US3897129A - Connector encapsulating device and method - Google Patents

Connector encapsulating device and method Download PDF

Info

Publication number
US3897129A
US3897129A US400951A US40095173A US3897129A US 3897129 A US3897129 A US 3897129A US 400951 A US400951 A US 400951A US 40095173 A US40095173 A US 40095173A US 3897129 A US3897129 A US 3897129A
Authority
US
United States
Prior art keywords
connector
socket
open end
housing
encapsulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US400951A
Inventor
Jr John A Farrar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Minnesota Mining and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Mining and Manufacturing Co filed Critical Minnesota Mining and Manufacturing Co
Priority to US400951A priority Critical patent/US3897129A/en
Priority to CA208,067A priority patent/CA1023030A/en
Priority to FR7432258A priority patent/FR2245101B1/fr
Priority to GB41744/74A priority patent/GB1484303A/en
Priority to JP49110409A priority patent/JPS5753631B2/ja
Priority to IT5319674A priority patent/IT1019386B/en
Priority to DE2446221A priority patent/DE2446221C2/en
Application granted granted Critical
Publication of US3897129A publication Critical patent/US3897129A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/08Cable junctions
    • H02G15/10Cable junctions protected by boxes, e.g. by distribution, connection or junction boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49174Assembling terminal to elongated conductor
    • Y10T29/49176Assembling terminal to elongated conductor with molding of electrically insulating material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49194Assembling elongated conductors, e.g., splicing, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49194Assembling elongated conductors, e.g., splicing, etc.
    • Y10T29/49201Assembling elongated conductors, e.g., splicing, etc. with overlapping orienting

