US3898299A - Production of gaseous olefins from petroleum residue feedstocks - Google Patents

Production of gaseous olefins from petroleum residue feedstocks Download PDF

Info

Publication number
US3898299A
US3898299A US412099A US41209973A US3898299A US 3898299 A US3898299 A US 3898299A US 412099 A US412099 A US 412099A US 41209973 A US41209973 A US 41209973A US 3898299 A US3898299 A US 3898299A
Authority
US
United States
Prior art keywords
alumina
range
hydrogenation
phase containing
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US412099A
Inventor
John Robert Jones
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BP Chemicals Ltd
Original Assignee
BP Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BP Chemicals Ltd filed Critical BP Chemicals Ltd
Application granted granted Critical
Publication of US3898299A publication Critical patent/US3898299A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Definitions

  • distillate fraction from (d) subjecting the distillate fraction from (d) to thermal cracking in the presence of steam thereby converting at least a portion of the liquid phase to normally gaseous hydrocarbons and recovering the normally gaseous olefins from the pyrolysis zone effluent.
  • the present invention relates to a process for the production of normally gaseous olefins from atmospheric petroleum residue feedstocks.
  • the residue from the atmospheric distillation unit hereinafter to be referred to as an atmospheric petroleum residue feedstock, is composed of fractions boiling under atmospheric pressure at a temperature greater than 300C. This residue may either be used directly as fuel oil or as feedstock to a distillation unit operating at reduced pressure.
  • the distillate from the distillation unit operating at reduced pressure otherwise known as a vacuum distillate, may be used as catalytic cracker feedstock or used in lubricating oil manufacture whilst the residue, hereinafter to be referred to as the vacuum residue, may be blended for use as fuel oil.
  • a process for the production of normally gaseous olefins from an atmospheric petroleum residue feedstock which process comprises contacting the atmospheric petroleum residue feedstock in a hydrogenation Zone with a hydrogenation catalyst and hydrogen under conditions which effect hydrogenation of aromatic hydrocarbons, separating from the resulting hydrogenated atmospheric petroleum residue feedstock a gaseous phase containing hydrogen and a liquid phase containing hydrocarbons. recycling at least a portion of said gaseous phase to said hydrogenation zone.
  • Distillate fraction withinthe context of the present application means that fraction of the liquid phase containing hydrocarbons having a boiling range below 650C at atmospheric pressure and residue fraction that fraction having a boiling range above that of the distillate fraction.
  • normally gaseous olefins within the context of the present application is intended to mean olefins which exist in the form of gases at normal temperature and pressure.
  • the whole of the liquid phase containing hydrocarbons resulting from the hydrogenation of the atmospheric petroleum residue feedstock may, after separation of a gaseous phase containing hydrogen, be fed in the presence of steam directly to the pyrolysis zone wherein unvapourised feedstock is removed as a residue fraction-in a separation zone prior to entry of the vapourised distillate fraction into that region of the pyrolysis zone maintained under conditions which effect thermal cracking.
  • the temperature of the liquid phase containing hydrocarbons/steam mixture fed to the pyrolysis zone is preferably regulated to maximise the proportion of hydrocarbons in the distillate fraction without promoting incipient thermal cracking of the mixture.
  • Thermal cracking within the context of this application is intended to include steam cracking but not catalytic cracking.
  • Hydrogenation of the petroleum residue feedstock not only achieves hydrogenation of aromatics thereby leading to a reduction in boiling point of the compounds involvedand an increase in the proportion of the feedstock available for thermal cracking to gaseous olefins but also effects desulphurisation of the feedstock, leads to substantially increased yields of useful olefins for a given quantity of feedstock and results in a reduction of coke laydown in the cracking coil and of tar deposits in transfer lines and heat exchangers.
  • a typical nickel/tungsten/silica/alumina catalyst may have the composition 1-6 per cent by weight of nickel and 9-27 per cent by weight of tungsten, with a silica to alumina ratio in the range 90:10 to 25:75 but compositions outside this range are also effective.
  • Cobalt- /molybdnum/alumina catalysts produced commercially may contain up to 0.5% silica. I
  • the catalyst may conveniently be prepared by impregnating the support with an aqueous solution of a salt of each of the metals, either consecutively or simultaneously.
  • nickel may be added in the form of nickel nitrate, tungsten as ammonium metatungstate, cobalt as cobalt nitrate, acetate etc. and molybdenum as ammonium molybdate. It will usually be found convenient to impregnate the support first with the salt of the metal which is to be present in the highest concentration in the finished catalyst though this is not essential.
  • Other methods of preparing the catalyst include precipitating the metals on the support from a solution of their salts and co-precipitation of the metals with the hydrated support material.
  • the catalysts be activated before use in the reaction by contact with a stream of hydrogen at a temperature in the range 100 to 800C, more preferably 300 to 600C for a period of 1 minute to 24 hours.
  • the catalyst may also be used in the sulphided form.
  • the sulphided form of the catalyst may conveniently be prepared by passing hydrogen through liquid tetrahydrothiophene and then'over the catalyst maintained at a temperature in the range 100C to 800C, preferably 300C to 600C for a period of l minute to 24 hours.
  • the hydrogenation temperature may be in the range 50 to 500C, preferably 300 to 400C and the pressure may be in the range 50 to 500 psig. preferably 200 to 3000 psig.
  • Hydrogenation may be carried out in a singlestage or in a series of two or more operations using the same or different catalysts.
  • Thermal cracking of the distillate fraction in the presence of steam may suitably be effected at a steam to hydrocarbon weight ratio of about 0.5:1 to 2.0: l in a heated zone, preferably a tube, at a maximum temperature in the range 700 to 1000C with a residence time in the temperature range between 0.01 and 5 seconds, preferably 0.1 to 2.0 seconds.
  • the products may be rapidly cooled in a heat exchange system and separated and purified by conventional means.
  • olefins e.g. ethylene and propylene are used as feedstocks for the production of a wide variety of chemical and polymeric products.
  • iEXAMPLE 1 A 300 g sample of the Kuwait atmospheric residue used in the comparison test was hydrogenated in a 1 litre rocking autoclave at 370C under 2500 psig. of hydrogen during 24 hours using g of a cobalt oxide/' molybdenum oxide/alumina catalyst.
  • the catalyst containing 3.9 per cent weight cobalt, 19.7 per cent weight molybdenum, and less than 0.1 per cent weight silica, and after calcination in air at 550C for 2 hours was activated in a stream of hydrogen at 400C for 24 hours.
  • the recovered hydrogenated'atmospheric residue had a hydrogen to carbon atomic ratio of 1.86 and a sulphur content of 0.14 per cent weight.
  • the vacuum distillate was steam cracked under the same conditions as were used in the comparison test.
  • the ethylene and propylene yields were 24 and 1 1 per cent weight on feed respectively with a total conversion to cracked gas of 57 per cent.
  • EXAMPLE 2 A 300 g sample of the Kuwait atmospheric residue used in the comparison test was hydrogenated in a 1 litre rocking autoclave at 370C under 2500 psig. of hydrogen during 24 hours using 54.5 g. of a nickel oxide/- tungsten oxide/silica/alumina catalyst.
  • the catalyst contained 4.9 per cent weight nickel, 15.9 per cent weight tungsten and the silica to alumina ratio was 3: 1.
  • the catalyst was again first calcined in air at 550C for 2 hours and then immediately before use it was activated at 400C in a stream of hydrogen for 24 hours.
  • the recovered hydrogenated atmospheric residue had a hydrogen to carbon atomic ratio of 1.79 and a sulphur content of 0.28 per cent weight.
  • a process for the production of normally gaseous olefins from an atmospheric petroleum residue feedstock which process comprises the steps of:
  • a hydrogenation catalyst selected from nickel/molybdenum/alumina, cobalt- /tungsten/alumina, nickel/tungsten/alumina, cobalt/molybdenum/alumina. nickel/cobalt/molybdenum/alumina. cobalt/molybdenum/- silica/alumina. nickel/molybdenum/silica/alumina,
  • thermal cracking of the distillate fraction in the presence of steam is effected at a steam to hydrocarbon weight ratio of 0.5:1 to 2.021 in a heated zone at a maximum temperature in the range 700 to 1,000C with a residence time in this range between 0.01 and 5 seconds.

