US3895997A - Production of shaped articles from paper sludge - Google Patents

Production of shaped articles from paper sludge Download PDF

Info

Publication number
US3895997A
US3895997A US27327972A US3895997A US 3895997 A US3895997 A US 3895997A US 27327972 A US27327972 A US 27327972A US 3895997 A US3895997 A US 3895997A
Authority
US
United States
Prior art keywords
layer
process according
slurry
agglomerated
water content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
George Robert Haywood
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Development Corp UK
Original Assignee
National Research Development Corp UK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Development Corp UK filed Critical National Research Development Corp UK
Application granted granted Critical
Publication of US3895997A publication Critical patent/US3895997A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21JFIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
    • D21J1/00Fibreboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B7/00Combinations of wet processes or apparatus with other processes or apparatus, e.g. for dressing ores or garbage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/20Agglomeration, binding or encapsulation of solid waste
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/28Moulding or pressing characterised by using extrusion presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/0026Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0011Combinations of extrusion moulding with other shaping operations combined with compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0017Combinations of extrusion moulding with other shaping operations combined with blow-moulding or thermoforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0019Combinations of extrusion moulding with other shaping operations combined with shaping by flattening, folding or bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0021Combinations of extrusion moulding with other shaping operations combined with joining, lining or laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S162/00Paper making and fiber liberation
    • Y10S162/09Uses for paper making sludge

