US3896503A - Endosphosthetic ankle joint devices - Google Patents

Endosphosthetic ankle joint devices Download PDF

Info

Publication number
US3896503A
US3896503A US440274A US44027474A US3896503A US 3896503 A US3896503 A US 3896503A US 440274 A US440274 A US 440274A US 44027474 A US44027474 A US 44027474A US 3896503 A US3896503 A US 3896503A
Authority
US
United States
Prior art keywords
block
component
concave surface
cylindrical shape
low relief
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US440274A
Inventor
Michael Alexander Reyk Freeman
Geoffrey Edward Kempson
Michael Anthony Tuke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Development Corp UK
Original Assignee
National Research Development Corp UK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Development Corp UK filed Critical National Research Development Corp UK
Application granted granted Critical
Publication of US3896503A publication Critical patent/US3896503A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/42Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes
    • A61F2/4202Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for ankles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30138Convex polygonal shapes
    • A61F2002/30153Convex polygonal shapes rectangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30138Convex polygonal shapes
    • A61F2002/30154Convex polygonal shapes square
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30331Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30795Blind bores, e.g. of circular cross-section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30878Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • A61F2002/30879Ribs
    • A61F2002/30883Ribs dovetail-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0033Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementary-shaped recess, e.g. held by friction fit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0017Angular shapes
    • A61F2230/0019Angular shapes rectangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0017Angular shapes
    • A61F2230/0021Angular shapes square

