm axis, whereby the flexible element may extend tangentially from the coil, over said pulley means and substantially parallel to said central axis;
  • spring means constructed and arranged to be tensioned by rotation of said arm in a first direction to exert a biasing force tending to rotate said arm in the opposite direction;
  • motion transfer means for imparting a predetermined increment of said traversing movement to said pulley means in response to each revolution of said arm in either direction about said central axis.
  • said mounting means comprises a hinged connection between said arm and said shaft allowing pivotal movement of said arm about an axis closely adjacent and transverse to said central axis.
  • said motion transfer means comprises mechanism responsive to rotation of said arm in either direction to transmit motion thereto about the axis of said hinged connection.
  • said motion transfer means comprises a worm gear carried by said second arm and rotatable about the axis thereof, and said elongated arm carries an eccentric gear meshed with said worm gear and rotatable thereby to impart said movement to said elongated arm.
  • said pulley means comprises a pulley wheel having two grooves arranged side-by-side.

Landscapes

  • Storing, Repeated Paying-Out, And Re-Storing Of Elongated Articles (AREA)

Abstract

Apparatus for assisting in uncoiling and coiling a flexible hose, cord, or the like, in even layers on a fixed drum. The hose is uncoiled by pulling the free end in a direction more or less parallel to the axis of the drum on which it is coiled as an arm carrying a guide pulley rotates to follow the tangent of hose leaving the coil about the fixed drum. Springs tensioned by the uncoiling movement provide a biasing force for rewinding the hose, rotating the guide pulley and arm in the opposite direction. Novel motion transfer means are disclosed for producing traversing movement of the guide pulley along the length of the fixed drum as the arm carrying the pulley rotates thereby coiling the hose in even layers.