Definitions

  • PATENTED L 2 2 I975 SHEET PRODUCTION OF SHAPED ARTICLES FROM PAPER SLUD'GE This invention relates to a process for the production of shaped articles, and is more particularly concerned with the production of shaped articles from industrial waste materials.
  • a variety of industrial waste materials comprise either fibrous or mineral materials, and in many cases mixtures of both.
  • industrial waste materials include those obtained in paper manufacture, asbestos slurry wastes, food wastes such as coffee waste, tobacco waste and various quarry and mineral wastes. The disposal of these materials represents a serious environmental problem which is increasingly becoming one of national concern.
  • the present invention provides a process for the production of shaped articles which may be broadly applied to a variety of industrial waste materials.
  • a process for the production of a shaped article from fibrous and mineral industrial waste materials comprises depositing a layer of an aqueous slurry comprising a mixture of a fibrous component and a mineral component and controlling the water content of the slurry so as to produce a coherent agglomerated layer having a degree of wet strength, and then forming the layer under pressure and drying to produce a shaped article.
  • the invention also comprises an apparatus for the production of shaped articles from fibrous and mineral industrial waste materials comprising means for depositing a layer of an aqueous slurry comprising a mixture of a fibrous component and a mineral component, means for controlling the water content of the slurry so as in operation to produce a coherent agglomerated layer having a degree of wet strength, and means for forming the coherent agglomerated layer under pressure, and for drying the layer so formed.
  • an aqueous slurry comprising a mixture of a fibrous component and a mineral component is deposited on to a liquid permeable support to form a layer, and the water content of the slurry is controlled by applied pressure and/or drying so as to produce a coherent agglomerated layer having a degree of wet strength.
  • the layer may then be moulded under the action of heat and pressure to produce a shaped article.
  • the invention may be applied to a wide variety of industrial waste materials and also to mixtures thereof.
  • the fibrous component of the mixture may be organic, for example cellulose fibres derived from waste paper, waste chopped rags, sisal, jute or hessian or synthetic resin fibres for example nylon, terylene or polypropylene fibres; or inorganic for example asbestos fibres or glass fibres.
  • the mineral component may be a clay, for
  • the invention is particularly applicable to the treatment of paper sludge which is an aqueous slurry comprising a mixture of cellulose fibres of short fibre length, and minerals such as clay, chalk or calcium carbonate, titanium dioxide and antimony trioxide.
  • paper sludge which is an aqueous slurry comprising a mixture of cellulose fibres of short fibre length, and minerals such as clay, chalk or calcium carbonate, titanium dioxide and antimony trioxide.
  • the invention may also be applied to asbestos slurry waste, food wastes, tobacco waste and quarry and mineral wastes as previously mentioned.
  • shredded waste paper may be mixed with a suitable waste mineral material such as micaceous china clay or fine granite dust and water to form a useful aqueous slurry.
  • aqueous slurry it is of course necessary for the aqueous slurry to contain sufficient quantities of solids to enable it to be agglomerated. Simple tests can be made first on filterability and on solids content and from these tests it can be determined what particular procedure in accordance with the invention can be employed and also whether or not the application of the process of the invention to the particular waste material is commercially practicable.
  • slurries containing fibres having an average fibre length outside the range of l/l6th of an inch to 5 inches The nature of the slurry itself determines the particular method of treatment which it is necessary to apply, and addition of further fibrous material or mineral material may be made as desired to give a slurry of the required consistency.
  • slurries containing a relatively large amount of fibrous material frequently require no further additions, but slurries with a very high mineral content for example certain kinds of paper sludge do however appear to require the addition of extra fibrous material or the like to assist in agglomeration of the slurry and to obtain satisfactory products.
  • the fibrous component preferably comprises from 5 to 95% by weight particularly from 20 to by weight and the mineral component preferably comprises from to 5% by weight particularly from 80 to 20% by weight.
  • the aqueous slurry is preferably deposited upon a liquid permeable support to form a layer, the solid materials remaining on the support whilst the excess water is allowed to drain off.
  • the slurry may be deposited from a hopper, or preferably an extruder having means for discharging the slurry at a predetermined rate.
  • the liquid permeable support may be a mesh or gauze of metal or plastic material, for example stainless steel mesh or nylon mesh and is preferably movable relative to the discharge orifice of the hopper or extruder.
  • the liquid permeable support may be in the form of an endless moving belt of metal or plastic mesh or gauze.
  • the slurry may be passed through an extruder equipped with means for removing part of the water content of the slurry prior to deposition of the layer, so that the layer of slurry leaving the extruder is of the desired composition.
  • the liquid permeable support carrying the depos ited slurry is passed through a series of pressure rolls producing a plurality of nip actions which progressively squeeze out water from the deposited slurry and control its thickness to produce a coherent agglomerated layer of the desired water content and strength.
  • the water content and thickness of the deposited layer may be controlled by varying the pressure applied by the pressure rolls and by nip setting adjustment.
  • the pressure rolls may be arranged above the deposited layer so as to squeeze the layer between the rolls and the liquid permeable support, or alternatively the rolls may be arranged in pairs above and below the deposited layer.
  • a cylindrical vacuum filter which is partly immersed in the slurry and rotated so as to deposit a layer of slurry on its circumference.
  • the layer of agglomerated slurry may be removed from the filter in a continuous operation, for example with a take-off knife.
  • the above treatments for reducing the water content of the layer by applied pressure usually produce a layer having a water content of about 45% by weight, i.e. having a solids content of substantially 55% by weight.
  • a drying operation is performed to reduce the water content of the layer to a preferred value.
  • the drying operation may merely consist of cutting the layer into sheets of the desired length and stacking them to dry.
  • the layer is passed through a drying oven to produce an agglomerated layer of the desired water content. The layer should not be completely dried since this will impair the subsequent forming operation.
  • the water content of the slurry is controlled so as to produce a coherent agglomerated layer having a degree of wet strength.
  • the degree of wet strength required of the layer is such that it can be formed under pressure without tearing, and such that it is sufficiently selfsupporting to enable it to be handled without disintegration.
  • the layer should, for example, preferably be able to withstand bending to an angle of 90 without cracking.
  • the layer should be capable of supporting its own weight to such an extent that an 8 foot X 4 foot section will maintain its integrity with minimal support over each 2 feet of its running length and such that an area of at least about 4 square feet will maintain its integrity when supported only at its edges.
  • the wet strength of the agglomerated layer is dependent upon its thickness, density and water content, but it has been found in practice that the desired thickness and density can be attained by an appropriate choice of the method of controlling the water content. Thus if pressure is applied to the deposited layer of slurry, the
  • the water content of the coherent agglomerated layer of slurry may vary from less than 15 to about 85% by weight, based on the total weight of the layer.
  • the agglomerated layer may be used to form flat products and simple mouldings as described later.
  • the water content of the layer should be somewhat higher, for example around 40 to 85% by weight, particularly from 50 to by weight. [n this condition the layer still surprisingly can possess the wet strength required to permit it to be handled without disintegration.
  • the thickness of the agglomerated layer is dependent upon the thickness of the final shaped article and the forming process, but it is usually greater than onesixteenth inch in order to obtain an agglomerated layer having adequate wet strength. Preferably the thickness of the layer is from one-eighth to one-half inch.
  • the process of the invention may also be modified to obtain shaped articles of greater thickness.
  • a plurality of agglomerated layers may be formed and superimposed one on the other. These are then laminated between pressure rollers to obtain a multiple thickness, or slightly less because of slight spread under lamination pressure.
  • a single agglomerated layer is first formed in the usual way and this is then followed by depositing a further layer of aqueous slurry on to the first layer by means of one or more hoppers or extruders situated after the first series of pressure rolls.
  • the composite layer is then passed through further pressure rolls to obtain a laminated coherent agglomerated layer.
  • the density of the agglomerated layer is dependent upon the density required in the final shaped article and the forming process, but is usually from 0.8 to 2.0
  • the coherent agglomerated layer is finally formed under pressure and dried to produce the desired shaped article.
  • the forming operation may comprise passing the layer through pressure rolls to give a board product, or moulding the layer to produce a moulded article.
  • the forming and drying operations are carried out together, and for example the layer may be moulded under heat and pressure. Pressures varying from a few pounds per square inch to several tons per square inch may be used in the forming operation, depending on the desired physical properties of the final shaped article. For boards, pressures of up to 2,400 pounds per square inch have been found to give useful products, whilst for moulded articles rather higher pressures are usually required, preferably from 50 pounds per square inch to 2 tons per square inch.
  • the process of the invention may be used to manufacture various shaped articles: a. Insulation fibre board This is obtained by lightly pressing an agglomerated layer of relatively low water content, say from to 30% by weight to yield a low-density board which has sound insulation properties, comparable with those of existing commercial insulating board. b. Hardboard-type board An agglomerated layer or layers are pressed at a pressure of substantially one-half ton per square inch and subjected at the same time to heating at a temperature of substantially 150C, to obtain a consolidated product similar to hardboard and with similar properties.
  • This hardboard can be laminated to the usual surface finishes including wallpaper, self-adhesive vinyl film or paper of the kind common in home decoration.
  • the layer or board may be sprayed with resin solution on one or both sides to obtain a resin-rich surface of improved finish.
  • Decorative formica"-type board product This product is obtained by direct lamination of an agglomerated layer or layers with melamine printed surface papers and phenolic underlay. Pressures of up to one half of a ton per square inch and temperatures of 1 10 to 170C may be used depending on the density required in the core of the laminate.
  • Packaging board If the agglomerated layer is lightly pressed or rolled, the resulting sheet is suitable for various types of packaging materials and for box making.
  • the material can be hinged at that point to form a right-angled joint and a complete box can be made by forming the necessary joints in this way. Boxes with a fair degree of strength can also be made by using the hardboard-type board (b) and treating it in the same manner.
  • Moulded decorative products are an extension of the decorative formica type product. A radiused or ribbed mould may be used and the product takes on the shape of the mould together with a decorative effect. The board may lso be embossed. This cannot be done with usual formica as such materials are not mouldable in commercial form.
  • Examples of articles which can be produced include moulded chair seats and glove box compartments.
  • moulded articles without a decorative finish can also be produced for particular applications, for example pallets can be produced with a high load bearing capacity.
  • Construction sheets and boards An agglomerated layer or layers pressed at a pressure of about one-fourth ton per square inch and at a temperature of 165 to give products resembling plasterboard or asbestos board. Products resembling stone or slate can also be produced by an appropriate choice of composition. These are more fully described in British Pat. No. 23462/72.
  • a variety of additives may be incorporated into the slurry to improve the properties of the final shaped articles.
  • These include synthetic resins which may be thermoplastic, for example styrene/butadiene resins, acrylic resins, vinyl acetate resins and vinyl chloride resins; or thermosetting, for example phenolformaldehyde resins, melamine formaldehyde resins and urea formaldehyde resins.
  • the resins are preferably mixed with the slurry in liquid form, for example as an emulsion or suspension in water, and precipitated by the addition of a precipitating agent such as alum.
  • the resin content of the slurry may be from 5 to 40% by weight.
  • thermoplastic boards may be obtained which can be stamped out to shape after being plasticized by heating.
  • a similar result can be obtained with phenol-formaldehyde resin containing formulations but a cure-time dwell is then needed.
  • a preferred resin content of the slurry is then 10 to 40% by weight.
  • a fu rther group of useful additives are flame-retardants, particularly in the production of boards and sections for the building industry. Suitable flame retardants include borates, boric acid, monoammonium phosphate, alumi num hydroxide and other commercially available flame retardant materials. Excellent results have been obtained using levels of up to about 8% by weight of the flame retardant.
  • the agglomerated layer may contain a reinforcing medium.
  • a layer of reinforcing fibres such as glass fibres may be deposited upon the agglomerated layer if desired and a light rolling action imparted to the layer to embed the fibres therein.
  • Al ternatively reinforcing fibrous layers or matts may be laminated on to one or both surfaces of the agglomerated layer or deposited layer of slurry. Suitable reinforcing layers include woven hessian backing or glass fibre matts.
  • the reinforcing medium may be sandwiched between two agglomerated layers and the whole laminate integrated by passage through pressure rolls.
  • slurry mineral fillers for example silica, quartz or limestone in finely divided form, or pulverised fuel ash. This leads to harder, denser, more fire resistant products.
  • I. Dickinson Croxley Mill fibre from 20 to 30% and clay from 80 to 70% by weight.
  • Bowater Thames Mill fibre from 40 to 70% by weight and clay from 60 to 30% by weight.
  • Bowater Mersey Mill fibre from 66.6 to 50% by weight and clay from 33.3 to 50% by weight.
  • Bowater Sittingbourne substantially the same as in the case of Bowater Mersey Mill.
  • Bowater Kelmsley Mill fibre substantially 84% by weight and clay substantially 16% by weight. The material was mainly from hardboard making.
  • Paper sludge from each individual mill is concentrated and if necessary further fibre or mineral material added.
  • Concentrated Sludge from Reeds Mill Waste paper sludge concentrated to l% by weight CL-lSl/76 is a 76% solids phenolic resin produced by Sterling Moulding Materials Ltd.
  • Both the above formulations contain added fibres in the form of chopped rags. However, it is not always necessary to add fibres and for example in the case of the Bowater Kelmsley Slurry (5 it is usually necessary to add a quantity of clay or other minerals to the slurry.
  • FIG. 1 shows a flow line for the apparatus from the sludge reservoir through filtering, mixing, the conveyor, dopple roller and pressure rollers to cutting and pressing,
  • FIG. 2 shows a fiow line of an alternative layout using extrusion, ovens and a multi-daylight press
  • FIG. 3 shows dewatering of the slurry between top and bottom belts moving between fixed plates and conveying on one another
  • FIG. 4 shows an alternative arrangement to FIG. 3 in which the plates are replaced by an array of pressure rolls acting on the belts from the outside.
  • the apparatus comprises a container for paper sludge which discharges into a rotary vacuum filter in which the sludge is concentrated to a solids content of from 7% to 30% by weight. From the filter the concentrated sludge is passed to a mixer such as a Gardner Ribbon, Baker-Perkins dough type mixer or alternatively a Hobart dough mixer. In the mixer the various additives such as the phenolic resin are mixed with the sludge and the resulting slurry is then pumped to a storage bin which acts as a feed reservoir for the board manufacturing unit. From the storage bin the slurry is deposited on to a vibrating conveyor in the form of a continuous layer.
  • a mixer such as a Gardner Ribbon, Baker-Perkins dough type mixer or alternatively a Hobart dough mixer.
  • the various additives such as the phenolic resin are mixed with the sludge and the resulting slurry is then pumped to a storage bin which acts as a feed reservoir for the board manufacturing unit. From the storage bin the slurry is
  • the layer of slurry carried on the belt of the vibrating conveyor is then passed through a dopple roller and then through a dewatering device.
  • the dewatering device may comprise a pair of fixed plates forming a continuous nip as illustrated in FIG. 3 in which the slurry is conveyed between top and bottom belts thereby squeezing out excess water from the layer of slurry.
  • the dewatering device may comprise a series of pressure rolls as illustrated in FIG. 4, the layer of slurry again being conveyed through the rolls by top and bottom belts.
  • the nip action of the dewatering device is arranged to be such that the agglomerated layer of slurry leaving the device has the desired thickness, density, and water content.
  • the agglomerated layer of slurry is then cut into boards and stacked to dry. Finally the boards are pressed to form the desired shaped articles and sent for despatch.
  • FIG. 2 An alternative embodiment is shown in FIG. 2 in which after mixing of the additives with the paper sludge, the slurry is fed to an extruder feeding mechanism which deposits a predetermined amount of the mixture in the form of a continuous layer which is then conveyed to the dewatering device.
  • the dewatering device reduces the water content of the layer, and when the layer emerges from the device its water content is substantially 45% by weight, ie it has a solids content of substantially 55% by weight.
  • the agglomerated layer is then passed to a drying oven where it is dried to an extent sufficient to lower the moisture content to around 15% by weight or less depending upon the properties required of the final shaped article.
  • the continuous agglomerated layer emerging from the oven is then cut into boards and stored for pressing. Finally the boards are pressed in a multi-daylight press and sent for dispatch.
  • Example I Analyses of a variety of paper sludge effluents from commercial paper mills are given in Example I. These effluents are processed in the apparatus shown diagrammatically in section in FIG. 5 of the accompanying drawings.
  • the apparatus comprises a slurry hopper I, provided with an agitator 2, mounted upon and communicating with a screw extruder 3.
  • the extruder has a slit diehead 4 which discharges on to the top surface of an endless stainless steel mesh belt 5.
  • the belt is carried on driven rollers 6 and passes beneath chain driven pressure rolls 7. Water squeezed out of the slurry by the pressure rolls is pumped to a large header tank (not shown) from which any subsequent water demands of the process may be met, or returned to filtration equipment to remove any solids content.
  • the endless belt is provided with cleaning water sprays 8 and rotary brushes 9 on its lower surface.
  • a take-off conveyor 10 adjacent the endless belt leads to pairs of nip rolls 1 I and 12 positioned on either side of an automatic cutter 13.
  • a series of conveying rollers 14 leads to a power operated loader 15 which feeds a multi-platen daylight press 16.
  • Each platen of the press has a high surface finish and is labyrinth drilled to ensure even heat distribution.
  • An unloader 17 receives boards from the press, and the boards are then transferred to an automatic stacking machine 18.
  • sludge from the hopper l is metered into the screw extruder 3 at a predetermined rate and emerges from the slit diehead 4 as a continuous layer of slurry which is deposited on the endless belt 5.
  • the belt carrying the layer of slurry passes beneath the pressure rolls 7 and water is squeezed out from the layer.
  • the progressive action of the pressure rolls is variable and enables the water content of the layer to be reduced to the desired value.
  • the action of the rolls controls the thickness and density of the layer.
  • the layer leaves the endless belt and is passed by the conveyor 10 to the nip rolls 1!.
  • the cutter 13 automatically cuts the layer into boards of the desired length which are removed by the nip rolls l2 and conveyed by the conveying rollers 14 into the loader 15.
  • the loader inserts the boards into the press 16 where they are heated to a temperature of 160C and subjected to a pressure of 525 lbs. per square inch.
  • the dwell time in the press is of the order of l minutes. From the press the unloader l7 removes the boards which are then stacked by the automatic stacking machine 18.
  • Compositions 3, 4 and 5 have been found to give boards having an excellent degree of flame retardance.
  • a process for the production of a shaped article from paper sludge which comprises depositing a layer of an aqueous slurry of said sludge, controlling the water content of the layer by applied pressure and drying so as to produce a coherent agglomerated layer having a degree of wet strength and a water content of from about to 30% by weight based on the total weight of the layer and then forming the layer under pressure with drying to produce a shaped article.
  • liquid permeable support comprises an endless moving belt of metal or plastic mesh or gauze.
  • the synthetic resin is a styrene/butadiene resin, an acrylic resin, a vinyl acetate resin, a vinyl chloride resin, a phenol formaldehyde resin, a melamine formaldehyde resin, or a urea formaldehyde resin.
  • a pressure-formable coherent agglomerated layer of paper sludge having a thickness greater than one-sixteenth of an inch, a density of from 0.8 to 2.0 grams per cubic centimeter and a water content of from to 30% by weight based on the total weight of the layer, the layer being sufficiently self-supporting to enable it to be handled without disintegration.
  • a layer according to claim 30 having a wet strength sufficient to withstand bending to an angle of without cracking.
  • a layer according to claim 30 having a wet strength such that an 8 feet by 4 feet section will maintain its integrity with minimal support over each 2 feet of its running length and such that an area of at least 4 square feet will maintain its integrity when supported only at its edges.
  • a layer according to claim 30 having a thickness of from one-eighth to one-half inch.
  • a laminate comprising a plurality of layers according to claim 30.
  • a process for the production of a pressureformable coherent agglomerated layer which comprises depositing a layer of an aqueous slurry of paper sludge and controlling the water content of the slurry with applied pressure and drying so as to produce a coherent agglomerated layer having a thickness greater than one-sixteenth of an inch, a density of from 0.8 to 2.0 grams per cubic centimeter, and a water content of from l5 to 30% by weight based on the total weight of the layer, the layer being sufficiently self-supporting to enable it to be handled without disintegration.

