US3901221A - Pressure cycle for stimulating blood circulation in the limbs - Google Patents

Pressure cycle for stimulating blood circulation in the limbs Download PDF

Info

Publication number
US3901221A
US3901221A US459130A US45913074A US3901221A US 3901221 A US3901221 A US 3901221A US 459130 A US459130 A US 459130A US 45913074 A US45913074 A US 45913074A US 3901221 A US3901221 A US 3901221A
Authority
US
United States
Prior art keywords
pressure
seconds
mercury
limbs
over
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US459130A
Inventor
James E Nicholson
Charles S Lipson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CLINICAL Tech INTERNATIONAL Inc
Original Assignee
CLINICAL Tech INTERNATIONAL Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CLINICAL Tech INTERNATIONAL Inc filed Critical CLINICAL Tech INTERNATIONAL Inc
Priority to US459130A priority Critical patent/US3901221A/en
Application granted granted Critical
Publication of US3901221A publication Critical patent/US3901221A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H9/00Pneumatic or hydraulic massage
    • A61H9/005Pneumatic massage
    • A61H9/0078Pneumatic massage with intermittent or alternately inflated bladders or cuffs

Definitions

  • ABSTRACT A method of cycling pressure applied externally to a :LtSkgl 2 mammalian limb to obtain high amplitude surges of n blood A fast rise time followed by a holding period Field of Search 128/24 53 and a relatively long relaxation interval is utilized.
  • the invention relates to'pressure garments used to apply cyclical pressure to mammalian extremities for the purpose of overcoming circulatory defficiency and particularly to a pressure cycling method.
  • Roberts et al. disclose conditions of peak increased flow and maximum increase in pulsatility with respect to repetition intervals, they neglect the amplitude of flow during each pressure application concerning themselves only with peak increase.
  • FIG. 1 is a graph of a controller pressure cycle ac cording to the invention.
  • FIG. 2 is a graph of femoral vein flow resulting from the pressure cycle of FIG. 1.
  • FIG. 3 is a diagrammatical illustration depicting operation of the invention.
  • FIG. 4 is a graph of exemplary internal boot pressure resulting from the controller cycle of FIG. 1.
  • FIG. I is a graph of pressure at the cyclic controller output in accordance with the preferred pressure cycle.
  • curve portion 10 indicates a rapid rise in less than 4 seconds to greater than 30 mm of mercury.
  • the pressure then climbs gradually above 40 mm of mercury as indicated by curve 1 1 until l0 seconds is reached at which point the pressurizing valve is closed and the exhaust valve opening to the atmosphere is opened so that at 12 seconds the pressure has dropped below 10 mm as depicted by curve 12.
  • no pressure is applied allowing the blood veins to refill.
  • the cycle repeats at 60 second intervals.
  • FIG. 2 depicts flow in the superficial femoral vein during the pressure cycle of FIG. 1.
  • Pulses 15 are normal blood pulsation provided by the heart.
  • the normal flow level in the particular instance depicted, averaged slightly over 50 milliliters per minute.
  • Curve l7 depicts the slow dropping off virtually immediately after reaching its peak.
  • the pressure is released approximately at point 18 in the curve whereupon the flow drops to baseline level and flows for a short interval at a rate less than baseline level as indicated by inverted peak 20.
  • the blood flow characteristics remain below average normal blood flow for the following 28 seconds as indicated by portion 21 of the graph. The blood then returns to the normal flow characteristics prior to the next pressure pulse depicted by curve 22.
  • a patient 25 depicted as lying down, wears a boot 26 enclosing his foot and lower leg to the vicinity of the knee and also a mitten 27 enclosing his hand and forearm.
  • Both boot and mitten are made of outer and inner layer with an inflatable space therebetween.
  • the outer layer in each case has limited expandability so that, upon inflation, pressure is directed inward against the enclosed limb.
  • Boot 26 and mitten 27 are inflated through hoses 28 from a pressure tank 30.
  • Pressure tank 30 may be connected to a pump for continuous duty use. Between pressure tank 30 and hoses 28 is a cyclic controller 34 for applying and releasing pressure in accordance with the graph in FIG.
  • FIG. 3 depicts operation of one boot and one mitten.
  • the pressure cycling of the invention can be applied to any one or more of the four limbs.
  • FIG. 4 shows pressure measured inside a boot during a controller pressure cycle according to FIG. I.
  • rise time inside the boot is 40 mm Hg. in approximately 4 seconds as shown in curve 35.
  • the fall time shown by curve 36 is likewise a little slower falling to lO mm Hg. in about 2 seconds and then curving exponentially to over the next 8 seconds.
  • a method of overcoming circulatory stasis in mammalian limbs comprising:

Abstract

A method of cycling pressure applied externally to a mammalian limb to obtain high amplitude surges of blood. A fast rise time followed by a holding period and a relatively long relaxation interval is utilized.