Abstract

Normally gaseous olefins are produced from an atmospheric petroleum residue feedstock by: A. CONTACTING THE FEEDSTOCK IN A HYDROGENATION ZONE WITH A HYDROGENATION CATALYST, OF WHICH NICKEL/TUNGSTEN/SILICA/ALUMINA AND COBALT/MOLYBDENUM/ALUMINA ARE MOST SUITABLE, UNDER CONDITIONS WHICH EFFECT HYDROGENATION OF AROMATIC HYDROCARBONS. Typical conditions are a temperature in the range 50* to 500*C, a pressure in the range 50 to 500 psig, and an LHSV of 0.1 to 5.0 with a hydrogen feed rate of 5 to 10 times the molar feed rate of the feedstock. B. SEPARATING FROM THE HYDROGENATED FEEDSTOCK A GASEOUS PHASE CONTAINING HYDROGEN AND A LIQUID PHASE CONTAINING HYDROCARBONS. C. RECYCLING AT LEAST A PORTION OF SAID GASEOUS PHASE CONTAINING HYDROGEN TO SAID HYDROGENATION ZONE. D. SEPARATING THE LIQUID PHASE FROM (C) INTO A DISTILLATE FRACTION HAVING A BOILING RANGE BELOW 650*C and a residue fraction having a higher boiling range, advantageously by vacuum distillation. E. SUBJECTING THE DISTILLATE FRACTION FROM (D) TO THERMAL CRACKING IN THE PRESENCE OF STEAM THEREBY CONVERTING AT LEAST A PORTION OF THE LIQUID PHASE TO NORMALLY GASEOUS HYDROCARBONS AND F. RECOVERING THE NORMALLY GASEOUS OLEFINS FROM THE PYROLYSIS ZONE EFFLUENT.