Abstract

A process for the production of a shaped article from paper sludge which comprises depositing a layer of an aqueous slurry of the sludge and controlling the water content of the layer by applied pressure and drying so as to produce a coherent agglomerated layer having a degree of wet strength and a water content of from about 15 to 30% by weight based on the total weight of the layer, and then forming the layer under pressure with drying to produce a shaped article.

Description

United States Patent 1451 July 22, 1975 Haywood [541 PRODUCTION OF SHAPED ARTICLES 2,173,391 9/1939 Ellis 1 1 1 1 1 v 162/165 2,441,169 5/1948 oman 162/314 X FROM PAPER SLUDGE 2,639,242 5/1953 Suen ,1 162/165 X 1 1 Inventor: George Robert y ld l 2,648,262 8/1953 Croston et a1. 162/312 )1 near Buxton, England 2,690,393 9/1954 McGarvey 1. 162/159 X 2,699,389 1/1955 Crandall 162/107 1731 Assigneez Natlonal ltesearch Development 3438847 4H969 Chase t t r I t p 4 H 162/159 X Corlwrflwn L9nd9n England 3.510.394 5/1970 Cadotte 1 162/145 [22] Filed: July 9,1972 3,576,710 4/1971 Mader 162/190 [21] APP] No: 273,279 FOREIGN PATENTS OR APPLICATIONS 1,275,042 5/1972 United Kingdom 162/189 131,432 3/1969 Czechoslovakia 162/190 [30] Foreign Application Priority Data July 21, 1971 United Kingdom 34243/71 P i r E in r s Leon Bgshore Feb, 8, 1972 United Kingdom 5817/72 A i t nt Examiner-Richard V. Fisher Attorney, Agent, or Firm-Finnegan, Henderson, [52] US. Cl. 162/100; 162/123; 162/145; F b d G tt 162/149; 162/159; 162/164; 162/165; 162/189; 162/210; 162/231; 162/D1G. 9 57 ABSTRACT [51] Int. Cl. D21h 1/00; D21f 1/82; D211" 11/00 1 1 [58] Field of Search 162/189, 190, 4, 23L 2) A process for the productlon of a shaped artlcle from 162/211, 312, 313, 314, 123, 164, 165, 159, paper sludge which comprises depositing a layer of an 100 145 149, 205 206, DIG 9; 264/86, aqueous slurry of the sludge and controlling the water 119, I20, 74' 280, 294 content of the layer by applied pressure and drying so as to produce a coherent agglomerated layer having a [56] References Cited degree of wet strength and a water content of from UNITED STATES PATENTS about 15 to 30% by weight based on the total we1ght of the layer, and then formmg the layer under pressure 1,748,224 2/1930 Hmde 162/313 x with drying to produce a Shaped amide 2,007,551 7/1935 Tompkins 162/133 2,1 14,300 4/1938 Gustin 106/37 38 Claims, 5 Drawing Figures 1 i /o o 1o Q Q A 0 .O'O'I PATENTED JUL 2 2 ms SHEET BUT AND STAEKEI] TU URV.
PRESSINB OPERATION CONTAINER [TE PAPER SLUUBE ROTARY VACUUM FILTER STORAGE FUR DISPATCH MIXING DF ADDTTIVES FIST.
STORAGE BIN VIBRATIM3 EUNVEYUR a DUPPLE ROLLER TTEWATERINB 1 DEVICE PATENTEDJUL22 ms sum CUNVEY THROUGH UVENS CUT TO SIZE CONTAINER OF PAPER SLUDGE MIXING 0F ADDITIVES MULTI-DAYLIBHT PRE$ EXTRUSIDN 0F SLUUGE UEWNTERIMS DEVICE PATENTED JUL 2 2 I975 SHEET 2% wzgcz 228m Q2 m2 OOOO 25 51 @2551 255m Q2 Q2 mam 225m z m2 @552 ME: Ext
PATENTED L 2 2 I975 SHEET PRODUCTION OF SHAPED ARTICLES FROM PAPER SLUD'GE This invention relates to a process for the production of shaped articles, and is more particularly concerned with the production of shaped articles from industrial waste materials.
A variety of industrial waste materials comprise either fibrous or mineral materials, and in many cases mixtures of both. Examples of industrial waste materials include those obtained in paper manufacture, asbestos slurry wastes, food wastes such as coffee waste, tobacco waste and various quarry and mineral wastes. The disposal of these materials represents a serious environmental problem which is increasingly becoming one of national concern.
In British Pat. No. 1,275,042 there is described and claimed a method of recovering the fibrous and mineral material in paper sludge (the aqueous slurry obtained as a waste effluent in paper manufacture) in which textile and/or mineral fibres with an average fibre length of from l/l6th of an inch to inches are added to the slurry as individual fibres or as fragments of woven or like fabric so as to assist in agglomerating together the fibre material of the slurry together with at least a part of any mineral content thereof, and in which the agglomerated material is recovered as a board product or as a moulding composition.
The present invention provides a process for the production of shaped articles which may be broadly applied to a variety of industrial waste materials.
According to the invention a process for the production of a shaped article from fibrous and mineral industrial waste materials comprises depositing a layer of an aqueous slurry comprising a mixture of a fibrous component and a mineral component and controlling the water content of the slurry so as to produce a coherent agglomerated layer having a degree of wet strength, and then forming the layer under pressure and drying to produce a shaped article.
The invention also comprises an apparatus for the production of shaped articles from fibrous and mineral industrial waste materials comprising means for depositing a layer of an aqueous slurry comprising a mixture of a fibrous component and a mineral component, means for controlling the water content of the slurry so as in operation to produce a coherent agglomerated layer having a degree of wet strength, and means for forming the coherent agglomerated layer under pressure, and for drying the layer so formed.
According to one aspect of the invention an aqueous slurry comprising a mixture of a fibrous component and a mineral component is deposited on to a liquid permeable support to form a layer, and the water content of the slurry is controlled by applied pressure and/or drying so as to produce a coherent agglomerated layer having a degree of wet strength. The layer may then be moulded under the action of heat and pressure to produce a shaped article.
The invention may be applied to a wide variety of industrial waste materials and also to mixtures thereof. The fibrous component of the mixture may be organic, for example cellulose fibres derived from waste paper, waste chopped rags, sisal, jute or hessian or synthetic resin fibres for example nylon, terylene or polypropylene fibres; or inorganic for example asbestos fibres or glass fibres. The mineral component may be a clay, for
example china clay or micaceous china clay, an oxide, for example silica, titanium dioxide, or antimony trioxide, and various inorganic salts for example silicates and carbonates such as calcium carbonate or chalk obtained as waste products from a wide variety of manufacturing operations. The invention is particularly applicable to the treatment of paper sludge which is an aqueous slurry comprising a mixture of cellulose fibres of short fibre length, and minerals such as clay, chalk or calcium carbonate, titanium dioxide and antimony trioxide. The invention may also be applied to asbestos slurry waste, food wastes, tobacco waste and quarry and mineral wastes as previously mentioned.
In the case of industrial waste materials such as paper sludge, the material is already in the form of an aqueous slurry when it is discharged from the paper mill. It is also possible, however, to make up an aqueous slurry suitable for use in the present invention by dispersing the solid fibrous and mineral components in water. For example shredded waste paper may be mixed with a suitable waste mineral material such as micaceous china clay or fine granite dust and water to form a useful aqueous slurry.
It is of course necessary for the aqueous slurry to contain sufficient quantities of solids to enable it to be agglomerated. Simple tests can be made first on filterability and on solids content and from these tests it can be determined what particular procedure in accordance with the invention can be employed and also whether or not the application of the process of the invention to the particular waste material is commercially practicable.
We have found that it is possible to use slurries containing fibres having an average fibre length outside the range of l/l6th of an inch to 5 inches. The nature of the slurry itself determines the particular method of treatment which it is necessary to apply, and addition of further fibrous material or mineral material may be made as desired to give a slurry of the required consistency. We have found that slurries containing a relatively large amount of fibrous material frequently require no further additions, but slurries with a very high mineral content for example certain kinds of paper sludge do however appear to require the addition of extra fibrous material or the like to assist in agglomeration of the slurry and to obtain satisfactory products.
Although the exact proportions vary with the nature of the waste material under consideration, we have found that it is preferable to operate with a slurry having a solids content of from 5 to 30% by weight. Industrially produced aqueous slurries frequently contain only up to about 2% solids and in these cases the slurry will usually need to be concentrated, for example by filtration, to bring the solids content up to a usable value. Of this solids content, the fibrous component preferably comprises from 5 to 95% by weight particularly from 20 to by weight and the mineral component preferably comprises from to 5% by weight particularly from 80 to 20% by weight.
The aqueous slurry is preferably deposited upon a liquid permeable support to form a layer, the solid materials remaining on the support whilst the excess water is allowed to drain off. The slurry may be deposited from a hopper, or preferably an extruder having means for discharging the slurry at a predetermined rate. The liquid permeable support may be a mesh or gauze of metal or plastic material, for example stainless steel mesh or nylon mesh and is preferably movable relative to the discharge orifice of the hopper or extruder. For example the liquid permeable support may be in the form of an endless moving belt of metal or plastic mesh or gauze.
A number of methods of controlling the water content of the slurry are available. For example the slurry may be passed through an extruder equipped with means for removing part of the water content of the slurry prior to deposition of the layer, so that the layer of slurry leaving the extruder is of the desired composition. However in a preferred embodiment of the invention, the liquid permeable support carrying the depos ited slurry is passed through a series of pressure rolls producing a plurality of nip actions which progressively squeeze out water from the deposited slurry and control its thickness to produce a coherent agglomerated layer of the desired water content and strength. The water content and thickness of the deposited layer may be controlled by varying the pressure applied by the pressure rolls and by nip setting adjustment. The pressure rolls may be arranged above the deposited layer so as to squeeze the layer between the rolls and the liquid permeable support, or alternatively the rolls may be arranged in pairs above and below the deposited layer. In an alternative method of controlling the water content of the slurry there may be employed a cylindrical vacuum filter which is partly immersed in the slurry and rotated so as to deposit a layer of slurry on its circumference. The layer of agglomerated slurry may be removed from the filter in a continuous operation, for example with a take-off knife.
The above treatments for reducing the water content of the layer by applied pressure usually produce a layer having a water content of about 45% by weight, i.e. having a solids content of substantially 55% by weight. In one embodiment of the invention after subjecting the layer of slurry to applied pressure to reduce its water content, a drying operation is performed to reduce the water content of the layer to a preferred value. In its simplest form the drying operation may merely consist of cutting the layer into sheets of the desired length and stacking them to dry. Preferably however the layer is passed through a drying oven to produce an agglomerated layer of the desired water content. The layer should not be completely dried since this will impair the subsequent forming operation.
The water content of the slurry is controlled so as to produce a coherent agglomerated layer having a degree of wet strength. The degree of wet strength required of the layer is such that it can be formed under pressure without tearing, and such that it is sufficiently selfsupporting to enable it to be handled without disintegration. The layer should, for example, preferably be able to withstand bending to an angle of 90 without cracking. Preferably also the layer should be capable of supporting its own weight to such an extent that an 8 foot X 4 foot section will maintain its integrity with minimal support over each 2 feet of its running length and such that an area of at least about 4 square feet will maintain its integrity when supported only at its edges.