Definitions

  • ABSTRACT A method and device are described for encapsulating a multiple wire electrical connector in a viscous encapsulating material.
  • a socket adapted to closely fit around the connector is filled with a predetermined quantity of the encapsulating material.
  • the connector is pressed into the socket so that some of the encapsulating material is forced from the bottom of the socket to the surface of the connector adjacent the opening to the socket through passageways along the sides of the socket.
  • This invention relates to the encapsulation of electrical connectors, and in one aspect to encapsulating telephone circuit wire connectors in a viscous encapsulating material.
  • This system however, requires a large amount of the encapsulating material relative to the volume of the connector, and sufficient length in each of the spliced wires to form the bundle. Also, the proper distribution of the encapsulating material around the connector is dependent on the operators skill, and the resulting encapsulated connector is large compared to the size of the connector so that it fills valuable space within the splice case or pedestal.
  • a simple, efficient and dependable method for individually encapsulating connectors in a splice case or pedestal is efficiently protected from moisture while it may be easily re-entered and re-encapsulated without disturbing adjacent connectors.
  • the amount of the expensive encapsulating material required to encapsulate a connector is small compared to encapsulating the connector in a grease bag (e.g., the same connector may be encapsulated in 20 grams of encapsulating material with the present invention compared to about 1 grams of encapsulating material when a grease bag is used).
  • the wires entering the connector need not be formed into a bundle, and the size of the encapsulated connector is small which allows a given size of splicecase or pedestal to contain a larger amount of connectors.
  • An encapsulated connector according to the present invention is enclosed on five sides within a close fitting socket in a housing, with the wires electrically interconnected by the connector projecting through the opening to the socket (i.e., by close fitting we mean having less than about 1/16 inch clearance around the connector inside the housing).
  • a quantity of viscous electrically insulating encapsulating material surrounds the connector within the socket to protect the connector from moisture.
  • the housing for receiving the connector has a plurality of projections defining passageways extending from the bottom of the socket to its open end.
  • viscous, water insoluble, electrically insulating encapsulating material is placed in the socket in a quantity at least sufficient to fill the socket for a predetermined distance over a connector fully enclosed therein.
  • the connector is pressed into the socket with sufficient pressure to force a portion of the encapsulating material through the passageways to the exposed end of the connector, after which that portion of the encapsulating material is spread around the wires and over the first end of the connector.
  • FIG. 1 is a plan view of a connector encapsulated in a housing according to the present invention
  • FIG. 2 is an elevational side view, partially in section, of the present invention as illustrated in FIG. 1;
  • FIG. 3 is a sectional view taken along line 3-3 of FIG. 2 illustrating movement (in phantom) of a flap on the housing;
  • FIGS. 4 and 5 are end views of the present invention partially in section, illustrating an alternate embodiment of the housing, with FIG. 5 illustrating movement of a flap on the housing.
  • FIGS. 1 through 3 there is illustrated a connector 10 encapsulated in a viscous encapsulating material (illustrated by stippling in FIG. 1) within a housing 14.
  • the housing 14 has a socket 15 with a bottom opposite an unrestricted open end 17.
  • the socket 15 fully receives and closely fits around four planar side walls 18 and an inner or second end 19 of the rectangular connector 10, while a first or exposed end 20 of the connector 10 faces the open end 17 of the socket 15.
  • a plurality of wires 22 electrically interconnected by the connector 10 project through the open end 17 of the socket 15.
  • a quantity of viscous, electrically insulating, water restricting encapsulating material surrounds the connector 10 within the socket 15, including a layer of the encapsulating material over its first end 20 and around the projecting wires 22.
  • the connector 10 is of the type disclosed in U.S. Pat. No. 3,708,779, the disclosure whereof is incorporated by reference herein. Briefly the connector 10 has separable insulative body portions 24 defining (when assembled) a plurality of internal wire receiving channels. A plurality of conductive contact elements 30 which are slotted to define resilient wire receiving fingers are mounted in one of the body portions with the slots aligned with the channels. The wires 22 to be elecrically interconnected are positioned within the part of the channels defined in one of the body portions 24 and the connector is assembled to resiliently engage the fingers of the contact elements 30 with the wires to electrically interconnect them in a predetermined pattern.
  • the housing 14 is a one piece molding of a polymeric material, preferably polypropylene.
  • the housing 14 includes rectangularly disposed side walls 32, end walls 34 and a bottom wall 36, the inner surfaces of which define the socket 15.
  • the side and end walls 32 and 34 have inwardly extending projections or ribs 38 which extend longitudinally at right angles to the bottom wall 36 and define, when a connector 10 is in the socket l5, passageways between the connector 10 and walls 32 and 34 extending from the bottom to the open end 17 of the socket 15.
  • the housing 14 includes flaps 40 hingedly mounted along one edge in opposed relationship at the open end 17 of the socket 15.
  • the flaps 40 are integrally formed with the walls 32 and 34 and hinged thereto via a thin strip of the housing material at the base of a generally V-shaped groove 42.
  • the craftsman may then flex the flaps 40 inwardly to the position illustrated in FIG. 3 to help spread that portion of the encapsulating material around the wires 22 and over the first end 20 of the connector 10.
  • FIGS. 4 and 5 illustrate an alternate structure for the housing 14 generally designated by the numeral 45 in which is positioned a rectangular connector 46 similar to the connector 10 and having side walls 47, a second or inner end 48 and a first or exposed end 49 from which project a plurality of electrically interconnected wires 50.
  • the housing 45 has rectangularly disposed side walls 52, end walls (not shown) and a bottom wall 56, the inner surfaces of which define a socket 58 fully enclosing the connector 46.
  • the side walls 52 and the end walls each have inwardly extending projections or ribs 60 which extend longitudinally at right angles to the bottom wall 56, and define, when a connector is in the socket 58, passageways extending from the bottom to the open end of the socket 58.
  • the housing 45 has hinged flaps 64 for spreading encapsulating material over a connector which has been pressed into the socket 58.
  • the flaps 64 attached to the side walls 52 have generally triangular projections 66 with generally cylindrically concave arcuate surfaces 68 ad jacent the open end of the socket 58.
  • One edge of the surface 68 on each projection 66 is aligned with the outer extreme of the surface defining the socket 58 or inner surface of the adjacent side wall 52, and from this edge the surface 68 tends through an arc of about degrees.
  • a method for encapsulating a connector having side walls extending between first and second ends which connector electrically interconnects a plurality of wires projecting from its first end said method including the steps of:
  • a housing having a socket with a bottom opposite an unrestricted open end, the socket being adapted to closely fit around and completely receive the side walls and second end of the connector with its first end facing the open end of the socket and the wires extending therethrough, said housing having a plurality of projections defining, when a connector is within the socket, passageways extending from the bottom of the socket to the open end, and having a quantity of viscous, water restricting electrically insulating encapsulating material in the socket, the quantity being at least sufficient to fill the socket for a predetermined distance over the connector after the second end of the connector is positioned at the bottom of the socket;
  • a connector including an insulative body having side walls extending between first and second ends and a plurality of internal wire receiving channels, a plurality of wires in said channels and a plurality of conductive contact elements mounted in said body member, said contact elements having spaced fingers in resilient engagement with the wires to electrically interconnect wires in the channel in a predetermined pattern; a housing having a socket with a bottom opposite an unrestricted open end, the socket closely fitting around and completely receiving the side walls and second end of the connector with its first end facing the open end and the wires extending therethrough; and a quantity of viscous electrically insulating water restricting encapsulating material within the socket around said connector.
  • a device for encapsulating an electrical connector having side walls extending between first and second ends and electrically interconnecting a plurality of wires projecting from its first end said device comprising a housing having a socket with a bottom opposite an unrestricted open end, the socket being adapted to closely fit around and completely receive the side walls and second end of a said connector with the first end of the connector facing the open end and the wires pro- 5 jecting therethrough, said housing having a plurality of projections defining, when a said connector is positioned within the socket, channels extending from the bottom of the socket to the open end, and a pair of flaps hingedly mounted along one end in opposed relationship at the open end of the housing.
  • each of said flaps has a projection defining a generally cylindrically concave arcuate surface adjacent the open end of the socket with one edge of the surface being aligned with the outer extreme of the surface defining the socket and the surface extending through an arc of about 90 over the open end.