Description

United States Patent 1191 Nicholson et al.
1451 Aug. 26, 1975 PRESSURE CYCLE FOR STIMULATING [56] References Cited BLOOD CIRCULATION IN THE LlMBS UNITED STATES PATENTS Inventors: James E. Nicholson, Quincy; Charles 2,145,932 2/1939 Israel 128/299 S. Lipson, Newton, both of Mass. 2,225,308 12/1940 Kroll 128/299 3,063,444 11/1962 .lobst 128/24 R Ass1gnee: Clinical Technology International,
Canton Mass Primary Examiner-Lawrence W. Trapp Filed: Apr. 8, 1974 Attorney, Agent, or Firm-Thomas N. Tarrant pl 0 45 [57] ABSTRACT? A method of cycling pressure applied externally to a :LtSkgl 2 mammalian limb to obtain high amplitude surges of n blood A fast rise time followed by a holding period Field of Search 128/24 53 and a relatively long relaxation interval is utilized.
' 6 Claims, 4 Drawing Figures '5 I 60 I I E 50- E 40F Lu 3O t O a 20 U) 10 LU i4" O 10 llllillllllllllllllillllilllljllllillllilllll 0 IO 20 3O 4O 5O 6O 7O 80 TIME (Sec) PRESSURE (mm Hg) BLOOD FLOW (ML/MIN) PATENTEBAUGZBIQYS 3,901,221
SHEET 1 BF 2 Ill! TIME (Sec) PATENTED AUG 2 6 I975 SIIZU 2 0? 2 TIME (Sec.)
FIG. 4
PRESSURE CYCLE FOR STIMULATING BLOOD CIRCULATION IN THE LIMBS BACKGROUND OF THE INVENTION 1. Field of the Invention The invention relates to'pressure garments used to apply cyclical pressure to mammalian extremities for the purpose of overcoming circulatory defficiency and particularly to a pressure cycling method.
2. Relation to the Prior Art Roberts et al (The Effect of Intermittently Applied External Pressure on the Haemodynamics of the Lower Limb in Man, British Journal of Surgery, 1972, Vol. 59 No. 3 March) disclosed that when pressure was appliedto the legs with an inflatable plastic splint, increase in peak venous flow was directly proportional to the rate of pressure application. He purported to demonstrate that the peak increase in blood flow was maximal atan inflation rate of mm. Hg. per second and the maximums in pulsatility and peak flow required an approximate interval of one minute between applications of pressure.
The primary interest in such dynamic stimulation of blood today is to combat the high rate of postoperative deep-vein thrombosis. The formation of dangerous thrombi is promoted by pockets of blood stasis. Blood stasis in the limbs is normally prevented by physical activity. Since surgery both prevents normal activity and exposes the system to, coagulant stimulating effects, a high. rate of thrombosis results. Increasing peak flow and pulsatility tends to overcome pockets of stasis.
While Roberts et al. disclose conditions of peak increased flow and maximum increase in pulsatility with respect to repetition intervals, they neglect the amplitude of flow during each pressure application concerning themselves only with peak increase.
SUMMARY OF THE INVENTION In accordance with the present invention, it has been found that blood stasis pockets in the veins of mammalian extremities occur particularly behind the cusps which form the directional valves of the veins. It has been found that optimum disturbance of stasis behind these cusps is obtained when pulses of increased flow level have a maximum amplitude; that is, when as large a quantity of blood as is comfortable passes these cusps during a given pulse. It has been found that this result can be obtained by applying pressure through a pressure garment with a rise time of at least 10 mm of mercury per second and a holding time at the level of at least 30 mm of mercury for at least 8 seconds. A cycle period of one minute is near optimum.
Thus, it is an object of the present invention to provide a novel pressure cycling method for cycling pressure garments so as to overcome blood stasis in mammalian extremities.
It is a further object of the present invention to provide a method of pressure cycling for application to the external mammalian limb to maximize the amplitude of increased flow pulses by a pressure holding time of at least 8 seconds.
Further objects and features of the invention will become apparent upon reading the following description together with the drawing.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a graph of a controller pressure cycle ac cording to the invention.
FIG. 2 is a graph of femoral vein flow resulting from the pressure cycle of FIG. 1.
FIG. 3 is a diagrammatical illustration depicting operation of the invention.
FIG. 4 is a graph of exemplary internal boot pressure resulting from the controller cycle of FIG. 1.
DESCRIPTION OF THE PREFERRED EMBODIMENT:
FIG. I is a graph of pressure at the cyclic controller output in accordance with the preferred pressure cycle. When the pressure line is connected to the boot by operation of a valve at time zero, curve portion 10 indicates a rapid rise in less than 4 seconds to greater than 30 mm of mercury. The pressure then climbs gradually above 40 mm of mercury as indicated by curve 1 1 until l0 seconds is reached at which point the pressurizing valve is closed and the exhaust valve opening to the atmosphere is opened so that at 12 seconds the pressure has dropped below 10 mm as depicted by curve 12. For the following 48 second timeperiod, depicted by curve 14, no pressure is applied allowing the blood veins to refill. The cycle repeats at 60 second intervals.