Definitions

  • An object of the present invention is to improve this last situation by the provision of an endoprosthetic ankle joint which provides articulation similar to that of the natural joint.
  • the relevant device comprises: a tibial component and a talar component; said tibial component defining a concave surface of revolution of open-ended generally cylindrical form; said talar component defining a convex surface of revolution substantially complementary to said concave surface for mutual articulatory bearing engagement therewith; and said components being adapted, remotely from said surfaces, for respective securement to the tibia and talus.
  • the bearing surfaces are cylindrical and the securement adaption involves the provision of low-relief formations on each component.
  • Use of this preferred form of device involves suitable excavation of the tibia and talus to receive the tibial component in the tibia with the longitudinal axis of the component extending between the tibial medial malleolus and the fibular lateral malleolus, and to receive the talar component in a similarly orientated contiguous position in the talus.
  • These dispositions of the components and the associated bones form a mortise-like structure similar to that of the natural joint and also having a similar articular function.
  • the components are secured in these dispositions with the use of acrylic or equivalent gap-filling cement and the low-relief formations assist in this by providing a key for the cement.
  • FIGS. 1, 2 and 3 illustrate the tibial component of the initially developed embodiment of the invention in respective underneath plan views and mutually orthogonal side elevations
  • FIGS. 4, 5 and 6 similarly illustrate the associated talar component of this initial embodiment
  • FIGS. 7, 8 and 9 illustrate the tibial component of a further developed embodiment of the invention in respective underneath plan views and mutually orthogonal side elevations, and
  • FIGS. I0, 11 and 12 similarly illustrate the associated talar component of this further embodiment.
  • the tibial component of FIGS. 1 to 3 is denoted generally at 10 and comprises a main body in the form of a square platform 11 having one major surface 12 concavely dished to provide a part-circular cylindrical bearing surface with its longitudinal axial direction parallel to one opposed pair of sides of the platform and with circular arcuate cross-sectional profile.
  • the other major surface 13 of the platform 11 has a subsidiary platform 14 which is also of square form, with a side length of abouthalf that of platform 11 and projecting centrally therefrom, and has undercut sides.
  • the associated talar component of FIGS. 4 to 6 is denoted generally at 20 and is, in most respects, essentially the same as the tibial component in comprising a main body platform 21 with one major surface 22 serving as a part-circular-cylindrical bearing surface, and the other major surface 23 having an undercut subsidiary platform 24 extending integrally therefrom.
  • a principal difference from the tibial component is that the bearing surface is convexly formed to be complementary with that of the tibial component.
  • tibial component of metal, suitably an appropriate quality stainless steel, and the talar component of plastics material, such as high density polyethylene.
  • plastics material such as high density polyethylene.
  • each of the main bodies 11 and 21 is substantially 1 inch square, and the radii of curvature of the surfaces 12 and 22 are substantially thirteensixteenths inch.
  • the tibial component is denoted generally at 30 and comprises a main, square platform body 31, with one major surface defining a part-circularcylindrical concave bearing surface 32 extending parallel to one opposed pair of sides of the body 31, and with the other major surface 33 provided with a relatively low relief configuration.
  • This component will be seen to be similar to that of FIGS. 1 to 3 except for the relief configuration.
  • the configuration comprises a stud 34 projecting from the surface 33 adjacent to and midway along one periphery thereof parallel to the axial direction of the surface 32.
  • this configuration comprises the provision of four bores 35 extending partway into the body 31 in respective corner regions of the surface 33.
  • the associated talar component is denoted generally at 40 and comprises a main, rectangular platform body 41, with one major surface defining a part-circularcylindrical convex bearing surface 42 extending parallel to the shorter opposed pair of sides of the body 41, and with the other major surface 43 provided with a relatively low relief configuration.
  • the radius of curvature of the surface 42 is equal to that of surface 32 so that these surfaces are complementary for mutual articulatory bearing engagement about a common axis of revolution for the relevant surfaces.
  • This arrangement square and rectangular, surface 42 of the latter having greater extent in the direction of revolution, but similar axial extent, compared to surface 32 of the former.
  • the greater extent in question allows mutual articulation between the components to occur over a requisite angular range while maintaining the whole of the surface 32 engaged with surface 42.
  • This is advantageous in that the area of bearing engagement is substantially constant throughout articulation to spread the bearing load and reduce wear.
  • the talar component be made of metal
  • the tibial component be made of plastics material, whereby there are no exposed edges of metal involved in the mutual articulatory engagement, and this is desirable to further reduce possible wear and also the risk of pain in the event that a metal edge should bear movably and directly against the bone.
  • the low relief configuration of the talar component 40 comprises a stud 44 projecting from the surface 43 adjacent and midway along one of the axial peripheries, and two bores 44 extending partway into the body 41 from respective locations as shown in FIG. 10.
  • the surgical procedure preferably involves the use of a template and drill to provide bores into the prepared bone sites, the locations of which bores coincide with the positions the studs 34, 44 and bores 35, 45 are to assume. Cement is then applied to the sites and the studs 34, 44 entered into their corresponding bone bores to locate the components I whereby cement enters the then aligned component and remaining bone bores.
  • This procedure effectively provides opposed cementrstems extending into the components and bones.
  • bearing surfaces need not necessarily be cylindrical, but may have complementary curvature in their axial directions to provide enhanced lateral stability in the prosthesis.
  • other forms of low relief structures can be employed.
  • An endoprosthetic ankle joint device comprising:
  • a tibial component in the general form ofa first rectangular block having one side grooved to define a concave surface of substantially part-circular cylindrical shape, said concave surface opening at its longitudinal ends into two opposed sides of said first block serially adjacent said one side, and the side of said first block opposite said one side being provided with a low relief configuration;
  • a talar component in the general form of a second rectangular block having three serially-adjacent sides'cut away to define a convex surface of substantially part-circular cylindrical shape complementary to and in mutual articulatory bearing engagement with said concave surface, and the side of said second block opposite said convex surface being provided with a low relief configuration.
  • a device wherein said first block is substantially square in plan view relative to said concave surface, and said second block is rectangular in plan view relative to said convex surface, said second block plan view having similar width to and greater length than said first block, with the circular curve of said convex surface cylindrical shape extending in the length direction of said second block.
  • each of said low relief configurations comprises a plurality of reces- 'ses and a stud projecting from the sides including said.
  • an endoprosthetic bone joint device including:
  • a first component in the form of an open-ended trough defining a concave inner surface of substantially part-cylindrical shape with a circular arcuate cross-sectional profile, and defining an outer surface having a rear surface portion which is located remotely from said concave surface and is provided with a low relief configuration
  • a second component of roller form defining a convex outer surface portion of substantially part-cylindrical shape with a circular arcuate cross-sectional profile, which convex surface is generally complementary to said concave surface for engagement therein in mutual articulatory relation, and defining a rear surface portion which is located remotely from said convex surface and provided with a relieved configuration

Abstract

An endoprosthetic ankle joint comprises a tibial component and talar component defining respective concave and convex surfaces of substantially complementary, open-ended, generally cylindrical form for mutual articulatory bearing engagement. These surfaces are preferably more precisely cylindrical, but may have curvature in the axial direction for added stability. Fixation is effected with gap-filling cement between the bones and low relief configurations provided on the components remotely from their bearing surfaces.

