US3905863A - Process for forming absorbent paper by imprinting a semi-twill fabric knuckle pattern thereon prior to final drying and paper thereof - Google Patents

Process for forming absorbent paper by imprinting a semi-twill fabric knuckle pattern thereon prior to final drying and paper thereof Download PDF

Info

Publication number
US3905863A
US3905863A US457043A US45704374A US3905863A US 3905863 A US3905863 A US 3905863A US 457043 A US457043 A US 457043A US 45704374 A US45704374 A US 45704374A US 3905863 A US3905863 A US 3905863A
Authority
US
United States
Prior art keywords
fabric
paper
percent
imprinting
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US457043A
Inventor
Peter G Ayers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to US457043A priority Critical patent/US3905863A/en
Priority to CA201,613A priority patent/CA1007911A/en
Priority to CH771274A priority patent/CH592209A5/xx
Priority to DK303474AA priority patent/DK137248B/en
Priority to DE19742427291 priority patent/DE2427291A1/en
Priority to AU69861/74A priority patent/AU6986174A/en
Priority to FR7419847A priority patent/FR2241642B1/fr
Priority to FI1753/74A priority patent/FI175374A/fi
Priority to NL7407635A priority patent/NL7407635A/xx
Priority to IT23743/74A priority patent/IT1014871B/en
Priority to NO742069A priority patent/NO141904C/en
Priority to SE7407532A priority patent/SE412262B/en
Priority to IE1204/74A priority patent/IE40284B1/en
Priority to JP49065508A priority patent/JPS5742760B2/ja
Priority to GB2558974A priority patent/GB1436067A/en
Priority to US05/588,580 priority patent/US3974025A/en
Application granted granted Critical
Publication of US3905863A publication Critical patent/US3905863A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F11/00Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines
    • D21F11/006Making patterned paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F11/00Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines
    • D21F11/14Making cellulose wadding, filter or blotting paper

Definitions

  • ABSTRACT A low-density, soft, bulky and absorbent paper sheet exhibiting a diamond-shaped pattern in its surface after creping, said paper being characterized by having a cross-directional stretch of from about 3.5 percent to about 6 percent, as well as improved softness, surface feel and drape, said paper sheet being particularly suitable for use in tissue, toweling and sanitary products.
  • the aforesaid paper sheets are produced by impressing a dobdash knuck1e pattern, wherein the long axis of the dash impressions is aligned parallel to the machine direction of papermaking, using the back side of a monofilament, polymeric fiber, semi-twill fabric of selected coarseness, the knuckle imprint area of which constitutes between about 20 percent and about 50 percent of the total fabric surface area, as measured in the plane of the knuckles, on an uncompacted paper web at selected fiber consistencies, induced by thermal predrying, prior to final drying and creping.
  • This invention relates to improvements in papermaking and non-woven web manufacturing operations and particularly to the provision of a low-density, soft, bulky and absorbent paper sheet characterized by having significantly greater cross-directional stretch, as well as improved softness, surface feel and drape when compared to paper sheets produced by prior art papermaking and non-woven web manufacturing methods.
  • the present invention consists of a monofilament, polymeric fiber, semi-twill fabric which when used to imprint an uncompacted paper web at selected fiber consistencies, induced by thermal pre-drying, will produce a dotdash pattern wherein the long axis of the dash impressions is aligned parallel to the machine direction of paper-making and the long axis of the dot impressions is aligned parallel to the cross-machine direction.
  • the aforesaid imprinting fabric is especially suitable for use in papermaking and non-woven web manufacturing operations, such as the papermaking operation disclosed in U.S. Pat. No. 3,301,746, issued to Sanford et al. on Jan. 31, 1967, said patent being incorporated herein by reference, wherein the surface characteristics of such fabrics are of operational and product characteristic importance.
  • the present invention consists of a monofilament, polymeric fiber, semi-twill fabric of the type normally used for transporting a moist web through the forming, pressing and drying sections of a papermaking machine, which monofilament, polymeric fiber, semi-twill fabric is woven and thereafter shrunk by heat treatment to result in a dimensionally heat stable fabric having uniform knuckle heights in conjunction with minimum free or interstitial area on the surface of the fabric which will contact the uncompacted paper web, said fabric having been further improved by abrading its web contacting sur face with a fine abrasive medium to increase its knuckle imprint area.
  • a Fourdrinier paper machine paper stock is fed onto a traveling endless belt that is supported and driven by rolls associated with the machine and which serves to the papermaking surface of the machine.
  • Foundrinier belts are commonly formed from a length of woven Fourdrinier fabric with its ends joined together in a seam to provide an endless belt.
  • Fourdrinier fabrics of this type generally comprise a plurality of spaced longitudinal warp filaments and a plurality of spaced transverse woof or weft filaments which have been woven together on a suitable loom.
  • warp filaments of the fabric are, for purposes of this specification, defined as those which run parallel to the machine direction of papermaking and non-woven web manufacturing machines to form a continuous carrier belt; woof or weft filaments are, for purposes of this specification, defined as those which run in the cross-machine direction.
  • the imprinting fabric suggested for use in U.S. Pat. 3,301,746, to which the present invention has particular relevance, may be of square or diagonal weave, and can be of any specific construction including, for example, plain or semi-twill weave.
  • a preferred imprinting fabric, according to the teachings of the aforesaid Sanford et a1. patent, has about 20 to about 60 meshes per inch and is formed from filaments having a diameter of from about 0.008 to about 0.02 inches.
  • Paper sheets produced in accordance with the teachings of U.S. Pat. No. 3,301,746 utilizing a monofilament, polymeric fiber, semi-twill imprinting fabric exhibit properties similar in most respects to paper sheets produced utilizing a plain weave imprinting fabric having filaments of approximately the same diameter when the semi-twill fabric is installed so that its conventional face side is used to imprint the uncompacted paper web.
  • the conventional face side of the semi-twill fabric assuming the fabric has uniform knuckle heights on its web contacting side, will produce a dot-dash pattern wherein the long axis of the dash impressions is aligned parallel to the crossmachine direction and the long axis of the dot impressions is aligned parallel to the machine direction.
  • the dash impressions result from each weft filament passing in a repeated pattern under one: warp filament and then over the next two warp filaments, while the dot impressions result from each warp filament passing in a repeated pattern over one weft filament and then under the next two weft filaments on the conventional face side of the fabric.
  • paper sheets imprinted by the conventional face side of a semi-twill fabric are doctored from the drying drum, the dot-dash knuckle impressions are aligned essentially between the creping folds. The resulting creping folds are, therefore, substantially uninterrupted across the sheets surface.
  • paper sheets produced utilizing the conventional face side of a semi-twill imprinting fabric exhibit properties substantially similar to paper sheets produced utilizing a plain weave imprinting fabric, i.e., a low-density, soft, bulky and absorbent paper sheet characterized by having .uniforrncreping folds which extend substantially uninterrupted across the width of the sheet.
  • the dash impressions result from each warp filament passing in a repeated pattern under one weft filament and then over the next two weft filaments, while the dot impressions result from each weft filament passing in a repeated pattern over one'warp filament and then under the next two warp filaments on the back side of the fabric.
  • Paper sheets imprinted with the back side of a conventional semi-twill, monofilament, polymeric fiber fabric unlike paper sheets imprinted with either a plain weave fabric or the conventional face side of a semitwill fabric, exhibit a diamond-shaped pattern after creping.
  • a means of preparing a dimensionally heat stable, plain weave, monofilament, polymeric fiber fabric having uniform knuckle heights and minimum free area on each side of the fabric is disclosed in U.S. Pat. No. 3,473,576 issued to Amneus on Oct. 21, 1969, said patent being incorporated herein by reference.
  • a plain weave fabric is prepared by selecting polymeric warp monofilaments having a relatively high heat-induced shrinkage potential and further selecting an initial warp monofilament spacing in the loom according to a mathematical equation disclosed in the aforementioned Amneus patent.
  • Polymeric woof monofilaments are then selected which have a relatively low heat induced shrinkage potential, and these woof monofilaments are woven and beaten in the weaving process into a plain weave fabric having an initial caliper calculated according to yet another mathematical equation disclosed in the aforementioned Amneus patent.
  • the fabric knuckles are brought to uniform on both sides of the fabric and the minimum free area of the fabric is set by a heat shrinkage treatment which maintains the fabric in warp tension while allowing it to shrink in the woof direction.
  • the initial warp filament spacing and caliper of a semi-twill fabric necessary to produce minimum free area and uniform knuckle heights on the back side of the fabric after heat treatment are determined experimentally by trial and error.
  • Another object of the present invention in a preferred embodiment, is to provide a monofilament, polymeric fiber, semi-twill fabric for use in papermaking and non-woven web manufacturing operations, the back surface of which fabric has a total knuckle imprint area of from about percent to about 50 percent of the total fabric surface area, as measured in the plane of the knuckles, and which knuckle imprint area has a surface finish at least equal in smoothness to the surface finish induced by abrasion with an abrasive medium having an effective abrasive grain size-of less than about 300 mesh.
  • a low density, soft, bulky and absorbent paper sheet is provided, said paper sheet exhibiting a diamond 6 shaped pattern in its surface after creping, said paper sheet being characterized by having a cross-directional stretch of from about 2 percent to about 6 percent, as well as improved softness, surface feel and drape, said paper sheet being particularly suitable for use in tissue, toweling, and sanitary products.
  • the soft, bulky and absorbent paper sheets of the present invention are produced, in a preferred embodi ment, generally in accordance with the teachings of U.S. Pat. No. 3,301,746 by forming an uncompacted paper web, supporting said uncompacted paper web on the back side of a monofilament, polymeric fiber, semitwill imprinting fabric having about 20 to about 60 meshes per inch, said imprinting fabric having been formed from filaments having a diameter of from about 0.008 inches to about 0.025 inches, the back side of said fabric having had its knuckle imprint area increased in accordance with the teachings of U.S. Pat. No.
  • the back side of the monofilament, polymeric fiber, semi-twill imprinting fabric is prepared in accordance with the teachings of U.S. Pat. No. 3,573,164 by abrading the knuckle surfaces to increase the knuckle imprint area to between about 20 percent and about 50 percent of the total fabric surface area, as measured in the plane of the knuckles, as well as to polish the knuckle surfaces.
  • the monofilament, polymeric fiber, semitwill fabric is woven and heat treated so as to produce a dimensionally heat stable fabric having uniform knuckle heights and minimum free area on its back side prior to abrading the knuckle surfaces on the back side of the fabric.
  • FIG. 1 is a plan view of an enlarged portion of a conventional right-hand semi-twill, monofilament, polymeric fiber fabric as viewed from the back side, i.e., that side of the fabric which according to the teachings of the prior art does not normally contact the web.
  • the monofilament, polymeric fiber, semi-twill fabric is shown prior to any abrasion treatment and prior to use as an endless or continuous fabric belt in papermaking or non-woven web manufacturing operations.
  • FIG. 2 is an enlarged cross-sectional view of the semitwill fabric illustrated in FIG. 1, taken looking in the cross-machine direction (CD) along line 2-2 in FIG. 1, which crosssectional view illustrates the higher relative elevation and the smooth knuckle surfaces of the warp filaments on each side of the fabric.
  • CD cross-machine direction
  • FIG. 3 is an enlarged cross-sectional view of the semitwill fabricjillustrated in FIGS. 1 and 2, taken looking in themachine direction (MD) along line 3-3 in FIG. 1, which cross-sectional view illustrates the lower relative elevation and the smooth knuckle surfaces of the woof or weft filaments.
  • FIG. 4 is a simplified illustration of an'enlarged partial plan view of an uncreped paper sheet which has been imprinted utilizing the conventional face side of a semi-twill fabric such as is shown in FIGS. 1 through 3.
  • the long axis of the dot impressions formed by the warp filaments is aligned parallel to the machine direction.
  • FIG. 5 is a simplified illustration of an enlarged partial plan view of an uncreped paper sheet which has been imprinted utilizing the back side of a semi-twill fabric such as is shown in FIG. 1 through 3.
  • the long axis of the dash impressions formed by the warp filaments is aligned parallel to the machine direction.
  • FIG. 6 is an enlarged cross-sectional view of a monofilament, polymeric fiber, semi-twill fabric such as is illustrated in FIGS. 1 through 3, taken looking in the cross-machine direction at a point corresponding to line 22 in FIG. 1, after the fabric has been subjected to a heat treatment process sufficient to produce uniform knuckle heights on the conventional face side of the fabric.
  • FIG. 7 is an enlarged cross-sectional view of the semitwill fabric illustrated in FIG. 6, taken looking in the machine direction at a point corresponding to line 33 in FIG. 1.
  • FIG. 8 is a simplified illustration of an enlarged partial plan view of an uncreped paper sheet which has been imprinted utilizing the conventional face side of a monofilament, polymeric fiber, semi-twill fabric such as is illustrated in FIGS. 6 and 7.
  • the long axis of the dash impressions formed by the woof or weft filaments is aligned parallel to the cross-machine direction, while the long axis of the dot impressions formed by the warp filaments is aligned parallel to the machine direction.
  • FIG. 9 is a simplified illustration of an enlarged partial plan view of an uncreped paper sheet which has been imprinted utilizing the back side of a semi-twill fabric such as is illustrated in FIGS. 6 and 7.
  • the long axis of the dash impressions formed by the warp filaments is aligned parallel to the machine direction.
  • FIG. 10 is an enlarged cross-sectional view of a monofilament, polymeric fiber, semi-twill fabric such as is illustrated in FIGS. 1 through 3 and 6 and 7, taken looking in the cross-machine direction at a point corresponding to line 22 in FIG. 1, after the fabric has been subjected to a heat treatment process sufficient to produce uniform knuckle heights and minimum free area on the back side of the fabric. It should be noted that at this point, the knuckle heights on the conventional face side of the fabric are no longer uniform.