FIG. 2 depicts flow in the superficial femoral vein during the pressure cycle of FIG. 1. Pulses 15 are normal blood pulsation provided by the heart. The normal flow level, in the particular instance depicted, averaged slightly over 50 milliliters per minute. Upon application of pressure from the pressure boot, the flow increased over an interval of approximately 2 seconds to approximately milliliters per minute, as indicated by curve 16. Curve l7 depicts the slow dropping off virtually immediately after reaching its peak. The pressure is released approximately at point 18 in the curve whereupon the flow drops to baseline level and flows for a short interval at a rate less than baseline level as indicated by inverted peak 20. The blood flow characteristics remain below average normal blood flow for the following 28 seconds as indicated by portion 21 of the graph. The blood then returns to the normal flow characteristics prior to the next pressure pulse depicted by curve 22.
The operation of the present invention is best understood by description of its utilization with a human being. Referring to FIG. 3, a patient 25, depicted as lying down, wears a boot 26 enclosing his foot and lower leg to the vicinity of the knee and also a mitten 27 enclosing his hand and forearm. Both boot and mitten are made of outer and inner layer with an inflatable space therebetween. The outer layer in each case has limited expandability so that, upon inflation, pressure is directed inward against the enclosed limb. Boot 26 and mitten 27 are inflated through hoses 28 from a pressure tank 30. Pressure tank 30 may be connected to a pump for continuous duty use. Between pressure tank 30 and hoses 28 is a cyclic controller 34 for applying and releasing pressure in accordance with the graph in FIG.
FIG. 3 depicts operation of one boot and one mitten. The pressure cycling of the invention can be applied to any one or more of the four limbs.
FIG. 4 shows pressure measured inside a boot during a controller pressure cycle according to FIG. I. The
rise time inside the boot is 40 mm Hg. in approximately 4 seconds as shown in curve 35. The fall time shown by curve 36 is likewise a little slower falling to lO mm Hg. in about 2 seconds and then curving exponentially to over the next 8 seconds.
' While the invention has been described in accordance with a preferred embodiment, some latitude in the operation of the cycle is desirable depending on specific patients and conditions. A rapid boot pressure rise to at least 30 mm of mercury produces near optimum results when extended over 3 seconds. With particularly sensitive patients, this rise may be extended out to seconds to reduce discomfort. Similarly, the maximum pressure attained is desirably between 40 and 50 mm of mercury, but a peak of 30 mm of mercury is sufficient for most cases. A range of 9 to seconds is acceptable for the time interval between the beginning of pressure application and the onset of pressure release. For maximum effect it is desirable to delay the next application of pressure until the venous flow has returned to its normal equilibrium point, however, this differs with the individual patient and may vary within a fairly wide range with a total period between the cyclical commencement of pressure application being anywhere from about 40 to 80 seconds. A period of 60 seconds is suitable for most cases.
Using the pressure cycle depicted in FIG. 1, it has been found that in an average case the total increase in blood flow over the 12 second interval beginning with the first application of pressure is approximately 30% more than if the pressure is released immediately after the peak pressure is attained. Thus the holding period after attaining the peak pressure has a significant effeet.
Having described a preferred example of the invention along with an indication of the ranges of variation within its scope, the following claims set forth the scope to be covered.
We claim:
1. A method of overcoming circulatory stasis in mammalian limbs comprising:
a. Applying to a limb portion fluid pressure of at least 30 mm of mercury over a time interval of between 9 and 15 seconds with a rise time reaching 30 mm of mercury within 3 seconds;
b. keeping the applied pressure below 1 mm of mercury over a time interval of 30 to 60 seconds; and
c. cyclically repeating the above steps.
2. A method according to claim 1 wherein said pressure is applied for substantially 12 seconds and removed for substantially 48 seconds in repeating cyclical fashion.
3. A method according to claim 1 wherein said fluid pressure is in the range of 40 to 50 mm of mercury and has an inflation rate reaching at least 10 mm of mercury per second for at least 3 seconds.
4. A method according to claim 3 wherein said fluid is a gas.
5. A method according to claim 4 in which said fluid is applied by means of a plastic garment enclosing a limb extremity.
6. A method according to claim 4 wherein at the end of the said time interval over which the fluid pressure in the range of 40 to 50 mm of mercury is applied, the pressure is released falling to 10 mm of mercury in about 2 seconds and then more slowly to 0 mm of mercury.