Description

United States Patent OHara HOSE COILING APPARATUS Arthur C. OHara, 4978 Skyline Dr., Syracuse, NY. 13215 Filed: Mar. 21, 1974 Appl. N0.: 453,380
Inventor:
[ June 17, 1975 Primary Examiner-Edward J McCarthy Attorney. Agent, or Firm-Charles S. McGuire [57] ABSTRACT Apparatus for assisting in uncoiling and coiling a flexible hose, cord, or the like, in even layers on a fixed drum. The hose is uncoiled by pulling the free end in a direction more or less parallel to the axis of the drum on which it is coiled as an arm carrying a guide pulley rotates to follow the tangent of hose leaving the coil about the fixed drum. Springs tensioned by the uncoiling movement provide a biasing force for rewinding the hose, rotating the guide pulley and arm in the opposite direction. Novel motion transfer means are disclosed for producing traversing movement of the guide pulley along the length of the fixed drum as the arm carrying the pulley rotates thereby coiling the hose in even layers.
10 Claims, 5 Drawing Figures PATENTEDJUNW I975 9 535 SHEET 1 UNVWND L-LBBSLBSS PATENTEDJUN I 7 I975 S'rLEEE HOSE COILING APPARATUS BACKGROUND OF THE INVENTION The present invention relates to apparatus for winding and unwinding a flexible hose, rope, or the like on a non-rotating drum and, more specifically, to novel means for laying the flexible element in even layers along the length of the drum.
It is often convenient to provide spring-loaded means for rewinding an elongated, flexible element on a drum or reel where it is normally stored, after it has been unwound therefrom. Electrical cords, ropes for towing and other purposes, and garden hose are among the elements normally stored on drums when not in use and arranged to automatically tension a spring as they are unwound. The energy thus stored in the spring is used to rewind the element after use.
The present invention is illustrated and described in the context of a garden hose reel, although the invention is not limited by the nature of the flexible element used in connection therewith. For convenience, however, the flexible element will hereafter be referred to as hose.
Self-winding hose drums may be generally classified by the direction of movement of the hose with respect to the drum as it is wound and unwound. In one common type, the hose is moved tangentially on and off the drum with no significant change in direction, i.e., it is moved substantially transversely to the drum axis. In this case the drum is mounted for rotation about its own axis, and is rotated in one direction by hose removal and in the opposite direction by the spring force as the hose is rewound. In the other type, the drum does not rotate, but rather is fixedly mounted, and the hose passes over a change of direction guide which is itself rotatable about the drum periphery. The hose is moved, after passing over the guide, in a direction generally parallel to the drum axis.
The present invention relates entirely to self-winding drums of the latter type and has as a principal object the provision of novel and improved means for insuring that the hose is wound upon the drum in evenly spaced layers. That is, each revolution of the hose about the drum is guided to lay adjacent the immediately preceding revolution to form even layers with no buildup of the thickness of coiled hose at any point along the drum.
In a more general sense, the object of the invention is to provide an improved, self-winding mechanism for replacing an elongated, flexible element on a cylindrical drum after manual removal of the element from the drum.
Other objects will in part be obvious and will in part appear hereinafter.
SUMMARY OF THE INVENTION In accordance with the foregoing objects, the invention comprises a fixedly mounted, cylindrical drum having end flanges of considerably larger diameter. A hose, or other flexible element is anchored at one end, wound around the drum between the flanges, and passes over a rotatable guide member, to a free end.
The guide member is in the form of a pulley mounted for rotation about its own axis on one end of an arm which is rotatable about the drum axis to move the pulley about the periphery of the drum, in spaced relation thereto. A second arm is also rotatable about the drum axis and carries a wheel frictionally engaging an outer surface of one of the end flanges of the drum. As the second arm is rotated, the wheel carried thereby turns, effecting rotation of a worm gear, also carried by the second arm.
The first arm, carrying the pulley guide member at one end, carries at the other end an eccentric gear meshed with the worm gear. As the eccentric gear rotates, the first arm is moved reciprocally about an axis transverse to the drum axis, thereby moving the end carrying the pulley guide transversely and reciprocally with respect to the drum surface. The gear ratios and dimensions of the respective elements are such that the pulley guide moves transversely a distance substantially equal to the diameter of the hose with each revolution about the drum. Also, the direction of traverse of the pulley guide is reversed after each movement thereby of a distance equal to the spacing between the end flanges of the base.