Abstract

A method and device are described for encapsulating a multiple wire electrical connector in a viscous encapsulating material. A socket adapted to closely fit around the connector is filled with a predetermined quantity of the encapsulating material. The connector is pressed into the socket so that some of the encapsulating material is forced from the bottom of the socket to the surface of the connector adjacent the opening to the socket through passageways along the sides of the socket. This encapsulating material is then spread over the connector, which spreading may be facilitated by flexing flaps on the housing toward the opening.

Description

United States Patent F arrar, Jr.
CONNECTOR ENCAPSULATING DEVICE AND METHOD Inventor: John A. Farrar, Jr., Atlanta, Ga.
Assignee: Minnesota Mining and Manufacturing Company. St. Paul, Minn.
Filed: Sept. 26, 1973 Appl. No.: 400,951
US. Cl. 339/116 C; 339/99 R; 174/138 F Int. Cl. H01! 7/04; HOlr 13/52 Field of Search 339/94, 99, 115, 116, 117,
References Cited UNITED STATES PATENTS 9/1964 Brown 339/115 C X 3/1970 Beinhaur 339/115 R X o oooo.-. 24
Primary Examiner-Richard E. Moore Attorney, Agent, or Firm-Alexander, Sell, Steldt & Delahunt [57] ABSTRACT A method and device are described for encapsulating a multiple wire electrical connector in a viscous encapsulating material. A socket adapted to closely fit around the connector is filled with a predetermined quantity of the encapsulating material. The connector is pressed into the socket so that some of the encapsulating material is forced from the bottom of the socket to the surface of the connector adjacent the opening to the socket through passageways along the sides of the socket. This encapsulating material is then spread over the connector, which spreading may be facilitated by flexing flaps on the housing toward the open- 5 Claims, 5 Drawing Figures O OOO' 34 PATENTED JUL 2 9 I975 40 3522 FIG! as 32 W FIG. 2
FIG. 5
FIG. 4
CONNECTOR ENCAPSULATING DEVICE AND METHOD BACKGROUND OF THE INVENTION This invention relates to the encapsulation of electrical connectors, and in one aspect to encapsulating telephone circuit wire connectors in a viscous encapsulating material.
The plurality of connectors used to interconnect wires of a telephone circuit such as in a pressurized or non-pressurized splice case, or a telephone pedestal, must be protected from corrosion caused by moisture which may enter the splice case or pedestal. This protection cannot be conveniently provided by encapsulation in a self-curing encapsulating material within an enclosure as is taught in U.S. Pat. Nos. 2,862,042, 2,908,744, 2,967,795 and 3,419,669 for use in splicing underground cables, because of the bulk of the enclosure and the virtual impossibility of re-entry to change a connection. While encapsulation of such connectors in a removable encapsulating material within an enclosure as is taught in U.S. Pat. application No. 376,285 would afford re-entry, such encapsulation is also not desirable because of the bulk of the enclosure and because re-entry to a single connector within the enclosure requires opening of the entire housing, and disturbing and repairing of the encapsulating material around connectors adjacent the one in which the change is to be made. Such connectors have been individually encapsulated in a viscous encapsulating material by placing the encapsulating material and wired connector into a flexible bag, working the encapsulating material around the connector, and securing the open end of the bag about the wires leading to the con nector which are formed into a bundle. This system however, requires a large amount of the encapsulating material relative to the volume of the connector, and sufficient length in each of the spliced wires to form the bundle. Also, the proper distribution of the encapsulating material around the connector is dependent on the operators skill, and the resulting encapsulated connector is large compared to the size of the connector so that it fills valuable space within the splice case or pedestal.
SUMMARY OF THE INVENTION According to the present invention there is provided a simple, efficient and dependable method for individually encapsulating connectors in a splice case or pedestal. A connector encapsulated by this method is efficiently protected from moisture while it may be easily re-entered and re-encapsulated without disturbing adjacent connectors. The amount of the expensive encapsulating material required to encapsulate a connector is small compared to encapsulating the connector in a grease bag (e.g., the same connector may be encapsulated in 20 grams of encapsulating material with the present invention compared to about 1 grams of encapsulating material when a grease bag is used). Also, the wires entering the connector need not be formed into a bundle, and the size of the encapsulated connector is small which allows a given size of splicecase or pedestal to contain a larger amount of connectors.
An encapsulated connector according to the present invention is enclosed on five sides within a close fitting socket in a housing, with the wires electrically interconnected by the connector projecting through the opening to the socket (i.e., by close fitting we mean having less than about 1/16 inch clearance around the connector inside the housing). A quantity of viscous electrically insulating encapsulating material surrounds the connector within the socket to protect the connector from moisture.