Claims (6)

1. A method of overcoming circulatory stasis in mammalian limbs comprising: a. Applying to a limb portion fluid pressure of at least 30 mm of mercury over a time interval of between 9 and 15 seconds with a rise time reaching 30 mm of mercury within 3 seconds; b. keeping the applied pressure below 1 mm of mercury over a time interval of 30 to 60 seconds; and c. cyclically repeating the above steps.
2. A method according to claim 1 wherein said pressure is applied for substantially 12 seconds and removed for substantially 48 seconds in repeating cyclical fashion.
3. A method according to claim 1 wherein said fluid pressure is in the range of 40 to 50 mm of mercury and has an inflation rate reaching at least 10 mm of mercury per second for at least 3 seconds.
4. A method according to claim 3 wherein said fluid is a gas.
5. A method according to claim 4 in which said fluid is applied by means of a plastic garment enclosing a limb extremity.
6. A method according to claim 4 wherein at the end of the said time interval over which the fluid pressure in the range of 40 to 50 mm of mercury is applied, the pressure is released falling to 10 mm of mercury in about 2 seconds and then more slowly to 0 mm of mercury.
US459130A 1974-04-08 1974-04-08 Pressure cycle for stimulating blood circulation in the limbs Expired - Lifetime US3901221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US459130A US3901221A (en) 1974-04-08 1974-04-08 Pressure cycle for stimulating blood circulation in the limbs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US459130A US3901221A (en) 1974-04-08 1974-04-08 Pressure cycle for stimulating blood circulation in the limbs

Publications (1)

Publication Number Publication Date
US3901221A true US3901221A (en) 1975-08-26

Family

ID=23823525

Family Applications (1)

Application Number Title Priority Date Filing Date
US459130A Expired - Lifetime US3901221A (en) 1974-04-08 1974-04-08 Pressure cycle for stimulating blood circulation in the limbs

Country Status (1)