The wet strength of the agglomerated layer is dependent upon its thickness, density and water content, but it has been found in practice that the desired thickness and density can be attained by an appropriate choice of the method of controlling the water content. Thus if pressure is applied to the deposited layer of slurry, the
density will be increased and the thickness and water content will be reduced. Alternatively if the water content is reduced by heating, the thickness will be substantially unchanged and the density will be reduced. A
few simple experiments will determine what conditions are necessary to achieve an agglomerated layer having the desired thickness, density, water content and wet strength.
It is found in general that the water content of the coherent agglomerated layer of slurry may vary from less than 15 to about 85% by weight, based on the total weight of the layer. In choosing an appropriate water content it is necessary to consider not only the wet strength of the agglomerated layer but also the forming operation which the layer is to undergo to produce the shaped article. At the lower levels of water content say from 15 to 30% by weight the agglomerated layer may be used to form flat products and simple mouldings as described later. For more difi'icult mouldings, and for a variety of general applications, the water content of the layer should be somewhat higher, for example around 40 to 85% by weight, particularly from 50 to by weight. [n this condition the layer still surprisingly can possess the wet strength required to permit it to be handled without disintegration.
The thickness of the agglomerated layer is dependent upon the thickness of the final shaped article and the forming process, but it is usually greater than onesixteenth inch in order to obtain an agglomerated layer having adequate wet strength. Preferably the thickness of the layer is from one-eighth to one-half inch.
The process of the invention may also be modified to obtain shaped articles of greater thickness.
Thus, for example:
i. A plurality of agglomerated layers may be formed and superimposed one on the other. These are then laminated between pressure rollers to obtain a multiple thickness, or slightly less because of slight spread under lamination pressure.
ii. A single agglomerated layer is first formed in the usual way and this is then followed by depositing a further layer of aqueous slurry on to the first layer by means of one or more hoppers or extruders situated after the first series of pressure rolls. The composite layer is then passed through further pressure rolls to obtain a laminated coherent agglomerated layer. The density of the agglomerated layer is dependent upon the density required in the final shaped article and the forming process, but is usually from 0.8 to 2.0
grams per cc.
The coherent agglomerated layer is finally formed under pressure and dried to produce the desired shaped article. Thus the forming operation may comprise passing the layer through pressure rolls to give a board product, or moulding the layer to produce a moulded article. Preferably the forming and drying operations are carried out together, and for example the layer may be moulded under heat and pressure. Pressures varying from a few pounds per square inch to several tons per square inch may be used in the forming operation, depending on the desired physical properties of the final shaped article. For boards, pressures of up to 2,400 pounds per square inch have been found to give useful products, whilst for moulded articles rather higher pressures are usually required, preferably from 50 pounds per square inch to 2 tons per square inch. When the forming and drying operations are carried out to gether it is found that there is usually an optimum working temperature which is generally in the range of from 100 to 190C. In moulding operations the article is preferably left in the heated mould for a few minutes to allow water to evaporate though this time may be minimised by the use of a perforated mould or by vacuum forming. in a preferred method of moulding the shaped articles, there is inserted between a surface of the mould and a surface of the layer a flexible permeable sheet material as described in British Pat. No. 5820/72.
The process of the invention may be used to manufacture various shaped articles: a. Insulation fibre board This is obtained by lightly pressing an agglomerated layer of relatively low water content, say from to 30% by weight to yield a low-density board which has sound insulation properties, comparable with those of existing commercial insulating board. b. Hardboard-type board An agglomerated layer or layers are pressed at a pressure of substantially one-half ton per square inch and subjected at the same time to heating at a temperature of substantially 150C, to obtain a consolidated product similar to hardboard and with similar properties. This hardboard can be laminated to the usual surface finishes including wallpaper, self-adhesive vinyl film or paper of the kind common in home decoration. The layer or board may be sprayed with resin solution on one or both sides to obtain a resin-rich surface of improved finish. c. Decorative formica"-type board product This product is obtained by direct lamination of an agglomerated layer or layers with melamine printed surface papers and phenolic underlay. Pressures of up to one half of a ton per square inch and temperatures of 1 10 to 170C may be used depending on the density required in the core of the laminate. d. Packaging board If the agglomerated layer is lightly pressed or rolled, the resulting sheet is suitable for various types of packaging materials and for box making. For instance, if a groove is routed in the sheet, the material can be hinged at that point to form a right-angled joint and a complete box can be made by forming the necessary joints in this way. Boxes with a fair degree of strength can also be made by using the hardboard-type board (b) and treating it in the same manner. e. Moulded decorative products These products are an extension of the decorative formica type product. A radiused or ribbed mould may be used and the product takes on the shape of the mould together with a decorative effect. The board may lso be embossed. This cannot be done with usual formica as such materials are not mouldable in commercial form.
Examples of articles which can be produced include moulded chair seats and glove box compartments.
Other moulded articles without a decorative finish can also be produced for particular applications, for example pallets can be produced with a high load bearing capacity. f. Construction sheets and boards An agglomerated layer or layers pressed at a pressure of about one-fourth ton per square inch and at a temperature of 165 to give products resembling plasterboard or asbestos board. Products resembling stone or slate can also be produced by an appropriate choice of composition. These are more fully described in British Pat. No. 23462/72.
A variety of additives may be incorporated into the slurry to improve the properties of the final shaped articles. These include synthetic resins which may be thermoplastic, for example styrene/butadiene resins, acrylic resins, vinyl acetate resins and vinyl chloride resins; or thermosetting, for example phenolformaldehyde resins, melamine formaldehyde resins and urea formaldehyde resins. The resins are preferably mixed with the slurry in liquid form, for example as an emulsion or suspension in water, and precipitated by the addition of a precipitating agent such as alum. The resin content of the slurry may be from 5 to 40% by weight. In the case of styrene-butadiene resin containing formulations, thermoplastic boards may be obtained which can be stamped out to shape after being plasticized by heating. A similar result can be obtained with phenol-formaldehyde resin containing formulations but a cure-time dwell is then needed. A preferred resin content of the slurry is then 10 to 40% by weight. A fu rther group of useful additives are flame-retardants, particularly in the production of boards and sections for the building industry. Suitable flame retardants include borates, boric acid, monoammonium phosphate, alumi num hydroxide and other commercially available flame retardant materials. Excellent results have been obtained using levels of up to about 8% by weight of the flame retardant. We have found that boards made from a composition consisting of at least 63.5% by weight cellulose fibres, 28.5% by weight minerals and up to 8% by weight flame retardant compare favourably with boards made from grade A60 asbestos. It is, of course, possible to obtain boards having good flame retardant properties without the addition of extra flame retardant materials by increasing the proportion of minerals in the composition. Thus compositions containing a minimum mineral content of 55% by weight and 45% by weight fibres have been found to produce board exhibiting excellent flame retardant properties.
If necessary the agglomerated layer may contain a reinforcing medium. For example a layer of reinforcing fibres such as glass fibres may be deposited upon the agglomerated layer if desired and a light rolling action imparted to the layer to embed the fibres therein. Al ternatively reinforcing fibrous layers or matts may be laminated on to one or both surfaces of the agglomerated layer or deposited layer of slurry. Suitable reinforcing layers include woven hessian backing or glass fibre matts. As a further alternative the reinforcing medium may be sandwiched between two agglomerated layers and the whole laminate integrated by passage through pressure rolls.
Finally there may be added to the slurry mineral fillers for example silica, quartz or limestone in finely divided form, or pulverised fuel ash. This leads to harder, denser, more fire resistant products.
The invention is illustrated by the following Examples:
EXAMPLE 1 This Example describes the production of boards from paper mill sludge.
In determining the fibre and clay contents of various paper making slurries so as to decide on whether or not either fibres or minerals have to be added before the material is converted into board the following analyses were made:
I. Dickinson Croxley Mill: fibre from 20 to 30% and clay from 80 to 70% by weight.
2. Bowater Thames Mill: fibre from 40 to 70% by weight and clay from 60 to 30% by weight.
3. Bowater Mersey Mill: fibre from 66.6 to 50% by weight and clay from 33.3 to 50% by weight.
4. Bowater Sittingbourne: substantially the same as in the case of Bowater Mersey Mill.
5. Bowater Kelmsley Mill: fibre substantially 84% by weight and clay substantially 16% by weight. The material was mainly from hardboard making.
6. Reeds Aylesford: the sludge was sampled daily and a composite was tested weekly, over ten weeks, the results were as follows:
Solids content: Average 24% Range l7 35% Average 66% Range 53 76% Fibre content:
The only other major constituent was china clay.
Paper sludge from each individual mill is concentrated and if necessary further fibre or mineral material added. The following are examples of two formulations which are used in the manufacture of various boards products:
A. Concentrated Sludge from Reeds Mill: Waste paper sludge concentrated to l% by weight CL-lSl/76 is a 76% solids phenolic resin produced by Sterling Moulding Materials Ltd.
Both the above formulations contain added fibres in the form of chopped rags. However, it is not always necessary to add fibres and for example in the case of the Bowater Kelmsley Slurry (5 it is usually necessary to add a quantity of clay or other minerals to the slurry.
The formulations described above are processed in an apparatus illustrated diagrammatically in FIGS. 1 to 4 of the accompanying drawings in which:
FIG. 1 shows a flow line for the apparatus from the sludge reservoir through filtering, mixing, the conveyor, dopple roller and pressure rollers to cutting and pressing,
FIG. 2 shows a fiow line of an alternative layout using extrusion, ovens and a multi-daylight press,
FIG. 3 shows dewatering of the slurry between top and bottom belts moving between fixed plates and conveying on one another, and
FIG. 4 shows an alternative arrangement to FIG. 3 in which the plates are replaced by an array of pressure rolls acting on the belts from the outside.