Description

United States Patent [191 Jones Aug. 5, 1975 [75] Inventor: John Robert Jones,
Walton-on-Thames, England [73] Assignee: BP Chemicals International Limited,
Great Britain [22] Filed: Nov. 2, 1973 [21] Appl.No.: 412,099
[30] Foreign Application Priority Data Nov. 8, 1972 United Kingdom 51435/72 [52] U.S. Cl 260/683 R; 208/57; 208/61; 208/89 [51] Int. Cl C10g 37/00 [58] Field of Search 260/683 R; 208/57, 61, 208/89 [56] References Cited UNITED STATES PATENTS 3.162.596 12/1964 Anderson ct a1, 208/89 3,511,771 5/1970 Hamner 208/89 3,539,496 1l/1970 Steenberg et a1. 208/89 3.617.501 11/1971 Eng et al 208/89 3,720,729 3/1973 Sze et al. 208/57 3,781.195 12/1973 Davis et al. 208/57 Primary E.\aminerDelbert E. Gantz Assistant E.\'uminerC. E. Spresser ABSTRACT Normally gaseous olefins are produced from an atmospheric petroleum residue feedstock by:
a. contacting the feedstock in a hydrogenation zone separating from the hydrogenated feedstock a gaseous phase containing hydrogen and a liquid phase containing hydrocarbons.
. recycling at least a portion of said gaseous phase containing hydrogen to said hydrogenation zone.
. separating the liquid phase from (c) into a distillate fraction having a boiling range below 650C and a residue fraction having a higher boiling range, advantageously by vacuum distillation.
. subjecting the distillate fraction from (d) to thermal cracking in the presence of steam thereby converting at least a portion of the liquid phase to normally gaseous hydrocarbons and recovering the normally gaseous olefins from the pyrolysis zone effluent.
.10 Claims, No Drawings PRODUCTION OF GASEOUS OLEFINS FROM PETROLEUM RESIDUE FEEDSTOCKS The present invention relates to a process for the production of normally gaseous olefins from atmospheric petroleum residue feedstocks.
In the operation of a typical oil-refinery crude oil is initially fed to a distillation unit where it is separated at atmospheric pressure into benzine (motor spirit). naphtha, kerosine and gas oil. The residue from the atmospheric distillation unit, hereinafter to be referred to as an atmospheric petroleum residue feedstock, is composed of fractions boiling under atmospheric pressure at a temperature greater than 300C. This residue may either be used directly as fuel oil or as feedstock to a distillation unit operating at reduced pressure. The distillate from the distillation unit operating at reduced pressure, otherwise known as a vacuum distillate, may be used as catalytic cracker feedstock or used in lubricating oil manufacture whilst the residue, hereinafter to be referred to as the vacuum residue, may be blended for use as fuel oil.
An alternative use for the vacuum distillate is described in Davis et al. U.S. Pat. No. 3,78l,l95. which describes a process for the production of olefins by hydrogenating a petroleum distillate feedstock in the presence of a hydrogenation catalyst and hydrogen and thermally cracking the resulting hydrogenated product in the presence of steam. Whilst this process leads to a number of substantial advantages there are disadvantages when using high sulphur feedstock (e.g. from typical Middle East sources). Using these feedstocks a large quantity of vacuum residue is co-produced with the vacuum distillate. The vacuum residue contains higher sulphur levels than the initial petroleum residue feedstock to the vacuum distillation unit and is more difficult to desulphurise than either the vacuum distillate or the petroleum residue feedstock. With increasing restrictions on fuel oil sulphur levels in many countries high sulphur vacuum residues will become increasingly difficult to dispose of and will consequently adversely effect the economics of the overall process. Further only a part of the atmospheric petroleum residue feedstock is utilised as hydrogenated petroleum distillate feedstock to the steam cracker, the remaining carbon in the vacuum residue being lost to olefins production.
It has now been discovered that the first of these disadvantages can be substantially overcome and the fraction of the atmospheric petroleum residue feedstock utilised as feedstock to the steam cracker increased by hydrogenating the atmospheric petroleum residue feedstock prior to distillation.
Thus according to the present invention there is provided a process for the production of normally gaseous olefins from an atmospheric petroleum residue feedstock which process comprises contacting the atmospheric petroleum residue feedstock in a hydrogenation Zone with a hydrogenation catalyst and hydrogen under conditions which effect hydrogenation of aromatic hydrocarbons, separating from the resulting hydrogenated atmospheric petroleum residue feedstock a gaseous phase containing hydrogen and a liquid phase containing hydrocarbons. recycling at least a portion of said gaseous phase to said hydrogenation zone. separating said liquid phase into a distillate fraction and a residue fraction, subjecting said distillate fraction in the presence of steam to thermal cracking in a pyrolysis zone under conditions effecting conversion of at least a portion of said liquid phase to normally gaseous olefins and thereafter recovering the normally gaseous olefins from the pyrolysis zone effluent.
Distillate fraction withinthe context of the present application means that fraction of the liquid phase containing hydrocarbons having a boiling range below 650C at atmospheric pressure and residue fraction that fraction having a boiling range above that of the distillate fraction.
The term normally gaseous olefins within the context of the present application is intended to mean olefins which exist in the form of gases at normal temperature and pressure.
The whole of the liquid phase containing hydrocarbons resulting from the hydrogenation of the atmospheric petroleum residue feedstock may, after separation of a gaseous phase containing hydrogen, be fed in the presence of steam directly to the pyrolysis zone wherein unvapourised feedstock is removed as a residue fraction-in a separation zone prior to entry of the vapourised distillate fraction into that region of the pyrolysis zone maintained under conditions which effect thermal cracking. The temperature of the liquid phase containing hydrocarbons/steam mixture fed to the pyrolysis zone is preferably regulated to maximise the proportion of hydrocarbons in the distillate fraction without promoting incipient thermal cracking of the mixture.
It is preferred however to separate the liquid phase containing hydrocarbons resulting from hydrogenation of the atmospheric petroleum residue fraction, after separation of a gaseous phase containing hydrogen, into a distillate fraction and a residue fraction by distillation under reduced pressure and feed only the vacuum distillate fraction in the presence of steam to the pyrolysis zone.
Thermal cracking within the context of this application is intended to include steam cracking but not catalytic cracking.
Hydrogenation of the petroleum residue feedstock not only achieves hydrogenation of aromatics thereby leading to a reduction in boiling point of the compounds involvedand an increase in the proportion of the feedstock available for thermal cracking to gaseous olefins but also effects desulphurisation of the feedstock, leads to substantially increased yields of useful olefins for a given quantity of feedstock and results in a reduction of coke laydown in the cracking coil and of tar deposits in transfer lines and heat exchangers.
It is important to avoid excessive breakdown of the feedstock in a hydrocracking type of reaction. A limited amount of hydrocracking can be tolerated and may even give the benefit of producing a more mobile product but excessive hydrocracking leads to the use of larger quantities of hydrogen with increased manufacturing costs and to the formation of products which do not give corresponding benefits in further increases in the yield of olefins.
Any catalyst which is capable of catalysing the hydrogenation of compounds containing aromatic rings without substantial structural alteration or breakdown may be used. Since most feedstocks contain sulphur and nitrogen compounds it is desirable that the catalyst should also possesssome tolerance to these materials and their'hydrogenation products. Hydrogenation catalysts embodying these requisites include for example nickellmolybdenum/alumina, cobaltltungstenlalumina, nickel/tungsten/alumina, cobalt/molybdenum/alumina, nickel/cobalt/molybdenum/alumina, cobalt/molybdenum/silica/alumina, nicke1/molybdenum/- silica/alumina, cobalt/tungsten/silica/alumina and nickel/tungsten/silica/alumina. Particularly active hydrogenation catalysts are nickel/tungsten/silica/alumina and cobalt/molybdenum/alumina of which nickel/tungsten/silica/alumina is preferred.
A typical nickel/tungsten/silica/alumina catalyst may have the composition 1-6 per cent by weight of nickel and 9-27 per cent by weight of tungsten, with a silica to alumina ratio in the range 90:10 to 25:75 but compositions outside this range are also effective. Cobalt- /molybdnum/alumina catalysts produced commercially may contain up to 0.5% silica. I
The catalyst may conveniently be prepared by impregnating the support with an aqueous solution of a salt of each of the metals, either consecutively or simultaneously. Thus nickel may be added in the form of nickel nitrate, tungsten as ammonium metatungstate, cobalt as cobalt nitrate, acetate etc. and molybdenum as ammonium molybdate. It will usually be found convenient to impregnate the support first with the salt of the metal which is to be present in the highest concentration in the finished catalyst though this is not essential. Other methods of preparing the catalyst include precipitating the metals on the support from a solution of their salts and co-precipitation of the metals with the hydrated support material.
It is preferred that, the catalysts be activated before use in the reaction by contact with a stream of hydrogen at a temperature in the range 100 to 800C, more preferably 300 to 600C for a period of 1 minute to 24 hours.
Although the metallic components of the aforementioned hydrogenation catalysts are defined in terms of the elemental metals present therein, after activation, at least, the metals will be present in the form of oxides. The precise nature of the active species in the hydrogenation catalysts after contact for some time with the atmospheric petroleum residue feedstock under hydrogenation conditions is now known, though it is possible that they contain in addition to the support, elemental metal, metal oxides, metal sulphides and complex aluminium or silicon/metal compounds.