The housing for receiving the connector has a plurality of projections defining passageways extending from the bottom of the socket to its open end. To encapsulate a connector, viscous, water insoluble, electrically insulating encapsulating material is placed in the socket in a quantity at least sufficient to fill the socket for a predetermined distance over a connector fully enclosed therein. The connector is pressed into the socket with sufficient pressure to force a portion of the encapsulating material through the passageways to the exposed end of the connector, after which that portion of the encapsulating material is spread around the wires and over the first end of the connector.
Viscous, water insoluble electrically insulating encapsulating materials which are particularly suitable include those having a high dielectric strength and thixotropic properties, with a static viscosity in about the 1 to 1% million centipoise range, and a penetrometer reading in the range of 200 to 300. Examples include a silicone grease sold under the designation DC-2 by Dow Corning, lnc.
BRIEF DESCRIPTION OF THE DRAWING The invention will be further described with reference to the accompanying drawing wherein like numbers refer to like parts in the several views, and wherein:
FIG. 1 is a plan view of a connector encapsulated in a housing according to the present invention;
FIG. 2 is an elevational side view, partially in section, of the present invention as illustrated in FIG. 1;
FIG. 3 is a sectional view taken along line 3-3 of FIG. 2 illustrating movement (in phantom) of a flap on the housing; and
FIGS. 4 and 5 are end views of the present invention partially in section, illustrating an alternate embodiment of the housing, with FIG. 5 illustrating movement of a flap on the housing.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now to FIGS. 1 through 3 there is illustrated a connector 10 encapsulated in a viscous encapsulating material (illustrated by stippling in FIG. 1) within a housing 14. The housing 14 has a socket 15 with a bottom opposite an unrestricted open end 17. The socket 15 fully receives and closely fits around four planar side walls 18 and an inner or second end 19 of the rectangular connector 10, while a first or exposed end 20 of the connector 10 faces the open end 17 of the socket 15. A plurality of wires 22 electrically interconnected by the connector 10 project through the open end 17 of the socket 15. A quantity of viscous, electrically insulating, water restricting encapsulating material surrounds the connector 10 within the socket 15, including a layer of the encapsulating material over its first end 20 and around the projecting wires 22.
The connector 10 is of the type disclosed in U.S. Pat. No. 3,708,779, the disclosure whereof is incorporated by reference herein. Briefly the connector 10 has separable insulative body portions 24 defining (when assembled) a plurality of internal wire receiving channels. A plurality of conductive contact elements 30 which are slotted to define resilient wire receiving fingers are mounted in one of the body portions with the slots aligned with the channels. The wires 22 to be elecrically interconnected are positioned within the part of the channels defined in one of the body portions 24 and the connector is assembled to resiliently engage the fingers of the contact elements 30 with the wires to electrically interconnect them in a predetermined pattern.
The housing 14 is a one piece molding of a polymeric material, preferably polypropylene. The housing 14 includes rectangularly disposed side walls 32, end walls 34 and a bottom wall 36, the inner surfaces of which define the socket 15. The side and end walls 32 and 34 have inwardly extending projections or ribs 38 which extend longitudinally at right angles to the bottom wall 36 and define, when a connector 10 is in the socket l5, passageways between the connector 10 and walls 32 and 34 extending from the bottom to the open end 17 of the socket 15.
To encapsulate the connector 10 the craftsman selects the housing 14 which is adapted to accept the connector 10. The socket contains a quantity of viscous encapsulating material sufficient to at least fill the socket to a predetermined distance over the connector 10 after the connector is fully enclosed within the socket 15 with its second end 19 contacting or closely spaced from the bottom wall 36. The connector 10 is then positioned in the socket 15 with its second end 19 adjacent the bottom wall 36 and in contact with the encapsulating material. The craftsman presses the connector 10 into the open end 17 of the socket 15 with sufficient pressure to force the encapsulating material into and through the passageways and deposit a portion thereof at the first end of the connector 10. The craftsman'then spreads the portion of encapsulating material between the connector 10 and the open end 17 of the socket 15 around the wires and over the first end 20 of the connector 10 to complete the encapsulation thereof.
The housing 14 includes flaps 40 hingedly mounted along one edge in opposed relationship at the open end 17 of the socket 15. The flaps 40 are integrally formed with the walls 32 and 34 and hinged thereto via a thin strip of the housing material at the base of a generally V-shaped groove 42. As the connector is pressed into the socket 15 the portion of the encapsulating material extruded through the passageways will be deposited adjacent the flaps 40. The craftsman may then flex the flaps 40 inwardly to the position illustrated in FIG. 3 to help spread that portion of the encapsulating material around the wires 22 and over the first end 20 of the connector 10.-