Country Link
US (1) US3901221A (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4186732A (en) * 1977-12-05 1980-02-05 American Hospital Supply Corporation Method and apparatus for pulsing a blood flow stimulator
US4809684A (en) * 1985-12-16 1989-03-07 Novamedix Limited Pressure appliance for the hand for aiding circulation
US4846160A (en) * 1985-12-16 1989-07-11 Novamedix Limited Method of promoting circulation in the hand
US5109832A (en) * 1990-12-07 1992-05-05 Proctor Richard D J Method of and apparatus for producing alternating pressure in a therapeutic device
US5218954A (en) * 1992-07-09 1993-06-15 Bemmelen Paul S Van Arterial assist device and method
WO1995001770A1 (en) * 1993-07-08 1995-01-19 Aircast, Incorporated Method and apparatus for providing therapeutic intermittent compression for reducing risk of dvt
GB2327888A (en) * 1997-08-09 1999-02-10 Huntleigh Technology Plc Compression system for increasing blood flow through massage
US6129688A (en) * 1996-09-06 2000-10-10 Aci Medical System for improving vascular blood flow
WO2000072797A1 (en) * 1999-05-28 2000-12-07 Morris John K Portable, self-contained apparatus for deep vein thrombosis (dvt) prophylaxis
WO2001047464A1 (en) * 1999-12-27 2001-07-05 Aircast, Inc. Inflatable medical appliance for prevention of dvt
US6358219B1 (en) 1996-09-06 2002-03-19 Aci Medical System and method of improving vascular blood flow
US20020107461A1 (en) * 2000-11-10 2002-08-08 Hui John C.K. High efficiency external counterpulsation apparatus and method for controlling same
US6572621B1 (en) 1992-05-07 2003-06-03 Vasomedical, Inc. High efficiency external counterpulsation apparatus and method for controlling same
US20030139255A1 (en) * 1991-12-17 2003-07-24 Kinetic Concepts, Inc. Pneumatic compression device and methods for use in the medical field
US20030176822A1 (en) * 2002-03-12 2003-09-18 Morgenlander Joel C. Method of treating restless leg syndrome
US20030233118A1 (en) * 2002-06-13 2003-12-18 Hui John C. K. Method for treating congestive heart failure using external counterpulsation
US20050070755A1 (en) * 1993-05-06 2005-03-31 Zhensheng Zheng High efficiency external counterpulsation method
US20050187499A1 (en) * 2004-02-23 2005-08-25 Heather Gillis Compression apparatus
US20060058716A1 (en) * 2004-09-14 2006-03-16 Hui John C K Unitary external counterpulsation device
US7048702B2 (en) 2002-06-13 2006-05-23 Vasomedical, Inc. External counterpulsation and method for minimizing end diastolic pressure
US20070135743A1 (en) * 2005-12-12 2007-06-14 Ann Meyer Compression apparatus
US20070282233A1 (en) * 2005-12-12 2007-12-06 Tyco Healthcare Group Lp Compression apparatus
US20080234615A1 (en) * 2005-07-26 2008-09-25 Novamedix Distribution Limited Limited Durability Fastening for a Garment
US20080245361A1 (en) * 2007-04-09 2008-10-09 Tyco Healthcare Group Lp Compression Device with S-Shaped Bladder
US20080249442A1 (en) * 2007-04-09 2008-10-09 Tyco Healthcare Group Lp Breathable Compression Device
US20080249441A1 (en) * 2007-04-09 2008-10-09 Tyco Healthcare Group Lp Compression device with strategic weld construction
US20080249443A1 (en) * 2007-04-09 2008-10-09 Tyco Healthcare Group Lp Compression Device Having Weld Seam Moisture Transfer
US20080306420A1 (en) * 2007-06-08 2008-12-11 Tyco Healthcare Group Lp Compression device with independently moveable inflatable member
US20100004575A1 (en) * 2008-07-01 2010-01-07 Tyco Healthcare Group Lp Inflatable member for compression foot cuff
USD608006S1 (en) 2007-04-09 2010-01-12 Tyco Healthcare Group Lp Compression device
US20100081975A1 (en) * 2008-09-30 2010-04-01 Tyco Healthcare Group Lp Compression Device with Removable Portion
USD618358S1 (en) 2007-04-09 2010-06-22 Tyco Healthcare Group Lp Opening in an inflatable member for a pneumatic compression device
US20110009785A1 (en) * 2005-12-12 2011-01-13 Tyco Healthcare Group Lp Compression sleeve having air conduits formed by a textured surface
US7871387B2 (en) 2004-02-23 2011-01-18 Tyco Healthcare Group Lp Compression sleeve convertible in length
US8016779B2 (en) 2007-04-09 2011-09-13 Tyco Healthcare Group Lp Compression device having cooling capability
US8021388B2 (en) 2007-04-09 2011-09-20 Tyco Healthcare Group Lp Compression device with improved moisture evaporation
US8034007B2 (en) 2007-04-09 2011-10-11 Tyco Healthcare Group Lp Compression device with structural support features
US8070699B2 (en) 2007-04-09 2011-12-06 Tyco Healthcare Group Lp Method of making compression sleeve with structural support features
US8109892B2 (en) 2007-04-09 2012-02-07 Tyco Healthcare Group Lp Methods of making compression device with improved evaporation
US8114117B2 (en) 2008-09-30 2012-02-14 Tyco Healthcare Group Lp Compression device with wear area
US8613762B2 (en) 2010-12-20 2013-12-24 Medical Technology Inc. Cold therapy apparatus using heat exchanger
US8652079B2 (en) 2010-04-02 2014-02-18 Covidien Lp Compression garment having an extension
US8753300B2 (en) 2010-09-29 2014-06-17 Covidien Lp Compression garment apparatus having baseline pressure
US8758282B2 (en) 2010-09-29 2014-06-24 Covidien Lp Compression garment apparatus having support bladder
US9114055B2 (en) 2012-03-13 2015-08-25 Cothera Llc Deep vein thrombosis (“DVT”) and thermal/compression therapy systems, apparatuses and methods
US9205021B2 (en) 2012-06-18 2015-12-08 Covidien Lp Compression system with vent cooling feature
US9402763B2 (en) 2012-09-12 2016-08-02 Breg, Inc. Cold therapy apparatus having heat exchanging therapy pad
US9566187B2 (en) 2012-03-13 2017-02-14 Breg, Inc. Cold therapy systems and methods
US9872812B2 (en) 2012-09-28 2018-01-23 Kpr U.S., Llc Residual pressure control in a compression device
US10751221B2 (en) 2010-09-14 2020-08-25 Kpr U.S., Llc Compression sleeve with improved position retention

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2145932A (en) * 1936-01-04 1939-02-07 U M A Inc Therapeutical appliance
US2225308A (en) * 1937-05-01 1940-12-17 U M A Inc Intermittent venous occlusion apparatus
US3063444A (en) * 1956-02-13 1962-11-13 Jobst Institute Means for stimulating the flow of fluids in animal bodies

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2145932A (en) * 1936-01-04 1939-02-07 U M A Inc Therapeutical appliance
US2225308A (en) * 1937-05-01 1940-12-17 U M A Inc Intermittent venous occlusion apparatus
US3063444A (en) * 1956-02-13 1962-11-13 Jobst Institute Means for stimulating the flow of fluids in animal bodies