Although it will usually be convenient to employ the hydrogenation catalyst without prior exposure to materials containing sulphur at least initially, the catalyst may also be used in the sulphided form. The sulphided form of the catalyst may conveniently be prepared by passing hydrogen through liquid tetrahydrothiophene and then'over the catalyst maintained at a temperature in the range 100C to 800C, preferably 300C to 600C for a period of l minute to 24 hours.
Using nickel and cobalt catalysts the hydrogenation temperature may be in the range 50 to 500C, preferably 300 to 400C and the pressure may be in the range 50 to 500 psig. preferably 200 to 3000 psig.
The hydrocarbon Liquid Hourly Space Velocity (LHSV) may be in the range 0.1 to 5.0 preferably 0.1 to 2.0, even more preferably 0.1 to 0.5. For catalysts other than those containing cobalt or nickel the reaction conditions may be different.
Hydrogen is preferably fed to the hydrogenation zone at about to 10 times the molar rate of the atmospheric separator'a'nd either recycled to the hydrogenation zone or used as fuel gas.
Whilst'the process will normally be operated continuously other methods of operation, may also be used such as batch operation in an autoclave.
Hydrogenation may be carried out in a singlestage or in a series of two or more operations using the same or different catalysts. I
- Thermal cracking of the distillate fraction in the presence of steam may suitably be effected at a steam to hydrocarbon weight ratio of about 0.5:1 to 2.0: l in a heated zone, preferably a tube, at a maximum temperature in the range 700 to 1000C with a residence time in the temperature range between 0.01 and 5 seconds, preferably 0.1 to 2.0 seconds. The products may be rapidly cooled in a heat exchange system and separated and purified by conventional means.
Normally gaseous olefins e.g. ethylene and propylene are used as feedstocks for the production of a wide variety of chemical and polymeric products.
The process of the invention is illustrated by the following Examples:
COM PARlSON TEST A sample of Kuwait atmospheric residue with a hydrogen to carbon ratio of 1.59 and a sulphur content of 4.26 per cent weight was vacuum distilled. The initial boiling point of the atmospheric residue was 296.5C, and 54 per cent,volume distilled up to a cut-point temperature of 550C (corrected to atmospheric pressure). The distillate had a hydrogen to carbon atomic ratio of 1.70 and a sulphur content of 3.15 per cent weight. Analysis indicated that the carbon content in aromatic rings was 19.0 per cent weight of the total carbon, whereas theatmospheric residue contained 18.8 per cent weight of aromatic carbon. I
This vacuum distillate was steam cracked in an 8 ml. quartz reactor at a maximum temperature of 830C. The steam to hydrocarbon feed weight ratio was 1.0 to 1 .0 with an average hydrocarbon feed rate of 27 g. per hour. The ethylene and propylene yields were 23 and 10 per cent weight on feed respectively with a total conversion to cracked gas of 53 per cent weight on feed.
This example is provided for purposes of comparison and is not an example according to the invention.
iEXAMPLE 1 A 300 g sample of the Kuwait atmospheric residue used in the comparison test was hydrogenated in a 1 litre rocking autoclave at 370C under 2500 psig. of hydrogen during 24 hours using g of a cobalt oxide/' molybdenum oxide/alumina catalyst. The catalyst containing 3.9 per cent weight cobalt, 19.7 per cent weight molybdenum, and less than 0.1 per cent weight silica, and after calcination in air at 550C for 2 hours was activated in a stream of hydrogen at 400C for 24 hours. The recovered hydrogenated'atmospheric residue had a hydrogen to carbon atomic ratio of 1.86 and a sulphur content of 0.14 per cent weight. Analysis indicated that the carbon content in aromatic rings was 8.5 per cent weight of the total carbon. This material was vacuum distilled; the initial boiling point of the distillate was 230C, and 72 per cent volume distolled up to a cut-point temperature of 550C (corrected to atmospheric pressure). The distillate had a hydrogen to carbon atomic ratio of 1.88 and a sulphur content of 0.15 per cent weight. Analysis indicated that the carbon content in aromatic rings was 10.8 per cent weight.
The vacuum distillate was steam cracked under the same conditions as were used in the comparison test. The ethylene and propylene yields were 24 and 1 1 per cent weight on feed respectively with a total conversion to cracked gas of 57 per cent. There was also a substantial reduction in the coke and tar deposited in the reactor system compared with that formed from the untreated vacuum distillate.
EXAMPLE 2 A 300 g sample of the Kuwait atmospheric residue used in the comparison test was hydrogenated in a 1 litre rocking autoclave at 370C under 2500 psig. of hydrogen during 24 hours using 54.5 g. of a nickel oxide/- tungsten oxide/silica/alumina catalyst. The catalyst contained 4.9 per cent weight nickel, 15.9 per cent weight tungsten and the silica to alumina ratio was 3: 1. The catalyst was again first calcined in air at 550C for 2 hours and then immediately before use it was activated at 400C in a stream of hydrogen for 24 hours. The recovered hydrogenated atmospheric residue had a hydrogen to carbon atomic ratio of 1.79 and a sulphur content of 0.28 per cent weight. Analysis indicated that the carbon content in aromatic rings was 1 1.5 per cent weight of the total carbon. This material was vacuum distilled; the initial boiling point of the distillate was 229C, and 80 per cent volume distilled up to a cut-point temperature of 550C (corrected to atmospheric pressure). The distillate had a hydrogen to carbon atomic ratio of 1.78 and a sulphur content of 0.21 per cent weight. Analysis indicated that the car bon content in aromatic rings was 12.4 per cent weight.
This vacuum distillate was steam cracked under the same conditions as were used in the comparison test. The ethylene and propylene yields were 25 /2 and 12 per cent weight on feed respectively with a total conversion to cracked gas of 58 per cent. There was a further reduction in the coke and tar deposited in the reactor system compared with that formed in Example 1.
The Examples show that hydrogenation of the atmospheric residue leads to a substantial increase in the percentage of vacuum distillate recoverable as feedstock for thermal cracking. When combined with the increased yield and conversion to ethylene and propylene in the thermal cracking step it can be seen that the overall yield of normally gaseous olefins is substantially increased.
1 claim:
1. A process for the production of normally gaseous olefins from an atmospheric petroleum residue feedstock which process comprises the steps of:
a. contacting the petroleum residue feedstock in a hydrogenation zone with a hydrogenation catalyst selected from nickel/molybdenum/alumina, cobalt- /tungsten/alumina, nickel/tungsten/alumina, cobalt/molybdenum/alumina. nickel/cobalt/molybdenum/alumina. cobalt/molybdenum/- silica/alumina. nickel/molybdenum/silica/alumina,
nickel/tungsten/silica/alumina and hydrogen at a temperature in the range 50 to 500C, a pressure in the range 50 to 5,000 psig, a Liquid Hourly Space Velocity in the range 0.1 to 5.0, and a hydrogen feed rate of 5 to 10 times the molar feed rate of the atmospheric petroleum residue feedstock, to effect hydrogenation of aromatic hydrocarbons,
b. separating from the resulting hydrogenated atmospheric petroleum residue feedstock a gaseous phase containing hydrogen and a liquid phase containing hydrocarbons,
c. recycling at least a portion of said gaseous phase containing hydrogen to said hydrogenation zone,
d. separating said liquid phase containing hydrocarbons into a distillate fraction having a boiling range below 650C and a residue fraction having a boiling range above that of the distillate fraction,
e. subjecting said distillate fraction in the presence of steam to thermal cracking in a pyrolysis zone under conditions effecting conversion of at least a portion of said liquid phase to normally gaseous olefins and f. recovering the normally gaseous olefins from the pyrolysis zone effluent.
2. A process according to claim 1 wherein the whole of said liquid phase containing hydrocarbons is, after separation of a gaseous phase containing hydrogen, fed in the presence of steam directly to the pyrolysis zone wherein unvapourised feedstock is removed as a residue fraction in a separation zone prior to entry of the vapourised distillate fraction into that region of the pyrolysis zone maintained under conditions which effect thermal cracking.
3. A process according to claim 1 wherein the separation of said liquid phase containing hydrocarbons into a distillate fraction having a boiling range below 650C and a residue fraction having a boiling range above that of the distillate fraction is effected by vacuum distillation.
4. A process according to claim 1 wherein said hydrogenation catalyst is nickel/tungsten/silica/alumina.
5. A process according to claim 1 wherein said hydrogenation catalyst is cobalt/molybdenum/alumina.
6. A process according to claim 1 wherein said hydrogenation catalyst is activated before use in the hy drogenation reaction by contact with a stream of hydrogen at a temperature in the range to 800C for a period of 1 minute to 24 hours.
7. A process according to claim 1 wherein the temperature is in the range 300 to 600C, the pressure is in the range 200 to 3,000 psig and the Liquid Hourly Space Velocity is in the range 0.1 to 0.5.
8. A process according to claim 1 wherein the major portion of the gaseous phase containing hydrogen is separated from the liquid phase containing hydrocarbons in a high pressure separator and recycled either directly or, after scrubbing to remove hydrogen sulphide and ammonia, to the hydrogenation zone.
9. A process according to claim 1 wherein the hydrogenation zone is a single zone or a series of zones employing the same or different hydrogenation catalyst.
10. A process according to claim 1 wherein thermal cracking of the distillate fraction in the presence of steam is effected at a steam to hydrocarbon weight ratio of 0.5:1 to 2.021 in a heated zone at a maximum temperature in the range 700 to 1,000C with a residence time in this range between 0.01 and 5 seconds.