Referring now to FIG. I, the apparatus comprises a container for paper sludge which discharges into a rotary vacuum filter in which the sludge is concentrated to a solids content of from 7% to 30% by weight. From the filter the concentrated sludge is passed to a mixer such as a Gardner Ribbon, Baker-Perkins dough type mixer or alternatively a Hobart dough mixer. In the mixer the various additives such as the phenolic resin are mixed with the sludge and the resulting slurry is then pumped to a storage bin which acts as a feed reservoir for the board manufacturing unit. From the storage bin the slurry is deposited on to a vibrating conveyor in the form of a continuous layer. The layer of slurry carried on the belt of the vibrating conveyor is then passed through a dopple roller and then through a dewatering device. The dewatering device may comprise a pair of fixed plates forming a continuous nip as illustrated in FIG. 3 in which the slurry is conveyed between top and bottom belts thereby squeezing out excess water from the layer of slurry. Alternatively the dewatering device may comprise a series of pressure rolls as illustrated in FIG. 4, the layer of slurry again being conveyed through the rolls by top and bottom belts. The nip action of the dewatering device is arranged to be such that the agglomerated layer of slurry leaving the device has the desired thickness, density, and water content. The agglomerated layer of slurry is then cut into boards and stacked to dry. Finally the boards are pressed to form the desired shaped articles and sent for despatch.
An alternative embodiment is shown in FIG. 2 in which after mixing of the additives with the paper sludge, the slurry is fed to an extruder feeding mechanism which deposits a predetermined amount of the mixture in the form of a continuous layer which is then conveyed to the dewatering device. The dewatering device reduces the water content of the layer, and when the layer emerges from the device its water content is substantially 45% by weight, ie it has a solids content of substantially 55% by weight. The agglomerated layer is then passed to a drying oven where it is dried to an extent sufficient to lower the moisture content to around 15% by weight or less depending upon the properties required of the final shaped article. The continuous agglomerated layer emerging from the oven is then cut into boards and stored for pressing. Finally the boards are pressed in a multi-daylight press and sent for dispatch.
EXAMPLE 2 This Example describes a further process for the production of boards from paper sludge.
Analyses of a variety of paper sludge effluents from commercial paper mills are given in Example I. These effluents are processed in the apparatus shown diagrammatically in section in FIG. 5 of the accompanying drawings.
Referring to FIG. 5, the apparatus comprises a slurry hopper I, provided with an agitator 2, mounted upon and communicating with a screw extruder 3. The extruder has a slit diehead 4 which discharges on to the top surface of an endless stainless steel mesh belt 5. The belt is carried on driven rollers 6 and passes beneath chain driven pressure rolls 7. Water squeezed out of the slurry by the pressure rolls is pumped to a large header tank (not shown) from which any subsequent water demands of the process may be met, or returned to filtration equipment to remove any solids content. The endless belt is provided with cleaning water sprays 8 and rotary brushes 9 on its lower surface. A take-off conveyor 10 adjacent the endless belt leads to pairs of nip rolls 1 I and 12 positioned on either side of an automatic cutter 13. From the cutter 13 a series of conveying rollers 14 leads to a power operated loader 15 which feeds a multi-platen daylight press 16. Each platen of the press has a high surface finish and is labyrinth drilled to ensure even heat distribution. An unloader 17 receives boards from the press, and the boards are then transferred to an automatic stacking machine 18.
In operation sludge from the hopper l is metered into the screw extruder 3 at a predetermined rate and emerges from the slit diehead 4 as a continuous layer of slurry which is deposited on the endless belt 5. The belt carrying the layer of slurry passes beneath the pressure rolls 7 and water is squeezed out from the layer. The progressive action of the pressure rolls is variable and enables the water content of the layer to be reduced to the desired value. At the same time the action of the rolls controls the thickness and density of the layer. The layer leaves the endless belt and is passed by the conveyor 10 to the nip rolls 1!. The cutter 13 automatically cuts the layer into boards of the desired length which are removed by the nip rolls l2 and conveyed by the conveying rollers 14 into the loader 15. The loader inserts the boards into the press 16 where they are heated to a temperature of 160C and subjected to a pressure of 525 lbs. per square inch. The dwell time in the press is of the order of l minutes. From the press the unloader l7 removes the boards which are then stacked by the automatic stacking machine 18.
lt is found that excellent boards can be produced from slurries having the following compositions:
1. Paper mill sludge (Reeds) 25% solids 40 lbs.
Chopped rags (A inch) 1 lb. Water (added) 40 lbs.
2. Paper mill sludgz (Reeds) 25% solids 40 lbs.
Chopped rags( inch) 1 lb. Resin CL l64/50 22 lbs. Water (added) 40 lbs. Alum 600 cos.
3. Paper mill sludge (Reeds) 25% solids 40 lbs.
Chopped rags (A inch) 1 lb. Pulverised fuel ash lbs. Water (added) 40 lbs.
4. Paper mill sludge (Reeds) 25% solids 40 lbs.
Chopped rags (5 4 inch) 1 lb. Mono ammonium phosphate l lb. Water (added) 40 lbs.
5. Paper mill sludge (Reeds) 25% solids 40 lbs.
Chopped rags (lb inch) l lb. Pulverised fuel ash 20 lbs. Water 40 lbs.
Compositions 3, 4 and 5 have been found to give boards having an excellent degree of flame retardance.
We claim:
1. A process for the production of a shaped article from paper sludge which comprises depositing a layer of an aqueous slurry of said sludge, controlling the water content of the layer by applied pressure and drying so as to produce a coherent agglomerated layer having a degree of wet strength and a water content of from about to 30% by weight based on the total weight of the layer and then forming the layer under pressure with drying to produce a shaped article.
2. The process according to claim 1 in which the aqueous slurry is deposited on to a liquid permeable support.
3. The process according to claim 1 in which extra fibrous material is added to the aqueous slurry before deposition to assist in agglomeration of the sludge.
4. The process according to claim 1 in which the aqueous slurry before deposition has a solid content of from 5 to 30% by weight.
5. The process according to claim 4, in which the solids content comprises 20 to by weight of a fibrous component and 80 to 20% by weight of a mineral component.
6. The process according to claim 2 in which the aqueous slurry is deposited from the discharge orifice of an extruder at a predetermined rate on to the liquid permeable support which is movable relative to the discharge orifice.
7. The process according to claim 6, in which the liquid permeable support comprises an endless moving belt of metal or plastic mesh or gauze.
8. The process according to claim 2 in which the slurry is passed through an extruder equipped with means for removing part of its water content prior to deposition of the layer.
9. The process according to claim 2 in which the support carrying the deposited slurry is passed through a series of pressure rolls which progressively squeeze out water from the deposited slurry to produce the coherent agglomerated layer.
10. The process according to claim 1 in which a cylindrical vacuum filter is partly immersed in the slurry and rotated so as to deposit a layer of slurry on its circumference and the layer of agglomerated slurry is removed from the filter in a continuous application.
11. The process according to claim 2 in which the layer of slurry after deposition on to the liquid permeable support is passed through a drying oven to control its water content.
12. The process according to claim 1 in which the water content of the layer is controlled so as to produce an agglomerated layer having a wet strength sufficient to withstand bending to an angle of without crackmg.
13. The process according to claim 1 in which the water content of the layer is controlled so as to produce an agglomerated layer having a wet strength such that an 8 feet by 4 feet section will maintain its integrity with minimal support over each 2 feet of its running strength and such that an area of at least 4 square feet will maintain its integrity when supported only at its edges.
14. The process according to claim 1 in which the water content of the layer is controlled so as to produce an agglomerated layer having a thickness of from one eighth to one-half inch.
15. The process according to claim 1 in which the water content of the layer is controlled so as to produce an agglomerated layer having a density of from 0.8 to 2.0 grams per cc.
16. The process according to claim 1 in which the agglomerated layer is moulded under heat and pressure to form the shaped article.
17. The process according to claim 16 in which the shaped article is a board and the moulding pressure is up to 2,400 pounds per square inch.
18. The process according to claim 16 in which the shaped article is a moulded article and the moulding pressure is from 50 pounds per square inch to 2 tons per square inch.
19. The process according to claim 1 in which the forming with drying operation is carried out at a temperature of from to l90C.
20. The process according to claim 1 in which a plurality of agglomerated layers are formed, superimposed one on the other and then laminated between pressure rollers.
21. The process according to claim 1 in which an agglomerated layer is first formed and then a further layer of aqueous slurry of paper sludge is deposited thereon, the water content of the composite layer being controlled by passing it through pressure rolls to obtain a laminated coherent agglomerated layer.
22. The process according to claim 1 in which there is added to the slurry before deposition from 5 to 40% by weight of a synthetic resin.
23. The process according to claim 22 in which the synthetic resin is a styrene/butadiene resin, an acrylic resin, a vinyl acetate resin, a vinyl chloride resin, a phenol formaldehyde resin, a melamine formaldehyde resin, or a urea formaldehyde resin.
24. The process according to claim 1 in which there is added to the slurry before deposition a flame retardant.
25. The process according to claim 24 in which the flame retardant is a borate, boric acid, monoammonium phosphate, or aluminum hydroxide.
26. The process according to claim 1 in which the slurry is deposited over a reinforcing medium to form a reinforced agglomerated layer.
27. The process according to claim 26, in which the medium is a layer of fibres.
28. The process according to claim 26, in which the medium is a fibrous mat.
29. The process according to claim 1 in which a mineral filler is added to the slurry before deposition.
30. A pressure-formable coherent agglomerated layer of paper sludge having a thickness greater than one-sixteenth of an inch, a density of from 0.8 to 2.0 grams per cubic centimeter and a water content of from to 30% by weight based on the total weight of the layer, the layer being sufficiently self-supporting to enable it to be handled without disintegration.
31. A layer according to claim 30 having a wet strength sufficient to withstand bending to an angle of without cracking.
32, A layer according to claim 30 having a wet strength such that an 8 feet by 4 feet section will maintain its integrity with minimal support over each 2 feet of its running length and such that an area of at least 4 square feet will maintain its integrity when supported only at its edges.
33. A layer according to claim 30 having a thickness of from one-eighth to one-half inch.
34. A laminate comprising a plurality of layers according to claim 30.
35. A process for the production of a pressureformable coherent agglomerated layer which comprises depositing a layer of an aqueous slurry of paper sludge and controlling the water content of the slurry with applied pressure and drying so as to produce a coherent agglomerated layer having a thickness greater than one-sixteenth of an inch, a density of from 0.8 to 2.0 grams per cubic centimeter, and a water content of from l5 to 30% by weight based on the total weight of the layer, the layer being sufficiently self-supporting to enable it to be handled without disintegration.
36. The process according to claim 35 in which the aqueous slurry is deposited onto a liquid permeable support to form the layer.
37. The process according to claim 35 in which the aqueous slurry is deposited from an extruder at a predetermined rate onto a liquid permeable support which is movable relative to the discharge orifice of the extruder.
38. The process according to claim 35 in which the aqueous slurry is deposited upon a liquid permeable support and the support carrying the deposited slurry is passed through a series of pressure rolls which progressively squeeze out water from the deposited slurry.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No.3,895,997 Dated July 22, 1975 Inventor(s) George Robert Haywood It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 10, line 44, "strength" should read -length-.
Signed and Sealed this [SEAL] irriezh D3) 0f S p mber1975 Arresz:
RUTH C. MASO AIIPSIIng CV MARSHALL DANN Commas/0n of Parents and Tr d FORM P0405) USCOMM-DC 60876-P69 Y .5. GOVERNMENT PRINTING OFFICE: l 0-5.533.

