US3897184A - Apparatus for making bars from powered metal - Google Patents

Apparatus for making bars from powered metal Download PDF

Info

Publication number
US3897184A
US3897184A US448819A US44881974A US3897184A US 3897184 A US3897184 A US 3897184A US 448819 A US448819 A US 448819A US 44881974 A US44881974 A US 44881974A US 3897184 A US3897184 A US 3897184A
Authority
US
United States
Prior art keywords
bar
die
cavity
length
powdered metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US448819A
Inventor
Jr James Woodburn
Gordon Russell Lohman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amsted Industries Inc
Original Assignee
Amsted Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amsted Industries Inc filed Critical Amsted Industries Inc
Priority to US448819A priority Critical patent/US3897184A/en
Priority to US05/562,873 priority patent/US4025337A/en
Application granted granted Critical
Publication of US3897184A publication Critical patent/US3897184A/en
Assigned to AMSTED INDUSTRIES INCORPORATED, A CORP. OF DE. reassignment AMSTED INDUSTRIES INCORPORATED, A CORP. OF DE. RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: FIRST NATIONAL BANK OF CHICAGO, AS AGENT
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • B22F3/204Continuous compaction with axial pressure and without reduction of section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/22Extrusion presses; Dies therefor
    • B30B11/26Extrusion presses; Dies therefor using press rams