  • FIG. 11 is an enlarged cross-sectional view of the semi-twill fabric illustrated in FIG. 10, taken looking in the machine direction at a point corresponding to line 3-3 in FIG. 1.
  • FIG. 12 is a simplified illustration of an enlarged partial plan view of an uncreped paper sheet which has been imprinted utilizing the conventional face side of a semi-twill fabric such as is illustrated in FIGS. 10 and 1 l.
  • the long axis of the dash impressions formed by the woof or weft filaments is aligned parallel to the crossmachine direction.
  • FIG. 13 is a simplified illustration of an enlarged partial plan view of an uncreped paper sheet which has been imprinted utilizing the back side of a semi-twill fabric such as is illustrated in FIGS. 10 and 11.
  • the long axis of the dash impressions formed by the warp filaments is aligned parallel to the machine direction, while the long axis of the dot impressions formed by the woof or weft filaments is aligned parallel to the crossmachine direction.
  • the dot impressions are present at this stage due to the fact that the knuckles 'on the back side of the fabric are of uniform height.
  • FIG. 14 is an enlarged cross-sectional view of a monofilament, polymeric fiber, semi-twill fabric such as is illustrated in FIGS. 10 and 11, taken looking in the cross-machine direction at a point corresponding to line 22 in FIG. 1, after the back side of the fabric has been abraded to increase its knuckle imprint area.
  • FIG. 15 is an enlarged cross-sectional view of the semi-twill fabric illustrated in FIG. 14, taken looking in the machine direction at a point corresponding to line 33 in FIG. 1.
  • FIG. 16 is a plan view of an enlarged portion of the monofilament, polymeric fiber, semi-twill fabric illustrated in FIGS. 14 and 15, as viewed from the back side of the fabric.
  • FIG. 17 is a plan view photograph, enlarged about 12 times actual size, of an uncreped paper sheet which has been imprinted utilizing the back side of a semi-twill fabric such as is shown in FIGS. 14, 15, and 16.
  • the pattern produced is similar to that shown in FIG. 13, but the dot-dash impressions constitute a greater percentage of the surface area of the paper due to the increased knuckle imprint area of the fabric.
  • FIG. 18 is an illustration of an enlarged cross-sectional view of the uncreped paper sheet of FIG. 17, taken looking in the cross-machine direction along line 18-18 in FIG. 17.
  • FIG. l9 is a plan view photograph, enlarged about 6 times actual size, of a paper sheet such as is shown in FIGS. 17 and 18 after creping.
  • the long axis of the impressions visible after creping is oriented generally in the cross-machine direction, while the overall surface of the paper exhibits a diamond-shaped pattern characteristic of paper sheets made in accordance with the present invention.
  • FIG. 20 is an illustration of an enlarged cross-section view of the creped paper sheet of FIG. 19, taken looking in the cross-machine direction along line 2020 in FIG. 19.
  • the long axis of the dash impressions 9, where present, is aligned parallel to the crossmachine direction, while the long axis of the dot impressions 3, where present, is aligned parallel to the machine direction.
  • the back side of the semi-twill fabrics referred to herein shall be defined as that side which would not normally contact the paper web according to the teachings of the prior art, i.e., the side of the semi-twill fabric which would, depending upon its particular condition, produce one of the imprint patterns illustrated in FIGS. 5, 9, 13, or 17 (assuming it is a right-hand semi-twill fabric).
  • the long axis of the dash impressions 8 is aligned parallel to the machine direction, while the long axis of the dot impressions 10, where present, is aligned parallel to the cross-machine direction.
  • FIG. 1 represents an enlarged plan view of aportion of a conventional right-hand, monofilament, polymeric fiber, semi-twill fabric as viewed from the back side.
  • the semi-twill fabric illustrated in FIG. 1 has not been used on a paper machine nor has it been accorded any special abrading treatment.
  • the warp monofilaments l are aligned parallel to the machine direction, while the woof or weft monofilaments 2 are aligned parallel to the cross-machine direction.
  • the imprinting fabric illustrated in FIG. 1 has about 20 to about 60 meshes per inch and is formed from monofilament polymeric fibers having diameters ranging from about 0.008 inches to about 0.025 inches.
  • FIGS. 2 and 3 are cross-sectional views of the semi-twill fabric illustrated in FIG. 1, taken looking respectively in the cross-machine and machine directions.
  • the knuckles formed at the cross-over points of the warp filaments 1 and the woof filaments 2 are not coplanar on either the face or the back side of the fabric.
  • the warp filaments l are at a higher relative elevation than the woof filaments 2 on both sides of the fabric. This is termed, for purposes of this specification, a warp-high condition of the fabric.
  • FIG. 4 is a simplified illustration of the knuckle imprint pattern which would result if a semitwill fabric such as is illustrated in FIGS. 1 through 3 were installed so that the conventional face side of the fabric were utilized to imprint an uncreped paper web produced in accordance with the teachings of U.S. Pat. No. 3,301,746 issued to Sanford et al. on Jan. 31, 1967, said patent being incorporated herein by reference.
  • the dot impressions 3 visible on the surface of such an uncreped paper sheet after imprinting form a pattern corresponding to the knuckles 4 of the warp filaments 1 on the conventional face side of the fabric.
  • the dot impressions 3 are formed by the warp filaments l, the long axis of the dot impressions is aligned parallel to the machine direction.
  • the knuckles 7 formed by the woof filaments 2 on the conventional face side of the fabric do not form a corresponding impression in the uncompacted paper web due to the fact that they are at a lower relative elevation than the warp filament knuckles 4.
  • FIG. illustrates the knuckle imprint pattern which would result if an uncompacted paper web produced in accordance with the teachings of U.S. Pat. No.
  • 3,301,746 were imprinted utilizing the back side of an imprinting fabric such as is illustrated in FIGS. 1 through 3. Because the warp filaments 1 are at a higher relative elevation than the woof filaments 2 on the back side of the fabric, only the peaks of the knuckles 5 formed by the warp filaments are impressed into the paper web during the imprinting process. Since the warp filaments 1 run in the machine direction, the resulting pattern consists of a series of relatively long dash impressions 8, wherein the long axis of the impressions is aligned parallel to the machine direction.
  • the imprint pattern illustrated in FIG. 5 differs from the imprint pattern illustrated in FIG. 4 in two important respects.
  • the fabric In order for the knuck- 1 1 les 5 and 6 on the back side of the fabric to reach uniform heights, the fabric must be subjected to further heat treatment; The additional heat treatment in turn causes the heights of the knuckles 4 and 7 on the conventional face side of the semi-twill fabric to again become non-uniform.
  • the initial warp filament spacing and caliper of a semi-twill fabric necessary to produce minimum free area and uniform knuckle heights on the back side of the fabric after heat treatment is determined experimentally by trial and error.
  • a monofilament, polymeric fiber, semi-twill fabric is prepared'by selecting warp monofilaments having a relatively high heat-induced shrinkage potential in the range of about 10 percent to about 30 percent, preferably about'l6 percent. After selecting and spacing the warp monofilaments, polymeric woof monofilaments are selected which have a relatively low heat-induced shrinkage potential in the range of about 2 percent to about 8 percent, preferably about 4 percent.
  • the heat shrinkage treatment takes advantage of the aforementioned shrinkage characteristics of the warp and woof monofilaments.
  • the heat shrinkage treatment comprises subjecting the initially woven fabric to a series of heat applications as it is stretched and secured at its ends in the lengthwise or warp direction, while it is free to shrink in the woof direction.
  • the heat shrinkage treatment is conveniently applied to the initially woven semi twill fabric while the fabric is mounted as an endless belt on a finishing table such as those conventionally used in finishing metal Fourdrinier wires.
  • a conventional wire finishing table consists of two adjustable rolls for supporting, tensioning and driving the wire or fabric to be finished as an endless belt.
  • the heat shrinkage can be induced conveniently by an infrared source mounted as a bank above and across the initially woven fabric. The infrared source heats areas of the initially woven fabric as the fabric slowly revolves on the rolls of the wire finishing table. Heat is applied to the fabric in successive treatments of about 5 seconds to about 40 seconds, preferably about seconds, per treatment. The fabric temperatures during the successive applications of heat approach gradually the softening point of the selected monofilament polymeric fibers.
  • a semi-twill fabric which has been subjected to the aforementioned heat treatment process, although not locked-up as in the case of a plain weave fabric subjected to such a heat treatment process, is dimensionally heat stable at the temperatures encountered in the web imprinting process disclosed in U.S. Pat. No. 3,301,746. 3,301,746.
  • the temperature of the fibers in the successive heat treating passes is increased to a maximum temperature immediately below the softening point of the selected fibers.
  • the heat treating temperature used with Treviera fibers is about 360 to about 400F, preferably about 375F.
  • a sufficient number of successive heating treatments or passes are employed to insure that the monofilament polymeric fibers making up the fabric structure have been at the highest heat treating temperature for a total time of about 15 to about seconds.
  • an initial warp filament spacing in the loom and an initial caliper of the semi-twill fabric are determined experimentally by trial and error to take into account the heat-induced shrinkage which occurs during the above described dimensional heat stabilization process.
  • FIGS. 6 and 7 are enlarged cross-sectional views of a monofilament, polymeric fiber, semi-twill fabric such as is illustrated in FIGS. 1 through 3 after a heat treat ment process such as that described above has been initiated.
  • FIG. 6 is taken looking in the cross-machine direction at a point corresponding to line 2-2 in FIG. I, while FIG. 7 is taken looking in the machine direction at a point corresponding to line 33 in FIG. 1.
  • FIGS. 6 and 7 represent an intermediate condition of the fabric which occurs during the heat treatment process, prior to achieving uniform knuckle heights and minimum free area on the back side of the fabric.
  • FIG. 6 represents the condition which results when the warp filaments I tend to draw themselves closer to a straight line due to the heat induced shrinkage.
  • FIG. 8 is a simplified illustration of an enlarged partial plan view of an uncreped paper sheet produced in accordance with the teachings of US. Pat. No. 3,301,746, which uncreped paper sheet has been imprinted utilizing the conventional face side of a monofilament, polymeric fiber, semi-twill fabric such as is illustrated in FIGS. 6 and 7.
  • the knuckle imprint pattern is similar to that shown in FIG. 4 wherein the dot impressions 3 formed by the knuckles 4 of the warp monofilaments 1 on the conventional face side of the fabric are illustrated, but the dash impressions 9 formed by the knuckles 7 of the woof monofilaments 2 are also present. Because the woof monofilaments 2 are aligned parallel to the cross-machine direction, the long axis of the dash impressions 9 is also aligned paral- 13 lel to the cross-machine direction.
  • FIG. 9 is a simplified illustration of an enlarged partial plan view of an uncreped paper sheet produced in accordance with the teachings of US Pat. No. 3,301,746, which uncreped paper sheet has been imprinted utilizing the back side of a semi-twill fabric such as is illustrated in FIGS. 6 and 7.
  • the long axis of the dash impressions 8 formed by the knuckles of the warp monofilaments l is aligned parallel to the machine direction.
  • paper sheets utilizing the imprinting pattern illustrated in FIG. 8 exhibit a basic regularity of creping wherein the crepe ridges extend substantially uninterrupted across the entire width of the sheet. Addition of the dash impressions 9 to the imprinting pattern does not alter the fact that the imprinted paper sheet is adhered to the dryer drum only at interrupted intervals corresponding to the spacing, in the machine direction, of the dot impressions 3. Paper sheets imprinted with the pattern illustrated in FIG. 9, on the other hand, exhibit a diamond-shaped pattern characteristic of paper sheets made in accordance with the present invention when doctored from the dryer drum.
  • FIG. 10 is taken looking in the cross-machine direction at a point corresponding to line 2-2 in FIG. 1, while FIG. 11 is taken looking in the machine direction at a point corresponding to line 3-3 in FIG. 1.
  • Heat-induced shrinkage of the warp monofilaments l as shown in FIG.
  • the woof monofilaments 2 which, unlike the warp monofilaments l, are not subjected to tension tend to wrap themselves more completely about the warp monofilaments 1 located on the conventional face side of the fabric. Simultaneously, the woof monofilaments 2 tend to belly" or gradually wrap themselves about the two adjacent warp monofilaments 1 located on the back side of the fabric.
  • the heights of the warp monofilament knuckles 5 on the back side of the fabric and the woof monofilament knuckles 6 on the back side of the fabric become uniform, while the heights of the woof monofilament knuckles 7 on the conventional face side of the fabric and the warp monofilament knuckles 4 on the conventional face side of the fabric become nonuniform.
  • the condition illustrated in FIGS. 10 and 1] should result, i.e., a dimensionally heat stabilized semitwill fabric having uniform knuckle heights as well as minimum free area on its back side.
  • FIG. 12 is a simplified illustration of an enlarged partial plan view of an uncreped paper sheet made in accordance with the teachings of US. Pat. No. 3,301 ,746, which uncreped paper sheet has been imprinted utilizing the conventional face side of a semitwill fabric such as is illustrated in FIGS. 10 and 11.
  • the imprinting pattern is basically similar to that shown in FIG. 8, but the dot impressions 3 formed by the warp monofilament knuckles 4 on the conventional face side of the fabric are no longer present due to the fact that the warp monofilament knuckles 4 are at a lower relative elevation than the woof monofilament knuckles 7 on the conventional face side of the fabric.
  • Paper sheets imprinted with the pattern illustrated in FIG. 12 exhibit properties substantially similar to sheets imprinted with the patterns shown in FIGS. 4 and 8 after creping.