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4186732A (en) * 1977-12-05 1980-02-05 American Hospital Supply Corporation Method and apparatus for pulsing a blood flow stimulator
US4809684A (en) * 1985-12-16 1989-03-07 Novamedix Limited Pressure appliance for the hand for aiding circulation
US4846160A (en) * 1985-12-16 1989-07-11 Novamedix Limited Method of promoting circulation in the hand
US5109832A (en) * 1990-12-07 1992-05-05 Proctor Richard D J Method of and apparatus for producing alternating pressure in a therapeutic device
US20030139255A1 (en) * 1991-12-17 2003-07-24 Kinetic Concepts, Inc. Pneumatic compression device and methods for use in the medical field
US6572621B1 (en) 1992-05-07 2003-06-03 Vasomedical, Inc. High efficiency external counterpulsation apparatus and method for controlling same
US5218954A (en) * 1992-07-09 1993-06-15 Bemmelen Paul S Van Arterial assist device and method
WO1994001071A1 (en) * 1992-07-09 1994-01-20 Bemmelen Paul S Van Arterial assist device and method
US20050070755A1 (en) * 1993-05-06 2005-03-31 Zhensheng Zheng High efficiency external counterpulsation method
US5588955A (en) * 1993-07-08 1996-12-31 Aircast, Inc. Method and apparatus for providing therapeutic compression for reducing risk of DVT
WO1995001770A1 (en) * 1993-07-08 1995-01-19 Aircast, Incorporated Method and apparatus for providing therapeutic intermittent compression for reducing risk of dvt
US6129688A (en) * 1996-09-06 2000-10-10 Aci Medical System for improving vascular blood flow
US6358219B1 (en) 1996-09-06 2002-03-19 Aci Medical System and method of improving vascular blood flow
GB2327888A (en) * 1997-08-09 1999-02-10 Huntleigh Technology Plc Compression system for increasing blood flow through massage
GB2327888B (en) * 1997-08-09 2001-04-18 Huntleigh Technology Plc Compression apparatus for stimulating blood flow
EP0897707A3 (en) * 1997-08-09 2003-01-29 Huntleigh Technology Plc Compression system
WO2000072797A1 (en) * 1999-05-28 2000-12-07 Morris John K Portable, self-contained apparatus for deep vein thrombosis (dvt) prophylaxis
EP1189570A4 (en) * 1999-05-28 2002-10-02 John K Morris Portable, self-contained apparatus for deep vein thrombosis (dvt) prophylaxis
EP1189570A1 (en) * 1999-05-28 2002-03-27 John K. Morris Portable, self-contained apparatus for deep vein thrombosis (dvt) prophylaxis
US6290662B1 (en) * 1999-05-28 2001-09-18 John K. Morris Portable, self-contained apparatus for deep vein thrombosis (DVT) prophylaxis
WO2001047464A1 (en) * 1999-12-27 2001-07-05 Aircast, Inc. Inflatable medical appliance for prevention of dvt
US6592534B1 (en) * 1999-12-27 2003-07-15 Aircast, Inc. Inflatable medical appliance for prevention of DVT
US6589267B1 (en) 2000-11-10 2003-07-08 Vasomedical, Inc. High efficiency external counterpulsation apparatus and method for controlling same
US20020107461A1 (en) * 2000-11-10 2002-08-08 Hui John C.K. High efficiency external counterpulsation apparatus and method for controlling same
US20050131456A1 (en) * 2000-11-10 2005-06-16 Hui John C.K. High efficiency external counterpulsation apparatus and method for controlling same
US7314478B2 (en) 2000-11-10 2008-01-01 Vasomedical, Inc. High efficiency external counterpulsation apparatus and method for controlling same
US6962599B2 (en) 2000-11-10 2005-11-08 Vasomedical, Inc. High efficiency external counterpulsation apparatus and method for controlling same
US20050026912A1 (en) * 2002-03-12 2005-02-03 Morgenlander Joel C. Method of treating restless leg syndrome
US20030176822A1 (en) * 2002-03-12 2003-09-18 Morgenlander Joel C. Method of treating restless leg syndrome
US7048702B2 (en) 2002-06-13 2006-05-23 Vasomedical, Inc. External counterpulsation and method for minimizing end diastolic pressure
US20030233118A1 (en) * 2002-06-13 2003-12-18 Hui John C. K. Method for treating congestive heart failure using external counterpulsation
US7282038B2 (en) 2004-02-23 2007-10-16 Tyco Healthcare Group Lp Compression apparatus
US7871387B2 (en) 2004-02-23 2011-01-18 Tyco Healthcare Group Lp Compression sleeve convertible in length
US20050187499A1 (en) * 2004-02-23 2005-08-25 Heather Gillis Compression apparatus
US20060058715A1 (en) * 2004-09-14 2006-03-16 Hui John C External counterpulsation device with multiple processors
US20060058717A1 (en) * 2004-09-14 2006-03-16 Hui John C K External counterpulsation device having a curvilinear bed
US20060058716A1 (en) * 2004-09-14 2006-03-16 Hui John C K Unitary external counterpulsation device
US9364037B2 (en) 2005-07-26 2016-06-14 Covidien Ag Limited durability fastening for a garment
US8539647B2 (en) 2005-07-26 2013-09-24 Covidien Ag Limited durability fastening for a garment
US20080234615A1 (en) * 2005-07-26 2008-09-25 Novamedix Distribution Limited Limited Durability Fastening for a Garment
US20070260162A1 (en) * 2005-12-12 2007-11-08 Tyco Healthcare Group Lp Compression apparatus
US20110009785A1 (en) * 2005-12-12 2011-01-13 Tyco Healthcare Group Lp Compression sleeve having air conduits formed by a textured surface
US20070135743A1 (en) * 2005-12-12 2007-06-14 Ann Meyer Compression apparatus
US8079970B2 (en) 2005-12-12 2011-12-20 Tyco Healthcare Group Lp Compression sleeve having air conduits formed by a textured surface