Claims (38)

1. A PROCESS FOR THE PRODUCTION OF A SHAPED ARTICLE FROM PAPER SLUDGE WHICH COMPRISES DEPOSITING A LAYER OF AN AQUEOUS SLURRY OF SAID SLUDGE, CONTROLLING THE WATER CONTENT OF THE LAYER BY APPLIED PRESSURE AND DRYING SO AS TO PRODUCE A COHERENT AGGLOMERATED LAYER HAVING A DEGREE OF WET STRENGTH AND A WATER CONTENT OF FROM ABOUT 15 TO 30% BY WEIGHT BASED ON THE TOTAL WEIGHT OF THE LAYER AND THEN FORMING THE LAYER UNDER PRESSURE WITH DRYING TO PRODUCE A SHAPED ARTICLE.
2. The process according to claim 1 in which the aqueous slurry is deposited on to a liquid permeable support.
3. The process according to claim 1 in which extra fibrous material is added to the aqueous slurry before deposition to assist in agglomeration of the sludge.
4. The process according to claim 1 in which the aqueous slurry before deposition has a solid content of from 5 to 30% by weight.
5. The process according to claim 4, in which the solids content comprises 20 to 80% by weight of a fibrous component and 80 to 20% by weight of a mineral component.
6. The process according to claim 2 in which the aqueous slurry is deposited from the discharge orifice of an extruder at a predetermined rate on to the liquid permeable support which is movable relative to the discharge orifice.
7. The process according to claim 6, in which the liquid permeable support comprises an endless moving belt of metal or plastic mesh or gauze.
8. The process according to claim 2 in which the slurry is passed through an extruder equipped with means for removing part of its water content prior to deposition of the layer.
9. The process according to claim 2 in which the support carrying the deposited slurry is passed through a series of pressure rolls which progressively squeeze out water from the deposited slurry to produce the coherent agglomerated layer.
10. The process according to claim 1 in which a cylindrical vacuum filter is partly immersed in the slurry and rotated so as to deposit a layer of slurry on its circumference and the layer of agglomerated slurry is removed from the filter in a continuous application.
11. The process according to claim 2 in which the layer of slurry after deposition on to the liquid permeable support is passed through a drying oven to control its water content.
12. The process according to claim 1 in which the water content of the layer is controlled so as to produce an agglomerated layer having a wet strength sufficient to withstand bending to an angle of 90* without cracking.
13. The process according to claim 1 in which the water content of the layer is controlled so as to produce an agglomerated layer having a wet strength such that an 8 feet by 4 feet section will maintain its integrity with minimal support over each 2 feet of its running strength and such that an area of at least 4 square feet will maintain its integrity when supported only at its edges.
14. The process according to claim 1 in which the water content of the layer is controlled so as to produce an agglomerated layer having a thickness of from one-eighth to one-half inch.
15. The process according to claim 1 in which the water content of the layer is controlled so as to produce an agglomerated layer having a density of from 0.8 to 2.0 grams per cc.
16. The process according to claim 1 in which the agglomerated layer is moulded under heat and pressure to form the shaped article.
17. The process according to claim 16 in which the shaped article is a board and the moulding pressure is up to 2,400 pounds per square inch.
18. The process according to claim 16 in which the shaped article is a moulded article and the moulding pressure is from 50 pounds per square inch to 2 tons per square inch.
19. The process according to claim 1 in which the forming with drying operation is carried out at a temperature Of from 100* to 190*C.
20. The process according to claim 1 in which a plurality of agglomerated layers are formed, superimposed one on the other and then laminated between pressure rollers.
21. The process according to claim 1 in which an agglomerated layer is first formed and then a further layer of aqueous slurry of paper sludge is deposited thereon, the water content of the composite layer being controlled by passing it through pressure rolls to obtain a laminated coherent agglomerated layer.
22. The process according to claim 1 in which there is added to the slurry before deposition from 5 to 40% by weight of a synthetic resin.
23. The process according to claim 22 in which the synthetic resin is a styrene/butadiene resin, an acrylic resin, a vinyl acetate resin, a vinyl chloride resin, a phenol formaldehyde resin, a melamine formaldehyde resin, or a urea formaldehyde resin.
24. The process according to claim 1 in which there is added to the slurry before deposition a flame retardant.
25. The process according to claim 24 in which the flame retardant is a borate, boric acid, mono-ammonium phosphate, or aluminum hydroxide.
26. The process according to claim 1 in which the slurry is deposited over a reinforcing medium to form a reinforced agglomerated layer.
27. The process according to claim 26, in which the medium is a layer of fibres.
28. The process according to claim 26, in which the medium is a fibrous mat.
29. The process according to claim 1 in which a mineral filler is added to the slurry before deposition.
30. A PRESSURE-FORMABLE COHERENT AGGLOMERATED LAYER OF PAPER SLUDGE HAVING A THICKNESS GREATER THAN ONE-SIXTEENTH OF AN INCH, A DENSITY OF FROM 0.8 TO 2.0 GRAMS PER CUBIC CENTIMETER AND A WATER CONTENT OF FROM 15 TO 30% BY WEIGHT BASED ON THE TOTAL WEIGHT OF THE LAYER, THE LAYER BEING SUFFICIENTLY SELFSUPPORTING TO ENABLE IT TO BE HANDLED WITHOUT DISINTEGRATION.
31. A layer according to claim 30 having a wet strength sufficient to withstand bending to an angle of 90* without cracking.
32. A layer according to claim 30 having a wet strength such that an 8 feet by 4 feet section will maintain its integrity with minimal support over each 2 feet of its running length and such that an area of at least 4 square feet will maintain its integrity when supported only at its edges.
33. A layer according to claim 30 having a thickness of from one-eighth to one-half inch.
34. A laminate comprising a plurality of layers according to claim 30.
35. A process for the production of a pressure-formable coherent agglomerated layer which comprises depositing a layer of an aqueous slurry of paper sludge and controlling the water content of the slurry with applied pressure and drying so as to produce a coherent agglomerated layer having a thickness greater than one-sixteenth of an inch, a density of from 0.8 to 2.0 grams per cubic centimeter, and a water content of from 15 to 30% by weight based on the total weight of the layer, the layer being sufficiently self-supporting to enable it to be handled without disintegration.
36. The process according to claim 35 in which the aqueous slurry is deposited onto a liquid permeable support to form the layer.
37. The process according to claim 35 in which the aqueous slurry is deposited from an extruder at a predetermined rate onto a liquid permeable support which is movable relative to the discharge orifice of the extruder.
38. The process according to claim 35 in which the aqueous slurry is deposited upon a liquid permeable support and the support carrying the deposited slurry is passed through a series of pressure rolls which progressively squeeze out water from the deposited slurry.
US27327972 1971-07-21 1972-07-19 Production of shaped articles from paper sludge Expired - Lifetime US3895997A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB3424371 1971-07-21
GB581772A GB1405587A (en) 1971-07-21 1972-02-08 Production of shaped articles