As the drum is unwound from the drum by pulling the free end, the arms are caused to rotate as the pulley guide follows the rotation of the hose. One or more springs are connected at one end to a shaft rotated by the arms. The springs are tensioned by rotation of the shaft in the direction of removal of the hose from the drum. The energy stored in the springs causes counterrotation of the shaft and arms, thereby moving the pulley guide in the opposite direction about the drum with the same transverse motion. Thus, the hose is wound on the drum in even layers. As a further refinement, the pulley guide may be provided with two grooves to allow the hose to shift from one groove to the other, seeking a lateral position providing a more direct tangential relationship to the diameter of the coil as this diameter varies with the amount of hose wound on the drum.
BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a front elevational view of a self-winding mechanism for a hose, or the like, embodying the present invention;
FIG. 2 is a plan view of the mechanism of FIG. I with an alternate construction of one element;
FIG. 3 is an elevational view of a gear element of the mechanism of FIGS. 1 and 2;
FIG. 4 is a plan view in section on the line 4-4 of FIG. 1; and
FIG. 5 is an elevational view of the interior of the mechanism, taken on the line 5-5 of FIG. 4.
DETAILED DESCRIPTION The flexible element to be wound and unwound with the assistance of the present invention is illustrated in FIG. 2 in the form of a common garden hose, denoted generally by reference numeral 10. Hose 10 extends from a fixed end, connected to a water spigot or faucet (not shown), to wrap around a fixed cylindrical element or drum 12, seen in section in FIG. 4. Affixed to each end of drum 12 are front and rear flanges l4 and 16, respectively, essentially comprising flat, circular plates of somewhat larger diameter than drum 12, as clearly seen in FIGS. 2 and 4. Hose 10 is wound upon drum 12 between flanges l4 and 16 which provide lateral constraints for the coil of hose, the difference in diameter between the drum and the flanges being a matter of design in accordance with the amount of hose to be stored thereon. Any convenient means (not shown) may be provided for mounting the unit to a wall or other support, normally by or through flange 16.
First arm 18 carries at one end a generally U-shaped bracket 20, fixedly attached to arm 18 and bent at an angle from the axis thereof. Pulley 22 is rotatably mounted on an axle carried by the spaced sides of U- bracket 20. As seen in FIG. 2, hose extends tangentially outward from the portion wound on drum l2, thence over pulley 22, to a free end (not shown), the fragment of hose extending past the pulley toward the free end being denoted by reference numeral 24.
At the end opposite bracket 20, arm 18 carries gear element 26, mounted for free rotation about axle 28. The end of arm 18 carrying gear 26 may be split or notched to accomodate the gear and provide a mounting for the axle. Gear 26 is meshed with worm gear 30, carried by or formed integrally with second arm 32. The latter is journaled at one end in bearing support 34 for rotation about its own axis and carries at the other end wheel 36, mounted coaxially with arm 32. Wheel 36 is fixedly attached to arm 32, whereby rotation of the wheel is transmitted to the arm.
Shaft 38 is rotatably mounted on the axis of drum 12, extending at opposite ends through the centers of both flanges l4 and 16. Suitable bearings, such as diagrammatically indicated at 40, may be provided as required to assist proper rotation of shaft 38. Both arms 18 and 32 are connected to shaft 38 for rotation therewith. Arm 32 is connected to the shaft by fixed mounting of bearing support 34 directly thereon, while arm 18 is connected through hinge element 42, having legs 44 and 46 affixed to arm 18 and shaft 38, respectively. The legs are relatively movable about pin 48, whereby arm 18 is rotatable both about the axis of shaft 38 and the axis of pin 48.
Referring particularly to FIG. 5, shaft 38 is affixed to central spring drum 50. One end of each of springs 52 is attached to central spring drum 50 and the other end to respective ones of individual spring drums 54, each rotatably mounted upon one of spindles 56. All of drums 50 and 54, and springs 52 are mounted within drum l2, spindles 56 being supported between flange I4 and plate 58 (FIG. 4), also mounted within drum l2 and supported thereby in spaced relation to flange 14. As shaft 38 rotates, central drum 50 rotates therewith. Springs 52 are of the negator type, being so formed that they are naturally biased toward coiling in a particular direction. In the illustrated embodiment, springs 52 are biased toward coiling about individual drums 54, i.e., in a clockwise direction about drums 54 as seen in FIG. 5. Rotation of central dum 50 in a clockwise direction causes counterclockwise rotation of individual drums 54, due to the reverse connection of springs 52, thus tensioning the springs. The natural bias of the springs toward coiling in a clockwise direction about drums 54 produces a force tending to rotate central drum 50 in a counterclockwise direction.
Operation of the above-described mechanism will now be explained. When hose is to be unwound from drum 12, the free end is grasped and pulled manually away from the drum in a direction generally parallel to the drum axis. As the hose is pulled and unwound from the drum, pulley 22 tends to follow the rotating tangential position of the hose. Thus, arm 18 is caused to rotate about the axis of drum 12, thereby rotating shaft 38 to which arm 18 is attached through hinge 42. Shaft 38 in turn rotates arm 32 and central drum 50 about the shaft axis, which is coaxial with drum 12, the direction of rotation of drum 50 being such as to tension springs 52 as the hose is unwound.