Definitions

  • the cavity has a fixed crosssectional area and is open at both ends, except during the initial compaction when one end is closed. After formation of a length of the bar, the frictional resistance between the bar and the cavity wall is relied on so that the bar remaining in the cavity serves as a stopper for subsequent compactions of the discrete quantities of powdered metal to form the continuous bar.
  • the bar is forced out of the cavity and may be passed through an induction furnace for sintering, and through a swager, all preferably in a continuous operation. Also provided is means for varying the compaction so that the bar lengths formed from the discrete quantities of powdered metal are compacted and bonded into a bar of substantially uniform physical characteristics along its length.
  • the present invention relates to an apparatus for making a rod from powdered metal, and more particularly to a new and novel apparatus for continuously forming the rod from powdered metal and to a new and novel apparatus.
  • the present invention it is proposed to provide an improved apparatus for continuously forming a bar from a powdered metal wherein successive separate quantities of powdered metal are axially compacted by compacting means axially movable in a unitary die having a cavity of fixed cross-sectional area into bar segments bonded to each other to form a green compact bar.
  • the green compact bar is incrementally forced out of the die such that a length thereof is frictionally retained within the die to serve as a stopper against which a succeeding quantity of powdered metal is compacted.
  • the frictional resistance force between the cavity wall and the length of the bar defining the stopper is measured.
  • This measurement is used to determine if the frictional resistance force corresponds to the compacting force required to compact the quantity of powdered metal into a bar segment having desired physical characteristics. If the frictional force deviates from the required force, the length of travel of the compacting means and the volume of powdered metal are varied relative to each other until the measured resisting force corresponds to the required compacting force whereby the powdered metal is compacted into a bar segment having the desired physical characteristics.
  • the compaction is accomplished by a punch which is reciprocable within the die cavity.
  • the required frictional force is maintained by controlling the length of travel of the punch in the cavity so that the quantity of powdered metal is compacted to provide a green compact rod of substantially uniform physical characteristics along its length.
  • the green compact rod formed in the continuous manner as described above is then sintered to improve the physical characteristics after emerging from the die.
  • the sintering is performed by induction heating means.
  • the rod After sintering the rod may also be swagged or otherwise hot worked to further increase the density thereof.
  • FIG. 1 is a side elevational view of an apparatus, for carrying out the invention.
  • FIG. 2 is a fragmentary rear elevational view taken from the right of FIG. 1 showing the upper portion of the apparatus.
  • FIG. 3 is a view partly in section taken generally along the lines 3-3 of FIG. 1 showing the die with the die closure plug in assembled posit-ion.
  • FIG. 4 is a schematic diagram of the control system utilized in the apparatus for controlling the length of stroke of the ram.
  • FIG. 5 is a top plan view of the induction means for sintering the rod taken generally along the lines 5-5 of FIG. 1.
  • FIG. 6 is a view similar to FIG. 3 but showing the ram punch prior to the compaction of a further quantity of powder and before removal of the closure plug in the lower end of the die.
  • FIG. 7 is a view similar to FIG. 6 but with the closure plug removed and a length of the rod emerging from the die.
  • FIG. 8 is an end view of a press punch showing one pattern on the end surface.
  • FIG. 9 is an end view of a press punch showing another pattern.
  • FIG. 10 is a view of a portion of a rod showing schematically a joint between adjacent segments of the rod.
  • FIG. 11 is a view showing several selected crosssectional shapes of die cavity, each oriented along the lines 11-11 of FIG. 3.
  • an apparatus or press 20 including a frame 22 having a lower frame unit 24, a bed 26 and a super structure frame unit 28.
  • a cylinderram device or jack 30 preferably hydraulic, for applying the compacting pressure to form the rod from powdered metal.
  • the jack includes a ram 32 having a punch 34 attached thereto.
  • the ram 32 carries a switch actuator 33 which may be in the form of a plate, as shown.
  • Incorporated in the bed 26 is a die unit 36 (see also FIG. 3) and located below the bed 26, is a sintering unit 38. Below the sintering unit 38 is a conventional rotary swager creeping spindle 40.
  • a continuous bar take-up or supply holder 42 is located at the base of the apparatus.
  • a feed shoe 44 Mounted on the bed 26 is a feed shoe 44 having an opening 46 which defines a feed aperture, through which powdered metal is adapted to flow.
  • the feed shoe 44 is slidable on the bed 26 between a retracted position shown in full lines and an advanced or feeding position as shown in FIG. 2.
  • the feed shoe 44 is moved between the retracted and feeding positions by a hydraulic cylinder-ram device or jack 48.
  • the press is preferably operated by conventional built-in controls (not shown) so that the feed shoe 44 advances and retracts as the jack 30 reciprocates between its limit positions.
  • the feed shoe 44 is provided with limit switches (not shown) preventing lowering of the jack 30 when the feed shoe 44 is in advanced position.
  • a feed hopper 50 Mounted on and slidable with the feed shoe 44 is a feed hopper 50 having a bottom outlet communicating with the aperture 46. Above the feed hopper 50 is a stationary supply hopper 52 having a spout 54 leading into the feed hopper 50.
  • the powdered metal 56 from which the continuous rod is formed is stored in the supply hopper 52 and flows through the spout 54 into the feed hopper 50 and from there through the aperture 46 in the feed shoe 44 into the die unit 36.
  • the feed hopper 50 is constructed so that the spout 54 remains in continuous communication therewith as the feed hopper 50 moves between the retracted and advanced positions.
  • the arrangement as shown in FIG. 2 also includes a pair of vertical control switches including an up" limit switch 60 and a down limit switch .62.
  • the switch 60 is mounted on a stationary frame element 64 while the down limit switch 62 is mounted on a lever arm 66 pivoted at 68 on a suitable stationary element such as the frame element 64.
  • the lever arm 66 and thus the switch 62 is controlled by a cylinder-ram device, or stroke adjustment jack 70.
  • the up and down limit switches 60, 62 are actuated by the actuator or plate 33, mounted on the ram 32 for movement thereby to limit the length of the stroke of the ram, and reverse the direction of the ram.
  • the down limit switch 62 is adjustable vertically, as hereinafter described.
  • the die unit 36 includes a die 72 (FIG. 3) and a holder 74 therefor, the holder being secured in the bed 26 in any suitable manner as by a shoulder indicated at 73 and a retainer ring 73a.
  • the die 72 may be made from hardened steel and includes a cavity 76 which may be any of various fixed cross-sectional shapes such as shown in FIG. 11, for example, round, square, and triangular designated respectively as 76a, 76b and 760.
  • the die 76 is open at both ends and the cavity 76 is ground to a smooth finish. Preferably, the grinding is performed in the direction of compaction of the powdered metal.
  • the die holder 74 has a threaded counterbore 78 in line with the cavity 76 for receiving a stopper or closure plug 79 which is placed in position in the initial portion of the forming operation as explained hereinbelow, and later removed.
  • a stopper or closure plug 79 is shown in position in FIGS. 3 and 6, and removed therefrom in FIG. 7, wherein a portion of the formed bar or rod extends beyond the die cavity 76 and through the threaded counterbore 78.
  • a supply of the powdered metal 56 is maintained in the supply hopper 52 and the powdered metal flows through the spout 54 into the feed hopper 50 and feed aperture 46 of the feed shoe 44.
  • the feed aperture 46 is closed-off by the base until the shoe 44 moves to advanced position and is aligned with the die cavity 76.
  • the powdered metal flows through the feed aperture 46 until the cavity 76 is filled.
  • the quantity of powder introduced into the die is controlled or determined by the volume of the space in the die cavity 76 above the stopper 79 or rod segment remaining in the die as more fully to be described hereinafter. It is also possible to control the quantity of powdered metal by other means.
  • the press cylinder 30 Upon retraction of the feed shoe 44, the press cylinder 30 is pressurized through line 85 (FIG. 4) to actuate ram 32 so that the punch 34 enters the die cavity 76 to compact the powdered metal against the stopper or rod in the cavity 76. Successive quantities of powdered metal are introduced and compacted and bonded to the preceding compacted powdered metal to form the bar 94 as more fully to be described hereinafter.
  • the bar or rod 94 As the bar or rod 94 is formed, it is forced downwardly out of the die 36 and into the sintering furnace 38 through a central opening 82, and after the rod passes through the sintering furnace, it continues through the rotary swager 40. This swager is of known construction and need not be described in detail.