Description

United States Patent 1191 Freeman et al.
1 ENDOSPHOSTHETIC ANKLE JOINT DEVICES [75] Inventors: Michael Alexander Reykers Freeman, London; Geoffrey Edward Kempson, Flackwell Heath; Michael Anthony Tuke, Sutton, all of England [73] Assignee: National Research Development Corporation, London, England [22] Filed: Feb. 6, 1974 [21] Appl. N0.: 440,274
[30] Foreign Application Priority Data Feb. 9, 1973 United Kingdom 6507/73 [52] US. Cl. 3/l.9l; 128/92 C [51] Int. Cl. A6lf l/24 [58] Field of Search 3/1, 30-35,
3/19, 1.91; 128/92 C, 92 CA, 92 R [56] References Cited UNITED STATES PATENTS 3,521,302 7/1970 Miiller .1 3/1 [111 3,896,503 ['45] July 29, 1975 Primary ExaminerRonald L. Frinks Attorney, Agent, or FirmC1ishman, Darby & Cushman [57] ABSTRACT 5 Claims, 12 Drawing Figures PATENTED JUL 2 9 I975 SHEET ENDOSPHOSTHETIC ANKLE JOINT DEVICES This invention concerns prosthetic devices and. more particularly, articulatory endoprosthetic bone joint devices.
While such devices have been proposed for a number of different bone joints, none appears to have been proposed for the ankle joint. Indeed, when the natural articular function of the ankle jointis beyond repair, the currently normal treatment is that of fusion of the joint.
An object of the present invention is to improve this last situation by the provision of an endoprosthetic ankle joint which provides articulation similar to that of the natural joint.
In a more general aspect the relevant device comprises: a tibial component and a talar component; said tibial component defining a concave surface of revolution of open-ended generally cylindrical form; said talar component defining a convex surface of revolution substantially complementary to said concave surface for mutual articulatory bearing engagement therewith; and said components being adapted, remotely from said surfaces, for respective securement to the tibia and talus.
In a presently preferred form of the proposed device, the bearing surfaces are cylindrical and the securement adaption involves the provision of low-relief formations on each component. Use of this preferred form of device involves suitable excavation of the tibia and talus to receive the tibial component in the tibia with the longitudinal axis of the component extending between the tibial medial malleolus and the fibular lateral malleolus, and to receive the talar component in a similarly orientated contiguous position in the talus. These dispositions of the components and the associated bones form a mortise-like structure similar to that of the natural joint and also having a similar articular function. The components are secured in these dispositions with the use of acrylic or equivalent gap-filling cement and the low-relief formations assist in this by providing a key for the cement.
In order to provide a fuller understanding of the invention, the same will now be described, by way of example, with reference to the accompanying drawings, in which:
FIGS. 1, 2 and 3 illustrate the tibial component of the initially developed embodiment of the invention in respective underneath plan views and mutually orthogonal side elevations,
FIGS. 4, 5 and 6 similarly illustrate the associated talar component of this initial embodiment,
FIGS. 7, 8 and 9 illustrate the tibial component of a further developed embodiment of the invention in respective underneath plan views and mutually orthogonal side elevations, and
FIGS. I0, 11 and 12 similarly illustrate the associated talar component of this further embodiment.
The tibial component of FIGS. 1 to 3 is denoted generally at 10 and comprises a main body in the form of a square platform 11 having one major surface 12 concavely dished to provide a part-circular cylindrical bearing surface with its longitudinal axial direction parallel to one opposed pair of sides of the platform and with circular arcuate cross-sectional profile. The other major surface 13 of the platform 11 has a subsidiary platform 14 which is also of square form, with a side length of abouthalf that of platform 11 and projecting centrally therefrom, and has undercut sides.
The associated talar component of FIGS. 4 to 6 is denoted generally at 20 and is, in most respects, essentially the same as the tibial component in comprising a main body platform 21 with one major surface 22 serving as a part-circular-cylindrical bearing surface, and the other major surface 23 having an undercut subsidiary platform 24 extending integrally therefrom. However, a principal difference from the tibial component is that the bearing surface is convexly formed to be complementary with that of the tibial component.
Another difference between the two components lies in the fact that it was preferred to make the tibial component of metal, suitably an appropriate quality stainless steel, and the talar component of plastics material, such as high density polyethylene. Such a choice of materials was considered advantageous in affording the low friction characteristics of a metal/plastics material combination, while allocating the use of metal, with its lower susceptibility to wear, to the concavely dished tibial component so that this component need not require undue penetration into the bone simply for the purpose of providing a satisfactory component thickness.
Securement of the components of FIGS. 1 to 6 is effected in the manner described hereinbefore, it being understood that the undercut subsidiary platforms l3 and 24 provide the relevant low relief structures for this purpose.
It remains to note in respect of the components, that the bearing surfaces 12 and 22 should, of course, be of like curvature, and they should preferably be of such circumferential extent as to provide an angular range of mutual articulation of the same order as that in the natural joint, namely, 5070. In a prototype of this initial embodiment each of the main bodies 11 and 21 is substantially 1 inch square, and the radii of curvature of the surfaces 12 and 22 are substantially thirteensixteenths inch.
Turning to the further developed embodiment of FIGS. 7 to 12, the tibial component is denoted generally at 30 and comprises a main, square platform body 31, with one major surface defining a part-circularcylindrical concave bearing surface 32 extending parallel to one opposed pair of sides of the body 31, and with the other major surface 33 provided with a relatively low relief configuration. This component will be seen to be similar to that of FIGS. 1 to 3 except for the relief configuration. In this case the configuration comprises a stud 34 projecting from the surface 33 adjacent to and midway along one periphery thereof parallel to the axial direction of the surface 32. In addition, this configuration comprises the provision of four bores 35 extending partway into the body 31 in respective corner regions of the surface 33.