US8029451B2 (en) 2005-12-12 2011-10-04 Tyco Healthcare Group Lp Compression sleeve having air conduits
US7931606B2 (en) 2005-12-12 2011-04-26 Tyco Healthcare Group Lp Compression apparatus
US20070282233A1 (en) * 2005-12-12 2007-12-06 Tyco Healthcare Group Lp Compression apparatus
US8034007B2 (en) 2007-04-09 2011-10-11 Tyco Healthcare Group Lp Compression device with structural support features
US8109892B2 (en) 2007-04-09 2012-02-07 Tyco Healthcare Group Lp Methods of making compression device with improved evaporation
US8740828B2 (en) 2007-04-09 2014-06-03 Covidien Lp Compression device with improved moisture evaporation
USD608006S1 (en) 2007-04-09 2010-01-12 Tyco Healthcare Group Lp Compression device
US20080245361A1 (en) * 2007-04-09 2008-10-09 Tyco Healthcare Group Lp Compression Device with S-Shaped Bladder
US8016778B2 (en) 2007-04-09 2011-09-13 Tyco Healthcare Group Lp Compression device with improved moisture evaporation
US8016779B2 (en) 2007-04-09 2011-09-13 Tyco Healthcare Group Lp Compression device having cooling capability
US8021388B2 (en) 2007-04-09 2011-09-20 Tyco Healthcare Group Lp Compression device with improved moisture evaporation
US8029450B2 (en) 2007-04-09 2011-10-04 Tyco Healthcare Group Lp Breathable compression device
US8721575B2 (en) 2007-04-09 2014-05-13 Covidien Lp Compression device with s-shaped bladder
US20080249442A1 (en) * 2007-04-09 2008-10-09 Tyco Healthcare Group Lp Breathable Compression Device
US8070699B2 (en) 2007-04-09 2011-12-06 Tyco Healthcare Group Lp Method of making compression sleeve with structural support features
US20080249443A1 (en) * 2007-04-09 2008-10-09 Tyco Healthcare Group Lp Compression Device Having Weld Seam Moisture Transfer
USD618358S1 (en) 2007-04-09 2010-06-22 Tyco Healthcare Group Lp Opening in an inflatable member for a pneumatic compression device
US9808395B2 (en) 2007-04-09 2017-11-07 Covidien Lp Compression device having cooling capability
US8128584B2 (en) 2007-04-09 2012-03-06 Tyco Healthcare Group Lp Compression device with S-shaped bladder
US8162861B2 (en) 2007-04-09 2012-04-24 Tyco Healthcare Group Lp Compression device with strategic weld construction
US9387146B2 (en) 2007-04-09 2016-07-12 Covidien Lp Compression device having weld seam moisture transfer
US8506508B2 (en) 2007-04-09 2013-08-13 Covidien Lp Compression device having weld seam moisture transfer
US8992449B2 (en) 2007-04-09 2015-03-31 Covidien Lp Method of making compression sleeve with structural support features
US8597215B2 (en) 2007-04-09 2013-12-03 Covidien Lp Compression device with structural support features
US20080249441A1 (en) * 2007-04-09 2008-10-09 Tyco Healthcare Group Lp Compression device with strategic weld construction
US8622942B2 (en) 2007-04-09 2014-01-07 Covidien Lp Method of making compression sleeve with structural support features
US9114052B2 (en) 2007-04-09 2015-08-25 Covidien Lp Compression device with strategic weld construction
US9107793B2 (en) 2007-04-09 2015-08-18 Covidien Lp Compression device with structural support features
US9084713B2 (en) 2007-04-09 2015-07-21 Covidien Lp Compression device having cooling capability
US20080306420A1 (en) * 2007-06-08 2008-12-11 Tyco Healthcare Group Lp Compression device with independently moveable inflatable member
US10137052B2 (en) 2008-04-07 2018-11-27 Kpr U.S., Llc Compression device with wear area
US20100004575A1 (en) * 2008-07-01 2010-01-07 Tyco Healthcare Group Lp Inflatable member for compression foot cuff
US8636678B2 (en) 2008-07-01 2014-01-28 Covidien Lp Inflatable member for compression foot cuff
US8235923B2 (en) 2008-09-30 2012-08-07 Tyco Healthcare Group Lp Compression device with removable portion
US20100081975A1 (en) * 2008-09-30 2010-04-01 Tyco Healthcare Group Lp Compression Device with Removable Portion
US8632840B2 (en) 2008-09-30 2014-01-21 Covidien Lp Compression device with wear area
US8114117B2 (en) 2008-09-30 2012-02-14 Tyco Healthcare Group Lp Compression device with wear area
US8652079B2 (en) 2010-04-02 2014-02-18 Covidien Lp Compression garment having an extension
US10751221B2 (en) 2010-09-14 2020-08-25 Kpr U.S., Llc Compression sleeve with improved position retention
US9717642B2 (en) 2010-09-29 2017-08-01 Covidien Lp Compression garment apparatus having baseline pressure
US9421142B2 (en) 2010-09-29 2016-08-23 Covidien Lp Compression garment apparatus having support bladder
US8758282B2 (en) 2010-09-29 2014-06-24 Covidien Lp Compression garment apparatus having support bladder
US8753300B2 (en) 2010-09-29 2014-06-17 Covidien Lp Compression garment apparatus having baseline pressure
US8613762B2 (en) 2010-12-20 2013-12-24 Medical Technology Inc. Cold therapy apparatus using heat exchanger
US9566187B2 (en) 2012-03-13 2017-02-14 Breg, Inc. Cold therapy systems and methods
US9114055B2 (en) 2012-03-13 2015-08-25 Cothera Llc Deep vein thrombosis (“DVT”) and thermal/compression therapy systems, apparatuses and methods
US9205021B2 (en) 2012-06-18 2015-12-08 Covidien Lp Compression system with vent cooling feature
US9402763B2 (en) 2012-09-12 2016-08-02 Breg, Inc. Cold therapy apparatus having heat exchanging therapy pad
US9872812B2 (en) 2012-09-28 2018-01-23 Kpr U.S., Llc Residual pressure control in a compression device