FIGS. 4 and 5 illustrate an alternate structure for the housing 14 generally designated by the numeral 45 in which is positioned a rectangular connector 46 similar to the connector 10 and having side walls 47, a second or inner end 48 and a first or exposed end 49 from which project a plurality of electrically interconnected wires 50. Like the housing 14, the housing 45 has rectangularly disposed side walls 52, end walls (not shown) and a bottom wall 56, the inner surfaces of which define a socket 58 fully enclosing the connector 46. The side walls 52 and the end walls each have inwardly extending projections or ribs 60 which extend longitudinally at right angles to the bottom wall 56, and define, when a connector is in the socket 58, passageways extending from the bottom to the open end of the socket 58. Like the housing 14, the housing 45 has hinged flaps 64 for spreading encapsulating material over a connector which has been pressed into the socket 58. Unlike the flaps 40, however, the flaps 64 attached to the side walls 52 have generally triangular projections 66 with generally cylindrically concave arcuate surfaces 68 ad jacent the open end of the socket 58. One edge of the surface 68 on each projection 66 is aligned with the outer extreme of the surface defining the socket 58 or inner surface of the adjacent side wall 52, and from this edge the surface 68 tends through an arc of about degrees. As the portion of the encapsulating material displaced by the connector 46 is extruded through the passageways toward the opening of the socket 58, it will contact and be deflected by the surfaces 68 on the projections 66 over the first end 49 of the connector 46. The craftsman may then flex the flaps 64 inwardly as illustrated in FIG. 5 to further spread the encapsulating material around wires 50 projecting from the first end 49 of the connector 46. 5
Having thus described the present invention with reference to two illustrated embodiments, what is claimed l. A method for encapsulating a connector having side walls extending between first and second ends which connector electrically interconnects a plurality of wires projecting from its first end, said method including the steps of:
providing a housing having a socket with a bottom opposite an unrestricted open end, the socket being adapted to closely fit around and completely receive the side walls and second end of the connector with its first end facing the open end of the socket and the wires extending therethrough, said housing having a plurality of projections defining, when a connector is within the socket, passageways extending from the bottom of the socket to the open end, and having a quantity of viscous, water restricting electrically insulating encapsulating material in the socket, the quantity being at least sufficient to fill the socket for a predetermined distance over the connector after the second end of the connector is positioned at the bottom of the socket;
positioning the connector in the socket with its second end adjacent the bottom thereof and in contact with the encapsulating material;
pressing the positioned connector into the open end of the socket with sufficient pressure to force the encapsulating material into and through the passageways to deposit a portion of the encapsulating material at the first end of the connector; and spreading the portion of the encapsulating material at the first end of the connector around the wires and over the first end of the connector.
2. The method of claim 1 wherein the housing has a pair offlaps hingedly mounted along one edge in opposed relationship to the housing on opposite sides of the open end of the socket, and said spreading step includes the step of pressing the flaps toward the open end to help in spreading the potting compound across the first end of the connector.
3. In combination, a connector including an insulative body having side walls extending between first and second ends and a plurality of internal wire receiving channels, a plurality of wires in said channels and a plurality of conductive contact elements mounted in said body member, said contact elements having spaced fingers in resilient engagement with the wires to electrically interconnect wires in the channel in a predetermined pattern; a housing having a socket with a bottom opposite an unrestricted open end, the socket closely fitting around and completely receiving the side walls and second end of the connector with its first end facing the open end and the wires extending therethrough; and a quantity of viscous electrically insulating water restricting encapsulating material within the socket around said connector.
4. A device for encapsulating an electrical connector having side walls extending between first and second ends and electrically interconnecting a plurality of wires projecting from its first end, said device comprising a housing having a socket with a bottom opposite an unrestricted open end, the socket being adapted to closely fit around and completely receive the side walls and second end of a said connector with the first end of the connector facing the open end and the wires pro- 5 jecting therethrough, said housing having a plurality of projections defining, when a said connector is positioned within the socket, channels extending from the bottom of the socket to the open end, and a pair of flaps hingedly mounted along one end in opposed relationship at the open end of the housing.
5. The device of claim 4 wherein each of said flaps has a projection defining a generally cylindrically concave arcuate surface adjacent the open end of the socket with one edge of the surface being aligned with the outer extreme of the surface defining the socket and the surface extending through an arc of about 90 over the open end.