  • the swager reduces the diameter of the bar to a suitable extent, such for example as one-half of the cross-sectional area at 76, and as the bar passes through the swager it is wound on the reel 42 or placed in other suitable supply holders.
  • the sintering furnace 38 includes a body (FIGS. 1 and 5) with the longitudinal opening 82 therein. The furnace is heated by induction coils 84 (FIG. 5) of suitable number and capacity to provide the desired temperature as referred to hereinbelow.
  • the closure plug 79 is inserted in the counterbore 78 and a quantity of powdered metal is placed in the die cavity and compacted against the plug to form a segment of the bar. If the segment, thus formed has the desired physical characteristics and frictional resistance with the cavity wall to serve as a stop, the plug 79 is removed. The compacted segment of the bar in the cavity now serves as a stop means or stopper. If necessary, a plurality of quantities of metal powder may be compacted prior to removal of the plug 79 to achieve a length of bar having the requisite frictional engagement with the cavity wall to serve as a stopper. Another quantity of powder is introduced and another compaction performed.
  • This quantity is compacted against the last formed segment of the bar in the cavity and bonded thereto.
  • the force transmitted through the compacted segment is sufficient to overcome the frictional forces between the rod and the cavity wall so that the bar 94 is projected at least partially out of the die cavity. This process is repeated until the bar is of a desired length.
  • FIGS. 8 and 9 show non-planar end surfaces of the punch, FIG. 8 showing a corrugated waffle pattern 80' while FIG. 9 shows a corrugated ripple pattern 82. These corrugations form a corresponding configuration in the end of the segment thereby causing bonding of the succeeding quantity of powdered metal thereto during compaction in the die 72 as a further segment of the bar.
  • FIG. 4 shows an electro hydraulic system for controlling the length of the stroke of the press ram 32 to compensate for the changes in volume in the die cavity 76 for reasons which will become apparent hereinafter.
  • the press cylinder of jack 30 is incorporated in a hydraulic circuit 85 which also includes high and low switches 86, 87, respectively. These switches are ordinary pressure actuated switches and are responsive to the pressure forces sensed in the cylinder 30.
  • FIG. 4 also shows a hydraulic valve 88 actuated by solenoids 89-89 which in turn are activated by internal controls (not shown) in the press for reciprocating the cylinder or jack 30 as referred to above. This valve and the actuation thereof by the solenoids are well-known in the art.
  • the stroke adjustment ram 70 is associated with the hydraulic valve 88 and solenoid 89 for controlling the length of the stroke of the ram.
  • Controlling the stroke adjustment ram 70 is a hydraulic valve 90 also of known kind and which may be of the same kind as the valve 88, actuated by an up solenoid 92 and a down solenoid 95 controlled, respectively, by the high and low pressure switches 86, 87.
  • the switches 86, 87 sense the pressure applied by the ram.
  • the high pressure switch 86 senses the pressure in the hydraulic line 85, and energizes the up solenoid 92 which thereby actuates the valve 90 which controls the jack 70, retracting the piston therein and lowering the down limit switch 62. This lengthens the extent of the travel of the press ram 32.
  • the low pressure switch 87 senses that pressure, and actuates the down solenoid 95 which actuates the jack 70 in the opposite direction. This results in raising the down limit switch 62 to shorten the travel of ram 32 (FIG. 2).
  • the force exerted by the punch in compacting the powder in the die against the previously formed length of bar remaining seated in the die is measured.
  • This compacting force also equals the resisting frictional force between the previously formed length of bar remaining in the die and the die wall.
  • the frictional force between the previously compacted slug and the cavity wall serve to retain the bar within the die to provide a stop means against which the powdered metal is compacted.
  • the compacting and the corresponding ejecting force must therefore be greater than the frictional force existing at the cavity wall.
  • the force must not be of a magnitude that causes compacted powder to be wedged within the cavity so that it cannot be extracted without either damaging the bar or the die.
  • the force applied must be such that the powdered metal is compacted and bonded to the previously formed length of bar.
  • the initial pressing force or pressure is critical in order to produce a bar having the desired green compact characteristics, primarily density.
  • such green compact bar should have about a 70 percent density so as to be self-supporting and capable of withstanding the handling forces imposed thereon during transfer to a sintering or swaging station or the like.
  • the die is made from a material having a hardness and surface finish which minimizes galling.
  • the die surface or cavity wall is ground in the direction in which the rod is pressed or forced through the die.
  • the die is also provided with a radius 76a at the punch entrance end thereof to serve as a punch guide.
  • a short distance at the exit end 76b of the cavity 76 is tapered or flared outwardly to the extent that the compacted rod is permitted to expand gradually. The gradual taper allows the rod to expand as the compacted material attempts to relieve itself of the stresses developed during compaction. In the absence of taper the rod may crack due to a sudden or abrupt expansion.
  • the powder properties such as particle size, hardness, and particle size distribution may affect the friction developed at the cavity wall during compaction. These properties will affect the pressing pressures and the slug length.
  • the metal powder mix also includes a lubricant.
  • the lubricant will affect the frictional characteristics along the cavity during compaction.
  • powder of the material desired e.g., iron, stainless steel composition, etc. of a size of less than 500 microns is generally utilized.
  • a lubricant which may for example be --Acrawax C-- made by Glyco Chemical Co., or any of various other kinds of prior art lubricants, is thoroughly admixed with the powder.
  • a stainless steel powder was compacted in the die to about one-half its original volume.
  • the stainless steel was a type 316 stainless steel having the following composition:
  • the above stainless steel composition was admixed with Acrawax C to about l%% of the powder by weight.
  • the powder was introduced into the die cavity filling a length of the latter of about 3 inches, and after compaction it formed a segment of the bar of about 1% inches.
  • the continuous integral bar was forced out of the lower end of the die and continuously through the furnace as noted above, and in the sintering operation, the lubricant was burned out of the bar.
  • a compaction pressure of about 20-25 tons per square inch (tsi) was utilized.
  • tsi tons per square inch
  • a greater compacting pressure was utilized, such as between 30 and 40 tsi, and at an average of about 35 tsi.
  • the continuous bar thus formed was sintered at a temperature of the order of about 2,150 F., preferably for a period of about one-half minute.
  • the bond 98 was along an irregular or non-planar conformation formed by a correspondingly shaped end surface of the punch, as shown in FIG. 9, the bond including overlapping extensions or elements which enhances bonding. It has been found that the strength at the bond is substantially the same as in other portions of the bar 94 both after green compaction and after sintering.
  • the pressure utilized creates substantial green strength in the bar, i.e., strength after compacting but before sintering, so that the bar can be handled in its green state without disintegration particularly when forcing it out of the die' and through the sintering furnace.
  • Metal powders of A.I.S.l. M-2 tool steel, Eatonite, Copper l-RXN, aluminum type 60l-AS (Alcoa), stellite-6B, and iron powder of A. O. Smith Inland 300M were compacted in a manner generally similar to the method described above.
  • the metal powders of each of the different ferrous and non-ferrous metals were continuously formed into a green rod of a desired length and capable of being self-supporting and handling.
  • a press for continuously forming continuous bar comprising a die having a cavity, means for introducing a selective amount of powdered metal into the die cavity, a ram and punch reciprocable toward and from the die, lengthwise spaced limit means engaged by the ram for controlling and reversing the movement of the ram in response to engagement by a respective one of the limit means, the ram being operative on advance stroke to move the punch into the die cavity, the engagement of the punch with the powdered metal in the die cavity developing reaction pressure, and means for relocating one of said limit means and thereby adjusting the length of each advance stroke of the ram and punch in direct proportion to said reaction pressure during that stroke.
  • a press according to claim 1 wherein the means for adjusting the length of the stroke is operative for increasing that length in response to higher reaction pressure than a predetermined value and reducing that length in response to a lower reaction pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