  • FIG. 13 is a simplified illustration of an enlarged partial plan view of an uncreped paper sheet produced in accordance with the teachings of US. Pat. No. 3,301,746, which uncreped paper sheet has been imprinted utilizing the back side of a semi-twill fabric such as is illustrated in FIGS. 10 and 11.
  • the dash impressions 8 formed by the warp filament knuckles 5 on the back side of the fabric are essentially the same as those illustrated in FIG. 8, but the dot impressions 10 formed by the woof monofilament knuckles 6 on the back side of the fabric are also present due to the fact that the warp filament knuckles 5 and the woof filament knuckles 6 on the back side of the fabric areof uniform height.
  • Paper sheets produced utilizing the back side of a semitwill fabric such as is illustrated in FIGS. 10 and ll.for imprinting purposes exhibit a diamond-shaped surface appearance aftercreping, which surface appearance is characteristic of papersheets made in accordance with applicants invention.
  • the diamond-shaped pattern becomes more pronounced.
  • the back side of a monofilament, polymeric fiber, semi-twill imprinting fabric in a preferred embodiment of the present invention, is subjected to a treatment wherein the knuckle surfaces of the fabric are abraded using either a wet or dry sandpaper having an effective abrasive grain size of about 300 mesh to about 500 mesh as an abrasive medium.
  • the abrasive media can be mounted on drums for rotative application to the fabric knuckle surfaces.
  • the abrading process can be performed while continuously showering the fabric with water or other cleansing and lubricating fluid, for example light oil, to remove abraded particles and facilitate the polishing operation.
  • the above described abrading operation can be conducted in several stages.
  • the initial abrasion can be carried out with an abrasive medium having an effective abrasive grain size of about 300 mesh, and this initial abrading operation can be followed by an abrasive polishing treatment using a water lubricated wet sandpaper having an effective abrasive grain size of about 500 mesh.
  • Polishing abrasives such as talc, rouge and crocus cloth can also be used to further polish the knuckle surfaces.
  • FIGS. 14 and are enlarged cross-sectional views of a monofilament, polymeric fiber, semitwill fabric such as is illustrated in FIGS. 10 and 11 after the back side of the fabric has been abraded to increase its knuckle imprint area to between about percent and about 50 percent of the total fabric surface area, as measured in the plane of the knuckles.
  • FIG. 16 is a plan view of an enlarged portion of the fabric illustrated in FIGS. 14 and 15, as viewed from the back side of the fabric.
  • the fabric illustrated in FIGS. 14 through 16 represents a preferred embodiment of the present invention
  • FIGS. 14 and 15 taken looking in the cross-machine and machine directions respectively, illustrate the fabric profile which is presented to an uncompacted paper web when the fabric is utilized for imprinting purposes in accordance with the teachings of US. Pat. No. 3,301,746.
  • the warp filament knuckles 5 and the woof filament knuckles 6 as shown in FIGS. 10 and 11 have been abraded to form the plateau-like warp filament knuckles 5 and Woof filament knuckles 6 illustrated in FIGS. 14 and 15.
  • the plateau-like knuckle surfaces 5' and 6' impress an uncompacted paper web to a uniform depth, thus producing a more distinct imprint pattern.
  • the moist paper web carried on an imprinting fabric of the present invention can be thermally pre-dryed by means of passing hot gases, for example air, through the moist paper web and the imprinting fabric.
  • hot gases for example air
  • One suitable apparatus for pre-drying the moist paper web is disclosed in US. Pat. No. 3,303,576 issued to Sisson on Feb. 14, I967, which patent is incorporated herein by reference.
  • the means by which thermal predrying is accomplished is not critical, it is critical that the relationship of the moist web to the imprinting fabric be maintained once established.
  • thermal pre-drying is used to effect a fiber consistency in the moist paper web from about 30 percent to about percent, preferably about 40 percent to about 80 percent.
  • the aforementioned Sanford et al. patent further teaches that at fiber consistencies less than about 30 percent, the desirably balanced sheet characteristics of softness, bulk and absorbency suffer because the sheet and the fibers thereof are two moist, and yielding occures during the imprinting step.
  • the aforementioned Sanford et al. patent also teaches that pre-drying to fiber consistencies above about 80 percent precludes the development of effective tensile strengths in the imprinted paper sheet.
  • Imprinting the fabric knuckle pattern in the moist web by pressing the pre-dryed web against a relatively non-yielding surface, for example, an unheated steel roll or a Yankee dryer surface, while the pre-dryed web is yet carried on the imprinting fabric results in a paper sheet having impressed in its surface, to a depth of at least 30 percent of its machine glazed caliper the knuckle pattern of the imprinting fabric.
  • Machine glazed claiper refers to the caliper of the paper sheet taken directly from the Yankee dryer, before creping.
  • the knuckle surfaces and 6' illustrated in FIGS. 14 through 16 in a preferred embodiment of the present invention, are impressed to a uniform depth of at least 30 percent of the machine glazed caliper of the uncreped paper sheet.
  • the pressure required for the imprinting of the imprinting fabric pattern can be provided, in a preferred embodiment of the present invention, by one or more pressure rolls operating on the imprinting fabric to force the knuckles of the fabric into the surface of the pre-dryed web and to force the pre-dryed web surface under the knuckles against a Yankee dryer surface.
  • the imprinting step described above be the first substantial overall mechanical compaction step which the paper web has received during formation and pre-drying.
  • FIG. 17 is a photograph of an enlarged partial plan view of an uncreped paper sheet made in accordance with the teachings of US. Pat. No. 3,301,746, utilizing the back side of a semi-twill fabric such as is illustrated in FIGS. 14 through 16 to imprint the uncompacted paper web.
  • the resulting knuckle imprint pattern is basically similar to that shown in FIG. 13.
  • the dash impressions 8 formed by the warp filament knuckles 5' and the dot impressions formed by the woof filament knuckles 6' constitute a greater percentage of the sheets surface area due to the increase in the size of the fabric knuckles.
  • the impressions 8 and 10 are more distinct due to the fact that they are of substantially uniform depth, having been produced by the plateau-like surfaces of the knuckles 5 and 6'.
  • FIG. 18 is an illustration of an enlarged cross-sectional view of the uncreped paper sheet of FIG. 17, taken looking in the cross-machine direction along line 18-48 in FIG. 17.
  • FIG. 19 is a photograph of an enlarged partial plan view of a creped paper sheet made in accordance with the teachings of US. Pat. No. 3,301,746, utilizing the back side of a semi-twill fabric such as is illustrated in FIGS. 14 through 16 to imprint the uncompacted paper web prior to creping.
  • the long axis of the impressions 11 visible after creping appears to be oriented generally in the cross-machine direction.
  • FIG. 20 is an illustration of an enlarged cross-sectional view of the paper sheet of FIG. 19, taken looking in the cross-machinc direction along line 2020 in FIG. 19.
  • a finished paper sheet such as is illustrated in FIGS. 19 and 20, produced in accordance with the present invention exhibits improvements in cross-directional stretch, softness, surface feel and drape which are not achievable by the paper manufacturing process disclosed in US. Pat. No. 3,301,746 when a similarly precharacteristics, does not produce the improvements in cross-directional stretch, softness, surface feel and drape which are realized by increasing the knuckle imprint area on the back side of a semi-twill imprinting fabric.
  • creped paper sheets exhibiting a diamond-shaped surface appearance composed substantially of cellulosic fibers, having basic weights of from about 5 to about 40 pounds per 3000 square feet, and exhibiting a repeating pattern of discrete impressed areas are produced.
  • Furnish comprised of a 50 percent softwood kraft and a 50 percent hardwood sulfite stock was utilized throughout the entire series of tests.
  • An adhesive coat was applied to the Yankee dryer surface by utilizing a wire glue roll of approximately 40 mesh turning at a lineal speed of approximately 9 feet per minute at its periphery in an open glue pot and then spraying the glue picked up on the wire mesh glue roll onto the surface of the Yankee dryer drum by means of a series of air jets located interiorly of the glue roll and operating continuously at an air pressure of p.s.i.g.
  • the glue utilized was purchased under the specification Peter Cooper IX from the Peter Cooper Corporation of Gowanda, New York.
  • the mixture, as applied, contained 1 part glue and 99 parts water.
  • the pre-dryed and imprinted web was caused to part from the imprinting fabric at the pressure nip exit and adhere to the Yankee dryer surface by means of the adhesive coat described above.
  • the dry creped sheet was removed from the Yankee dryer by means of a conventional doctor blade so that the finished product had 12 percent stretch as crepe folds.
  • the fabrics were both 31 (machine direction) by 28 (crossmachine direction) mesh utilizing warp and woof 19 monofilaments having a diameter of 0.45 mm. (about 0.018 inches).
  • One of the fabrics was woven so as to present its back side as a web contacting surface and the other was woven so as to present its conventional face side as a web contacting surface. Both of the fabrics, as received, were in a configuration similar to that illustrated in FIGS.
  • the fabric woven so as to present its back side as a web contacting surface was found to have an initial knuckle imprint area of about 21.2 percent in the asreceived condition, while the fabric woven so as to present its conventional face side as a web contacting surface was found to have a knuckle imprint area of about 23.4 percent in the as-received condition.
  • Example I Data taken from paper samples made utilizing the imprinting fabric having its back side in contact with the uncompacted paper web is reported hereinbelow under Example I. Data taken from paper samples made utilizing the imprinting fabric having its conventional face side in contact with the uncompacted paper web is reported hereinbelow under Example II. With the exception of the imprinting fabrics, the paper machine conditions were unchanged between Examples I and II.
  • each fabric was abraded in accordance with the teachings of US. Pat. No. 3,573,164.
  • the knuckle imprint area on the fabric utilizing its back side as a web contacting surface was increased from approximately 21.2 percent to approximately 28.4 percent, while the knuckle imprint area of the fabric utilizing its conventional face side as a web contacting surface was increased from approximately 23.4 percent to approximately 34.1 percent.
  • the tests were repeated keeping all paper machine conditions, other than the increased knuckle imprint area of the fabrics, unchanged. The results of tests performed on sample paper sheets taken during each run are tabulated hereinbelow under Examples Ill and IV.
  • Example III The data set forth in Example III is taken from sample sheets made utilizing the semi-twill imprinting fabric which presented its back side to the uncompacted paper web, while the data set forth in Example IV is taken from sample sheets made utilizing the semi-twill fabric which presented its conventional face side to the uncompacted paper web.
  • Example V Data set forth in Example V is taken from paper sheets made utilizing the semi-twill fabric which presented its back side to the uncompacted paper web, while data set forth in Example VI is taken from paper sheets made utilizing the semi-twill fabric which presented its conventional face side to the uncompacted paper web.
  • the caliper of a paper sheet at grams per square inch is the thickness of that sheet when subjected to a compressive load of 80 grams per square inch.
  • the tensile strengths in the machine direction (MD) and cross-machine direction (CD), as tabulated in the Examples hereinbelow, are reported as the force in grams that a 1 inch wide sample with a 4 inch span between the tensile tester clamps, cut in the MD or CD direction, can withstand before breaking, as measured on a standard Thwing-Albert Tensile Tester such as is available from the Thwing-Albert Instrument Company of Philadelphia, Pennsylvania.
  • a Thwing-Albert I-Iandle-O-Meter catalogue num-. ber 21 1-3, such as is available from the Thwing-Albert Instrument Company of Philadelphia, Pennsylvania, was used to measure a combination of stiffness and sliding friction of the paper samples.
  • a high Handle-O- Meter or I-I-O-M reading indicates a lack of softness and is, therefore, undesirable.
  • a lower I-I-O-M reading indicates a softer sheet.
  • Two 4 /2 inch by 4 /2 inch paper samples were placed side by side over the 0.25 inch wide Handle-O-Meter slot located beneath the blade of the unit.
  • the Shirley Stiffness Tester is described in ASTM Standard Method No. 1388.
  • the horizontal platform of the instrument is supported by two side pieces made of plastic. These side pieces have engraved on them index lines at the standard angle of deflection of 41 /2.
  • 21 tached to the instrument is a mirror which enables the operator to view both index lines from a convenient position.
  • the scale of the instrument is graduated in centimeters. The scale may be used as a template for cutting the specimens to size.
  • a rectangular strip ofpaper 6 inches by 1 inch, is cut to the same size as the scale and then both scale and specimen are transferred to the platform with the specimen underneath.- Both are slowly pushed forward.
  • the strip of paper will commence to droop over the edge of the platform as the scale and specimen are advanced. Movement of the scale and the specimen is continued until the tip of the specimen viewed in the mirror cuts both of the index lines.
  • the amount of overhang, I can immediately be read off from the scale mark opposite a zero line engraved on the side of the platform.
  • the bending length 0, for purposes of these tests, shall be defined as the length of paper that will bend under its own weight to a definite extent. it is a measure of the stiffness that determines draping quality. The calculation is as follows: i
  • Flexural rigidity, G is a measure of stiffness associated with handle.
  • the calculation of flexural rigidity, G, in the present instance is as follows:
  • the bending modulus, q as reported in the Examples hereinbelow, is independent of the dimensions of the strip tested and may be regarded as .the intrinsic stiffness of the material. Therefore, this value may be used to compare the stiffness of materials having different 10 thicknesses. For its calculation, the thickness or caliper of the paper sample must be measured at a pressure of 1 pound per square inch.
  • the bending modulus, q is; then given by:
  • G is the flexural rigidity of the particular paper sample as determined above, expressed in mg. cm.
  • g is the thickness or caliper of the particular paper sample, expressed in mils, when subjected to a pressure of 1 pound per square inch.