The elements are so constructed and arranged that wheel 36 remains in frictional engagement with the outer surface of flange M as arm 32 rotates about the shaft axis. This engagement causes wheel 36 to turn about its own axis with revolution of arm 32 about the axis of shaft 38. Since wheel 36 is fixedly connected to arm 32, rotation of the wheel produces rotation of arm 32 and worm gear 30 about the axis of the arm as the latter rotates about the axis of shaft 38. This, in turn, will produce rotation of gear 26 by a distance equal to the pitch of worm gear 30 with each revolution thereof.
It will be noted particularly from FIG. 3 that gear 26 is essentially elliptical in shape, having low sides 60 and High" sides 62. Although suitable spring biasing means (not shown) may be provided if desired, gear 26 will remain meshed with worm gear 30 as hose is removed due to the force of the hose on pulley 22 tending to rotate arm 18 about pin 48 in a clockwise direction as seen in FIG. 4. As the portion of gear 26 which is meshed with worm gear 30 changes between the high and low sides, the eccentric shape of the gear produces rotation of arm 18 about pin 48, thereby causing traversing movement of pulley 22 with respect to the surface of drum 12, as indicated in FIG. 2 by arrow 64. The pitch of worm gear 30, and dimensions, location of axes, etc., of other elements, is such, that one revolution of arm 18 produces traversing movement of pulley 22 by a distance substantially equal to the diameter of hose 10. Also, gear 26 is so dimensioned and arranged with respect to arm 18 that movement of the portion of the gear meshed with worm gear 30 from the center of one of low sides 60 to the center of one of high sides 62 produces traversing movement of pulley 22 by a distance substantially equal to the length of drum l2, i.e., to the distance between flanges l4 and 16. The direction of traverse automatically changes each time the portion of the gear meshed with the worm changes from high toward low to low toward high, and vice versa. Thus, as hose 10 is unwound, pulley 22 moves to remain substantially on a line perpendicular to the axis of drum l2 and tangent to the point on the periphery of the hose coil from which the hose is being removed.
As previously explained, unwinding of the hose pro duces rotation of shaft 38 and central drum 50 in a clockwise direction as seen in FIG. 5 in order to tension springs 52 during the unwinding. Since the elements are seen in FIG. 1 from the side opposite that shown in FIG. 5, unwinding produces counterclockwise rotation, as indicated by the arrow. In other words, hose 10 is initially placed on drum 12 by winding it in a clockwise direction as viewed from the front. The energy thus stored in springs 52 will serve to counter-rotate the elements upon release of the free end of the hose, as springs 52 coil about individual drums 54. The spring movement rotates drum 50 and shaft 38 in a counter clockwise direction as seen in FIG. 5, the rotation of shaft 38 being transmitted to arms 18 and 32 to produce rotation thereof in a clockwise direction as seen in FIG. 1. The hose is drawn over pulley 22, as the latter rotates about the periphery of drum 12, in a direction rewinding the hose on the drum. Traversing movement of pulley 22 in the direction of arrow 64 is the same as when the hose was unwound. Thus, since hose 10 is laid on drum 12 (or on preceding layers of itself) directly from pulley 22, the hose will be wound in even layers with each revolution lying immediately adjacent the preceding revolution. A new layer is started only when one layer has been wound completely to the end flange.
An additional feature, shown in FIG. 4, which may be utilized if desired, is a centrifugal brake or governor. Arms 66 are pivotally connected to one another by linkage 68 which is pinned at 70 to sleeve 71. The latter is mounted for freely sliding movement on shaft 38, and includes a slot or other appropriate opening to allow pin 72 to pivotally attach arms 66 directly to shaft 38 and allow limited longitudinal movement thereon of sleeve 71. Disc 73 is carried by sleeve 71 and has a brake surface opposing plate 58. Weights 74 are attached to the ends of each of arms 66. When shaft 38 is at rest, the brake surface of disc 73 is spaced from plate 58. Centrifugal force produced by rotation of shaft 38 causes weights 74 to tend to move outwardly, thereby moving arms 66 about their pivotal connection with the shaft and moving sleeve 71 and disc 73 toward plate 58. When rotation of shaft 38 reaches a predetermined limit, disc 73 contacts the surface of plate 58 and acts as a friction brake inhibiting further increase in the rotational speed of shaft 38. The braking force increases proportionately to the rotational speed, effectively prohibiting speeds above a desired limit. It is anticipated that the braking effect would be applied only in certain instances on rewinding of the hose, to prevent operation at speeds higher than the limit at which the mechanism can properly function to coil the hose in even layers.