Powdered metal is continuously introduced into a die cavity in discrete quantities and compacted into bar segments to form a bar. The cavity has a fixed cross-sectional area and is open at both ends, except during the initial compaction when one end is closed. After formation of a length of the bar, the frictional resistance between the bar and the cavity wall is relied on so that the bar remaining in the cavity serves as a stopper for subsequent compactions of the discrete quantities of powdered metal to form the continuous bar. The bar is forced out of the cavity and may be passed through an induction furnace for sintering, and through a swager, all preferably in a continuous operation. Also provided is means for varying the compaction so that the bar lengths formed from the discrete quantities of powdered metal are compacted and bonded into a bar of substantially uniform physical characteristics along its length.

Description

United States Patent Woodburn, Jr. et al.
APPARATUS FOR MAKING BARS FROM POWERED METAL Assignee:
Filed:
Inventors: James Woodburn, Jr., Wheaton;
Gordon Russell Lohman, Glen Ellyn, both of 111.
Amsted Industries Incorporated,
Chicago, 111.
Mar. 7, 1974 Appl. No.: 448,819
U.S. Cl. 425/79; 425/78; 425/258;
Int. Cl..... B29c 3/00; B30b 11/06; B30b 15/22 [58] Field of Search 425/78, 79, 149, 258, 260
[56] References Cited UNITED STATES PATENTS 1,806,300 5/1931 Lemming 425/78 X 2,289,787 7/1942 Kaschke et a1. 425/79 X 2,389,561 11/1945 Stokes et a1. 425/78 2,499,980 3/1950 Stokes et a1. 425/78 2,651,952 9/1953 Leavenworth 425/79 2,904,835 9/1959 Thomas 425/78 2,984,866 5/1961 Schwabe.. 425/78 X 3,264,388 8/1966 Roach 425/78 X 3,491,407 1/1970 Gustafson 425/78 3,579,741 5/1971 Schwartz 425/149 3,734,663 5/1973 Holm 425/149 3,788,787 1/1974 Silbereisen et al.... 425/78 3,819,774 6/1974 Eggenberger et a1 425/149 X Primary ExaminerJ. Howard Flint, Jr. Attorney, Agent, or Firm-Andrew .1. Bootz; Ralph M. Faust; Fred P. Kostka [57] ABSTRACT Powdered metal is continuously introduced into a die cavity in discrete quantities and compacted into bar segments to form a bar. The cavity has a fixed crosssectional area and is open at both ends, except during the initial compaction when one end is closed. After formation of a length of the bar, the frictional resistance between the bar and the cavity wall is relied on so that the bar remaining in the cavity serves as a stopper for subsequent compactions of the discrete quantities of powdered metal to form the continuous bar. The bar is forced out of the cavity and may be passed through an induction furnace for sintering, and through a swager, all preferably in a continuous operation. Also provided is means for varying the compaction so that the bar lengths formed from the discrete quantities of powdered metal are compacted and bonded into a bar of substantially uniform physical characteristics along its length.
2 Claims, 11 Drawing Figures PATENTED JUL 2 91975 SHEET SHEET PATENTED JULZQ 197s APPARATUS FOR MAKING BARS FROM POWERED METAL BACKGROUND AND SUMMARY OF THE INVENTION The present invention relates to an apparatus for making a rod from powdered metal, and more particularly to a new and novel apparatus for continuously forming the rod from powdered metal and to a new and novel apparatus.
One method and an apparatus for continuously forming rod from powdered metal is described in US. Pat. No. 2,097,502 granted Nov. 2, 1937. This method comprises generally the compaction and compression of successive lengths of rod in a mold including die members which are separable to release pressure radially applied by the die members and thereby to release a length of rod from the mold. The rod thus formed is subsequently sintered.
By the present invention it is proposed to provide an improved apparatus for continuously forming a bar from a powdered metal wherein successive separate quantities of powdered metal are axially compacted by compacting means axially movable in a unitary die having a cavity of fixed cross-sectional area into bar segments bonded to each other to form a green compact bar. The green compact bar is incrementally forced out of the die such that a length thereof is frictionally retained within the die to serve as a stopper against which a succeeding quantity of powdered metal is compacted. The frictional resistance force between the cavity wall and the length of the bar defining the stopper is measured. This measurement is used to determine if the frictional resistance force corresponds to the compacting force required to compact the quantity of powdered metal into a bar segment having desired physical characteristics. If the frictional force deviates from the required force, the length of travel of the compacting means and the volume of powdered metal are varied relative to each other until the measured resisting force corresponds to the required compacting force whereby the powdered metal is compacted into a bar segment having the desired physical characteristics.
In accordance with the present invention the compaction is accomplished by a punch which is reciprocable within the die cavity. The required frictional force is maintained by controlling the length of travel of the punch in the cavity so that the quantity of powdered metal is compacted to provide a green compact rod of substantially uniform physical characteristics along its length.
The green compact rod formed in the continuous manner as described above is then sintered to improve the physical characteristics after emerging from the die. Preferably the sintering is performed by induction heating means.
After sintering the rod may also be swagged or otherwise hot worked to further increase the density thereof.
Further features of the invention will hereinafter appear.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side elevational view of an apparatus, for carrying out the invention.
FIG. 2 is a fragmentary rear elevational view taken from the right of FIG. 1 showing the upper portion of the apparatus.
FIG. 3 is a view partly in section taken generally along the lines 3-3 of FIG. 1 showing the die with the die closure plug in assembled posit-ion.
FIG. 4 is a schematic diagram of the control system utilized in the apparatus for controlling the length of stroke of the ram.
FIG. 5 is a top plan view of the induction means for sintering the rod taken generally along the lines 5-5 of FIG. 1.
FIG. 6 is a view similar to FIG. 3 but showing the ram punch prior to the compaction of a further quantity of powder and before removal of the closure plug in the lower end of the die.
FIG. 7 is a view similar to FIG. 6 but with the closure plug removed and a length of the rod emerging from the die.
FIG. 8 is an end view of a press punch showing one pattern on the end surface.
FIG. 9 is an end view of a press punch showing another pattern.
FIG. 10 is a view of a portion of a rod showing schematically a joint between adjacent segments of the rod.
FIG. 11 is a view showing several selected crosssectional shapes of die cavity, each oriented along the lines 11-11 of FIG. 3.
Referring now to drawings, there is shown an apparatus or press 20 including a frame 22 having a lower frame unit 24, a bed 26 and a super structure frame unit 28. Supported in the upper unit 28 is a cylinderram device or jack 30, preferably hydraulic, for applying the compacting pressure to form the rod from powdered metal. The jack includes a ram 32 having a punch 34 attached thereto. The ram 32 carries a switch actuator 33 which may be in the form of a plate, as shown. Incorporated in the bed 26 is a die unit 36 (see also FIG. 3) and located below the bed 26, is a sintering unit 38. Below the sintering unit 38 is a conventional rotary swager creeping spindle 40. A continuous bar take-up or supply holder 42, as schematically illustrated, is located at the base of the apparatus.
Mounted on the bed 26 is a feed shoe 44 having an opening 46 which defines a feed aperture, through which powdered metal is adapted to flow. The feed shoe 44 is slidable on the bed 26 between a retracted position shown in full lines and an advanced or feeding position as shown in FIG. 2. The feed shoe 44 is moved between the retracted and feeding positions by a hydraulic cylinder-ram device or jack 48.