Claims (5)

1. A method for encapsulating a connector having side walls extending between first and second ends which connector electrically interconnects a plurality of wires projecting from its first end, said method including the steps of: providing a housing having a socket with a bottom opposite an unrestricted open end, the socket being adapted to closely fit around and completely receive the side walls and second end of the connector with its first end facing the open end of the socket and the wires extending therethrough, said housing having a plurality of projections defining, when a connector is within the socket, passageways extending from the bottom of the socket to the open end, and having a quantity of viscous, water restricting electrically insulating encapsulating material in the socket, the quantity being at least sufficient to fill the socket for a predetermined distance over the connector after the second end of the connector is positioned at the bottom of the socket; positioning the connector in the socket with its second end adjacent the bottom thereof and in contact with the encapsulating material; pressing the positioned connector into the open end of the socket with sufficient pressure to force the encapsulating material into and through the passageways to deposit a portion of the encapsulating material at the first end of the connector; and spreading the portion of the encapsulating material at the first end of the connector around the wires and over the first end of the connector.
2. The method of claim 1 wherein the housing has a pair of flaps hingedly mounted along one edge in opposed relationship to the housing on opposite sides of the open end of the socket, and said spreading step includes the step of pressing the flaps toward the open end to help in spreading the potting compound across the first end of the connector.
3. In combination, a connector including an insulative body having side walls extending between first and second ends and a plurality of internal wire receiving channels, a plurality of wires in said channels and a plurality of conductive contact elements mounted in said body member, said contact elements having spaced fingers in resilient engagement with the wires to electrically interconnect wires in the channel in a predetermined pattern; a housing having a socket with a bottom opposite an unrestricted open end, the socket closely fitting around and completely receiving the side walls and second end of the connector with its first end facing the open end and the wires extending therethrough; and a quantity of viscous electrically insulating water restricting encapsulating material within the socket around said connector.
4. A device for encapsulating an electrical connector having side walls extending between first and second ends and electrically interconnecting a plurality of wires projecting from its first end, said device comprising a housing having a socket with a bottom opposite an unrestricted open end, the socket being adapted to closely fit around and completely receive the side walls and second end of a said connector with the first end of the connector facing the open end and the wires projecting therethrough, said housing having a plurality of projections defining, when a said connector is positioned within the socket, channels extending from the bottom of the socket to the open end, and a pair of flaps hingedly mounted along one end in opposed relationship at The open end of the housing.
5. The device of claim 4 wherein each of said flaps has a projection defining a generally cylindrically concave arcuate surface adjacent the open end of the socket with one edge of the surface being aligned with the outer extreme of the surface defining the socket and the surface extending through an arc of about 90* over the open end.
US400951A 1973-09-26 1973-09-26 Connector encapsulating device and method Expired - Lifetime US3897129A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US400951A US3897129A (en) 1973-09-26 1973-09-26 Connector encapsulating device and method
CA208,067A CA1023030A (en) 1973-09-26 1974-08-29 Connector encapsulating device and method
FR7432258A FR2245101B1 (en) 1973-09-26 1974-09-25
GB41744/74A GB1484303A (en) 1973-09-26 1974-09-25 Connector encapsulation and method thereof
JP49110409A JPS5753631B2 (en) 1973-09-26 1974-09-25
IT5319674A IT1019386B (en) 1973-09-26 1974-09-25 DEVICE AND PROCEDURE FOR ENCAPSULATING ELECTRICAL CONNECTORS
DE2446221A DE2446221C2 (en) 1973-09-26 1974-09-25 Method and housing for encapsulating electrical connection lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US400951A US3897129A (en) 1973-09-26 1973-09-26 Connector encapsulating device and method

Publications (1)

Publication Number Publication Date
US3897129A true US3897129A (en) 1975-07-29

Family

ID=23585677

Family Applications (1)

Application Number Title Priority Date Filing Date
US400951A Expired - Lifetime US3897129A (en) 1973-09-26 1973-09-26 Connector encapsulating device and method

Country Status (7)