Claims (10)

1. A PROCESS FOR THE PRODUCTION OF NORMALLY GASEOUS OLEFINS FROM AN ATMOSPHERIC PETROLEUM RESIDUE FEEDSTOCK WHICH PROCESS COMPRISES THE STEPS OF: A. CONTACTING THE PETROLEUM RESIDUE FEEDSTOCK IN A HYDROGENATION ZONE WITH A HYDROGENATION CATALYST SELECTED FROM NICKEL/MOLYBDENUM/ALUMINA, COBALT/TUNGSTEN/ALUMINA, NICLEL/TUNGSTEN/ALUMINA, COBALT/MOLYBEDENUM/ALUMINA, NICKLE/COBALT/MOLYBDENUM/ALUMINA, COBALT/MOLYBDENUM/SILICA/ALUMINA, NICLEL/MOLYBDENUM/SILICA/ALUMINA, NICKEL/TUNGSTEN/SILICA/ALUMINA AND HYDROGEN AT A TEMPERATURE IN THE RANGE 50* TO 500*C, A PRESSURE IN THE RANGE 50 TO 5,000 PSIG, A LIQUID HOURLY SPACE VELOCITY IN THE RANGE 0.1 TO 5.0, AND A HYDROGEN FEED RATE OF 5 TO 10 TIMES THE MOLAR FEED RATE OF THE ATMOSPHERIC PETROLEUM RESIDUE FEEDSTOCK, TO EFFECT HYDROGENATION OF AROMATIC HYDROCARBONS, B. SEPARATING FROM THE RESULTING HYDROGENATED ATMOSPHERIC PETROLEUM RESIDUE FEEDSTOCK A GASEOUS PHASE CONTAINING HYDROGEN AND A LIQUID PHASE CONTAINING HYDROCARBONS, C. RECYCLING AT LEAST A PORTION OF SAID GASEOUS PHASE CONTAINING HYDROGEN TO SAID HYDROGENATION ZONE, D. SPARATING SAID LIQUID PHASE CONTAINING HYDROCARBONS INTO A DISTILLATE FRACTION HAVING A BOILING RANGE BELOW 650*C AND A RESIDUE FRACTION HAVING A BOILING RANGE ABOVE THAT OF THE DISTILLATE FRACTION, E. SUBJECTING SAID DISTILLATE FRACTION IN THE PRESENCE OF STEAM TO THERMAL CRACKING IN A PYROLYSIS ZONE UNDER CONDITIONS EFFECTING CONVERSION OF AT LEAST A PORTION OF SAID LIQUID PHASE TO NORMALLY GASEOUS OLEFILNS AND F. RECOVERING THE NORMALLY GASEOUS OLEFINS FROM THE PYROLYSIS ZONE EFFUENT.
2. A process according to claim 1 wherein the whole of said liquid phase containing hydrocarbons is, after separation of a gaseous phase containing hydrogen, fed in the presence of steam directly to the pyrolysis zone wherein unvapourised feedstock is removed as a residue fraction in a separation zone prior to entry of the vapourised distillate fraction into that region of the pyrolysis zone maintained under conditions which effect thermal cracking.
3. A process according to claim 1 wherein the separation of said liquid phase containing hydrocarbons into a distillate fraction having a boiling range below 650*C and a residue fraction having a boiling range above that of the distillate fraction is effected by vacuum distillation.
4. A process according to claim 1 wherein said hydrogenation catalyst is nickel/tungsten/silica/alumina.
5. A process according to claim 1 wherein said hydrogenation catalyst is cobalt/molybdenum/alumina.
6. A process according to claim 1 wherein said hydrogenation catalyst is activated before use in the hydrogenation reaction by contact with a stream of hydrogen at a temperature in the range 100* to 800*C for a period of 1 minute to 24 hours.
7. A process according to claim 1 wherein the temperature is in the range 300* to 600*C, the pressure is in the range 200 to 3, 000 psig and the Liquid Hourly Space Velocity is in the range 0.1 to 0.5.
8. A process according to claim 1 wherein the major portion of the gaseous phase containing hydrogen is separated from the liquid phase containing hydrocarbons in a high pressure separator and recycled either directly or, after scrubbing to remove hydrogen sulphide and ammonia, to the hydrogenation zone.
9. A process according to claim 1 wherein the hydrogenation zone is a single zone or a series of zones employing the same or different hydrogenation catalyst.
10. A process according to claim 1 wherein thermal cracking of the distillate fraction in the presence of steam is effected at a steam to hydrocarbon weight ratio of 0.5:1 to 2.0:1 in a heated zone at a maximum temperature in the range 700* to 1,000*C with a residence time in this range between 0.01 and 5 seconds.
US412099A 1972-11-08 1973-11-02 Production of gaseous olefins from petroleum residue feedstocks Expired - Lifetime US3898299A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB5143572A GB1383229A (en) 1972-11-08 1972-11-08 Production of gaseous olefins from petroleum residue feedstocks

Publications (1)

Publication Number Publication Date
US3898299A true US3898299A (en) 1975-08-05

Family

ID=10460013

Family Applications (1)

Application Number Title Priority Date Filing Date
US412099A Expired - Lifetime US3898299A (en) 1972-11-08 1973-11-02 Production of gaseous olefins from petroleum residue feedstocks

Country Status (11)