The associated talar component is denoted generally at 40 and comprises a main, rectangular platform body 41, with one major surface defining a part-circularcylindrical convex bearing surface 42 extending parallel to the shorter opposed pair of sides of the body 41, and with the other major surface 43 provided with a relatively low relief configuration. The radius of curvature of the surface 42 is equal to that of surface 32 so that these surfaces are complementary for mutual articulatory bearing engagement about a common axis of revolution for the relevant surfaces. This arrangement square and rectangular, surface 42 of the latter having greater extent in the direction of revolution, but similar axial extent, compared to surface 32 of the former. The greater extent in question allows mutual articulation between the components to occur over a requisite angular range while maintaining the whole of the surface 32 engaged with surface 42. This is advantageous in that the area of bearing engagement is substantially constant throughout articulation to spread the bearing load and reduce wear. At the same time, it is now preferred that the talar component be made of metal, and the tibial component be made of plastics material, whereby there are no exposed edges of metal involved in the mutual articulatory engagement, and this is desirable to further reduce possible wear and also the risk of pain in the event that a metal edge should bear movably and directly against the bone.
The low relief configuration of the talar component 40 comprises a stud 44 projecting from the surface 43 adjacent and midway along one of the axial peripheries, and two bores 44 extending partway into the body 41 from respective locations as shown in FIG. 10.
In practice, the surgical procedure preferably involves the use of a template and drill to provide bores into the prepared bone sites, the locations of which bores coincide with the positions the studs 34, 44 and bores 35, 45 are to assume. Cement is then applied to the sites and the studs 34, 44 entered into their corresponding bone bores to locate the components I whereby cement enters the then aligned component and remaining bone bores. This procedure effectively provides opposed cementrstems extending into the components and bones.
While the invention has been described with reference to the illustrated embodiments, it is not intended to be limited thereby and can take other forms within the ambit of the appendant claims. For example, the bearing surfaces need not necessarily be cylindrical, but may have complementary curvature in their axial directions to provide enhanced lateral stability in the prosthesis. Also, other forms of low relief structures can be employed.
A further possibility for modification arises from the discussion of possible risk of pain above. This risk is thought to arise with direct engagement between a bone and a relatively movable component, particularly if the component is metal and if the bone has deteriorated as can be the case with one malleolus in an ankle joint requiring a prosthesis. It may be appropriate therefore to provide at least one malleolar component to serve as a buffer between the talar component and one or both of the malleoli. Thus, there may be two separate malleolar components for separate fixation to respective malleoli, or just one such component. Alternatively, such components may be provided as integral extensions of a plastics material tibial component to be cut off or not as appropriate to the situation at hand.
We claim:
1. An endoprosthetic ankle joint device comprising:
a tibial component in the general form ofa first rectangular block having one side grooved to define a concave surface of substantially part-circular cylindrical shape, said concave surface opening at its longitudinal ends into two opposed sides of said first block serially adjacent said one side, and the side of said first block opposite said one side being provided with a low relief configuration; and
a talar component in the general form of a second rectangular block having three serially-adjacent sides'cut away to define a convex surface of substantially part-circular cylindrical shape complementary to and in mutual articulatory bearing engagement with said concave surface, and the side of said second block opposite said convex surface being provided with a low relief configuration.
2. A device according to claim 1 wherein said first block is substantially square in plan view relative to said concave surface, and said second block is rectangular in plan view relative to said convex surface, said second block plan view having similar width to and greater length than said first block, with the circular curve of said convex surface cylindrical shape extending in the length direction of said second block.
3. A device according to claim 2 wherein saidfirst and second blocks are respectively of plastics material and metal.
4. A device according to claim 1 wherein each of said low relief configurations comprises a plurality of reces- 'ses and a stud projecting from the sides including said.
low relief configurations.
5. The use of an endoprosthetic bone joint device including:
a first component in the form of an open-ended trough defining a concave inner surface of substantially part-cylindrical shape with a circular arcuate cross-sectional profile, and defining an outer surface having a rear surface portion which is located remotely from said concave surface and is provided with a low relief configuration; and a second component of roller form defining a convex outer surface portion of substantially part-cylindrical shape with a circular arcuate cross-sectional profile, which convex surface is generally complementary to said concave surface for engagement therein in mutual articulatory relation, and defining a rear surface portion which is located remotely from said convex surface and provided with a relieved configuration;
said use comprising:
replacing the articular function of the tibial-talar ankle joint by exposing said joint, resecting the tibia between the tibial medial malleolus and the fibular lateral malleolus, connecting said first component to the resected part of the tibia by way of the respective rear surface portion and with the longitudinal direction of said concave surface extending from one to the other of said malleoli, resecting the talus, connecting said second component to the resected talus by way of the respective rear surface portion and with the longitudinal direction of said convex surface extending parallel to that of said concave surface, and closing said joint to engage said components in said articulatory relation.