Similar Documents

Publication Publication Date Title
US3901221A (en) Pressure cycle for stimulating blood circulation in the limbs
US3292613A (en) Means and method for controlled pulsatory flow of blood to improve circulation
US3403673A (en) Means and method for stimulating arterial and venous blood flow
US3993053A (en) Pulsating massage system
CA2072057C (en) Compression device
US3465748A (en) Device and method for treating vascular and other diseases of extremities
US6463934B1 (en) Method for providing enhanced blood circulation
US3286711A (en) Means and method for self-pressure cycling of limbs to improve blood circulation
US4738249A (en) Method and apparatus for augmenting blood circulation
US3961625A (en) Promoting circulation of blood
US5092317A (en) Method for accelerating the alleviation of fatigue resulting from muscular exertion in a body limb
JPH0298357A (en) Medical instrument for hand
AU2001264859A1 (en) Method for providing enhanced blood circulation
JP2010508931A (en) Compression system
ES2001189A6 (en) Medical appliance.
WO2000057826A1 (en) Anti-embolism stocking device
Barcroft et al. Blood flow and venous oxygen saturation during sustained contraction of the forearm muscles
GB1010243A (en) Method and apparatus for preventing venous blood clotting
Crossley et al. The interrelation of thermoregulatory and baroreceptor reflexes in the control of the blood vessels in the human forearm
Wilkins et al. Changes in arterial and venous blood pressure and flow distal to a cuff inflated on the human arm
CN108542734A (en) A kind of intermittence air charging system and its inflation sleeve
FI68171B (en) ANORDNING FOER MASSAGE AV KROPPENS EXTREMITETER SAOSOM AV BEN
US2649088A (en) Means for the treatment of phlebitis
GB1060578A (en) Apparatus for exercising a joint of a human or animal to improve blood and lymph circlation therein and therearound
RU2802121C1 (en) Method of applying compression to human tissues