Country Link
US (1) US3898299A (en)
JP (1) JPS577199B2 (en)
AU (1) AU473282B2 (en)
BE (1) BE807083A (en)
CA (1) CA1002542A (en)
DE (1) DE2355150C2 (en)
FR (1) FR2205566B1 (en)
GB (1) GB1383229A (en)
IT (1) IT1001663B (en)
NL (1) NL7315239A (en)
ZA (1) ZA738466B (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4061562A (en) * 1976-07-12 1977-12-06 Gulf Research & Development Company Thermal cracking of hydrodesulfurized residual petroleum oils
US4065379A (en) * 1975-01-22 1977-12-27 Shell Oil Company Process for the production of normally gaseous olefins
US4097363A (en) * 1976-07-12 1978-06-27 Gulf Research & Development Company Thermal cracking of light gas oil at high severity to ethylene
DE2805179A1 (en) * 1977-02-11 1978-08-17 Inst Francais Du Petrol METHOD OF STEAM CRACKING OF HEAVY BATCHES
US4137147A (en) * 1976-09-16 1979-01-30 Institut Francais Du Petrole Process for manufacturing olefinic hydrocarbons with respectively two and three carbon atoms per molecule
US4181601A (en) * 1977-06-17 1980-01-01 The Lummus Company Feed hydrotreating for improved thermal cracking
US4188281A (en) * 1977-05-12 1980-02-12 Linde Aktiengesellschaft Two-stage production of olefins utilizing a faujasite structure zeolite in hydrogenation stage
US4257871A (en) * 1978-10-06 1981-03-24 Linde Aktiengesellschaft Use of vacuum residue in thermal cracking
US4260474A (en) * 1978-10-06 1981-04-07 Linde Aktiengesellschaft Thermal cracking of heavy fraction of hydrocarbon hydrogenate
US4297204A (en) * 1978-02-17 1981-10-27 Linde Aktiengesellschaft Thermal cracking with post hydrogenation and recycle of heavy fractions
WO1986002376A1 (en) * 1984-10-09 1986-04-24 Stone & Webster Engineering Corp. Integrated heavy oil pyrolysis process
US4619757A (en) * 1982-08-31 1986-10-28 Linde Aktiengesellschaft Two stage hydrotreating pretreatment in production of olefins from heavy hydrocarbons
US4661238A (en) * 1985-09-05 1987-04-28 Uop Inc. Combination process for the conversion of a distillate hydrocarbon to maximize middle distillate production
US4770764A (en) * 1983-03-19 1988-09-13 Asahi Kasei Kogyo Kabushiki Kaisha Process for converting heavy hydrocarbon into more valuable product
US4792390A (en) * 1987-09-21 1988-12-20 Uop Inc. Combination process for the conversion of a distillate hydrocarbon to produce middle distillate product
US4798665A (en) * 1985-09-05 1989-01-17 Uop Inc. Combination process for the conversion of a distillate hydrocarbon to maximize middle distillate production
US5906728A (en) * 1996-08-23 1999-05-25 Exxon Chemical Patents Inc. Process for increased olefin yields from heavy feedstocks
US6190533B1 (en) * 1996-08-15 2001-02-20 Exxon Chemical Patents Inc. Integrated hydrotreating steam cracking process for the production of olefins
US6210561B1 (en) * 1996-08-15 2001-04-03 Exxon Chemical Patents Inc. Steam cracking of hydrotreated and hydrogenated hydrocarbon feeds
US6303842B1 (en) 1997-10-15 2001-10-16 Equistar Chemicals, Lp Method of producing olefins from petroleum residua
WO2007047942A2 (en) * 2005-10-20 2007-04-26 Exxonmobil Chemical Patents Inc. Hydrocarbon resid processing and visbreaking steam cracker feed
US20110180456A1 (en) * 2010-01-22 2011-07-28 Stephen Mark Davis Integrated Process and System for Steam Cracking and Catalytic Hydrovisbreaking with Catalyst Recycle
WO2011090532A1 (en) 2010-01-22 2011-07-28 Exxonmobil Chemical Patents Inc. Integrated process and system for steam cracking and catalytic hydrovisbreaking with catalyst recycle
WO2011150217A2 (en) 2010-05-28 2011-12-01 Greatpoint Energy, Inc. Conversion of liquid heavy hydrocarbon feedstocks to gaseous products
WO2012005861A1 (en) 2010-07-09 2012-01-12 Exxonmobil Chemical Patents Inc. Integrated process for steam cracking
WO2012005862A1 (en) 2010-07-09 2012-01-12 Exxonmobil Chemical Patents Inc. Integrated vacuum resid to chemicals coversion process
WO2012071327A1 (en) 2010-11-23 2012-05-31 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
WO2012071486A1 (en) 2010-11-23 2012-05-31 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
WO2012071274A1 (en) 2010-11-23 2012-05-31 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
WO2012091970A2 (en) 2010-12-29 2012-07-05 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
CN101292013B (en) * 2005-10-20 2012-10-24 埃克森美孚化学专利公司 Hydrocarbon resid processing and visbreaking steam cracker feed
US8361311B2 (en) 2010-07-09 2013-01-29 Exxonmobil Chemical Patents Inc. Integrated vacuum resid to chemicals conversion process
US8399729B2 (en) 2010-07-09 2013-03-19 Exxonmobil Chemical Patents Inc. Integrated process for steam cracking
US10407630B2 (en) 2016-11-21 2019-09-10 Saudi Arabian Oil Company Process and system for conversion of crude oil to petrochemicals and fuel products integrating solvent deasphalting of vacuum residue
US10472579B2 (en) 2016-11-21 2019-11-12 Saudi Arabian Oil Company Process and system for conversion of crude oil to petrochemicals and fuel products integrating vacuum gas oil hydrocracking and steam cracking
US10472574B2 (en) 2016-11-21 2019-11-12 Saudi Arabian Oil Company Process and system for conversion of crude oil to petrochemicals and fuel products integrating delayed coking of vacuum residue
US10472580B2 (en) 2016-11-21 2019-11-12 Saudi Arabian Oil Company Process and system for conversion of crude oil to petrochemicals and fuel products integrating steam cracking and conversion of naphtha into chemical rich reformate
US10487276B2 (en) 2016-11-21 2019-11-26 Saudi Arabian Oil Company Process and system for conversion of crude oil to petrochemicals and fuel products integrating vacuum residue hydroprocessing
US10487275B2 (en) 2016-11-21 2019-11-26 Saudi Arabian Oil Company Process and system for conversion of crude oil to petrochemicals and fuel products integrating vacuum residue conditioning and base oil production
US10526552B1 (en) 2018-10-12 2020-01-07 Saudi Arabian Oil Company Upgrading of heavy oil for steam cracking process
US10619112B2 (en) 2016-11-21 2020-04-14 Saudi Arabian Oil Company Process and system for conversion of crude oil to petrochemicals and fuel products integrating vacuum gas oil hydrotreating and steam cracking
US10703999B2 (en) 2017-03-14 2020-07-07 Saudi Arabian Oil Company Integrated supercritical water and steam cracking process
US10717941B2 (en) 2016-11-21 2020-07-21 Saudi Arabian Oil Company Process and system for conversion of crude oil to petrochemicals and fuel products integrating steam cracking and fluid catalytic cracking
US10752847B2 (en) 2017-03-08 2020-08-25 Saudi Arabian Oil Company Integrated hydrothermal process to upgrade heavy oil
US10870807B2 (en) 2016-11-21 2020-12-22 Saudi Arabian Oil Company Process and system for conversion of crude oil to petrochemicals and fuel products integrating steam cracking, fluid catalytic cracking, and conversion of naphtha into chemical rich reformate
US11066611B2 (en) 2016-11-21 2021-07-20 Saudi Arabian Oil Company System for conversion of crude oil to petrochemicals and fuel products integrating vacuum gas oil hydrotreating and steam cracking

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2941851A1 (en) * 1979-10-16 1981-05-14 Linde Ag, 6200 Wiesbaden METHOD FOR HYDRATING HEAVY HYDROCARBONS
GB2062668B (en) * 1979-11-09 1983-08-10 Coal Industry Patents Ltd Olefin production
JPS57212294A (en) * 1981-06-25 1982-12-27 Asahi Chem Ind Co Ltd Pyrolysis of heavy hydrocarbon oil
JPS585393A (en) * 1981-07-01 1983-01-12 Asahi Chem Ind Co Ltd Thermal cracking of heavy oil
JP5318019B2 (en) * 2010-03-30 2013-10-16 Jx日鉱日石エネルギー株式会社 Treatment method of HAR oil in steam cracker

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3162596A (en) * 1961-07-24 1964-12-22 Sinclair Research Inc Pretreatment and cracking of residual oils
US3511771A (en) * 1967-07-24 1970-05-12 Exxon Research Engineering Co Integrated hydrofining,hydrodesulfurization and steam cracking process
US3539496A (en) * 1968-10-28 1970-11-10 Universal Oil Prod Co Production of low-sulfur fuel oil
US3617501A (en) * 1968-09-06 1971-11-02 Exxon Research Engineering Co Integrated process for refining whole crude oil
US3720729A (en) * 1970-11-02 1973-03-13 Lummus Co Pyrolysis of hydrotreated feedstocks
US3781195A (en) * 1971-01-06 1973-12-25 Bp Chem Int Ltd Process for the production of gaseous olefins from petroleum distillate feedstocks

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3598720A (en) * 1968-12-12 1971-08-10 Universal Oil Prod Co Desulfurization and conversion of hydrocarbonaceous black oils with maximum production of distillable hydrocarbons

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3162596A (en) * 1961-07-24 1964-12-22 Sinclair Research Inc Pretreatment and cracking of residual oils
US3511771A (en) * 1967-07-24 1970-05-12 Exxon Research Engineering Co Integrated hydrofining,hydrodesulfurization and steam cracking process
US3617501A (en) * 1968-09-06 1971-11-02 Exxon Research Engineering Co Integrated process for refining whole crude oil
US3539496A (en) * 1968-10-28 1970-11-10 Universal Oil Prod Co Production of low-sulfur fuel oil
US3720729A (en) * 1970-11-02 1973-03-13 Lummus Co Pyrolysis of hydrotreated feedstocks
US3781195A (en) * 1971-01-06 1973-12-25 Bp Chem Int Ltd Process for the production of gaseous olefins from petroleum distillate feedstocks