Claims (5)

1. An endoprosthetic ankle joint device comprising: a tibial component in the general form of a first rectangular block having one side grooved to define a concave surface of substantially part-circular cylindrical shape, said concave surface opening at its longitudinal ends into two opposed sides of said first block serially adjacent said one side, and the side of said first block opposite said one side being provided with a low relief configuration; and a talar component in the general form of a second rectangular block having three serially-adjacent sides cut away to define a convex surface of substantially part-circular cylindrical shape complementary to and in mutual articulatory bearing engagement with said concave surface, and the side of said second block opposite said convex surface being provided with a low relief configuration.
2. A device according to claim 1 wherein said first block is substanTially square in plan view relative to said concave surface, and said second block is rectangular in plan view relative to said convex surface, said second block plan view having similar width to and greater length than said first block, with the circular curve of said convex surface cylindrical shape extending in the length direction of said second block.
3. A device according to claim 2 wherein said first and second blocks are respectively of plastics material and metal.
4. A device according to claim 1 wherein each of said low relief configurations comprises a plurality of recesses and a stud projecting from the sides including said low relief configurations.
5. The use of an endoprosthetic bone joint device including: a first component in the form of an open-ended trough defining a concave inner surface of substantially part-cylindrical shape with a circular arcuate cross-sectional profile, and defining an outer surface having a rear surface portion which is located remotely from said concave surface and is provided with a low relief configuration; and a second component of roller form defining a convex outer surface portion of substantially part-cylindrical shape with a circular arcuate cross-sectional profile, which convex surface is generally complementary to said concave surface for engagement therein in mutual articulatory relation, and defining a rear surface portion which is located remotely from said convex surface and provided with a relieved configuration; said use comprising: replacing the articular function of the tibial-talar ankle joint by exposing said joint, resecting the tibia between the tibial medial malleolus and the fibular lateral malleolus, connecting said first component to the resected part of the tibia by way of the respective rear surface portion and with the longitudinal direction of said concave surface extending from one to the other of said malleoli, resecting the talus, connecting said second component to the resected talus by way of the respective rear surface portion and with the longitudinal direction of said convex surface extending parallel to that of said concave surface, and closing said joint to engage said components in said articulatory relation.
US440274A 1973-02-09 1974-02-06 Endosphosthetic ankle joint devices Expired - Lifetime US3896503A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB650773A GB1447368A (en) 1973-02-09 1973-02-09 Endo prosthetic ankle joint devices

Publications (1)

Publication Number Publication Date
US3896503A true US3896503A (en) 1975-07-29

Family

ID=9815783

Family Applications (1)

Application Number Title Priority Date Filing Date
US440274A Expired - Lifetime US3896503A (en) 1973-02-09 1974-02-06 Endosphosthetic ankle joint devices

Country Status (5)