  • the knuckle imprint areas referred to in the Examples hereinbelow were determined by making an impression with pressure sensitive paper in each of four areas on the web contacting surface of the imprinting 3O fabric utilized in the particular Example. Enlarged photographs were taken of each of the four impressions, and a unit-cell of knuckles, i.e., one repeating pattern of knuckles, was enclosed in each photograph. The total area of each enclosed unit-cell and the total area of the knuckles inside each such unit-cell'we re then 40
  • the Examples below compare the finished sheet properties of paper samples produced in accordance with the present invention with the sheet properties of paper samples produced utilizing the conventional face side of a similar imprinting fabric at various stages of fabric treatment.
  • EXAMPLE 1 Back side of imprinting fabric contacting web Cal Basis Sample no. ipcr at Knuckle weight Bending (for indentigm/ imprint pounds] Tensile Tensile Handle Handle- Stretch Stretch Modulus fication pursq.in., area, 3,000 MD,gm./ CD,gm./ O-Meter O-Meter MD. CD. q",kg./ poses only) inches percent sq.ft. in. in. MD CD "/1 71 sq.cm.
  • EXAMPLE 11 Conventional face side of imprinting fabric contacting web Cal- Basis Sample no.' iper at Knuckle weight Bending (for indenti- 80 gm/ imprint pounds/ Tensile Tensile Handle- Handle- Stretch Stretch Modulus fication pursq.in., area, 3,000 MD,gm./ CD,gm./ O-Meter O-Meter MD, CD, q,kg./ poses only) inches percent sq.ft. in. in. MD CD sq.cm.
  • EXAMPLE 111 Back side of imprinting fabric contacting web Cal- Basis Sample no. iper at Knuckle weight Bending (for indenti- 80 gm/ imprint pounds/ Tensile Tensile Handle- Handle- Stretch Stretch Modulus fication pursq.in.. area, 3,000 MD,gm./ CD,gm./ O-Meter OMeter MD. CD, q,kg./ poses only). inches percent sq.ft. in. in. MD CD 7: sq.cm.
  • EXAMPLE lV Conventional face side of imprinting fabric contacting web Cal- Basis Sample no. iper at Knuckle weight Bending 1 (for indenti- 80 gm/ imprint pounds/ Tensile Tensile Handle Handle- Stretch Stretch Modulus fication pursq.in., area, 3,000 MD,gm./ CD,gm./ O-Meter O-Meter MD, CD. q".kg./ poses only) inches percent sq.ft. in. in. MD CD sq.cm.
  • EXAMPLE V Back side of imprinting fabric contacting web Cal- Basis Sample no. iper at Knuckle weight Bending (for indenti- 80 gm/ imprint pounds/ Tensile Tensile Handle- Handle- Stretch Stretch Modulus fication pursq.in., area. 3,000 MD,gm./ CD.gm./ O Metcr O-Meter MD, CD, q",kg./ poses only) inches percent sq.ft. in. in. MD CD "/1 7r sq cm.
  • EXAMPLE V1 Conventional face side of imprinting fabric contacting weh Cal- 7 Basis Sample no. iper at Knuckle weight Bending (for indenti- 80 gm/ imprint pounds/ Tensile Tensile Handle- Handle- Stretch Stretch Modulus fication pursq.in., area. 3,000 MD.gm./ CD.gm./ O-Mcter O-Mctcr MD, CD. q",kg./ poses only) inches percent sq.ft. in. in. MD CD /1 sq.cm.
  • EXAMPLE Vl Continued Conventional face side of imprinting fabric contacting web Cal- Basis Sample no. iper at Knuckle weight Bending (for indenti- 80 gm/ imprint pounds ⁇ Tensile Tensile Handle- Handle- Stretch Stretch Modulus fication pursq.in., area, 3,000 MD,gm./ CD,gm./ O-Meter O-Meter MD. CD, q",kg./ poses only) inches percent sq.ft. in. in. MD CD sq.cm.
  • a process for the manufacture of a soft, bulky and absorbent paper sheet which comprises the steps of:
  • said imprinting fabric being formed from filaments having a diameter of about 0.008 to about 0.025 inches,
  • step (a) is molded to conform to the pattern of the imprinting fabric prior to thermally pre-drying the uncompacted paper web in step (c).
  • a process for the manufacture of a soft, bulky and absorbent paper sheet which comprises the steps of: a. forming an uncompacted paper web having a uniform basis weight of about 9 to about 25 pounds per 3000 square feet,
  • step (a) is molded to conform to the pattern of the imprinting fabric prior to thermally pre-drying the uncompacted web in step (c).

Abstract

A low-density, soft, bulky and absorbent paper sheet exhibiting a diamond-shaped pattern in its surface after creping, said paper being characterized by having a cross-directional stretch of from about 3.5 percent to about 6 percent, as well as improved softness, surface feel and drape, said paper sheet being particularly suitable for use in tissue, toweling and sanitary products. The aforesaid paper sheets are produced by impressing a dot-dash knuckle pattern, wherein the long axis of the dash impressions is aligned parallel to the machine direction of papermaking, using the back side of a monofilament, polymeric fiber, semi-twill fabric of selected coarseness, the knuckle imprint area of which constitutes between about 20 percent and about 50 percent of the total fabric surface area, as measured in the plane of the knuckles, on an uncompacted paper web at selected fiber consistencies, induced by thermal predrying, prior to final drying and creping.

Description

United States Patent [191 Ayers [451 Sept. 16, 1975 THEREOF [75] Inventor: Peter G. Ayers, West Chester, Ohio [73] Assignee: The Procter & Gamble Company, Cincinnati, Ohio [22] Filed: Apr. 1, 1974 [21] App]. No.: 457,043
Related US. Application Data [63] Continuation-in-part of Ser. No. 368,440, June 8,
1973, abandoned.
[52] US. Cl. 162/113; 139/425 A; 156/183; 161/128; 162/116; 162/117 [51] Int. Cl. D21H 5/24 [58] Field of Search 162/113, 116, 117, 109; 139/425 A, 383 R; 161/128; 156/183 [56] References Cited UNITED STATES PATENTS 3,159,530 12/1964 Heller et a1. 130/425 AX 3,301,746 1/1967 Sanford et a1. 162/1 13 3,473,576 10/1969 Amneus 139/425 AX 3,573,164 3/1971 Friedberg et al.. 139/383 R 3,812,000 5/1974 Salvucci et 156/183 X 3,817,827 6/1974 Benz 162/113 3,821,068 6/1974 Shaw 156/183 X 12/1974 Egan 139/425 AX Primary Examiner-S. Leon Bashore Assistant Examiner-Arthur L. Corbin Attorney, Agent, or FirmE. Kelly Linman; Frederick H. Braun; John V. German [5 7] ABSTRACT A low-density, soft, bulky and absorbent paper sheet exhibiting a diamond-shaped pattern in its surface after creping, said paper being characterized by having a cross-directional stretch of from about 3.5 percent to about 6 percent, as well as improved softness, surface feel and drape, said paper sheet being particularly suitable for use in tissue, toweling and sanitary products. The aforesaid paper sheets are produced by impressing a dobdash knuck1e pattern, wherein the long axis of the dash impressions is aligned parallel to the machine direction of papermaking, using the back side of a monofilament, polymeric fiber, semi-twill fabric of selected coarseness, the knuckle imprint area of which constitutes between about 20 percent and about 50 percent of the total fabric surface area, as measured in the plane of the knuckles, on an uncompacted paper web at selected fiber consistencies, induced by thermal predrying, prior to final drying and creping.
6 Claims, 20 Drawing Figures PATENTED SEP 1 6 I975 SHEET L [1F 4 Fig. 17
Fig. 19
PROCESS FOR FORMING ABSORBENT PAPER BY IMPRINTING A SEMI-TWILL FABRIC KNUCKLE PATTERN THEREON PRIOR TO FINAL DRYING AND PAPER THEREOF CROSS-REFERENCE TO RELATED APPLICATION This application is a continuation-in-part of my copending application, Ser. No. 368,440, filed June 8, 1973, entitled PROCESS FOR FORMING ABSOR- BENT PAPER BY IMPRINTING A SEMI-TWILL FABRIC KNUCKLE PATTERN THEREON PRIOR TO FINAL DRYING AND PAPER THEREOF, now abandoned.
FIELD OF THE INVENTION This invention relates to improvements in papermaking and non-woven web manufacturing operations and particularly to the provision of a low-density, soft, bulky and absorbent paper sheet characterized by having significantly greater cross-directional stretch, as well as improved softness, surface feel and drape when compared to paper sheets produced by prior art papermaking and non-woven web manufacturing methods.
More particularly, in one important embodiment, the present invention consists of a monofilament, polymeric fiber, semi-twill fabric which when used to imprint an uncompacted paper web at selected fiber consistencies, induced by thermal pre-drying, will produce a dotdash pattern wherein the long axis of the dash impressions is aligned parallel to the machine direction of paper-making and the long axis of the dot impressions is aligned parallel to the cross-machine direction. The aforesaid imprinting fabric is especially suitable for use in papermaking and non-woven web manufacturing operations, such as the papermaking operation disclosed in U.S. Pat. No. 3,301,746, issued to Sanford et al. on Jan. 31, 1967, said patent being incorporated herein by reference, wherein the surface characteristics of such fabrics are of operational and product characteristic importance.
In one preferred cmbodimen, the present invention consists of a monofilament, polymeric fiber, semi-twill fabric of the type normally used for transporting a moist web through the forming, pressing and drying sections of a papermaking machine, which monofilament, polymeric fiber, semi-twill fabric is woven and thereafter shrunk by heat treatment to result in a dimensionally heat stable fabric having uniform knuckle heights in conjunction with minimum free or interstitial area on the surface of the fabric which will contact the uncompacted paper web, said fabric having been further improved by abrading its web contacting sur face with a fine abrasive medium to increase its knuckle imprint area.
BACKGROUND OF THE INVENTION In a Fourdrinier paper machine, paper stock is fed onto a traveling endless belt that is supported and driven by rolls associated with the machine and which serves to the papermaking surface of the machine. Foundrinier belts are commonly formed from a length of woven Fourdrinier fabric with its ends joined together in a seam to provide an endless belt. Fourdrinier fabrics of this type generally comprise a plurality of spaced longitudinal warp filaments and a plurality of spaced transverse woof or weft filaments which have been woven together on a suitable loom. It should be noted that the warp filaments of the fabric are, for purposes of this specification, defined as those which run parallel to the machine direction of papermaking and non-woven web manufacturing machines to form a continuous carrier belt; woof or weft filaments are, for purposes of this specification, defined as those which run in the cross-machine direction.
Although the weaving and fabric treatment criteria of the present invention are applicable in other areas of monofilament, polymeric fiber fabric use, the instant features will be most readily understood in respect to the use of such fabrics for imprinting purposes in web formation operations. In these operations, for example in the operation of a paper machine according to the teachings of U.S. Pat. 3,301,746, improved web transferability and dryer surface contact are desirable in an imprinting fabric, and the monofilament, polymeric fiber fabric used should not contribute factors to the final paper product other than those desired by the papermaker and designed into the paper product.
In referring to monofilament, polymeric fiber fabrics herein, applicant intends reference to moist web carrier fabrics woven, for example, from the polyamide fibers, vinyl fibers, acrylic fibers and polyester fibers sold under the respective trade names of nylon, Saran, Orlon, Dacron, and Treviera. While both warp and woof filaments in fabrics can be made up of a multiplicity of fibers, the present invention is concerned with warp and woof filamentscomprised of one fiber, i.e., monofilaments.
While a number of different weaves have been proposed for Fourdrinier fabrics, two weaveswhich find extensive use today are the so-called plain weave and the semi-twill (sometimes also called long crimp) weave. In the plain weave, each weft filament passes successively under one warp filament and then over the next warp filament, whereas in the semi-twill weave each weft filament passes over two warp filaments, under the next warp filament, and then over the next two warp filaments in a repeated pattern. Of these two weaves, the semi-twill weave is the most widely used.
The imprinting fabric suggested for use in U.S. Pat. 3,301,746, to which the present invention has particular relevance, may be of square or diagonal weave, and can be of any specific construction including, for example, plain or semi-twill weave. A preferred imprinting fabric, according to the teachings of the aforesaid Sanford et a1. patent, has about 20 to about 60 meshes per inch and is formed from filaments having a diameter of from about 0.008 to about 0.02 inches.
Paper sheets produced in accordance with the teachings of U.S. Pat. No. 3,301,746 utilizing a monofilament, polymeric fiber, semi-twill imprinting fabric exhibit properties similar in most respects to paper sheets produced utilizing a plain weave imprinting fabric having filaments of approximately the same diameter when the semi-twill fabric is installed so that its conventional face side is used to imprint the uncompacted paper web. This is due to the fact that the conventional face side of the semi-twill fabric, assuming the fabric has uniform knuckle heights on its web contacting side, will produce a dot-dash pattern wherein the long axis of the dash impressions is aligned parallel to the crossmachine direction and the long axis of the dot impressions is aligned parallel to the machine direction. The dash impressions result from each weft filament passing in a repeated pattern under one: warp filament and then over the next two warp filaments, while the dot impressions result from each warp filament passing in a repeated pattern over one weft filament and then under the next two weft filaments on the conventional face side of the fabric.
When paper sheets imprinted by the conventional face side of a semi-twill fabric, as described above, are doctored from the drying drum, the dot-dash knuckle impressions are aligned essentially between the creping folds. The resulting creping folds are, therefore, substantially uninterrupted across the sheets surface. Thus paper sheets produced utilizing the conventional face side of a semi-twill imprinting fabric exhibit properties substantially similar to paper sheets produced utilizing a plain weave imprinting fabric, i.e., a low-density, soft, bulky and absorbent paper sheet characterized by having .uniforrncreping folds which extend substantially uninterrupted across the width of the sheet.