It will be noted that pulley 22 is shown in FIG. 1 as having a single groove and in FIG. 3 as having two, side-by-side grooves. Although satisfactory operation according to the principles of the invention is provided by the single groove, the frictional or binding forces on the hose which must be overcome manually as the hose is unwound, and by the spring force as it is rewound, are decreased by use of the double groove pulley. That is, since the manual force is applied longitudinally in a direction substantially transverse to the tangential direction of removal of the hose from the coil, a portion of the force is transmitted to the pulley in effecting rotation of arm 18. The point along the axis of pulley 22 at which such force is optimally transmitted varies as the total diameter of the hose coil varies, since this changes the position of a tangential line from the periphery of the coil. It will be found that the hose automatically moves from one groove to the other as the total diameter of the coil changes without requiring manual adjustment.
Many constructional variations may be practised within the scope of the invention. For example, rather than the illustrated hinged connection between arm 18 and shaft 38, the two may be directly joined (e.g., by providing a fixed extension from arm 18 at 90 thereto, or bending arm 18 90 and connecting the end directly to the shaft or using the bent portion as the shaft) and providing sufficient flexibility in the shaft, and/or mounting means therefor, to allow for the traversing movement of pulley 22. Suitable means for transmitting to arm 18 the required movement for reciprocating traverse of the pulley could still, of course, be provided substantially in the manner disclosed. Also, plate 58 need not be attached to drum 12, but instead be a thin, floating plate mounted on spindles 56 to serve as a guide for the springs and provide double braking action.
It should also be noted that an arrangement of arm 32 such as shown in FIG. 2 is preferred over that shown in FIG. 4. That is, the axis of arm 32 should intersect the axis of shaft 38 substantially at the plane of the surface of flange 14 upon which wheel 36 rotates. Also, attachment of bearing support 34 to shaft 38 by a hinged connection will allow compensating movement of arm 32 due to wear or other facts affecting the diameter of wheel 36, thus reducing twisting forces on shaft 38 and the bearing supports therefor.
What is claimed is:
1. Apparatus for assisting in the coiling and uncoiling of an elongated, flexible element in a plurality of layers of side-by-side revolutions of the element, said apparatus comprising, in combination:
a. a fixed cylindrical element for receiving the coiled element on the outer periphery thereof;
b. an elongated arm mounted for rotation about the central axis of said cylindrical element and arranged with its own axis transverse to said central axis;
c. pulley means carried by said elongated arm and spaced radially from said outer periphery of said cylindrical element, and having an axis of rotation transverse to both said central axis and said arm axis, whereby the flexible element may extend tangentially from the coil, over said pulley means and substantially parallel to said central axis;
d. spring means constructed and arranged to be tensioned by rotation of said arm in a first direction to exert a biasing force tending to rotate said arm in the opposite direction;
e. mounting means allowing reciprocating traversing movement of said pulley means between positions radially spaced from each end of said cylindrical element; and
f. motion transfer means for imparting a predetermined increment of said traversing movement to said pulley means in response to each revolution of said arm in either direction about said central axis.
2. The invention according to claim 1 and further including a shaft mounted concentrically with and rotatable about said central axis, and means connecting said shaft and said arm to transmit rotation about said central axis from one to the other.
3. The invention according to claim 2 and further including means connecting said shaft to said spring means to transmit rotation of said arm in said first direction, through said shaft, to tensioning movement of said spring means, and to transmit the biasing force of said spring means through said shaft to tend to rotate said arm in said opposite direction.
4. The invention according to claim 3 wherein said mounting means comprises a hinged connection between said arm and said shaft allowing pivotal movement of said arm about an axis closely adjacent and transverse to said central axis.
5. The invention according to claim 4 wherein said motion transfer means comprises mechanism responsive to rotation of said arm in either direction to transmit motion thereto about the axis of said hinged connection.
6. The invention according to claim 5 wherein said mechanism comprises an eccentric member rotatable in response to rotation about said central axis.
9. The invention according to claim 8 wherein said motion transfer means comprises a worm gear carried by said second arm and rotatable about the axis thereof, and said elongated arm carries an eccentric gear meshed with said worm gear and rotatable thereby to impart said movement to said elongated arm.
10. The invention according to claim 1 wherein said pulley means comprises a pulley wheel having two grooves arranged side-by-side.