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065379A (en) * 1975-01-22 1977-12-27 Shell Oil Company Process for the production of normally gaseous olefins
US4061562A (en) * 1976-07-12 1977-12-06 Gulf Research & Development Company Thermal cracking of hydrodesulfurized residual petroleum oils
US4097363A (en) * 1976-07-12 1978-06-27 Gulf Research & Development Company Thermal cracking of light gas oil at high severity to ethylene
US4137147A (en) * 1976-09-16 1979-01-30 Institut Francais Du Petrole Process for manufacturing olefinic hydrocarbons with respectively two and three carbon atoms per molecule
DE2805179A1 (en) * 1977-02-11 1978-08-17 Inst Francais Du Petrol METHOD OF STEAM CRACKING OF HEAVY BATCHES
US4180453A (en) * 1977-02-11 1979-12-25 Institut Francais Du Petrole Process for the steam-cracking of heavy feedstocks
US4188281A (en) * 1977-05-12 1980-02-12 Linde Aktiengesellschaft Two-stage production of olefins utilizing a faujasite structure zeolite in hydrogenation stage
US4181601A (en) * 1977-06-17 1980-01-01 The Lummus Company Feed hydrotreating for improved thermal cracking
US4297204A (en) * 1978-02-17 1981-10-27 Linde Aktiengesellschaft Thermal cracking with post hydrogenation and recycle of heavy fractions
US4260474A (en) * 1978-10-06 1981-04-07 Linde Aktiengesellschaft Thermal cracking of heavy fraction of hydrocarbon hydrogenate
US4257871A (en) * 1978-10-06 1981-03-24 Linde Aktiengesellschaft Use of vacuum residue in thermal cracking
US4310409A (en) * 1978-10-06 1982-01-12 Linde Aktiengesellschaft Thermal cracking of heavy fraction of hydrocarbon hydrogenate
EP0009809B1 (en) * 1978-10-06 1982-02-10 Linde Aktiengesellschaft A process for producing olefines
US4619757A (en) * 1982-08-31 1986-10-28 Linde Aktiengesellschaft Two stage hydrotreating pretreatment in production of olefins from heavy hydrocarbons
US4770764A (en) * 1983-03-19 1988-09-13 Asahi Kasei Kogyo Kabushiki Kaisha Process for converting heavy hydrocarbon into more valuable product
WO1986002376A1 (en) * 1984-10-09 1986-04-24 Stone & Webster Engineering Corp. Integrated heavy oil pyrolysis process
US4615795A (en) * 1984-10-09 1986-10-07 Stone & Webster Engineering Corporation Integrated heavy oil pyrolysis process
US4661238A (en) * 1985-09-05 1987-04-28 Uop Inc. Combination process for the conversion of a distillate hydrocarbon to maximize middle distillate production
US4798665A (en) * 1985-09-05 1989-01-17 Uop Inc. Combination process for the conversion of a distillate hydrocarbon to maximize middle distillate production
US4792390A (en) * 1987-09-21 1988-12-20 Uop Inc. Combination process for the conversion of a distillate hydrocarbon to produce middle distillate product
US6190533B1 (en) * 1996-08-15 2001-02-20 Exxon Chemical Patents Inc. Integrated hydrotreating steam cracking process for the production of olefins
US6210561B1 (en) * 1996-08-15 2001-04-03 Exxon Chemical Patents Inc. Steam cracking of hydrotreated and hydrogenated hydrocarbon feeds
US5906728A (en) * 1996-08-23 1999-05-25 Exxon Chemical Patents Inc. Process for increased olefin yields from heavy feedstocks
US6149800A (en) * 1996-08-23 2000-11-21 Exxon Chemical Patents Inc. Process for increased olefin yields from heavy feedstocks
US6303842B1 (en) 1997-10-15 2001-10-16 Equistar Chemicals, Lp Method of producing olefins from petroleum residua
WO2007047942A2 (en) * 2005-10-20 2007-04-26 Exxonmobil Chemical Patents Inc. Hydrocarbon resid processing and visbreaking steam cracker feed
WO2007047941A2 (en) * 2005-10-20 2007-04-26 Exxonmobil Chemical Patents Inc. Resid processing for steam cracker feed and catalytic cracking
US20070090018A1 (en) * 2005-10-20 2007-04-26 Keusenkothen Paul F Hydrocarbon resid processing
US20070090019A1 (en) * 2005-10-20 2007-04-26 Keusenkothen Paul F Hydrocarbon resid processing and visbreaking steam cracker feed
WO2007047657A1 (en) * 2005-10-20 2007-04-26 Exxonmobil Chemical Patents Inc. Hydrocarbon resid processing
WO2007047941A3 (en) * 2005-10-20 2007-05-24 Exxonmobil Chem Patents Inc Resid processing for steam cracker feed and catalytic cracking
WO2007047942A3 (en) * 2005-10-20 2007-06-07 Exxonmobil Chem Patents Inc Hydrocarbon resid processing and visbreaking steam cracker feed
US7972498B2 (en) 2005-10-20 2011-07-05 Exxonmobil Chemical Patents Inc. Resid processing for steam cracker feed and catalytic cracking
US8636895B2 (en) 2005-10-20 2014-01-28 Exxonmobil Chemical Patents Inc. Hydrocarbon resid processing and visbreaking steam cracker feed
US8696888B2 (en) 2005-10-20 2014-04-15 Exxonmobil Chemical Patents Inc. Hydrocarbon resid processing
CN101292013B (en) * 2005-10-20 2012-10-24 埃克森美孚化学专利公司 Hydrocarbon resid processing and visbreaking steam cracker feed
US8784743B2 (en) * 2005-10-20 2014-07-22 Exxonmobil Chemical Patents Inc. Hydrocarbon resid processing and visbreaking steam cracker feed
US20110180456A1 (en) * 2010-01-22 2011-07-28 Stephen Mark Davis Integrated Process and System for Steam Cracking and Catalytic Hydrovisbreaking with Catalyst Recycle
US9327260B2 (en) 2010-01-22 2016-05-03 Exxonmobil Chemical Patents Inc. Integrated process for steam cracking
US9056297B2 (en) 2010-01-22 2015-06-16 Exxonmobil Chemical Patents Inc. Integrated vacuum resid to chemicals conversion process
WO2011090532A1 (en) 2010-01-22 2011-07-28 Exxonmobil Chemical Patents Inc. Integrated process and system for steam cracking and catalytic hydrovisbreaking with catalyst recycle
WO2011150217A2 (en) 2010-05-28 2011-12-01 Greatpoint Energy, Inc. Conversion of liquid heavy hydrocarbon feedstocks to gaseous products
WO2012005862A1 (en) 2010-07-09 2012-01-12 Exxonmobil Chemical Patents Inc. Integrated vacuum resid to chemicals coversion process
WO2012005861A1 (en) 2010-07-09 2012-01-12 Exxonmobil Chemical Patents Inc. Integrated process for steam cracking
US8361311B2 (en) 2010-07-09 2013-01-29 Exxonmobil Chemical Patents Inc. Integrated vacuum resid to chemicals conversion process
US8399729B2 (en) 2010-07-09 2013-03-19 Exxonmobil Chemical Patents Inc. Integrated process for steam cracking
WO2012071274A1 (en) 2010-11-23 2012-05-31 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
CN103210061A (en) * 2010-11-23 2013-07-17 伊奎斯塔化学有限公司 Process for cracking heavy hydrocarbon feed
US8658022B2 (en) 2010-11-23 2014-02-25 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
US8658019B2 (en) 2010-11-23 2014-02-25 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
US8663456B2 (en) 2010-11-23 2014-03-04 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
CN103210062A (en) * 2010-11-23 2013-07-17 伊奎斯塔化学有限公司 Process for cracking heavy hydrocarbon feed
CN103210061B (en) * 2010-11-23 2015-05-27 伊奎斯塔化学有限公司 Process for cracking heavy hydrocarbon feed
WO2012071486A1 (en) 2010-11-23 2012-05-31 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
CN103210062B (en) * 2010-11-23 2015-11-25 伊奎斯塔化学有限公司 For the method for cracking heavy hydrocarbon charging
WO2012071327A1 (en) 2010-11-23 2012-05-31 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
US8658023B2 (en) 2010-12-29 2014-02-25 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
WO2012091970A2 (en) 2010-12-29 2012-07-05 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
US10619112B2 (en) 2016-11-21 2020-04-14 Saudi Arabian Oil Company Process and system for conversion of crude oil to petrochemicals and fuel products integrating vacuum gas oil hydrotreating and steam cracking
US10793794B2 (en) 2016-11-21 2020-10-06 Saudi Arabian Oil Company Process and system for conversion of crude oil to petrochemicals and fuel products integrating solvent deasphalting of vacuum residue
US10472574B2 (en) 2016-11-21 2019-11-12 Saudi Arabian Oil Company Process and system for conversion of crude oil to petrochemicals and fuel products integrating delayed coking of vacuum residue
US10472580B2 (en) 2016-11-21 2019-11-12 Saudi Arabian Oil Company Process and system for conversion of crude oil to petrochemicals and fuel products integrating steam cracking and conversion of naphtha into chemical rich reformate
US10487276B2 (en) 2016-11-21 2019-11-26 Saudi Arabian Oil Company Process and system for conversion of crude oil to petrochemicals and fuel products integrating vacuum residue hydroprocessing
US10487275B2 (en) 2016-11-21 2019-11-26 Saudi Arabian Oil Company Process and system for conversion of crude oil to petrochemicals and fuel products integrating vacuum residue conditioning and base oil production
US11066611B2 (en) 2016-11-21 2021-07-20 Saudi Arabian Oil Company System for conversion of crude oil to petrochemicals and fuel products integrating vacuum gas oil hydrotreating and steam cracking
US10407630B2 (en) 2016-11-21 2019-09-10 Saudi Arabian Oil Company Process and system for conversion of crude oil to petrochemicals and fuel products integrating solvent deasphalting of vacuum residue
US10913908B2 (en) 2016-11-21 2021-02-09 Saudi Arabian Oil Company System for conversion of crude oil to petrochemicals and fuel products integrating steam cracking and fluid catalytic cracking
US10717941B2 (en) 2016-11-21 2020-07-21 Saudi Arabian Oil Company Process and system for conversion of crude oil to petrochemicals and fuel products integrating steam cracking and fluid catalytic cracking
US10894926B2 (en) 2016-11-21 2021-01-19 Saudi Arabian Oil Company System for conversion of crude oil to petrochemicals and fuel products integrating steam cracking, fluid catalytic cracking, and conversion of naphtha into chemical rich reformate
US10760012B2 (en) 2016-11-21 2020-09-01 Saudi Arabian Oil Company System for conversion of crude oil to petrochemicals and fuel products integrating steam cracking and conversion of naphtha into chemical rich reformate
US10760011B2 (en) 2016-11-21 2020-09-01 Saudi Arabian Oil Company System for conversion of crude oil to petrochemicals and fuel products integrating vacuum gas oil hydrocracking and steam cracking
US10472579B2 (en) 2016-11-21 2019-11-12 Saudi Arabian Oil Company Process and system for conversion of crude oil to petrochemicals and fuel products integrating vacuum gas oil hydrocracking and steam cracking
US10800983B2 (en) 2016-11-21 2020-10-13 Saudi Arabian Oil Company System for conversion of crude oil to petrochemicals and fuel products integrating vacuum residue conditioning and base oil production
US10800977B2 (en) 2016-11-21 2020-10-13 Saudi Arabian Oil Company System for conversion of crude oil to petrochemicals and fuel products integrating delayed coking of vacuum residue
US10808187B2 (en) 2016-11-21 2020-10-20 Saudi Arabian Oil Company System for conversion of crude oil to petrochemicals and fuel products integrating vacuum residue hydroprocessing
US10870807B2 (en) 2016-11-21 2020-12-22 Saudi Arabian Oil Company Process and system for conversion of crude oil to petrochemicals and fuel products integrating steam cracking, fluid catalytic cracking, and conversion of naphtha into chemical rich reformate
US10752847B2 (en) 2017-03-08 2020-08-25 Saudi Arabian Oil Company Integrated hydrothermal process to upgrade heavy oil
US11149216B2 (en) 2017-03-08 2021-10-19 Saudi Arabian Oil Company Integrated hydrothermal process to upgrade heavy oil
US10703999B2 (en) 2017-03-14 2020-07-07 Saudi Arabian Oil Company Integrated supercritical water and steam cracking process
US11149218B2 (en) 2017-03-14 2021-10-19 Saudi Arabian Oil Company Integrated supercritical water and steam cracking process
US10975317B2 (en) 2018-10-12 2021-04-13 Saudi Arabian Oil Company Upgrading of heavy oil for steam cracking process
US10526552B1 (en) 2018-10-12 2020-01-07 Saudi Arabian Oil Company Upgrading of heavy oil for steam cracking process
US11230675B2 (en) 2018-10-12 2022-01-25 Saudi Arabian Oil Company Upgrading of heavy oil for steam cracking process