On the other hand, utilization of the back side of a monofilament polymeric fiber, semi-twill fabric to imprint an uncompacted paper web in accordance with the teachings of U.S. Pat. No. 3,301,746 will, assuming the fabric has uniform knuckle heights on its web contacting side, produce a dot-dash pattern wherein the long axis of the dash impressions is aligned parallel to the machine direction of the paper machine and the longaxisof the dot impressions is aligned parallel to the cross-machine direction. The dash impressions result from each warp filament passing in a repeated pattern under one weft filament and then over the next two weft filaments, while the dot impressions result from each weft filament passing in a repeated pattern over one'warp filament and then under the next two warp filaments on the back side of the fabric.
Paper sheets imprinted with the back side of a conventional semi-twill, monofilament, polymeric fiber fabric, unlike paper sheets imprinted with either a plain weave fabric or the conventional face side of a semitwill fabric, exhibit a diamond-shaped pattern after creping.
Applicant has discovered that by increasing the knuckle'imprint area on the back side of a conventional semi-twill, monofilament, polymeric fiber fabric in accordance with the teachings of U.S. Pat. No. 3,573,164 issued to Friedberg et al. on Mar. 30, 1971, said patent being incorporated herein by reference. unexpected improvments in paper sheet characteristics can be realized. These unexpected advantages take the form of improved cross-directional stretch, softness, surface feel and drape. The improvements become more pronounced as the knuckle area on the back side of the semi-twill fabric is increased.
Although improved web transfer characteristics and improved drying of the web are realized when the web contacting knuckle surfaces of nearly any monofilament, polymeric fiber fabric are abraded in accordance with the teachings of U.S. Pat. No. 3,573,164, applicant has learned that the aforementioned improvements in cross-directional stretch, softness, surface feel and drape are realized only with respect to the back side of a semi-twill imprinting fabric, such as is described above.
In order to maximize the beneficial effects of abrading the knuckle surfaces on the back side of a semi-twill imprinting fabric, applicant has found it desirable to obtain a semi-twill fabric having uniform knuckle heights and minimum free area on its back side prior to initiating any abrading process. Uniform knuckle heights permit a greater increase in knuckle imprint 4 area while minimizing the danger of abrading completely through any particular filament. In addition, if knuckle heights are uniform prior to initiating any abrading process, the resulting imprint pattern after abrading will be more uniformly consistent.
Because a fabric such as is utilized for imprinting purposes in U.S. Pat. No. 3,301,746 is subjected to elevated temperatures during use, it is desirable to dimensionally heat stabilize the fabric prior to subjecting it to an abrading process to increase its knuckle imprint area. If this is not done, the uniform imprinting surface produced by carefully weaving the fabric and abrading the web contacting surface of the fabric prior to use will tend to warp as the temperature of the fabric becomes elevated, thereby losing most of the benefits to be obtained by such careful pre-treatment.
A means of preparing a dimensionally heat stable, plain weave, monofilament, polymeric fiber fabric having uniform knuckle heights and minimum free area on each side of the fabric is disclosed in U.S. Pat. No. 3,473,576 issued to Amneus on Oct. 21, 1969, said patent being incorporated herein by reference. A plain weave fabric is prepared by selecting polymeric warp monofilaments having a relatively high heat-induced shrinkage potential and further selecting an initial warp monofilament spacing in the loom according to a mathematical equation disclosed in the aforementioned Amneus patent. Polymeric woof monofilaments are then selected which have a relatively low heat induced shrinkage potential, and these woof monofilaments are woven and beaten in the weaving process into a plain weave fabric having an initial caliper calculated according to yet another mathematical equation disclosed in the aforementioned Amneus patent. After the initial weaving process, the fabric knuckles are brought to uniform on both sides of the fabric and the minimum free area of the fabric is set by a heat shrinkage treatment which maintains the fabric in warp tension while allowing it to shrink in the woof direction. Successive heat treatments are repeated until the monofilament, polymeric fiber, plain weave fabric does not shrink further at the treating temperature, at which point it is said to be locked-up, i.e., no further shrinkage will occur if the fabric is later subjected, in use, to elevated tempeatures equivalent to the treating temperature.
It is important to note that due to the symmetry of the plain weave, uniform knuckle heights and minimum free area are achieved simultaneously on both sides of the fabric when the weaving and heat treatment processes described in the aforementioned Amneus Patent are utilized. This is not the case with a semi-twill weave fabric. If a monofilament, polymeric fiber, semi-twill fabric is subjected to a heat treatment process similar to that disclosed in the Amneus patent, the knuckles on the conventional face side of the fabric will become coplanar before the knuckles on the back side of the fabric have reached a uniform height. Thus, in order for the knuckles on the back side of the fabric to become coplanar, the fabric must be subjected to further heat treatment. The additional heat treatment required to make the knuckle heights on the back side of the fabric uniform causes the knuckle heights on the conventional face side of the fabric to again become nonuniform.
Therefore, the initial warp filament spacing and caliper of a semi-twill fabric necessary to produce minimum free area and uniform knuckle heights on the back side of the fabric after heat treatment are determined experimentally by trial and error.
OBJECTS OF THE INVENTION It is an object of the present invention to provide a low-density, bulky and absorbent creped paper structure exhibiting a diamond-shaped pattern in its surface, said paper structure having significanty improved softness, surface feel and drape, as well as significantly improved cross-directional stretch.
It is a further object of the present invention, in a preferred embodiment, to produce the above mentioned paper structure in accordance with the teachings of U.S. Pat. No. 3,301,746 by utilizing the back side of a conventional, monofilament, polymeric fiber, semitwill fabric which has been abraded in accordance with the teachings of U.S. Pat. No. 3,573,164 to imprint the uncompacted paper web prior to creping.
It is a further object of the present invention, in a preferred embodiment, to produce a paper structure in accordance with the teachings of U.S. Pat. No. 3,301,746 wherein a dot-dash pattern is imprinted on the uncompacted paper web, prior to creping, such that the long axis of the dash impressions is aligned parallel to the machine direction and the long axis of the clot impressions is aligned parallel to the cross-machine direction.
It is another object of the present invention, in a preferred embodiment, to provide dimensionally heat stable, monofilament, polymeric fiber, semi-twill fabrics for use in fibrous web carrying, imprinting, and other fabric using operations, which monofilament, polymeric fiber, semi-twill fabrics are characterized by having uniform knuckle heights and minimum free area on their back side, thus contributing materially to the avoidance of transfer and contact problems in papermaking and web formation operations.
It is a further object of the present invention, in a preferred embodiment, to provide a process for the production of dimensionally heat stable, monofilament, polymeric fiber, semi-twill fabrics, which process sets criteria for the weaving and heat treating operations necessary to achieve uniform knuckle heights and mini mum free area on the back side of said fabrics.
Another object of the present invention, in a preferred embodiment, is to provide a monofilament, polymeric fiber, semi-twill fabric for use in papermaking and non-woven web manufacturing operations, the back surface of which fabric has a total knuckle imprint area of from about percent to about 50 percent of the total fabric surface area, as measured in the plane of the knuckles, and which knuckle imprint area has a surface finish at least equal in smoothness to the surface finish induced by abrasion with an abrasive medium having an effective abrasive grain size-of less than about 300 mesh.
It is yet another object of the present invention, in a preferred embodiment, to provide a monofilament, polymeric fiber, semi-twill fabric for use in the imprinting and drying sections of a papermaking machine, the back side of which fabric presents an increased knuckle area to the moist paper web for use in pressing the web onto the surface of a dryer while it contributes materially to the final tensile strength of the dried paper product by avoiding the rupture of fiber bonds.
SUMMARY OF THE INVENTION In a preferred embodiment of the present invention, a low density, soft, bulky and absorbent paper sheet is provided, said paper sheet exhibiting a diamond 6 shaped pattern in its surface after creping, said paper sheet being characterized by having a cross-directional stretch of from about 2 percent to about 6 percent, as well as improved softness, surface feel and drape, said paper sheet being particularly suitable for use in tissue, toweling, and sanitary products.
The soft, bulky and absorbent paper sheets of the present invention are produced, in a preferred embodi ment, generally in accordance with the teachings of U.S. Pat. No. 3,301,746 by forming an uncompacted paper web, supporting said uncompacted paper web on the back side of a monofilament, polymeric fiber, semitwill imprinting fabric having about 20 to about 60 meshes per inch, said imprinting fabric having been formed from filaments having a diameter of from about 0.008 inches to about 0.025 inches, the back side of said fabric having had its knuckle imprint area increased in accordance with the teachings of U.S. Pat. No. 3,573,164, thermally pre-drying said uncompacted paper web to a fiber consistency of about 30 percent to about 98 percent, imprinting a dot-dash knuckle pattern with the back side of said semi-twill imprinting fabric such that the long axis of the dash impressions in said pattern is aligned parallel to the machine direction and the long axis of the dot impressions is aligned parallel to the cross-machine direction of the pre-dried uncompacted paper web, and final drying and creping the paper sheet so formed.
In a preferred embodiment of the present invention, the back side of the monofilament, polymeric fiber, semi-twill imprinting fabric is prepared in accordance with the teachings of U.S. Pat. No. 3,573,164 by abrading the knuckle surfaces to increase the knuckle imprint area to between about 20 percent and about 50 percent of the total fabric surface area, as measured in the plane of the knuckles, as well as to polish the knuckle surfaces.
In yet another preferred embodiment of the present invention, the monofilament, polymeric fiber, semitwill fabric is woven and heat treated so as to produce a dimensionally heat stable fabric having uniform knuckle heights and minimum free area on its back side prior to abrading the knuckle surfaces on the back side of the fabric.
BRIEF DESCRIPTION OF THE DRAWINGS While the specification concludes with claims particularly pointing out and distinctly claiming the subject matter which is regarded as the present invention, it is believed that the invention will be better understood from the following description taken in connection with the accompanying drawings in which:
FIG. 1 is a plan view of an enlarged portion of a conventional right-hand semi-twill, monofilament, polymeric fiber fabric as viewed from the back side, i.e., that side of the fabric which according to the teachings of the prior art does not normally contact the web. The monofilament, polymeric fiber, semi-twill fabric is shown prior to any abrasion treatment and prior to use as an endless or continuous fabric belt in papermaking or non-woven web manufacturing operations.
FIG. 2 is an enlarged cross-sectional view of the semitwill fabric illustrated in FIG. 1, taken looking in the cross-machine direction (CD) along line 2-2 in FIG. 1, which crosssectional view illustrates the higher relative elevation and the smooth knuckle surfaces of the warp filaments on each side of the fabric.
FIG. 3 is an enlarged cross-sectional view of the semitwill fabricjillustrated in FIGS. 1 and 2, taken looking in themachine direction (MD) along line 3-3 in FIG. 1, which cross-sectional view illustrates the lower relative elevation and the smooth knuckle surfaces of the woof or weft filaments.
FIG. 4 is a simplified illustration of an'enlarged partial plan view of an uncreped paper sheet which has been imprinted utilizing the conventional face side of a semi-twill fabric such as is shown in FIGS. 1 through 3. The long axis of the dot impressions formed by the warp filaments is aligned parallel to the machine direction.
FIG. 5 is a simplified illustration of an enlarged partial plan view of an uncreped paper sheet which has been imprinted utilizing the back side of a semi-twill fabric such as is shown in FIG. 1 through 3. The long axis of the dash impressions formed by the warp filaments is aligned parallel to the machine direction.
FIG. 6 is an enlarged cross-sectional view of a monofilament, polymeric fiber, semi-twill fabric such as is illustrated in FIGS. 1 through 3, taken looking in the cross-machine direction at a point corresponding to line 22 in FIG. 1, after the fabric has been subjected to a heat treatment process sufficient to produce uniform knuckle heights on the conventional face side of the fabric.
FIG. 7 is an enlarged cross-sectional view of the semitwill fabric illustrated in FIG. 6, taken looking in the machine direction at a point corresponding to line 33 in FIG. 1.
FIG. 8 is a simplified illustration of an enlarged partial plan view of an uncreped paper sheet which has been imprinted utilizing the conventional face side of a monofilament, polymeric fiber, semi-twill fabric such as is illustrated in FIGS. 6 and 7. The long axis of the dash impressions formed by the woof or weft filaments is aligned parallel to the cross-machine direction, while the long axis of the dot impressions formed by the warp filaments is aligned parallel to the machine direction.
FIG. 9 is a simplified illustration of an enlarged partial plan view of an uncreped paper sheet which has been imprinted utilizing the back side of a semi-twill fabric such as is illustrated in FIGS. 6 and 7. The long axis of the dash impressions formed by the warp filaments is aligned parallel to the machine direction.
FIG. 10 is an enlarged cross-sectional view of a monofilament, polymeric fiber, semi-twill fabric such as is illustrated in FIGS. 1 through 3 and 6 and 7, taken looking in the cross-machine direction at a point corresponding to line 22 in FIG. 1, after the fabric has been subjected to a heat treatment process sufficient to produce uniform knuckle heights and minimum free area on the back side of the fabric. It should be noted that at this point, the knuckle heights on the conventional face side of the fabric are no longer uniform.
FIG. 11 is an enlarged cross-sectional view of the semi-twill fabric illustrated in FIG. 10, taken looking in the machine direction at a point corresponding to line 3-3 in FIG. 1.
FIG. 12 is a simplified illustration of an enlarged partial plan view of an uncreped paper sheet which has been imprinted utilizing the conventional face side of a semi-twill fabric such as is illustrated in FIGS. 10 and 1 l. The long axis of the dash impressions formed by the woof or weft filaments is aligned parallel to the crossmachine direction.