The press is preferably operated by conventional built-in controls (not shown) so that the feed shoe 44 advances and retracts as the jack 30 reciprocates between its limit positions. The feed shoe 44 is provided with limit switches (not shown) preventing lowering of the jack 30 when the feed shoe 44 is in advanced position.
Mounted on and slidable with the feed shoe 44 is a feed hopper 50 having a bottom outlet communicating with the aperture 46. Above the feed hopper 50 is a stationary supply hopper 52 having a spout 54 leading into the feed hopper 50. The powdered metal 56 from which the continuous rod is formed is stored in the supply hopper 52 and flows through the spout 54 into the feed hopper 50 and from there through the aperture 46 in the feed shoe 44 into the die unit 36. The feed hopper 50 is constructed so that the spout 54 remains in continuous communication therewith as the feed hopper 50 moves between the retracted and advanced positions.
The arrangement as shown in FIG. 2 also includes a pair of vertical control switches including an up" limit switch 60 and a down limit switch .62. The switch 60 is mounted on a stationary frame element 64 while the down limit switch 62 is mounted on a lever arm 66 pivoted at 68 on a suitable stationary element such as the frame element 64. The lever arm 66 and thus the switch 62 is controlled by a cylinder-ram device, or stroke adjustment jack 70. The up and down limit switches 60, 62 are actuated by the actuator or plate 33, mounted on the ram 32 for movement thereby to limit the length of the stroke of the ram, and reverse the direction of the ram. The down limit switch 62 is adjustable vertically, as hereinafter described.
The die unit 36 includes a die 72 (FIG. 3) and a holder 74 therefor, the holder being secured in the bed 26 in any suitable manner as by a shoulder indicated at 73 and a retainer ring 73a. The die 72 may be made from hardened steel and includes a cavity 76 which may be any of various fixed cross-sectional shapes such as shown in FIG. 11, for example, round, square, and triangular designated respectively as 76a, 76b and 760. The die 76 is open at both ends and the cavity 76 is ground to a smooth finish. Preferably, the grinding is performed in the direction of compaction of the powdered metal. The die holder 74 has a threaded counterbore 78 in line with the cavity 76 for receiving a stopper or closure plug 79 which is placed in position in the initial portion of the forming operation as explained hereinbelow, and later removed. Such a plug is shown in position in FIGS. 3 and 6, and removed therefrom in FIG. 7, wherein a portion of the formed bar or rod extends beyond the die cavity 76 and through the threaded counterbore 78.
In the operation of the press, a supply of the powdered metal 56 is maintained in the supply hopper 52 and the powdered metal flows through the spout 54 into the feed hopper 50 and feed aperture 46 of the feed shoe 44. The feed aperture 46 is closed-off by the base until the shoe 44 moves to advanced position and is aligned with the die cavity 76. When in alignment, the powdered metal flows through the feed aperture 46 until the cavity 76 is filled. In this manner the quantity of powder introduced into the die is controlled or determined by the volume of the space in the die cavity 76 above the stopper 79 or rod segment remaining in the die as more fully to be described hereinafter. It is also possible to control the quantity of powdered metal by other means. Upon retraction of the feed shoe 44, the press cylinder 30 is pressurized through line 85 (FIG. 4) to actuate ram 32 so that the punch 34 enters the die cavity 76 to compact the powdered metal against the stopper or rod in the cavity 76. Successive quantities of powdered metal are introduced and compacted and bonded to the preceding compacted powdered metal to form the bar 94 as more fully to be described hereinafter. As the bar or rod 94 is formed, it is forced downwardly out of the die 36 and into the sintering furnace 38 through a central opening 82, and after the rod passes through the sintering furnace, it continues through the rotary swager 40. This swager is of known construction and need not be described in detail. Generally, it is of the creeping spindle type, which prevents rotation of the bar 94. The swager reduces the diameter of the bar to a suitable extent, such for example as one-half of the cross-sectional area at 76, and as the bar passes through the swager it is wound on the reel 42 or placed in other suitable supply holders. The sintering furnace 38 includes a body (FIGS. 1 and 5) with the longitudinal opening 82 therein. The furnace is heated by induction coils 84 (FIG. 5) of suitable number and capacity to provide the desired temperature as referred to hereinbelow.
In the initial compaction of the powder to form the bar 94, the closure plug 79 is inserted in the counterbore 78 and a quantity of powdered metal is placed in the die cavity and compacted against the plug to form a segment of the bar. If the segment, thus formed has the desired physical characteristics and frictional resistance with the cavity wall to serve as a stop, the plug 79 is removed. The compacted segment of the bar in the cavity now serves as a stop means or stopper. If necessary, a plurality of quantities of metal powder may be compacted prior to removal of the plug 79 to achieve a length of bar having the requisite frictional engagement with the cavity wall to serve as a stopper. Another quantity of powder is introduced and another compaction performed. This quantity is compacted against the last formed segment of the bar in the cavity and bonded thereto. When the ram approaches the end of its stroke the force transmitted through the compacted segment is sufficient to overcome the frictional forces between the rod and the cavity wall so that the bar 94 is projected at least partially out of the die cavity. This process is repeated until the bar is of a desired length.
FIGS. 8 and 9 show non-planar end surfaces of the punch, FIG. 8 showing a corrugated waffle pattern 80' while FIG. 9 shows a corrugated ripple pattern 82. These corrugations form a corresponding configuration in the end of the segment thereby causing bonding of the succeeding quantity of powdered metal thereto during compaction in the die 72 as a further segment of the bar.
FIG. 4 shows an electro hydraulic system for controlling the length of the stroke of the press ram 32 to compensate for the changes in volume in the die cavity 76 for reasons which will become apparent hereinafter. The press cylinder of jack 30 is incorporated in a hydraulic circuit 85 which also includes high and low switches 86, 87, respectively. These switches are ordinary pressure actuated switches and are responsive to the pressure forces sensed in the cylinder 30. FIG. 4 also shows a hydraulic valve 88 actuated by solenoids 89-89 which in turn are activated by internal controls (not shown) in the press for reciprocating the cylinder or jack 30 as referred to above. This valve and the actuation thereof by the solenoids are well-known in the art.
The stroke adjustment ram 70 is associated with the hydraulic valve 88 and solenoid 89 for controlling the length of the stroke of the ram. Controlling the stroke adjustment ram 70 is a hydraulic valve 90 also of known kind and which may be of the same kind as the valve 88, actuated by an up solenoid 92 and a down solenoid 95 controlled, respectively, by the high and low pressure switches 86, 87. As the press ram 32 descends to engage the down limit switch 62, the switches 86, 87 sense the pressure applied by the ram. If the pressure so sensed is higher than a predetermined maximum value the high pressure switch 86 senses the pressure in the hydraulic line 85, and energizes the up solenoid 92 which thereby actuates the valve 90 which controls the jack 70, retracting the piston therein and lowering the down limit switch 62. This lengthens the extent of the travel of the press ram 32. On the other hand, if the pressure is less than a predetermined minimum value the low pressure switch 87 senses that pressure, and actuates the down solenoid 95 which actuates the jack 70 in the opposite direction. This results in raising the down limit switch 62 to shorten the travel of ram 32 (FIG. 2).