Claims (10)

1. Apparatus for assisting in the coiling and uncoiling of an elongated, flexible element in a plurality of layers of side-byside revolutions of the element, said apparatus comprising, in combination: a. a fixed cylindrical element for receiving the coiled element on the outer periphery thereof; b. an elongated arm mounted for rotation about the central axis of said cylindrical element and arranged with its own axis transverse to said central axis; c. pulley means carried by said elongated arm and spaced radially from said outer periphery of said cylindrical element, and having an axis of rotation transverse to both said central axis and said arm axis, whereby the flexible element may extend tangentially from the coil, over said pulley means and substantially parallel to said central axis; d. spring means constructed and arranged to be tensioned by rotation of said arm in a first direction to exert a biasing force tending to rotate said arm in the opposite direction; e. mounting means allowing reciprocating traversing movement of said pulley means between positions radially spaced from each end of said cylindrical element; and f. motion transfer means for imparting a predetermined increment of said traversing movement to said pulley means in response to each revolution of said arm in either direction about said central axis.
2. The invention according to claim 1 and further including a shaft mounted concentrically with and rotatable about said central axis, and means connecting said shaft and said arm to transmit rotation about said central axis from one to the other.
3. The invention according to claim 2 and further including means connecting said shaft to said spring means to transmit rotation of said arm in said first direction, through said shaft, to tensioning movement of said spring means, and to transmit the biasing force of said spring means through said shaft to tend to rotate said arm in said opposite direction.
4. The invention according to claim 3 wherein said mounting means comprises a hinged connection between said arm and said shaft allowing pivotal movement of said arm about an axis closely adjacent and transverse to said central axis.
5. The invention according to claim 4 wherein said motion transfer means comprises mechanism responsive to rotation of said arm in either direction to transmit motion thereto about the axis of said hinged connection.
6. The invention according to claim 5 wherein said mechanism comprises an eccentric member rotatable about an axis substantially parallel to the axis of said hinged connection.
7. The invention according to claim 2 and further including a second arm connected to said shaft for rotation therewith, said motion transfer means being connected between said second arm and said elongated arm to impart to the latter movement providing said traversing movement of said pulley means carried thereby.
8. The invention according to claim 7 wherein said second arm is mounted for rotation about its own axis in response to rotation about said central axis.
9. The invention according to claim 8 wherein said motion transfer means comprises a worm gear carried by said second arm and rotatable about the axis thereof, and said elongated arm carries an eccentric gear meshed with said worm gear and rotatable thereby to impart said movement to said elongated arm.
10. The invention according to claim 1 wherein said pulley means comprises a pulley wheel having two grooves arranged side-by-side.
US45338074 1974-03-21 1974-03-21 Hose coiling apparatus Expired - Lifetime US3889896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US45338074 US3889896A (en) 1974-03-21 1974-03-21 Hose coiling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US45338074 US3889896A (en) 1974-03-21 1974-03-21 Hose coiling apparatus