FIG. 13 is a simplified illustration of an enlarged partial plan view of an uncreped paper sheet which has been imprinted utilizing the back side of a semi-twill fabric such as is illustrated in FIGS. 10 and 11. The long axis of the dash impressions formed by the warp filaments is aligned parallel to the machine direction, while the long axis of the dot impressions formed by the woof or weft filaments is aligned parallel to the crossmachine direction. The dot impressions are present at this stage due to the fact that the knuckles 'on the back side of the fabric are of uniform height.
FIG. 14 is an enlarged cross-sectional view of a monofilament, polymeric fiber, semi-twill fabric such as is illustrated in FIGS. 10 and 11, taken looking in the cross-machine direction at a point corresponding to line 22 in FIG. 1, after the back side of the fabric has been abraded to increase its knuckle imprint area.
FIG. 15 is an enlarged cross-sectional view of the semi-twill fabric illustrated in FIG. 14, taken looking in the machine direction at a point corresponding to line 33 in FIG. 1.
FIG. 16 is a plan view of an enlarged portion of the monofilament, polymeric fiber, semi-twill fabric illustrated in FIGS. 14 and 15, as viewed from the back side of the fabric.
FIG. 17 is a plan view photograph, enlarged about 12 times actual size, of an uncreped paper sheet which has been imprinted utilizing the back side of a semi-twill fabric such as is shown in FIGS. 14, 15, and 16. The pattern produced is similar to that shown in FIG. 13, but the dot-dash impressions constitute a greater percentage of the surface area of the paper due to the increased knuckle imprint area of the fabric.
FIG. 18 is an illustration of an enlarged cross-sectional view of the uncreped paper sheet of FIG. 17, taken looking in the cross-machine direction along line 18-18 in FIG. 17.
FIG. l9 is a plan view photograph, enlarged about 6 times actual size, of a paper sheet such as is shown in FIGS. 17 and 18 after creping. The long axis of the impressions visible after creping is oriented generally in the cross-machine direction, while the overall surface of the paper exhibits a diamond-shaped pattern characteristic of paper sheets made in accordance with the present invention.
FIG. 20 is an illustration of an enlarged cross-section view of the creped paper sheet of FIG. 19, taken looking in the cross-machine direction along line 2020 in FIG. 19.
DESCRIPTION OF THE PREFERRED EMBODIMENTS In describing preferred embodiments of the invention disclosed herein, specific terminology will be adhered to for the sake of clarity in referring to the features of the monofilament, polymeric fiber fabrics for use in papermaking and non-woven web manufacturing processes. The conventional face side of the semi-twill fabrics referred to herein refers to that side of the fabric which, according to the teachings of the prior art, would normally come in contact with the paper web, i.e., the sides of the semi-twill fabric which would, depending upon its particular condition, produce one of the imprint patterns illustrated in FIGS. 4, 8 or 12 (assuming it is a right-hand semi-twill fabric). In the aforementioned FIGS. the long axis of the dash impressions 9, where present, is aligned parallel to the crossmachine direction, while the long axis of the dot impressions 3, where present, is aligned parallel to the machine direction. The back side of the semi-twill fabrics referred to herein shall be defined as that side which would not normally contact the paper web according to the teachings of the prior art, i.e., the side of the semi-twill fabric which would, depending upon its particular condition, produce one of the imprint patterns illustrated in FIGS. 5, 9, 13, or 17 (assuming it is a right-hand semi-twill fabric). In the aforementioned figures, the long axis of the dash impressions 8 is aligned parallel to the machine direction, while the long axis of the dot impressions 10, where present, is aligned parallel to the cross-machine direction.
It should be noted that although a right-hand semitwill fabric is utilized for purposes of illustration throughout this specification, the benefits disclosed can also be obtained utilizing a left-hand semi-twill fabric, which is woven as a mirror image of a right-hand semitwill fabric.
FIG. 1 represents an enlarged plan view of aportion of a conventional right-hand, monofilament, polymeric fiber, semi-twill fabric as viewed from the back side. The semi-twill fabric illustrated in FIG. 1 has not been used on a paper machine nor has it been accorded any special abrading treatment. The warp monofilaments l are aligned parallel to the machine direction, while the woof or weft monofilaments 2 are aligned parallel to the cross-machine direction. In a preferred embodiment of the present invention, the imprinting fabric illustrated in FIG. 1 has about 20 to about 60 meshes per inch and is formed from monofilament polymeric fibers having diameters ranging from about 0.008 inches to about 0.025 inches. Both warp and woof monofilaments may, but need not necessarily be of the same diameter. FIGS. 2 and 3 are cross-sectional views of the semi-twill fabric illustrated in FIG. 1, taken looking respectively in the cross-machine and machine directions. The knuckles formed at the cross-over points of the warp filaments 1 and the woof filaments 2 are not coplanar on either the face or the back side of the fabric. As can be seen in FIGS. 2 and 3, the warp filaments l are at a higher relative elevation than the woof filaments 2 on both sides of the fabric. This is termed, for purposes of this specification, a warp-high condition of the fabric.
FIG. 4 is a simplified illustration of the knuckle imprint pattern which would result if a semitwill fabric such as is illustrated in FIGS. 1 through 3 were installed so that the conventional face side of the fabric were utilized to imprint an uncreped paper web produced in accordance with the teachings of U.S. Pat. No. 3,301,746 issued to Sanford et al. on Jan. 31, 1967, said patent being incorporated herein by reference. The dot impressions 3 visible on the surface of such an uncreped paper sheet after imprinting form a pattern corresponding to the knuckles 4 of the warp filaments 1 on the conventional face side of the fabric. Since the dot impressions 3 are formed by the warp filaments l, the long axis of the dot impressions is aligned parallel to the machine direction. The knuckles 7 formed by the woof filaments 2 on the conventional face side of the fabric do not form a corresponding impression in the uncompacted paper web due to the fact that they are at a lower relative elevation than the warp filament knuckles 4.
FIG. illustrates the knuckle imprint pattern which would result if an uncompacted paper web produced in accordance with the teachings of U.S. Pat. No.
3,301,746 were imprinted utilizing the back side of an imprinting fabric such as is illustrated in FIGS. 1 through 3. Because the warp filaments 1 are at a higher relative elevation than the woof filaments 2 on the back side of the fabric, only the peaks of the knuckles 5 formed by the warp filaments are impressed into the paper web during the imprinting process. Since the warp filaments 1 run in the machine direction, the resulting pattern consists of a series of relatively long dash impressions 8, wherein the long axis of the impressions is aligned parallel to the machine direction.
The imprint pattern illustrated in FIG. 5 differs from the imprint pattern illustrated in FIG. 4 in two important respects. First, since each warp filament 1 passes over two woof filaments 2 on the back side ofthe semitwill fabric as compared to only one woof filament 2 on the face side of the fabric, the length of the impressions is approximately twice as great when the web is imprinted with the back side of the fabric. Secondly, when a paper web imprinted with the pattern illustrated in FIG. 5 is removed from the drying drum by means of a conventional doctor blade, a diamond-shaped pattern is imparted to the surface of the paper, whereas when a paper web imprinted with the pattern illustrated in FIG. 4 is removed from the drying drum by means of a conventional doctor blade, a regulated creping pattern results in which the crepe ridges are substantially unbroken across the width of the sheet. This characteristic difference in finished product appearsto bedue to the fact that the web illlustrated in FIG. 4 is adhered to the dryer drum only at interrupted intervals, i.e., by the dot impressions 3, which impressions are not sufficiently long to overlap each other in the machine direction. The paper web illustrated in FIG. 5, on the other hand, is adhered to the dryer drum in a continuous fashion, i.e., by the dash impressions 8, which impressions are sufficiently long to overlap each other in the machine direction. 1
Based on the teachings of the prior art, and particularly on U.S. Pat. No. 3,473,576 issued to Amneus on Oct. 21, 1969, said patent being incorporated herein by reference, it is recognized that smooth web transfers and maximum drying effectiveness are not realized with fabrics having rough or inconsistent web contacting surfaces. Smooth web transfers are particularly desirable where, as in the case of the papermaking process disclosed in U.S. Pat. No. 3,301,746, the imprinting fabric is of product characteristic importance. It has, therefore, been found desirable to utilize imprinting fabrics having uniform knuckle heights and minimum free or interstitial area on the side of the fabric contacting the uncompacted paper web. Because such imprinting fabrics are subjected to elevated temperatures during use, it has also been found desirable to di mensionally heat stabilize such fabrics prior to use to prevent warpage.
It is important to note that due to the symmetry of a plain weave fabric, uniform knuckle heights and minimum free area achieved simultaneously on both sides of the fabric when the fabric is subjected to a heat treatment process such as that disclosed in U.S. Pat. No. 3,473,576. This is not the case with a semi-twill weave fabric. If a monofilament, polymeric fiber, semitwill fabric is subjected to a heat treatment process such as that disclosed in U.S. Pat. No. 3,473,576, the knuckles 4 and 7 on the conventional face side of the fabric will become coplanar before the knuckles 5 and 6 on the back side of the fabric. In order for the knuck- 1 1 les 5 and 6 on the back side of the fabric to reach uniform heights, the fabric must be subjected to further heat treatment; The additional heat treatment in turn causes the heights of the knuckles 4 and 7 on the conventional face side of the semi-twill fabric to again become non-uniform.
Therefore, the initial warp filament spacing and caliper of a semi-twill fabric necessary to produce minimum free area and uniform knuckle heights on the back side of the fabric after heat treatment is determined experimentally by trial and error.
In a preferred embodiment of the present invention, a monofilament, polymeric fiber, semi-twill fabric is prepared'by selecting warp monofilaments having a relatively high heat-induced shrinkage potential in the range of about 10 percent to about 30 percent, preferably about'l6 percent. After selecting and spacing the warp monofilaments, polymeric woof monofilaments are selected which have a relatively low heat-induced shrinkage potential in the range of about 2 percent to about 8 percent, preferably about 4 percent. The heat shrinkage treatment takes advantage of the aforementioned shrinkage characteristics of the warp and woof monofilaments. The heat shrinkage treatment comprises subjecting the initially woven fabric to a series of heat applications as it is stretched and secured at its ends in the lengthwise or warp direction, while it is free to shrink in the woof direction.
The heat shrinkage treatment is conveniently applied to the initially woven semi twill fabric while the fabric is mounted as an endless belt on a finishing table such as those conventionally used in finishing metal Fourdrinier wires. A conventional wire finishing table consists of two adjustable rolls for supporting, tensioning and driving the wire or fabric to be finished as an endless belt. The heat shrinkage can be induced conveniently by an infrared source mounted as a bank above and across the initially woven fabric. The infrared source heats areas of the initially woven fabric as the fabric slowly revolves on the rolls of the wire finishing table. Heat is applied to the fabric in successive treatments of about 5 seconds to about 40 seconds, preferably about seconds, per treatment. The fabric temperatures during the successive applications of heat approach gradually the softening point of the selected monofilament polymeric fibers. Multiple passes are used to avoid sudden shrinkage which induces fabric wrinkles. Successive heat treatments are repeated until the knuckle heights on the back side of the fabric reach uniformity, which condition should also correspond to minimum free or interstitial area if the initial warp filament spacing and caliper of the fabric have been properly determined. A semi-twill fabric which has been subjected to the aforementioned heat treatment process, although not locked-up as in the case of a plain weave fabric subjected to such a heat treatment process, is dimensionally heat stable at the temperatures encountered in the web imprinting process disclosed in U.S. Pat. No. 3,301,746. 3,301,746.
The temperature of the fibers in the successive heat treating passes is increased to a maximum temperature immediately below the softening point of the selected fibers. For example, the heat treating temperature used with Treviera fibers is about 360 to about 400F, preferably about 375F. For dimensional heat stability in use as an imprinting fabric is accordance with the teachings of US. Pat. No. 3,301,746, a sufficient number of successive heating treatments or passes are employed to insure that the monofilament polymeric fibers making up the fabric structure have been at the highest heat treating temperature for a total time of about 15 to about seconds.
Contrary to expectation, a weaving procedure wherein polymeric warp and woof monofilaments are merely woven as tightly as possible to insure a minimum free area will not result in a fabric with uniform knuckle heights after heat treating or use in web drying systems. Polymeric fibers in general exhibit heat shrinkage, and if such a tight weaving procedure involving initial minimum spacing in both polymeric warp and woof monofilaments is attempted, the resulting heat treated and heat stabilized fabric will exhibit non-uniform knuckle heights. Therefore, in a preferred embodiment of the present invention, an initial warp filament spacing in the loom and an initial caliper of the semi-twill fabric are determined experimentally by trial and error to take into account the heat-induced shrinkage which occurs during the above described dimensional heat stabilization process.
FIGS. 6 and 7 are enlarged cross-sectional views of a monofilament, polymeric fiber, semi-twill fabric such as is illustrated in FIGS. 1 through 3 after a heat treat ment process such as that described above has been initiated. FIG. 6 is taken looking in the cross-machine direction at a point corresponding to line 2-2 in FIG. I, while FIG. 7 is taken looking in the machine direction at a point corresponding to line 33 in FIG. 1. FIGS. 6 and 7 represent an intermediate condition of the fabric which occurs during the heat treatment process, prior to achieving uniform knuckle heights and minimum free area on the back side of the fabric. FIG. 6 represents the condition which results when the warp filaments I tend to draw themselves closer to a straight line due to the heat induced shrinkage. The tendency of the warp filaments 1 to assume a lower total amplitude, due to the heat-induced shrinkage, forces the woof monofilaments 2 on the conventional face side of the fabric downwardly and the woof monofilaments 2 on the back side of the fabric upwardly since the ends of the woof monofilaments are not restrained. This is more clearly illustrated in FIG. 7, wherein the Woof monofilaments 2 tend to wrap themselves more completely about the warp monofilaments 1. As a result, the knuckles 7 formed by the woof monofilaments 2 become coplanar with the knuckles 4 formed by the warp monofilaments 1 located on the conventional face side of the fabric. It should be noted that, at this particular point, the knuckles 5 formed by the warp monofilaments 1 remain at a higher relative elevation than the knuckles 6 formed by the woof monofilaments 2 on the back side of the fabric.