Thus the force exerted by the punch in compacting the powder in the die against the previously formed length of bar remaining seated in the die is measured. This compacting force also equals the resisting frictional force between the previously formed length of bar remaining in the die and the die wall. As heretofore mentioned, the frictional force between the previously compacted slug and the cavity wall serve to retain the bar within the die to provide a stop means against which the powdered metal is compacted. The compacting and the corresponding ejecting force must therefore be greater than the frictional force existing at the cavity wall. At the same time the force must not be of a magnitude that causes compacted powder to be wedged within the cavity so that it cannot be extracted without either damaging the bar or the die. On the other hand, the force applied must be such that the powdered metal is compacted and bonded to the previously formed length of bar. In establishing the prerequisite force, the initial pressing force or pressure is critical in order to produce a bar having the desired green compact characteristics, primarily density. Preferably, such green compact bar should have about a 70 percent density so as to be self-supporting and capable of withstanding the handling forces imposed thereon during transfer to a sintering or swaging station or the like.
Further factors in the carrying out of the method of the present invention are die design, surface area of the formed bar remaining in the die, powder properties, and lubrication.
The die is made from a material having a hardness and surface finish which minimizes galling. Preferably, the die surface or cavity wall is ground in the direction in which the rod is pressed or forced through the die. The die is also provided with a radius 76a at the punch entrance end thereof to serve as a punch guide. A short distance at the exit end 76b of the cavity 76 is tapered or flared outwardly to the extent that the compacted rod is permitted to expand gradually. The gradual taper allows the rod to expand as the compacted material attempts to relieve itself of the stresses developed during compaction. In the absence of taper the rod may crack due to a sudden or abrupt expansion.
The powder properties such as particle size, hardness, and particle size distribution may affect the friction developed at the cavity wall during compaction. These properties will affect the pressing pressures and the slug length.
The metal powder mix also includes a lubricant. The lubricant will affect the frictional characteristics along the cavity during compaction.
The above factors are all considered for producing a rod of substantially constant density along its length. However, because of variations in the metal powder properties, lubrication and the like, it is not possible to precisely predict the total length of the bar which remains in the die after each compaction. The total area of the rod remaining in the die directly determines the frictional resisting force and the compacting force whichmust be applied to eject the rod from the die. When the die is filled to the end of the cavity an increase or decrease of the volume remaining in the die results in corresponding decrease or increase in the volume of metal powders to be compacted. Under these conditions there is also coresponding increase or decrease in the compacting force sensed by the high pressure switch 86 and low pressure switch 87. This causes the stroke adjustment ram to be adjusted as above explained to achieve the desired uniform physical characteristics. This measurement and adjustment is not only made during the initial formation of the bar, but is also made whenever the physical characteristics of the bar deviate from the desired characteristics.
In carrying out the method, powder of the material desired, e.g., iron, stainless steel composition, etc. of a size of less than 500 microns is generally utilized. A lubricant which may for example be --Acrawax C-- made by Glyco Chemical Co., or any of various other kinds of prior art lubricants, is thoroughly admixed with the powder.
In one practical example of utilizing the method, a stainless steel powder was compacted in the die to about one-half its original volume. The stainless steel was a type 316 stainless steel having the following composition:
The above stainless steel composition was admixed with Acrawax C to about l%% of the powder by weight.
The powder was introduced into the die cavity filling a length of the latter of about 3 inches, and after compaction it formed a segment of the bar of about 1% inches.
The adjacent segments were compacted and bonded together as mentioned above, forming a continuous integral bar, identified at 94, the segments being individually identified 96 (FIG. 10) and the bond therebetween at 98. In actual practice, the line 98 was substantially undiscernible. When the bar was subjected to bending stresses during test there was no greater tendency for the bar to break at 98 than at any other location stressed to the breaking point.
As each new quantity of powder was introduced and a segment formed, the continuous integral bar was forced out of the lower end of the die and continuously through the furnace as noted above, and in the sintering operation, the lubricant was burned out of the bar.
In the initial compacting step, when the closure plug 79 was in place, a compaction pressure of about 20-25 tons per square inch (tsi) was utilized. After the plug was removed, and a subsequent quantity of powdered metal was introduced into the die cavity, a greater compacting pressure was utilized, such as between 30 and 40 tsi, and at an average of about 35 tsi.
The continuous bar thus formed was sintered at a temperature of the order of about 2,150 F., preferably for a period of about one-half minute.
The bond 98 was along an irregular or non-planar conformation formed by a correspondingly shaped end surface of the punch, as shown in FIG. 9, the bond including overlapping extensions or elements which enhances bonding. It has been found that the strength at the bond is substantially the same as in other portions of the bar 94 both after green compaction and after sintering.
The pressure utilized creates substantial green strength in the bar, i.e., strength after compacting but before sintering, so that the bar can be handled in its green state without disintegration particularly when forcing it out of the die' and through the sintering furnace.
Metal powders of A.I.S.l. M-2 tool steel, Eatonite, Copper l-RXN, aluminum type 60l-AS (Alcoa), stellite-6B, and iron powder of A. O. Smith Inland 300M were compacted in a manner generally similar to the method described above. The metal powders of each of the different ferrous and non-ferrous metals were continuously formed into a green rod of a desired length and capable of being self-supporting and handling.
What is claimed is:
1. A press for continuously forming continuous bar comprising a die having a cavity, means for introducing a selective amount of powdered metal into the die cavity, a ram and punch reciprocable toward and from the die, lengthwise spaced limit means engaged by the ram for controlling and reversing the movement of the ram in response to engagement by a respective one of the limit means, the ram being operative on advance stroke to move the punch into the die cavity, the engagement of the punch with the powdered metal in the die cavity developing reaction pressure, and means for relocating one of said limit means and thereby adjusting the length of each advance stroke of the ram and punch in direct proportion to said reaction pressure during that stroke.
2. A press according to claim 1 wherein the means for adjusting the length of the stroke is operative for increasing that length in response to higher reaction pressure than a predetermined value and reducing that length in response to a lower reaction pressure.