Country Link
US (1) US3896503A (en)
CH (1) CH581466A5 (en)
DE (1) DE2405755A1 (en)
GB (1) GB1447368A (en)
IE (1) IE38884B1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975778A (en) * 1975-07-14 1976-08-24 Newton Iii St Elmo Total ankle arthroplasty
US3987500A (en) * 1976-01-28 1976-10-26 Schlein Allen P Surgically implantable total ankle prosthesis
US4232404A (en) * 1977-07-18 1980-11-11 National Research Development Corporation Endoprosthetic ankle joint
USD385358S (en) * 1995-03-21 1997-10-21 Tamarack Habilitation Technologies, Inc. Orthotic ankle flexure
FR2773060A1 (en) * 1997-12-31 1999-07-02 Merck Biomaterial France Wrist joint prosthesis used for treating severe arthritis
US20040002768A1 (en) * 2002-06-27 2004-01-01 Parks Brent G. Ankle joint prosthesis and its method of implantation
US20050049711A1 (en) * 2003-09-03 2005-03-03 Ball Robert J. Modular total ankle prosthesis apparatuses and methods
US20050125070A1 (en) * 1999-10-22 2005-06-09 Advanced Total Ankles, Inc. Ankle replacement system
US20050288792A1 (en) * 2004-06-23 2005-12-29 Landes Mark D Modular ankle prosthesis and associated method
US20060020345A1 (en) * 1999-05-13 2006-01-26 O'connor John J Prosthesis device for the ankle articulation
US20060142870A1 (en) * 2004-08-19 2006-06-29 Shawn Robinson Modular total ankle prosthesis apparatuses, systems and methods, and systems and methods for bone resection and prosthetic implantation
US20090182433A1 (en) * 2005-03-14 2009-07-16 Inbone Technologies, Inc. Ankle Replacement System
US20110320005A1 (en) * 2003-06-27 2011-12-29 Rydell Mark A System and Method for Ankle Arthroplasty
CN104887359A (en) * 2015-06-29 2015-09-09 北京贝思达生物技术有限公司 Artificial ankle joint
US9186154B2 (en) 2011-03-17 2015-11-17 Zimmer, Inc. Patient-specific instruments for total ankle arthroplasty
EP2124832B2 (en) 2006-12-23 2017-07-19 Corin Limited Improvements in and relating to an ankle prosthesis
US9907561B2 (en) 2012-12-27 2018-03-06 Wright Medical Technologies, Inc. Ankle replacement system and method
US9918724B2 (en) 2012-12-27 2018-03-20 Wright Medical Technology, Inc. Ankle replacement system and method
US9949839B2 (en) 2013-03-13 2018-04-24 Wright Medical Technology, Inc. Revision implant augments, systems, and methods
US9974588B2 (en) 2012-12-27 2018-05-22 Wright Medical Technology, Inc. Ankle replacement system and method
US10136998B2 (en) 2016-08-30 2018-11-27 Wright Medical Technology, Inc. Revision total ankle implants
US10321922B2 (en) 2012-12-27 2019-06-18 Wright Medical Technology, Inc. Ankle replacement system and method
US11116524B2 (en) 2012-12-27 2021-09-14 Wright Medical Technology, Inc. Ankle replacement system and method
US11278439B2 (en) 2016-03-07 2022-03-22 Orthotic Care Services, LLP Ankle-foot orthosis
US11311302B2 (en) 2012-12-27 2022-04-26 Wright Medical Technology, Inc. Ankle replacement system and method
US11857207B2 (en) 2016-03-23 2024-01-02 Wright Medical Technology, Inc. Circular fixator system and method
US11872137B2 (en) 2021-06-15 2024-01-16 Wright Medical Technology, Inc. Unicompartmental ankle prosthesis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3521302A (en) * 1966-09-02 1970-07-21 Sulzer Ag Prosthetic implant joint having compressible slide members to promote joint lubrication
US3547115A (en) * 1968-04-05 1970-12-15 Peter S Stevens Osteoarticular prosthetic method
US3728742A (en) * 1971-06-18 1973-04-24 Howmedica Knee or elbow prosthesis
US3765033A (en) * 1971-01-19 1973-10-16 D Goldberg Prosthetic knee joint assembly with mutually slidable and rollable joint sections
US3774244A (en) * 1972-02-08 1973-11-27 Relief Ruptured And Crippled S Knee-joint prosthesis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3521302A (en) * 1966-09-02 1970-07-21 Sulzer Ag Prosthetic implant joint having compressible slide members to promote joint lubrication
US3547115A (en) * 1968-04-05 1970-12-15 Peter S Stevens Osteoarticular prosthetic method
US3765033A (en) * 1971-01-19 1973-10-16 D Goldberg Prosthetic knee joint assembly with mutually slidable and rollable joint sections
US3728742A (en) * 1971-06-18 1973-04-24 Howmedica Knee or elbow prosthesis
US3774244A (en) * 1972-02-08 1973-11-27 Relief Ruptured And Crippled S Knee-joint prosthesis