FIG. 8 is a simplified illustration of an enlarged partial plan view of an uncreped paper sheet produced in accordance with the teachings of US. Pat. No. 3,301,746, which uncreped paper sheet has been imprinted utilizing the conventional face side of a monofilament, polymeric fiber, semi-twill fabric such as is illustrated in FIGS. 6 and 7. The knuckle imprint pattern is similar to that shown in FIG. 4 wherein the dot impressions 3 formed by the knuckles 4 of the warp monofilaments 1 on the conventional face side of the fabric are illustrated, but the dash impressions 9 formed by the knuckles 7 of the woof monofilaments 2 are also present. Because the woof monofilaments 2 are aligned parallel to the cross-machine direction, the long axis of the dash impressions 9 is also aligned paral- 13 lel to the cross-machine direction.
FIG. 9 is a simplified illustration of an enlarged partial plan view of an uncreped paper sheet produced in accordance with the teachings of US Pat. No. 3,301,746, which uncreped paper sheet has been imprinted utilizing the back side of a semi-twill fabric such as is illustrated in FIGS. 6 and 7. As in FIG. 5, the long axis of the dash impressions 8 formed by the knuckles of the warp monofilaments l is aligned parallel to the machine direction.
As with paper sheets imprinted with the pattern illustrated in FIG. 4, paper sheets utilizing the imprinting pattern illustrated in FIG. 8 exhibit a basic regularity of creping wherein the crepe ridges extend substantially uninterrupted across the entire width of the sheet. Addition of the dash impressions 9 to the imprinting pattern does not alter the fact that the imprinted paper sheet is adhered to the dryer drum only at interrupted intervals corresponding to the spacing, in the machine direction, of the dot impressions 3. Paper sheets imprinted with the pattern illustrated in FIG. 9, on the other hand, exhibit a diamond-shaped pattern characteristic of paper sheets made in accordance with the present invention when doctored from the dryer drum.
In order to obtain uniform knuckle heights and minimum free area on the back side of a semi-twill fabric such as is illustrated in FIGS. 6 and 7, as is desired in a preferred embodiment of the present invention, the heat treatment process is continued until a condition similar to that illustrated in FIGS. 10 and 11 is achieved. FIG. 10 is taken looking in the cross-machine direction at a point corresponding to line 2-2 in FIG. 1, while FIG. 11 is taken looking in the machine direction at a point corresponding to line 3-3 in FIG. 1. Heat-induced shrinkage of the warp monofilaments l, as shown in FIG. 10, has produced a lower total amplitude causing the woof monofilaments 2 on the back side of the fabric to move upwardly and the woof monofilaments 2 on the conventional face side of the fabric to move downwardly. As can be seen in FIG. 11, the woof monofilaments 2 which, unlike the warp monofilaments l, are not subjected to tension tend to wrap themselves more completely about the warp monofilaments 1 located on the conventional face side of the fabric. Simultaneously, the woof monofilaments 2 tend to belly" or gradually wrap themselves about the two adjacent warp monofilaments 1 located on the back side of the fabric. As a result, the heights of the warp monofilament knuckles 5 on the back side of the fabric and the woof monofilament knuckles 6 on the back side of the fabric become uniform, while the heights of the woof monofilament knuckles 7 on the conventional face side of the fabric and the warp monofilament knuckles 4 on the conventional face side of the fabric become nonuniform. If the initial warp filament spacing in the loom and the initial caliper or thickness of the semi-twill fabric have been properly determined to take into account the heat-induced shrinkage, the condition illustrated in FIGS. 10 and 1] should result, i.e., a dimensionally heat stabilized semitwill fabric having uniform knuckle heights as well as minimum free area on its back side.
FIG. 12 is a simplified illustration of an enlarged partial plan view of an uncreped paper sheet made in accordance with the teachings of US. Pat. No. 3,301 ,746, which uncreped paper sheet has been imprinted utilizing the conventional face side of a semitwill fabric such as is illustrated in FIGS. 10 and 11.
The imprinting pattern is basically similar to that shown in FIG. 8, but the dot impressions 3 formed by the warp monofilament knuckles 4 on the conventional face side of the fabric are no longer present due to the fact that the warp monofilament knuckles 4 are at a lower relative elevation than the woof monofilament knuckles 7 on the conventional face side of the fabric. Paper sheets imprinted with the pattern illustrated in FIG. 12 exhibit properties substantially similar to sheets imprinted with the patterns shown in FIGS. 4 and 8 after creping.
FIG. 13 is a simplified illustration of an enlarged partial plan view of an uncreped paper sheet produced in accordance with the teachings of US. Pat. No. 3,301,746, which uncreped paper sheet has been imprinted utilizing the back side of a semi-twill fabric such as is illustrated in FIGS. 10 and 11. The dash impressions 8 formed by the warp filament knuckles 5 on the back side of the fabric are essentially the same as those illustrated in FIG. 8, but the dot impressions 10 formed by the woof monofilament knuckles 6 on the back side of the fabric are also present due to the fact that the warp filament knuckles 5 and the woof filament knuckles 6 on the back side of the fabric areof uniform height. Paper sheets produced utilizing the back side of a semitwill fabric such as is illustrated in FIGS. 10 and ll.for imprinting purposes exhibit a diamond-shaped surface appearance aftercreping, which surface appearance is characteristic of papersheets made in accordance with applicants invention. As the knuckle imprint area on the back side of such a monofilament, polymer fiber, semi-twill fabric is increased, the diamond-shaped pattern becomes more pronounced.
Applicant has discovered that increasing the knuckle imprint area on the back side of such a fabric also pro duces certain unexpected improvements in finished sheet characteristics. These unexpected improvements take the form of greater cross-directional stretch, as well as improved softness, surface feel and drape. Increasing the knuckle imprint area on the convenional face side of a similar monofilament, polymeric fiber, semi-twill imprinting fabric does not, however, yield similar improvements in finished sheet characteristics. This is likewise true of plain weave imprinting fabrics. Applicant has thus learned unexpectedly that the above mentioned improvements in sheet characteristics are uniquely achievable by increasing the knuckle imprint area on the back side of a conventional monofilament, polymeric fiber, semi-twill imprinting fabric.
One method of increasing the knuckle imprint area of a monofilament, polymeric fiber fabric is disclosed in US. Pat. No. 3,573,164 issued to Friedberg et al. on Mar. 30, 1971, said patent being incorporated herein by reference, wherein the knuckle surfaces are abraded with a fine abrasive medium to improve web transfer, web drying, web product characteristics and general machine operation. In a preferred embodiment of the present invention, the monofilament, polymeric fiber, semi-twill imprinting fabric to be abraded is brought to the condition illustrated in FIGS. 10 and 11, i.e., uniform knuckle heights and minimum free area on its back side, prior to initiating any abrading treatment. Although the abrasion treatment disclosed in the aforementioned Friedberg et al. patent will produce uniform knuckle heights on a fabric which does not initially have uniform knuckle heights, it is most desirable, in a preferred embodiment of the present invention, to utilize a fabric initially having uniform knuckle heights on the side to be treated to minimize the possibility of abrading completely through one or more monofilaments during the abrading process. Therefore, the back side of a fabric such as is shown in FIGS. and 1 1 can undergo a more extensive abrading process, thus producing a greater increase in knuckle imprint area than is permissible with a fabric initially having non-uniform knuckle heights on the side to be treated.
As mentioned earlier in this specification, it has been found desirable that monofilament, polymeric fiber fabrics be dimensionally heat stabilized prior to use. Failure to do so can cause warpage after the fabric has been placed in service and subjected to elevated temperatures. Thus, to realize the full benefits to be obtained by the abrading process, it is most desirable, in a preferred embodiment of the present invention, that the semi-twill fabric be dimensionally heat stabilized in accordance with the procedures described in this specification prior to initiating the abrading treatment.
In accordance with the teachings of the aforementioned Friedberg et al. patent, the back side of a monofilament, polymeric fiber, semi-twill imprinting fabric, in a preferred embodiment of the present invention, is subjected to a treatment wherein the knuckle surfaces of the fabric are abraded using either a wet or dry sandpaper having an effective abrasive grain size of about 300 mesh to about 500 mesh as an abrasive medium. The abrasive media can be mounted on drums for rotative application to the fabric knuckle surfaces. The abrading process can be performed while continuously showering the fabric with water or other cleansing and lubricating fluid, for example light oil, to remove abraded particles and facilitate the polishing operation.
In a preferred embodiment of the present invention, a total knuckle imprint area of about 20 percent to about 50 percent of the total fabric surface area, as measured in the plane of the knuckles, is developed on the treated surface. Increasing the knuckle imprint area beyond the 50 percent level greatly increases the danger of abrading completely through particular monofilaments and is also likely to have a detrimental effect on the fabric life.
In yet another preferred embodiment of the present invention, it is desirable to form a smooth and polished surface on the knuckles on the back side of the monofilament, polymeric fiber semi-twillfabric. To this end, the above described abrading operation can be conducted in several stages. For example, the initial abrasion can be carried out with an abrasive medium having an effective abrasive grain size of about 300 mesh, and this initial abrading operation can be followed by an abrasive polishing treatment using a water lubricated wet sandpaper having an effective abrasive grain size of about 500 mesh. Polishing abrasives such as talc, rouge and crocus cloth can also be used to further polish the knuckle surfaces.
FIGS. 14 and are enlarged cross-sectional views of a monofilament, polymeric fiber, semitwill fabric such as is illustrated in FIGS. 10 and 11 after the back side of the fabric has been abraded to increase its knuckle imprint area to between about percent and about 50 percent of the total fabric surface area, as measured in the plane of the knuckles. FIG. 16 is a plan view of an enlarged portion of the fabric illustrated in FIGS. 14 and 15, as viewed from the back side of the fabric. The fabric illustrated in FIGS. 14 through 16 represents a preferred embodiment of the present invention,
wherein uniform knuckle heights and minimum free area were achieved on the back side of the fabric prior to initiating the abrading process. An inherent advantage associated with obtaining uniform knuckle heights and minimum free area prior to initiating the abrading treatment is in the uniform consistency of the knuckle imprint pattern which results after the abrading process has been completed. This latter feature is most clearly illustrated in FIG. 16.
FIGS. 14 and 15, taken looking in the cross-machine and machine directions respectively, illustrate the fabric profile which is presented to an uncompacted paper web when the fabric is utilized for imprinting purposes in accordance with the teachings of US. Pat. No. 3,301,746. The warp filament knuckles 5 and the woof filament knuckles 6 as shown in FIGS. 10 and 11 have been abraded to form the plateau-like warp filament knuckles 5 and Woof filament knuckles 6 illustrated in FIGS. 14 and 15. In addition to improving web transfer and web drying characteristics, the plateau-like knuckle surfaces 5' and 6' impress an uncompacted paper web to a uniform depth, thus producing a more distinct imprint pattern.
The moist paper web carried on an imprinting fabric of the present invention can be thermally pre-dryed by means of passing hot gases, for example air, through the moist paper web and the imprinting fabric. One suitable apparatus for pre-drying the moist paper web is disclosed in US. Pat. No. 3,303,576 issued to Sisson on Feb. 14, I967, which patent is incorporated herein by reference. Although the means by which thermal predrying is accomplished is not critical, it is critical that the relationship of the moist web to the imprinting fabric be maintained once established.
According to the teachings of US. Pat. No. 3,301,746, thermal pre-drying is used to effect a fiber consistency in the moist paper web from about 30 percent to about percent, preferably about 40 percent to about 80 percent. The aforementioned Sanford et al. patent further teaches that at fiber consistencies less than about 30 percent, the desirably balanced sheet characteristics of softness, bulk and absorbency suffer because the sheet and the fibers thereof are two moist, and yielding occures during the imprinting step. The aforementioned Sanford et al. patent also teaches that pre-drying to fiber consistencies above about 80 percent precludes the development of effective tensile strengths in the imprinted paper sheet.
Based on the Sanford et al. patent and the application of Gregory A. Bates, Ser. No. 452,610 filed Mar. 19, 1974 and entitled TRANSFER AND ADHERENCE OF RELATIVELY DRY PAPER WEB TO A ROTAT- ING CYLINDRICAL SURFACE, said application being commonly owned by the assignee of the present invention and incorporated herein by reference, it is now-known that fiber consistencies between about 30 percent and about 98 percent prior to transfer of the web to the drying drum are possible without adversely affecting the tensile strength of paper sheets thus produced. Fiber consistencies in the higher end of the range, i.e., above about 80 percent, are now known to be a function of the adhesive sprayed on the surface of the drying drum prior to web transfer, as explained in detail in the aforementioned application of Bates.
Imprinting the fabric knuckle pattern in the moist web by pressing the pre-dryed web against a relatively non-yielding surface, for example, an unheated steel roll or a Yankee dryer surface, while the pre-dryed web is yet carried on the imprinting fabric results in a paper sheet having impressed in its surface, to a depth of at least 30 percent of its machine glazed caliper the knuckle pattern of the imprinting fabric. Machine glazed claiper refers to the caliper of the paper sheet taken directly from the Yankee dryer, before creping. Thus, the knuckle surfaces and 6', illustrated in FIGS. 14 through 16 in a preferred embodiment of the present invention, are impressed to a uniform depth of at least 30 percent of the machine glazed caliper of the uncreped paper sheet.