Country Link
US (1) US3897129A (en)
JP (1) JPS5753631B2 (en)
CA (1) CA1023030A (en)
DE (1) DE2446221C2 (en)
FR (1) FR2245101B1 (en)
GB (1) GB1484303A (en)
IT (1) IT1019386B (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4010994A (en) * 1973-09-26 1977-03-08 Minnesota Mining And Manufacturing Company Connector encapsulating housing
EP0108518A2 (en) 1982-10-12 1984-05-16 RAYCHEM CORPORATION (a Delaware corporation) Apparatus for protection of a substrate
US4600261A (en) * 1982-10-12 1986-07-15 Raychem Corporation Apparatus and method for protection of electrical contacts
US4634207A (en) * 1982-10-12 1987-01-06 Raychem Corporation Apparatus and method for protection of a substrate
US4690831A (en) * 1983-06-23 1987-09-01 Raychem Corp. Protective article
US4839473A (en) * 1986-09-23 1989-06-13 Minnesota Mining And Manufacturing Company Waterproof electrical splice enclosure
US4864725A (en) * 1982-10-12 1989-09-12 Raychem Corporation Electrical connector and method of splicing wires
US4865905A (en) * 1983-06-23 1989-09-12 Raychem Corporation Article for protection of a substrate
US5107077A (en) * 1986-09-23 1992-04-21 Minnesota Mining And Manufacturing Co. Waterproof electrical splice enclosure and splice, and method for waterproofing an electrical connection
US5140746A (en) * 1982-10-12 1992-08-25 Raychem Corporation Method and device for making electrical connector
US5145402A (en) * 1990-06-06 1992-09-08 General Motors Corporation Electrical connector
US5354210A (en) * 1991-08-23 1994-10-11 The Whitaker Corporation Sealant compositions and sealed electrical connectors
US5357057A (en) * 1982-10-12 1994-10-18 Raychem Corporation Protected electrical connector
US5360350A (en) * 1991-08-23 1994-11-01 The Whitaker Corporation Sealant compositions and sealed electrical connectors
US5397859A (en) * 1993-12-10 1995-03-14 The Whitaker Corporation Enclosure with sealant for spliced coaxial cables
US5727314A (en) * 1996-02-15 1998-03-17 Erico International Corporation Method of making an insulated set screw electrical connector
US5844021A (en) * 1991-08-23 1998-12-01 The Whitaker Corporation Sealant compositions and sealed electrical connectors
EP0892467A1 (en) * 1993-01-22 1999-01-20 RAYCHEM CORPORATION (a Delaware corporation) Gel filled modular electrical connecting block
US20060270785A1 (en) * 2005-05-31 2006-11-30 Dower William V Sealant materials containing diblock copolymers and methods of making thereof
US20150155638A1 (en) * 2012-05-14 2015-06-04 Yazaki Corporation Cylindrical braid crimp connection structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3229595A1 (en) * 1982-08-09 1984-02-09 Basf Farben + Fasern Ag, 2000 Hamburg CABLE SLEEVE
JPS60150615A (en) * 1984-01-18 1985-08-08 松下電器産業株式会社 Film capacitor
DE4336849C1 (en) * 1993-10-28 1995-01-05 Rose Walter Gmbh & Co Kg Method for sealing cable entries using a sealing gel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3148011A (en) * 1962-08-02 1964-09-08 Elastic Stop Nut Corp Electrical cable connector means and method of terminating such cable
US3504099A (en) * 1968-08-01 1970-03-31 Amp Inc Electrical connections and insulating boot therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3419669A (en) * 1965-03-15 1968-12-31 Minnesota Mining & Mfg Flexible mold and cable splice
US3836694A (en) * 1972-07-24 1974-09-17 H Kapell Re-enterable splice enclosure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3148011A (en) * 1962-08-02 1964-09-08 Elastic Stop Nut Corp Electrical cable connector means and method of terminating such cable
US3504099A (en) * 1968-08-01 1970-03-31 Amp Inc Electrical connections and insulating boot therefor