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975778A (en) * 1975-07-14 1976-08-24 Newton Iii St Elmo Total ankle arthroplasty
US3987500A (en) * 1976-01-28 1976-10-26 Schlein Allen P Surgically implantable total ankle prosthesis
US4232404A (en) * 1977-07-18 1980-11-11 National Research Development Corporation Endoprosthetic ankle joint
USD385358S (en) * 1995-03-21 1997-10-21 Tamarack Habilitation Technologies, Inc. Orthotic ankle flexure
FR2773060A1 (en) * 1997-12-31 1999-07-02 Merck Biomaterial France Wrist joint prosthesis used for treating severe arthritis
EP1062924A1 (en) * 1997-12-31 2000-12-27 Merck Biomaterial France Wrist joint prosthesis
US20060020345A1 (en) * 1999-05-13 2006-01-26 O'connor John J Prosthesis device for the ankle articulation
US9308097B2 (en) 1999-10-22 2016-04-12 Inbone Technologies, Inc. Ankle replacement system
US8048164B2 (en) 1999-10-22 2011-11-01 Inbone Technologies, Inc. Ankle replacement system
US20050125070A1 (en) * 1999-10-22 2005-06-09 Advanced Total Ankles, Inc. Ankle replacement system
US8034115B2 (en) 1999-10-22 2011-10-11 Inbone Technologies, Inc. Ankle replacement system
US9629730B2 (en) 1999-10-22 2017-04-25 Inbone Technologies, Inc. Ankle replacement system
US20090240338A1 (en) * 1999-10-22 2009-09-24 Inbone Technologies, Inc. Ankle replacement system
US20040002768A1 (en) * 2002-06-27 2004-01-01 Parks Brent G. Ankle joint prosthesis and its method of implantation
US7025790B2 (en) 2002-06-27 2006-04-11 Concepts In Medicine Iii, L.L.C. Ankle joint prosthesis and its method of implantation
US20050004676A1 (en) * 2002-06-27 2005-01-06 Schon Lew C. Semi-constrained ankle joint prosthesis and its method of implantation
US9320609B2 (en) 2002-06-27 2016-04-26 Lew C. Schon Semi-constrained ankle joint prosthesis and its method of implantation
US20110320005A1 (en) * 2003-06-27 2011-12-29 Rydell Mark A System and Method for Ankle Arthroplasty
US9204971B2 (en) * 2003-06-27 2015-12-08 Memometal Technologies System and method for ankle arthroplasty
US7534270B2 (en) 2003-09-03 2009-05-19 Integra Lifesciences Corporation Modular total ankle prosthesis apparatuses and methods
US20050049711A1 (en) * 2003-09-03 2005-03-03 Ball Robert J. Modular total ankle prosthesis apparatuses and methods
US20090054992A1 (en) * 2004-06-23 2009-02-26 Landes Mark D Modular Ankle Prosthesis and Associated Method
US20050288792A1 (en) * 2004-06-23 2005-12-29 Landes Mark D Modular ankle prosthesis and associated method
US20060142870A1 (en) * 2004-08-19 2006-06-29 Shawn Robinson Modular total ankle prosthesis apparatuses, systems and methods, and systems and methods for bone resection and prosthetic implantation
US9629726B2 (en) 2005-03-14 2017-04-25 Inbone Technologies, Inc. Ankle replacement system
US11446152B2 (en) 2005-03-14 2022-09-20 Inbone Technologies, Inc. Ankle replacement system
US8715362B2 (en) 2005-03-14 2014-05-06 Inbone Technologies, Inc. Ankle replacement system
US20090182433A1 (en) * 2005-03-14 2009-07-16 Inbone Technologies, Inc. Ankle Replacement System
EP2124832B2 (en) 2006-12-23 2017-07-19 Corin Limited Improvements in and relating to an ankle prosthesis
US9186154B2 (en) 2011-03-17 2015-11-17 Zimmer, Inc. Patient-specific instruments for total ankle arthroplasty
US9974588B2 (en) 2012-12-27 2018-05-22 Wright Medical Technology, Inc. Ankle replacement system and method
US11103257B2 (en) 2012-12-27 2021-08-31 Wright Medical Technology, Inc. Ankle replacement system and method
US11759215B2 (en) 2012-12-27 2023-09-19 Wright Medical Technology, Inc. Ankle replacement system and method
US9907561B2 (en) 2012-12-27 2018-03-06 Wright Medical Technologies, Inc. Ankle replacement system and method
US9993255B2 (en) 2012-12-27 2018-06-12 Wright Medical Technology, Inc. Ankle replacement system and method
US10080573B2 (en) 2012-12-27 2018-09-25 Wright Medical Technology, Inc. Ankle replacement system and method
US10136904B2 (en) 2012-12-27 2018-11-27 Wright Medical Technology, Inc. Ankle replacement system and method
US11864778B2 (en) 2012-12-27 2024-01-09 Wright Medical Technology, Inc. Ankle replacement system and method
US10149687B2 (en) 2012-12-27 2018-12-11 Wright Medical Technology, Inc. Ankle replacement system and method
US10321922B2 (en) 2012-12-27 2019-06-18 Wright Medical Technology, Inc. Ankle replacement system and method
US10888336B2 (en) 2012-12-27 2021-01-12 Wright Medical Technology, Inc. Ankle replacement system and method
US11766270B2 (en) 2012-12-27 2023-09-26 Wright Medical Technology, Inc. Ankle replacement system and method
US11109872B2 (en) 2012-12-27 2021-09-07 Wright Medical Technology, Inc. Ankle replacement system and method
US11116521B2 (en) 2012-12-27 2021-09-14 Wright Medical Technology, Inc. Ankle replacement system and method
US11116524B2 (en) 2012-12-27 2021-09-14 Wright Medical Technology, Inc. Ankle replacement system and method
US11116527B2 (en) 2012-12-27 2021-09-14 Wright Medical Technology, Inc. Ankle replacement system and method
US11147569B2 (en) 2012-12-27 2021-10-19 Wright Medical Technology, Inc. Ankle replacement system and method
US11786260B2 (en) 2012-12-27 2023-10-17 Wright Medical Technology, Inc. Ankle replacement system and method
US11311302B2 (en) 2012-12-27 2022-04-26 Wright Medical Technology, Inc. Ankle replacement system and method
US9918724B2 (en) 2012-12-27 2018-03-20 Wright Medical Technology, Inc. Ankle replacement system and method
US11701133B2 (en) 2012-12-27 2023-07-18 Wright Medical Technology, Inc. Ankle replacement system and method
US9949839B2 (en) 2013-03-13 2018-04-24 Wright Medical Technology, Inc. Revision implant augments, systems, and methods
CN104887359A (en) * 2015-06-29 2015-09-09 北京贝思达生物技术有限公司 Artificial ankle joint
US11278439B2 (en) 2016-03-07 2022-03-22 Orthotic Care Services, LLP Ankle-foot orthosis
US11857207B2 (en) 2016-03-23 2024-01-02 Wright Medical Technology, Inc. Circular fixator system and method
US10136998B2 (en) 2016-08-30 2018-11-27 Wright Medical Technology, Inc. Revision total ankle implants
US11872137B2 (en) 2021-06-15 2024-01-16 Wright Medical Technology, Inc. Unicompartmental ankle prosthesis