Publications (1)

Publication Number Publication Date
US3889896A true US3889896A (en) 1975-06-17

Family

ID=23800351

Family Applications (1)

Application Number Title Priority Date Filing Date
US45338074 Expired - Lifetime US3889896A (en) 1974-03-21 1974-03-21 Hose coiling apparatus

Country Status (1)

Country Link
US (1) US3889896A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4190090A (en) * 1976-10-19 1980-02-26 Entreprise D'equipements Mecaniques Et Hydrauliques E.M.H. Equipment serving to connect oil-tankers to marine towers
US4583700A (en) * 1981-07-03 1986-04-22 Aleksei Tschurbanoff Cable winding system for electrically powered mine vehicles
US4660782A (en) * 1986-02-18 1987-04-28 Hegemann Kenneth J Portable reel for flexible conduits
US5381820A (en) * 1994-04-04 1995-01-17 Chandler; William R. Hose reel apparatus
US5419508A (en) * 1993-07-26 1995-05-30 Pierce; Steve Cable winding device for electrically powered mining vehicles
US5520212A (en) * 1995-04-04 1996-05-28 Williams; Ray F. Self winding hose reel
US6279848B1 (en) 2000-04-14 2001-08-28 Great Stuff, Inc. Reel having an improved reciprocating mechanism
US20040069981A1 (en) * 2002-10-08 2004-04-15 Bombardier Inc. Level wind apparatus for use on a snow grooming vehicle
US20040134115A1 (en) * 2002-09-27 2004-07-15 Dennis Wyman Self-propelled cast fishing system
US6971605B1 (en) * 2002-11-26 2005-12-06 Martin Jay K Device for winding / taking up cables, ribbons, or other coilable structures
US6988854B2 (en) 2001-12-14 2006-01-24 Sanmina-Sci Corporation Cable dispenser and method
US20060266868A1 (en) * 2005-05-27 2006-11-30 Ray Caamano Reciprocating mechanism for a reel assembly
US20080265226A1 (en) * 2004-09-07 2008-10-30 Andrew Richards Winch Assembly
US20130277486A1 (en) * 2010-01-14 2013-10-24 Graco Minnesota Inc. Hose reel spool
USD779031S1 (en) 2015-08-28 2017-02-14 Meo Mio, Llc Fishing rod
US20170096801A1 (en) * 2015-10-01 2017-04-06 As Ip Holdco, Llc Pull-out faucet hose retraction system and method
US20220001431A1 (en) * 2017-12-14 2022-01-06 Ridge Tool Company Sectional drain cleaner cable system for clean use, storage, and transport

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2555856A (en) * 1947-09-06 1951-06-05 Charles D Mcelroy Revolubly supported stand for gas containers having attached dispensing hoses and a reel, integral with the stand, for said hoses
US2726828A (en) * 1953-02-11 1955-12-13 Ward Lafrance Truck Corp Automatic brake for hose reels
US2742242A (en) * 1951-11-20 1956-04-17 Godwin James Rudolph Automatically retrieving floating reel
US2907534A (en) * 1955-03-08 1959-10-06 Stewart Warner Corp Hose reel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2555856A (en) * 1947-09-06 1951-06-05 Charles D Mcelroy Revolubly supported stand for gas containers having attached dispensing hoses and a reel, integral with the stand, for said hoses
US2742242A (en) * 1951-11-20 1956-04-17 Godwin James Rudolph Automatically retrieving floating reel
US2726828A (en) * 1953-02-11 1955-12-13 Ward Lafrance Truck Corp Automatic brake for hose reels
US2907534A (en) * 1955-03-08 1959-10-06 Stewart Warner Corp Hose reel