Publications (1)

Publication Number Publication Date
US3895997A true US3895997A (en) 1975-07-22

Family

ID=26240172

Family Applications (1)

Application Number Title Priority Date Filing Date
US27327972 Expired - Lifetime US3895997A (en) 1971-07-21 1972-07-19 Production of shaped articles from paper sludge

Country Status (7)

Country Link
US (1) US3895997A (en)
CA (1) CA1016709A (en)
DE (1) DE2235975A1 (en)
ES (1) ES405055A1 (en)
FR (1) FR2146883A5 (en)
GB (1) GB1405587A (en)
IT (1) IT961467B (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032393A (en) * 1976-04-05 1977-06-28 The Upson Company Fire retardant webs and internal treatment therefor
US4076871A (en) * 1976-11-02 1978-02-28 Masonite Corporation Method of impregnating wood with boric acid
US4190492A (en) * 1977-12-21 1980-02-26 Armstrong Cork Company Method of producing acoustical fiberboard
US4256491A (en) * 1977-09-01 1981-03-17 Champion International Corporation Waterproofing composition and method of making the same
US4292188A (en) * 1979-06-01 1981-09-29 Martin Marietta Corporation Non-abrasive bauxite-based fire retardant
US4377440A (en) * 1978-05-25 1983-03-22 Stein Gasland Process for manufacturing of formed products
JPS58183753A (en) * 1982-04-09 1983-10-27 パペトウリ−・ドウ・ジヤンドウ−ル・ソシエテ・アノニム Novel product containing industrial waste, especially pulp sludge for insulation and wrapping and method of obtaining same
US4486234A (en) * 1981-03-20 1984-12-04 Herr Alfons K Fiber material
US4562218A (en) * 1982-09-30 1985-12-31 Armstrong World Industries, Inc. Formable pulp compositions
US4812204A (en) * 1987-07-24 1989-03-14 Ceram-Sna, Inc. Process for obtaining boric acid treated asbestos fiber
US5360586A (en) * 1992-11-06 1994-11-01 Danny R. Wyatt Biodegradable cellulosic material and process for making such material
US5460085A (en) * 1990-03-05 1995-10-24 Roberto Cappellari Process for compacting waste materials
US5496441A (en) * 1993-05-26 1996-03-05 Tran Industrial Research Inc. Utilization of deinking by-product in building materials
US5582682A (en) * 1988-12-28 1996-12-10 Ferretti; Arthur Process and a composition for making cellulosic composites
US5795377A (en) * 1997-04-08 1998-08-18 Kimberly-Clark Worldwide, Inc. Method for modifying papermaking sludge and products made from modified papermaking sludge
US6146498A (en) * 1997-04-30 2000-11-14 Kimberly-Clark Worldwide, Inc. Wound product cores and processes for making them
US6572736B2 (en) * 2000-10-10 2003-06-03 Atlas Roofing Corporation Non-woven web made with untreated clarifier sludge
US6852386B2 (en) * 2001-03-08 2005-02-08 Norbord Inc. Composite board with OSB faces
US20080179775A1 (en) * 2007-01-31 2008-07-31 Usg Interiors, Inc. Transfer Plate Useful in the Manufacture of Panel and Board Products
WO2008092807A1 (en) * 2007-02-01 2008-08-07 Macber S.R.L. Process for manufacturing panels for constructing articles of furniture such as cupboards, modular kitchens and furniture items in general, and panel obtained by the process.
US20090000752A1 (en) * 2007-06-28 2009-01-01 Buckman Laboratories International, Inc. Use of Cyclodextrins For Odor Control In Papermaking Sludges, and Deodorized Sludge and Products
US20090173464A1 (en) * 2008-01-04 2009-07-09 Usg Interiors, Inc. Acoustic ceiling tiles made with paper processing waste
ITUD20110142A1 (en) * 2011-09-13 2013-03-14 Roberta Bas PANEL FOR INTERMEDIATE FURNITURE USE BETWEEN MDF AND CHIPBOARD
US20130212970A1 (en) * 2008-09-04 2013-08-22 Frank Santoro Products made from recycled cardboard
WO2014012756A3 (en) * 2012-06-27 2014-04-03 Jentschura, Rolf Synthetic spongy wood boards
US20150020986A1 (en) * 2013-07-18 2015-01-22 Mario Lessard Paper-Based Malleable Dough for Moulding and Sculpting Applications
CN104385429A (en) * 2014-11-26 2015-03-04 武汉亿维登科技发展有限公司 Vacuum heating spreading machine
EP2993203A1 (en) * 2014-09-05 2016-03-09 UPM-Kymmene Corporation Composite material
US9908982B2 (en) 2014-09-05 2018-03-06 Upm-Kymmene Corporation Composite material
CN108214804A (en) * 2017-12-02 2018-06-29 张英华 The mixture of glass fiber or glass fibre and plant fiber is molded production equipment
CN110893638A (en) * 2018-09-12 2020-03-20 上海昶法新材料有限公司 Environment-friendly density board and manufacturing method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110281A (en) 1974-02-15 1978-08-29 Gottfried Dreer Process for the manufacture of fillers from solid waste
CH654226A5 (en) * 1981-09-18 1986-02-14 Folli Beteiligungsanstalt METHOD FOR PROCESSING WASTE AND WASTE COMPONENTS.
LU83899A1 (en) * 1982-01-26 1983-09-02 Terre Asbl INSULATING PANEL
WO1988007105A1 (en) * 1987-03-10 1988-09-22 Innofinance Általános Innovációs Pénzintézet Process for treating fibre materials
IT1238836B (en) * 1990-03-05 1993-09-03 Roberto Cappellari PROCEDURE FOR THE COMPACTION OF URBAN, INDUSTRIAL OR SIMILAR WASTE MATERIALS AND PLANT FOR IMPLEMENTING THE PROCEDURE
GB9016073D0 (en) * 1990-07-21 1990-09-05 Aston Packaging Ltd Pulp moulding tool
DK169925B1 (en) * 1993-02-23 1995-04-03 Dacompa As Method and plant for producing molded blank and molded blank
AU2003240430A1 (en) * 2002-06-21 2004-01-06 Metanite A/S An installation for manufacturing of shaped elements from fibrous waste material and a method of using the same
ES2229914B2 (en) * 2003-07-03 2007-03-16 Josep Grau Almirall INERTIZATION PROCEDURE OF INORGANIC WASTE.
GB2444913B (en) * 2006-09-20 2009-08-19 Procurasell Internat Packaging Method and apparatus for manufacturing a food packaging container