Also Published As

Publication number Publication date
CH581466A5 (en) 1976-11-15
IE38884L (en) 1974-08-09
IE38884B1 (en) 1978-06-21
GB1447368A (en) 1976-08-25
DE2405755A1 (en) 1974-08-29

Similar Documents

Publication Publication Date Title
US3896503A (en) Endosphosthetic ankle joint devices
US3896502A (en) Endoprosthetic bone joint devices
US3992726A (en) Endoprosthetic bone joint devices
US4232404A (en) Endoprosthetic ankle joint
US4069518A (en) Total ankle prosthesis
US3946446A (en) Prosthetic bone joint
US3816855A (en) Knee joint prosthesis
US3774244A (en) Knee-joint prosthesis
US3840905A (en) Endoprosthetic knee joint
US4178641A (en) Knee-joint-endoprothese
US4158894A (en) Patellar prosthesis and method of implanting the same
Valderrabano et al. Scandinavian total ankle replacement: a 3.7-year average followup of 65 patients
US3837009A (en) Knee prosthesis
US4470158A (en) Joint endoprosthesis
US3924277A (en) Knee joint prosthesis
US3715763A (en) Artificial limb for the knee joint
US3987500A (en) Surgically implantable total ankle prosthesis
US6344059B1 (en) Knee surface replacement prosthesis
US5330532A (en) Knee joint prosthesis
CA1095654A (en) Total knee prosthesis
US3958278A (en) Endoprosthetic knee joint
JP4118516B2 (en) Modular knee implant system
DE60302323T2 (en) Movable talar part for total ankle prosthesis
US6926739B1 (en) Prosthesis device for human articulations, in particular for the ankle articulation
US4353136A (en) Endoprosthetic knee joint