Claims (2)

1. A press for continuously forming continuous bar comprising a die having a cavity, means for introducing a selective amount of powdered metal into the die cavity, a ram and punch reciprocable toward and from the die, lengthwise spaced limit means engaged by the ram for controlling and reversing the movement of the ram in response to engagement by a respective one of the limit means, the ram being operative on advance stroke to move the punch into the die cavity, the engagement of the punch with the powdered metal in the die cavity developing reaction pressure, and means for relocating one of said limit means and thereby adjusting the length of each advance stroke of the ram aNd punch in direct proportion to said reaction pressure during that stroke.
2. A press according to claim 1 wherein the means for adjusting the length of the stroke is operative for increasing that length in response to higher reaction pressure than a predetermined value and reducing that length in response to a lower reaction pressure.
US448819A 1974-03-07 1974-03-07 Apparatus for making bars from powered metal Expired - Lifetime US3897184A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US448819A US3897184A (en) 1974-03-07 1974-03-07 Apparatus for making bars from powered metal
US05/562,873 US4025337A (en) 1974-03-07 1975-03-28 Continuous method of and apparatus for making bars from powdered metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US448819A US3897184A (en) 1974-03-07 1974-03-07 Apparatus for making bars from powered metal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/562,873 Division US4025337A (en) 1974-03-07 1975-03-28 Continuous method of and apparatus for making bars from powdered metal

Publications (1)

Publication Number Publication Date
US3897184A true US3897184A (en) 1975-07-29

Family

ID=23781813

Family Applications (1)

Application Number Title Priority Date Filing Date
US448819A Expired - Lifetime US3897184A (en) 1974-03-07 1974-03-07 Apparatus for making bars from powered metal

Country Status (1)

Country Link
US (1) US3897184A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030919A (en) * 1975-03-21 1977-06-21 Amsted Industries Incorporated Continuous method of and apparatus for making bars from powdered metal
US4124347A (en) * 1976-07-13 1978-11-07 Miller James F Apparatus for forming synthetic logs
JPS5421909A (en) * 1977-07-21 1979-02-19 Glacier Gmbh Werke Method and apparatus for extruding powdered metal materials
US4191522A (en) * 1977-05-23 1980-03-04 Entek Corporation Extruding machine and end products
EP0128258A1 (en) * 1983-06-09 1984-12-19 BOVO S.a.s. dei F.lli Pillon Claudio e Paolo & C. Apparatus for shaping food products
US4895506A (en) * 1987-12-02 1990-01-23 Danieli & C. Officine Meccaniche Spa Extrusion press
US5534207A (en) * 1994-07-08 1996-07-09 Natural Resource Recovery, Inc. Method and apparatus for forming an article from recyclable plastic materials
US20050227772A1 (en) * 2004-04-13 2005-10-13 Edward Kletecka Powdered metal multi-lobular tooling and method of fabrication
CN103706786A (en) * 2013-12-24 2014-04-09 北京国药龙立自动化技术有限公司 Pressing demoulding method of equal-density pressing machine
CN104353830A (en) * 2014-11-11 2015-02-18 南通富仕液压机床有限公司 Upper-three lower-five dry powder automatic forming formwork
CN113414395A (en) * 2021-08-25 2021-09-21 南通申东冶金机械有限公司 Powder metallurgy continuous extrusion device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1806300A (en) * 1930-02-01 1931-05-19 Moraine Products Company Briquetting machine
US2289787A (en) * 1937-12-24 1942-07-14 Kaschke Kurt Production of shaped articles from metal powder
US2389561A (en) * 1942-06-15 1945-11-20 Stokes Machine Co Molding press
US2499980A (en) * 1944-01-07 1950-03-07 Stokes Machine Co Press for molding annular stepped articles
US2651952A (en) * 1947-11-24 1953-09-15 Climax Molybdenum Co Die for extruding compressed powder rods
US2904835A (en) * 1956-12-10 1959-09-22 Ethyl Corp Sludge deliquefying-compacting press
US2984866A (en) * 1959-06-04 1961-05-23 Steatite Res Corp Process and apparatus for filling and orienting dry, hard ferromagnetic powders into molds
US3264388A (en) * 1962-02-02 1966-08-02 Kaiser Aluminium Chem Corp Method of continuously hot pressing powdered refractory material
US3491407A (en) * 1967-12-18 1970-01-27 Ibm Press for ferrite cores
US3579741A (en) * 1968-11-04 1971-05-25 Lester Engineering Co Machine and clamp force control system therefor
US3734663A (en) * 1971-11-16 1973-05-22 Upjohn Co Arming control for servo-adjusted tablet compressing machines
US3788787A (en) * 1971-11-26 1974-01-29 H Silbereisen Hydraulic metal powder press
US3819774A (en) * 1968-05-09 1974-06-25 Buehler Ag Geb Method for controlling operation of a press