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1748224A (en) * 1926-07-17 1930-02-25 James J Hinde Apparatus for manufacturing fiber board or analogous material
US2007551A (en) * 1933-01-31 1935-07-09 John D Tompkins Method of and apparatus for making paper board
US2114300A (en) * 1938-04-19 Molding composition and process of
US2173391A (en) * 1935-11-27 1939-09-19 Insulite Co Process of manufacturing fibrous products
US2441169A (en) * 1943-06-19 1948-05-11 Roman Charles Machine for forming artificial board
US2639242A (en) * 1950-08-14 1953-05-19 American Cyanamid Co Acid-resistant wet strength paper
US2648262A (en) * 1948-09-03 1953-08-11 American Mfg Company Inc Fibrous material extrusion apparatus
US2690393A (en) * 1950-06-24 1954-09-28 Armstrong Cork Co Method of producing fire-resistant insulation
US2699389A (en) * 1951-07-26 1955-01-11 Mosinee Paper Mills Company Reinforced paper and method of making same
US3438847A (en) * 1965-02-26 1969-04-15 Weyerhaeuser Co Process of treating composite boards with borate chemicals produced thereby and product
US3510394A (en) * 1965-01-25 1970-05-05 Conwed Corp Production of water-laid felted mineral fiber panels including use of flocculating agent
US3576710A (en) * 1969-07-28 1971-04-27 Cons Paper Inc Brightening of white water sludge

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2114300A (en) * 1938-04-19 Molding composition and process of
US1748224A (en) * 1926-07-17 1930-02-25 James J Hinde Apparatus for manufacturing fiber board or analogous material
US2007551A (en) * 1933-01-31 1935-07-09 John D Tompkins Method of and apparatus for making paper board
US2173391A (en) * 1935-11-27 1939-09-19 Insulite Co Process of manufacturing fibrous products
US2441169A (en) * 1943-06-19 1948-05-11 Roman Charles Machine for forming artificial board
US2648262A (en) * 1948-09-03 1953-08-11 American Mfg Company Inc Fibrous material extrusion apparatus
US2690393A (en) * 1950-06-24 1954-09-28 Armstrong Cork Co Method of producing fire-resistant insulation
US2639242A (en) * 1950-08-14 1953-05-19 American Cyanamid Co Acid-resistant wet strength paper
US2699389A (en) * 1951-07-26 1955-01-11 Mosinee Paper Mills Company Reinforced paper and method of making same
US3510394A (en) * 1965-01-25 1970-05-05 Conwed Corp Production of water-laid felted mineral fiber panels including use of flocculating agent
US3438847A (en) * 1965-02-26 1969-04-15 Weyerhaeuser Co Process of treating composite boards with borate chemicals produced thereby and product
US3576710A (en) * 1969-07-28 1971-04-27 Cons Paper Inc Brightening of white water sludge

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032393A (en) * 1976-04-05 1977-06-28 The Upson Company Fire retardant webs and internal treatment therefor
US4076871A (en) * 1976-11-02 1978-02-28 Masonite Corporation Method of impregnating wood with boric acid
US4256491A (en) * 1977-09-01 1981-03-17 Champion International Corporation Waterproofing composition and method of making the same
US4190492A (en) * 1977-12-21 1980-02-26 Armstrong Cork Company Method of producing acoustical fiberboard
US4377440A (en) * 1978-05-25 1983-03-22 Stein Gasland Process for manufacturing of formed products
US4292188A (en) * 1979-06-01 1981-09-29 Martin Marietta Corporation Non-abrasive bauxite-based fire retardant
US4486234A (en) * 1981-03-20 1984-12-04 Herr Alfons K Fiber material
JPS58183753A (en) * 1982-04-09 1983-10-27 パペトウリ−・ドウ・ジヤンドウ−ル・ソシエテ・アノニム Novel product containing industrial waste, especially pulp sludge for insulation and wrapping and method of obtaining same
US4562218A (en) * 1982-09-30 1985-12-31 Armstrong World Industries, Inc. Formable pulp compositions
US4812204A (en) * 1987-07-24 1989-03-14 Ceram-Sna, Inc. Process for obtaining boric acid treated asbestos fiber
US5582682A (en) * 1988-12-28 1996-12-10 Ferretti; Arthur Process and a composition for making cellulosic composites
US5460085A (en) * 1990-03-05 1995-10-24 Roberto Cappellari Process for compacting waste materials
US5360586A (en) * 1992-11-06 1994-11-01 Danny R. Wyatt Biodegradable cellulosic material and process for making such material
US5496441A (en) * 1993-05-26 1996-03-05 Tran Industrial Research Inc. Utilization of deinking by-product in building materials
US5795377A (en) * 1997-04-08 1998-08-18 Kimberly-Clark Worldwide, Inc. Method for modifying papermaking sludge and products made from modified papermaking sludge
US6146498A (en) * 1997-04-30 2000-11-14 Kimberly-Clark Worldwide, Inc. Wound product cores and processes for making them
US6572736B2 (en) * 2000-10-10 2003-06-03 Atlas Roofing Corporation Non-woven web made with untreated clarifier sludge
US6852386B2 (en) * 2001-03-08 2005-02-08 Norbord Inc. Composite board with OSB faces
US20080179775A1 (en) * 2007-01-31 2008-07-31 Usg Interiors, Inc. Transfer Plate Useful in the Manufacture of Panel and Board Products
WO2008094917A1 (en) * 2007-01-31 2008-08-07 Usg Interiors, Inc. Transfer plate useful in the manufacture of panel and board products
WO2008092807A1 (en) * 2007-02-01 2008-08-07 Macber S.R.L. Process for manufacturing panels for constructing articles of furniture such as cupboards, modular kitchens and furniture items in general, and panel obtained by the process.
US20090000752A1 (en) * 2007-06-28 2009-01-01 Buckman Laboratories International, Inc. Use of Cyclodextrins For Odor Control In Papermaking Sludges, and Deodorized Sludge and Products
US8147651B2 (en) * 2007-06-28 2012-04-03 Buckman Laboratories International, Inc. Use of cyclodextrins for odor control in papermaking sludges, and deodorized sludge and products
US20090173464A1 (en) * 2008-01-04 2009-07-09 Usg Interiors, Inc. Acoustic ceiling tiles made with paper processing waste
US8133354B2 (en) * 2008-01-04 2012-03-13 USG Interiors, LLC. Acoustic ceiling tiles made with paper processing waste
US20130212970A1 (en) * 2008-09-04 2013-08-22 Frank Santoro Products made from recycled cardboard
ITUD20110142A1 (en) * 2011-09-13 2013-03-14 Roberta Bas PANEL FOR INTERMEDIATE FURNITURE USE BETWEEN MDF AND CHIPBOARD
WO2014012756A3 (en) * 2012-06-27 2014-04-03 Jentschura, Rolf Synthetic spongy wood boards
US20150020986A1 (en) * 2013-07-18 2015-01-22 Mario Lessard Paper-Based Malleable Dough for Moulding and Sculpting Applications
US9297120B2 (en) * 2013-07-18 2016-03-29 Mario Lessard Paper-based malleable dough for moulding and sculpting applications
EP2993203A1 (en) * 2014-09-05 2016-03-09 UPM-Kymmene Corporation Composite material
US20160068668A1 (en) * 2014-09-05 2016-03-10 Upm-Kymmene Corporation Composite material
US9908982B2 (en) 2014-09-05 2018-03-06 Upm-Kymmene Corporation Composite material
CN104385429A (en) * 2014-11-26 2015-03-04 武汉亿维登科技发展有限公司 Vacuum heating spreading machine
CN108214804A (en) * 2017-12-02 2018-06-29 张英华 The mixture of glass fiber or glass fibre and plant fiber is molded production equipment
CN110893638A (en) * 2018-09-12 2020-03-20 上海昶法新材料有限公司 Environment-friendly density board and manufacturing method thereof

Also Published As

Publication number Publication date
GB1405587A (en) 1975-09-10
ES405055A1 (en) 1976-01-01
DE2235975A1 (en) 1973-02-01
FR2146883A5 (en) 1973-03-02
IT961467B (en) 1973-12-10
AU4470672A (en) 1974-02-07
CA1016709A (en) 1977-09-06

Similar Documents

Publication Publication Date Title
US3895997A (en) Production of shaped articles from paper sludge
US3895998A (en) Production of shaped articles from paper sludge
US4111730A (en) Producing recycle composition paper flake board
US2544019A (en) Manufacture of plastic-fiber composition
KR880002245B1 (en) High pressure decorative laminates containing an air-laid web of fibers and filler and method of producing same
US2033411A (en) Manufacture of artificial lumber and pressed and molded products
KR0177526B1 (en) Fiber gypsum board and method of manufacturing the same
US3833327A (en) Method of and apparatus for removing wood particles yielded in chipboard production
FI68393B (en) PROCEDURE FOR THE FRAMEWORK OF ASBESTOS PRODUCTS
US2673370A (en) Method of manufacturing sheet lumber
US2373033A (en) Smooth surface fibrous article
KR980700476A (en) BINDER COMPOSITION USEFUL FOR PRODUCING NON-WOVEN FABRICS AND PROCESS FOR PRODUCING MOLDED PARTS MADE OF NON-WOVEN FABRICS
US4647324A (en) Process for pre-resinating cellulose fibers for cellulose composite structures
CA1154925A (en) Manufacture of plastics products
US1461337A (en) Wall board
US2475767A (en) Method of making artificial fuel from paper
US2422345A (en) Manufacture of hydraulic cement products
GB2367837A (en) Method of forming a non-woven web from recycled cellulose fibres and untreated clarifier sludge
US5985061A (en) Inorganic board and a method of manufacturing said inorganic board
GB1597369A (en) Composite material
US3985610A (en) Water-resistant asbestos-cement
US2173391A (en) Process of manufacturing fibrous products
US3694308A (en) Bagasse fiber product and process
US2460571A (en) Apparatus and method for making a plastic composition and product
NO751773L (en)