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4190090A (en) * 1976-10-19 1980-02-26 Entreprise D'equipements Mecaniques Et Hydrauliques E.M.H. Equipment serving to connect oil-tankers to marine towers
US4583700A (en) * 1981-07-03 1986-04-22 Aleksei Tschurbanoff Cable winding system for electrically powered mine vehicles
US4660782A (en) * 1986-02-18 1987-04-28 Hegemann Kenneth J Portable reel for flexible conduits
US5419508A (en) * 1993-07-26 1995-05-30 Pierce; Steve Cable winding device for electrically powered mining vehicles
US5381820A (en) * 1994-04-04 1995-01-17 Chandler; William R. Hose reel apparatus
US5520212A (en) * 1995-04-04 1996-05-28 Williams; Ray F. Self winding hose reel
US6279848B1 (en) 2000-04-14 2001-08-28 Great Stuff, Inc. Reel having an improved reciprocating mechanism
US6422500B2 (en) 2000-04-14 2002-07-23 Great Stuff, Inc. Reel having an improved reciprocating mechanism
US6988854B2 (en) 2001-12-14 2006-01-24 Sanmina-Sci Corporation Cable dispenser and method
US20040134115A1 (en) * 2002-09-27 2004-07-15 Dennis Wyman Self-propelled cast fishing system
US6880286B2 (en) * 2002-09-27 2005-04-19 Dennis Wyman Self-propelled cast fishing system
US20040069981A1 (en) * 2002-10-08 2004-04-15 Bombardier Inc. Level wind apparatus for use on a snow grooming vehicle
US6983927B2 (en) * 2002-10-08 2006-01-10 Camoplast Industrial Inc. Level wind apparatus for use on a snow grooming vehicle
US6971605B1 (en) * 2002-11-26 2005-12-06 Martin Jay K Device for winding / taking up cables, ribbons, or other coilable structures
US7748685B2 (en) * 2004-09-07 2010-07-06 Expro North Sea Limited Winch assembly
US20080265226A1 (en) * 2004-09-07 2008-10-30 Andrew Richards Winch Assembly
US20060266868A1 (en) * 2005-05-27 2006-11-30 Ray Caamano Reciprocating mechanism for a reel assembly
US7533843B2 (en) 2005-05-27 2009-05-19 Great Stuff, Inc. Reciprocating mechanism for a reel assembly
US20090065063A1 (en) * 2005-05-27 2009-03-12 Great Stuff, Inc. Hose reel assembly
US7810751B2 (en) 2005-05-27 2010-10-12 Great Stuff, Inc. Hose reel assembly
US20110083754A1 (en) * 2005-05-27 2011-04-14 Great Stuff, Inc. Hose reel assembly
US8006928B2 (en) 2005-05-27 2011-08-30 Great Stuff, Inc. Hose reel assembly
US8141807B2 (en) 2005-05-27 2012-03-27 Great Stuff, Inc. Reel assembly
US8424791B2 (en) 2005-05-27 2013-04-23 Great Stuff, Inc. Reel assembly
US20130277486A1 (en) * 2010-01-14 2013-10-24 Graco Minnesota Inc. Hose reel spool
USD779031S1 (en) 2015-08-28 2017-02-14 Meo Mio, Llc Fishing rod
US20170096801A1 (en) * 2015-10-01 2017-04-06 As Ip Holdco, Llc Pull-out faucet hose retraction system and method
CN108290702A (en) * 2015-10-01 2018-07-17 As知识产权控股有限公司 Pulling out leading hose retraction system and method
US10184231B2 (en) * 2015-10-01 2019-01-22 As Ip Holdco, Llc Pull-out faucet hose retraction system and method
CN108290702B (en) * 2015-10-01 2019-11-05 As 美国股份有限公司 Pulling out leading hose retraction system and method
US20220001431A1 (en) * 2017-12-14 2022-01-06 Ridge Tool Company Sectional drain cleaner cable system for clean use, storage, and transport

Similar Documents

Publication Publication Date Title
US3889896A (en) Hose coiling apparatus
US3747132A (en) Swimming pool cover
US3822834A (en) Cable transfer apparatus
US2833027A (en) Method for preparing backwound springs for use in spring motors
US3934395A (en) Cable stranding apparatus
FI69319C (en) TVINNMASKIN MED MITTSPOLAR
US3825197A (en) Cable tension preloader
US4227678A (en) Cable tensioning device
US4138071A (en) Dual drive for cone winding
US3308907A (en) Motor
US5375786A (en) Winding apparatus with a guidance device for wire or the like
US4226387A (en) Multiplying fishing reel with level-wind carriage
CA1176456A (en) Tape measure
JPS61183096A (en) Winch for cable
US3691791A (en) Slip-clutch
US2139784A (en) Motion picture camera supply reel spindle
US1748283A (en) Reel for electric cables and the like
US2364047A (en) Line reeling device
US2245788A (en) Wire-laying device
US3091038A (en) Line spooling and measuring apparatus
JPH0348108B2 (en)
US3138913A (en) Winding or lapping machine
US3675862A (en) Device for controlling yarn winding pressure on a package
KR200169096Y1 (en) Cable reel for supplying electric power
SU847249A1 (en) Device for feeding web-type photographic film