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1806300A (en) * 1930-02-01 1931-05-19 Moraine Products Company Briquetting machine
US2289787A (en) * 1937-12-24 1942-07-14 Kaschke Kurt Production of shaped articles from metal powder
US2389561A (en) * 1942-06-15 1945-11-20 Stokes Machine Co Molding press
US2499980A (en) * 1944-01-07 1950-03-07 Stokes Machine Co Press for molding annular stepped articles
US2651952A (en) * 1947-11-24 1953-09-15 Climax Molybdenum Co Die for extruding compressed powder rods
US2904835A (en) * 1956-12-10 1959-09-22 Ethyl Corp Sludge deliquefying-compacting press
US2984866A (en) * 1959-06-04 1961-05-23 Steatite Res Corp Process and apparatus for filling and orienting dry, hard ferromagnetic powders into molds
US3264388A (en) * 1962-02-02 1966-08-02 Kaiser Aluminium Chem Corp Method of continuously hot pressing powdered refractory material
US3491407A (en) * 1967-12-18 1970-01-27 Ibm Press for ferrite cores
US3819774A (en) * 1968-05-09 1974-06-25 Buehler Ag Geb Method for controlling operation of a press
US3579741A (en) * 1968-11-04 1971-05-25 Lester Engineering Co Machine and clamp force control system therefor
US3734663A (en) * 1971-11-16 1973-05-22 Upjohn Co Arming control for servo-adjusted tablet compressing machines
US3788787A (en) * 1971-11-26 1974-01-29 H Silbereisen Hydraulic metal powder press

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030919A (en) * 1975-03-21 1977-06-21 Amsted Industries Incorporated Continuous method of and apparatus for making bars from powdered metal
US4124347A (en) * 1976-07-13 1978-11-07 Miller James F Apparatus for forming synthetic logs
US4191522A (en) * 1977-05-23 1980-03-04 Entek Corporation Extruding machine and end products
JPS5421909A (en) * 1977-07-21 1979-02-19 Glacier Gmbh Werke Method and apparatus for extruding powdered metal materials
JPS5649963B2 (en) * 1977-07-21 1981-11-26
EP0128258A1 (en) * 1983-06-09 1984-12-19 BOVO S.a.s. dei F.lli Pillon Claudio e Paolo & C. Apparatus for shaping food products
US4895506A (en) * 1987-12-02 1990-01-23 Danieli & C. Officine Meccaniche Spa Extrusion press
US5534207A (en) * 1994-07-08 1996-07-09 Natural Resource Recovery, Inc. Method and apparatus for forming an article from recyclable plastic materials
US20050227772A1 (en) * 2004-04-13 2005-10-13 Edward Kletecka Powdered metal multi-lobular tooling and method of fabrication
US20080236341A1 (en) * 2004-04-13 2008-10-02 Acument Intellectual Properties, Llc Powdered metal multi-lobular tooling and method of fabrication
CN103706786A (en) * 2013-12-24 2014-04-09 北京国药龙立自动化技术有限公司 Pressing demoulding method of equal-density pressing machine
CN103706786B (en) * 2013-12-24 2016-01-13 北京国药龙立自动化技术有限公司 The compacting release method of isodensity press
CN104353830A (en) * 2014-11-11 2015-02-18 南通富仕液压机床有限公司 Upper-three lower-five dry powder automatic forming formwork
CN113414395A (en) * 2021-08-25 2021-09-21 南通申东冶金机械有限公司 Powder metallurgy continuous extrusion device
CN113414395B (en) * 2021-08-25 2021-11-16 南通申东冶金机械有限公司 Powder metallurgy continuous extrusion device

Similar Documents

Publication Publication Date Title
US3897184A (en) Apparatus for making bars from powered metal
US3868201A (en) Powdered metal press
US2393130A (en) Powder metallurgy
US3191232A (en) Hydraulic compacting press
US4000231A (en) Method for compacting powders
US4466266A (en) Forging apparatus
US3647332A (en) Hydraulic press
US2986992A (en) Scrap baling press
US4025337A (en) Continuous method of and apparatus for making bars from powdered metal
US3168759A (en) Core punch and bottom stop therefor
US2482342A (en) Molding apparatus
US4449905A (en) Method of and arrangement for manufacturing enclosed blocks
US2319373A (en) Method of making metal articles
DE19533447C1 (en) Method for filling die with metal melt
US3550198A (en) Apparatus for compacting finely-granulated materials
US4030919A (en) Continuous method of and apparatus for making bars from powdered metal
CA1037212A (en) Continuous method of and apparatus for making bars from powdered metal
US1965670A (en) Apparatus for forming or coining metal objects
Turenne et al. Effect of temperature on the behaviour of lubricants during powder compaction
DE3130136A1 (en) DEVICE AND METHOD FOR HOT PRESSING CERAMIC MATERIALS
US2835573A (en) Hot pressing with a temperature gradient
JPS638728Y2 (en)
DE2524412A1 (en) Continuous bar forming press - compacts discrete quantities of powdered metal sequentially to form a continuous bar for sintering
SU1250393A1 (en) Arrangement for manufacturing two-layer articles of tubular form
US1101546A (en) Method of treating ingots.

Legal Events

Date Code Title Description
AS Assignment

Owner name: AMSTED INDUSTRIES INCORPORATED, A CORP. OF DE., IL

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:FIRST NATIONAL BANK OF CHICAGO, AS AGENT;REEL/FRAME:005070/0731

Effective date: 19880831