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4010994A (en) * 1973-09-26 1977-03-08 Minnesota Mining And Manufacturing Company Connector encapsulating housing
US5140746A (en) * 1982-10-12 1992-08-25 Raychem Corporation Method and device for making electrical connector
EP0108518A2 (en) 1982-10-12 1984-05-16 RAYCHEM CORPORATION (a Delaware corporation) Apparatus for protection of a substrate
GB2133026A (en) * 1982-10-12 1984-07-18 Raychem Corp Apparatus and method for protection of a substrate
GB2168363A (en) * 1982-10-12 1986-06-18 Raychem Corp Apparatus and method for protection of a substrate
US4600261A (en) * 1982-10-12 1986-07-15 Raychem Corporation Apparatus and method for protection of electrical contacts
US4634207A (en) * 1982-10-12 1987-01-06 Raychem Corporation Apparatus and method for protection of a substrate
US5357057A (en) * 1982-10-12 1994-10-18 Raychem Corporation Protected electrical connector
US4864725A (en) * 1982-10-12 1989-09-12 Raychem Corporation Electrical connector and method of splicing wires
US5639992A (en) * 1982-10-12 1997-06-17 Raychem Corporation Method and device for making a protected electrical connector
US5672846A (en) * 1982-10-12 1997-09-30 Raychem Corporation Electrical connector
US4690831A (en) * 1983-06-23 1987-09-01 Raychem Corp. Protective article
US4865905A (en) * 1983-06-23 1989-09-12 Raychem Corporation Article for protection of a substrate
US4839473A (en) * 1986-09-23 1989-06-13 Minnesota Mining And Manufacturing Company Waterproof electrical splice enclosure
US5107077A (en) * 1986-09-23 1992-04-21 Minnesota Mining And Manufacturing Co. Waterproof electrical splice enclosure and splice, and method for waterproofing an electrical connection
US5145402A (en) * 1990-06-06 1992-09-08 General Motors Corporation Electrical connector
US5741843A (en) * 1991-08-23 1998-04-21 The Whitaker Corporation Sealant compositions and sealed electrical connectors
US5844021A (en) * 1991-08-23 1998-12-01 The Whitaker Corporation Sealant compositions and sealed electrical connectors
US5580265A (en) * 1991-08-23 1996-12-03 The Whitaker Corporation Sealant compositions and sealed electrical connectors
US5360350A (en) * 1991-08-23 1994-11-01 The Whitaker Corporation Sealant compositions and sealed electrical connectors
US5691399A (en) * 1991-08-23 1997-11-25 The Whitaker Corporation Sealant composition and sealed electrical connectors
US5354210A (en) * 1991-08-23 1994-10-11 The Whitaker Corporation Sealant compositions and sealed electrical connectors
EP0892467A1 (en) * 1993-01-22 1999-01-20 RAYCHEM CORPORATION (a Delaware corporation) Gel filled modular electrical connecting block
US5397859A (en) * 1993-12-10 1995-03-14 The Whitaker Corporation Enclosure with sealant for spliced coaxial cables
US5727314A (en) * 1996-02-15 1998-03-17 Erico International Corporation Method of making an insulated set screw electrical connector
US20060270785A1 (en) * 2005-05-31 2006-11-30 Dower William V Sealant materials containing diblock copolymers and methods of making thereof
WO2006130530A1 (en) * 2005-05-31 2006-12-07 3M Innovative Properties Company Sealant materials containing diblock copolymers and methods of making thereof
US7902288B2 (en) 2005-05-31 2011-03-08 3M Innovative Properties Company Sealant materials containing diblock copolymers and methods of making thereof
US20150155638A1 (en) * 2012-05-14 2015-06-04 Yazaki Corporation Cylindrical braid crimp connection structure
US9385440B2 (en) * 2012-05-14 2016-07-05 Yazaki Corporation Cylindrical braid crimp connection structure

Also Published As

Publication number Publication date
JPS5060785A (en) 1975-05-24
DE2446221A1 (en) 1975-03-27
GB1484303A (en) 1977-09-01
FR2245101A1 (en) 1975-04-18
FR2245101B1 (en) 1980-05-16
IT1019386B (en) 1977-11-10
JPS5753631B2 (en) 1982-11-13
CA1023030A (en) 1977-12-20
DE2446221C2 (en) 1985-11-14

Similar Documents

Publication Publication Date Title
US3897129A (en) Connector encapsulating device and method
US4423918A (en) Re-enterable service wire splice closure
US4954098A (en) Sealed insulation displacement connector
US4451696A (en) Toolless splice sealant device
US4824390A (en) Coated electrical connector
US4909756A (en) Splice case
US6881901B2 (en) Connection cover
US4610738A (en) Encapsulating a splice with a gel-filled case
RU2140124C1 (en) Module for jointing many conductors (options)
US6111201A (en) Cable splice closure
RU2118022C1 (en) Environmentally tight electric connector, spring- loaded telephone connector unit and its manufacturing technique, field connector, and sealed plug
US5149278A (en) Terminal block
JP2863130B2 (en) Electric splice enclosure and method of using same
KR100385805B1 (en) Connector modules
US3188601A (en) Electrical connector for tape-like electrical cable
KR950002117A (en) Electrically Insulated Displacement Connector
US4550965A (en) Connector assembly for insulated cable
GB1588842A (en) Electrical terminal assemblies
US5777268A (en) Splice closure for buried telecommunications cables
WO1986004181A1 (en) Splice case
KR970001385B1 (en) Electrical connector
EP0203365A2 (en) Electrical connector assembly and method for terminating cable
US3226669A (en) Wire conductors in electrical connection fields
US3594708A (en) Printed circuit board coaxial connector
US3660802A (en) Connecting arrangement for multiconductor cables