Also Published As

Publication number Publication date
JPS577199B2 (en) 1982-02-09
CA1002542A (en) 1976-12-28
FR2205566A1 (en) 1974-05-31
JPS49133305A (en) 1974-12-21
BE807083A (en) 1974-05-08
GB1383229A (en) 1975-02-05
IT1001663B (en) 1976-04-30
ZA738466B (en) 1975-06-25
AU6221373A (en) 1975-05-08
FR2205566B1 (en) 1977-03-11
NL7315239A (en) 1974-05-10
DE2355150C2 (en) 1983-01-05
AU473282B2 (en) 1976-06-17
DE2355150A1 (en) 1974-05-09

Similar Documents

Publication Publication Date Title
US3898299A (en) Production of gaseous olefins from petroleum residue feedstocks
US10822558B2 (en) Method for cracking a hydrocarbon feedstock in a steam cracker unit
US3781195A (en) Process for the production of gaseous olefins from petroleum distillate feedstocks
JP6470760B2 (en) Method and apparatus for converting crude oil to petrochemical products with improved ethylene and BTX yields
EP3017021B1 (en) Method of producing aromatics and light olefins from a hydrocarbon feedstock
JP6360554B2 (en) Method for cracking hydrocarbon feedstock in a steam cracking unit
US3717571A (en) Hydrogen purification and recycle in hydrogenating heavy mineral oils
KR101791051B1 (en) Method of the convrsion of polycyclic aromatic hydrocarbons into btx-rich monocyclic aromatic hydrocarbons
JP6879990B2 (en) Improved carbon utilization methods and equipment for converting crude oil to petrochemicals
JPS5931559B2 (en) Hydrocarbon conversion methods
US3238118A (en) Conversion of hydrocarbons in the presence of a hydrogenated donor diluent
US2039259A (en) Carrying out catalytic reactions
US3470085A (en) Method for stabilizing pyrolysis gasoline
US2279550A (en) Treatment of cracking stocks
EP0082555B1 (en) Process for the production of hydrocarbon oil distillates
US3444071A (en) Process for the hydrogenative cracking of a hydrocarbon oil to produce lubricating oil
DE2014895C3 (en) Process for the preparation of hydrogenated, alkylated, high temperature cracking residue oils
US2647076A (en) Catalytic cracking of petroleum hydrocarbons with a clay treated catalyst
US3006843A (en) Preparing hydrocarbon fuels by solvent extraction, hydrodesulfurization and hydrogenation of cracked gas oils
US3477943A (en) Two-stage treatment of high sulfur content petroleum materials
US2951886A (en) Recovery and purification of benzene
US2373673A (en) Production of cyclohexane from petroleum
US2859169A (en) Heavy oil conversion process
GB2094827A (en) Catalytic oxycracking of polynuclear aromatic hydrocarbons
US2574449A (en) Process of catalytic desulfurization of naphthenic petroleum hydrocarbons followed by catalytic cracking