The pressure required for the imprinting of the imprinting fabric pattern can be provided, in a preferred embodiment of the present invention, by one or more pressure rolls operating on the imprinting fabric to force the knuckles of the fabric into the surface of the pre-dryed web and to force the pre-dryed web surface under the knuckles against a Yankee dryer surface.
It should be understood that it is critical to the practice of the present invention that the imprinting step described above be the first substantial overall mechanical compaction step which the paper web has received during formation and pre-drying.
FIG. 17 is a photograph of an enlarged partial plan view of an uncreped paper sheet made in accordance with the teachings of US. Pat. No. 3,301,746, utilizing the back side of a semi-twill fabric such as is illustrated in FIGS. 14 through 16 to imprint the uncompacted paper web. The resulting knuckle imprint pattern is basically similar to that shown in FIG. 13. However, the dash impressions 8 formed by the warp filament knuckles 5' and the dot impressions formed by the woof filament knuckles 6' constitute a greater percentage of the sheets surface area due to the increase in the size of the fabric knuckles. In addition, the impressions 8 and 10 are more distinct due to the fact that they are of substantially uniform depth, having been produced by the plateau-like surfaces of the knuckles 5 and 6'.
FIG. 18 is an illustration of an enlarged cross-sectional view of the uncreped paper sheet of FIG. 17, taken looking in the cross-machine direction along line 18-48 in FIG. 17.
'FIG. 19 is a photograph of an enlarged partial plan view of a creped paper sheet made in accordance with the teachings of US. Pat. No. 3,301,746, utilizing the back side of a semi-twill fabric such as is illustrated in FIGS. 14 through 16 to imprint the uncompacted paper web prior to creping. The long axis of the impressions 11 visible after creping appears to be oriented generally in the cross-machine direction. Unlike paper sheets made in accordance with the teachings of the aforementioned Sanford et al. patent utilizing either a similarly prepared plain weave imprinting fabric or the conventional face side of a similarly prepared semi-twill imprinting fabric, the overall surface of the paper exhibits a diamond-shaped pattern rather than uniform unbroken creping ridges extending across the width of the sheet.
FIG. 20 is an illustration of an enlarged cross-sectional view of the paper sheet of FIG. 19, taken looking in the cross-machinc direction along line 2020 in FIG. 19. I
A finished paper sheet such as is illustrated in FIGS. 19 and 20, produced in accordance with the present invention, exhibits improvements in cross-directional stretch, softness, surface feel and drape which are not achievable by the paper manufacturing process disclosed in US. Pat. No. 3,301,746 when a similarly precharacteristics, does not produce the improvements in cross-directional stretch, softness, surface feel and drape which are realized by increasing the knuckle imprint area on the back side of a semi-twill imprinting fabric.
From the foregoing general and specific description of the present process, it is apparent that the critical procedures to be carried out are the formation of an uncompacted paper web at a specified range of fiber consistency and the imprinting thereof by the knuckles on the back side of a monofilament, polymeric fiber, semi-twill imprinting fabric, said fabric having a knuckle imprint area constituting about 20 percent to about 50 percent of the total surface area on the back side of the fabric, as measured in the plane of the knuckles. The formation of the paper web and the final drying techniques together with the pre-drying imprinting and creping procedures can. be varied by one skilled in the art to produce distinctive papers for various uses while remaining within the scope of this invention.
By the foregoing procedures, creped paper sheets exhibiting a diamond-shaped surface appearance, composed substantially of cellulosic fibers, having basic weights of from about 5 to about 40 pounds per 3000 square feet, and exhibiting a repeating pattern of discrete impressed areas are produced.
In order to demonstrate the improvements characteristic of finished product made in accordance with applicants invention, a series of test runs were made to compare the characteristics of paper sheets made in accordance with the teachings of US. Pat. No. 3,301,746, utilizing different sides of a monofilament, polymeric fiber, semi-twill fabric. Paper machine conditions, with the exception of the imprinting fabric, were maintained constant for the entire series of tests.
Furnish comprised of a 50 percent softwood kraft and a 50 percent hardwood sulfite stock was utilized throughout the entire series of tests.
An adhesive coat was applied to the Yankee dryer surface by utilizing a wire glue roll of approximately 40 mesh turning at a lineal speed of approximately 9 feet per minute at its periphery in an open glue pot and then spraying the glue picked up on the wire mesh glue roll onto the surface of the Yankee dryer drum by means of a series of air jets located interiorly of the glue roll and operating continuously at an air pressure of p.s.i.g. The glue utilized was purchased under the specification Peter Cooper IX from the Peter Cooper Corporation of Gowanda, New York. The mixture, as applied, contained 1 part glue and 99 parts water. The pre-dryed and imprinted web was caused to part from the imprinting fabric at the pressure nip exit and adhere to the Yankee dryer surface by means of the adhesive coat described above.
The dry creped sheet was removed from the Yankee dryer by means of a conventional doctor blade so that the finished product had 12 percent stretch as crepe folds.
Two separate monofilament, polymeric fiber, semitwill fabrics were utilized during the test runs. The fabrics were both 31 (machine direction) by 28 (crossmachine direction) mesh utilizing warp and woof 19 monofilaments having a diameter of 0.45 mm. (about 0.018 inches). One of the fabrics was woven so as to present its back side as a web contacting surface and the other was woven so as to present its conventional face side as a web contacting surface. Both of the fabrics, as received, were in a configuration similar to that illustrated in FIGS. and 11, Le, the heights of the warp filament knuckles 5 and the woof filament knuckles 6 on the back side of each fabric were approximately equal, while the warp filament knuckles 4 were at a lower relative elevation than the woof filament knuckles 7 on the conventional face side of each fabric.
In order to isolate the effect of the imprinting fabrics on finished sheet characteristics, the fabrics were installed successively on the same paper machine in the as-received condition, and paper sheets were produced in accordance with the teachings of US. Pat. No. 3,301,746.
The fabric woven so as to present its back side as a web contacting surface was found to have an initial knuckle imprint area of about 21.2 percent in the asreceived condition, while the fabric woven so as to present its conventional face side as a web contacting surface was found to have a knuckle imprint area of about 23.4 percent in the as-received condition.
Data taken from paper samples made utilizing the imprinting fabric having its back side in contact with the uncompacted paper web is reported hereinbelow under Example I. Data taken from paper samples made utilizing the imprinting fabric having its conventional face side in contact with the uncompacted paper web is reported hereinbelow under Example II. With the exception of the imprinting fabrics, the paper machine conditions were unchanged between Examples I and II.
To illustrate the effect of increasing the knuckle imprint area on the web contacting side of the imprinting fabrics, each fabric was abraded in accordance with the teachings of US. Pat. No. 3,573,164. The knuckle imprint area on the fabric utilizing its back side as a web contacting surface was increased from approximately 21.2 percent to approximately 28.4 percent, while the knuckle imprint area of the fabric utilizing its conventional face side as a web contacting surface was increased from approximately 23.4 percent to approximately 34.1 percent. The tests were repeated keeping all paper machine conditions, other than the increased knuckle imprint area of the fabrics, unchanged. The results of tests performed on sample paper sheets taken during each run are tabulated hereinbelow under Examples Ill and IV. The data set forth in Example III is taken from sample sheets made utilizing the semi-twill imprinting fabric which presented its back side to the uncompacted paper web, while the data set forth in Example IV is taken from sample sheets made utilizing the semi-twill fabric which presented its conventional face side to the uncompacted paper web.
Finally, the knuckle imprint area of each fabric was further increased in accordance with the teachings of US. Pat. No. 3,573,164 until the fabric utilizing its back side as a web contacting surface achieved a total knuckle imprint area of 37.3 percent, while the fabric utilizing its conventional face side as a web contacting surface achieved a total knuckle imprint area of 40.0 percent. The tests were repeated keeping all paper machine conditions, other than the knuckle imprint area of the fabrics, unchanged. The results of tests performed on sample paper sheets taken during each run are tabulated hereinbelow under Examples V and VI.
20 Data set forth in Example V is taken from paper sheets made utilizing the semi-twill fabric which presented its back side to the uncompacted paper web, while data set forth in Example VI is taken from paper sheets made utilizing the semi-twill fabric which presented its conventional face side to the uncompacted paper web.
The caliper of a paper sheet at grams per square inch, as tabulated in the Examples hereinbelow, is the thickness of that sheet when subjected to a compressive load of 80 grams per square inch.
The tensile strengths in the machine direction (MD) and cross-machine direction (CD), as tabulated in the Examples hereinbelow, are reported as the force in grams that a 1 inch wide sample with a 4 inch span between the tensile tester clamps, cut in the MD or CD direction, can withstand before breaking, as measured on a standard Thwing-Albert Tensile Tester such as is available from the Thwing-Albert Instrument Company of Philadelphia, Pennsylvania.
The percentage stretch data tabulated in the Examples hereinbelow was determined concurrently with the determination of MD and CD tensile strengths as described above.
A Thwing-Albert I-Iandle-O-Meter, catalogue num-. ber 21 1-3, such as is available from the Thwing-Albert Instrument Company of Philadelphia, Pennsylvania, was used to measure a combination of stiffness and sliding friction of the paper samples. A high Handle-O- Meter or I-I-O-M reading indicates a lack of softness and is, therefore, undesirable. A lower I-I-O-M reading indicates a softer sheet. Two 4 /2 inch by 4 /2 inch paper samples were placed side by side over the 0.25 inch wide Handle-O-Meter slot located beneath the blade of the unit. To determine the machine direction Handle- O-Meter reading of the sheets, the machine direction of the paper samples was aligned parallel to the Handle- O-Meter blade. To determine the cross-machine direc tion l-Iandle-O-Meter reading, the machine direction of the sample sheets was aligned perpendicular to the blade of the Handle-O-Meter. Readings taken directly from the standard 50 micro-ampere meter mounted on the I-Iandle-O-Meter are reported in the Examples hereinbelow.
In order to quantify sheet properties relating to surface feel and drape, resort was had to the principles of textile testing. Fabric handle, asits name implies, is concerned with the feel of the material and so depends on the sense of touch. When the handle of a fabric is judged, the sensations of stiffness or'limpness, hardness of softness, and roughness or smoothness are all made use of. Drape has a rather different meaning and very broadly is the ability of a fabric to assume a graceful ap pearance in use. Experience in the textile industry has shown that fabric stiffness is a key factor in the study of handle and drape.
One instrument devised by the textile industry to measure stiffness is the Shirley Stiffness Tester. In order to compare the drape and surface feel properties of paper samples made utilizing different sides of a semi-twill imprinting'fabric, a Shirley Stiffness Tester was constructed to determine the bending length of the paper samples, and hence to calculate values for flexural rigidity and bending modulus.
The Shirley Stiffness Tester is described in ASTM Standard Method No. 1388. The horizontal platform of the instrument is supported by two side pieces made of plastic. These side pieces have engraved on them index lines at the standard angle of deflection of 41 /2. At-
21 tached to the instrument is a mirror which enables the operator to view both index lines from a convenient position. The scale of the instrument is graduated in centimeters. The scale may be used as a template for cutting the specimens to size.
To carry out a test, a rectangular strip ofpaper, 6 inches by 1 inch, is cut to the same size as the scale and then both scale and specimen are transferred to the platform with the specimen underneath.- Both are slowly pushed forward. The strip of paper will commence to droop over the edge of the platform as the scale and specimen are advanced. Movement of the scale and the specimen is continued until the tip of the specimen viewed in the mirror cuts both of the index lines. The amount of overhang, I, can immediately be read off from the scale mark opposite a zero line engraved on the side of the platform.
Due to the fact that paper assumes a permanent set after being subjected to such a stiffness test, four individual specimens were utilized to test the stiffness of 20 the paper along a given axis, and an average value for the particular axis was then calculated. Samples were cut both on and across the cross-machine direction (CD) axis, on and across the CD+30 axis, and on and across the CD+135 axis. From the data collected both on and perpendicular to each of three aforementioned axes, an average overhang value, I, was calculated for theparticular paper sample.
The bending length, 0, for purposes of these tests, shall be defined as the length of paper that will bend under its own weight to a definite extent. it is a measure of the stiffness that determines draping quality. The calculation is as follows: i
c f cm. f(6) wheref() [cos /2 6+ 8 tan 0], and f the average overhang value of the particular paper sample as determined above.
In the case of the Shirley Stiffness Tester, the angle 0 41 V2", at which angle f(6) orf(41 /2) 0.5. Therefore, the above calculation simplifies to:
c=f X (0.5) cm.
Flexural rigidity, G, is a measure of stiffness associated with handle. The calculation of flexural rigidity, G, in the present instance is as follows:
The bending modulus, q, as reported in the Examples hereinbelow, is independent of the dimensions of the strip tested and may be regarded as .the intrinsic stiffness of the material. Therefore, this value may be used to compare the stiffness of materials having different 10 thicknesses. For its calculation, the thickness or caliper of the paper sample must be measured at a pressure of 1 pound per square inch.
The bending modulus, q, is; then given by:
q 732 X G I- g kg./sq.cm., where G is the flexural rigidity of the particular paper sample as determined above, expressed in mg. cm., and g is the thickness or caliper of the particular paper sample, expressed in mils, when subjected to a pressure of 1 pound per square inch.
The results of tests performed on sample paper sheets produced during the runs described above are reported in the Examples hereinbelow :in terms of bending mod ulus, q, which has relevance with respect to both drape and surface feel. A lower bending modulus corresponds to increased drape, and hence to improved surface feel.
The knuckle imprint areas referred to in the Examples hereinbelow were determined by making an impression with pressure sensitive paper in each of four areas on the web contacting surface of the imprinting 3O fabric utilized in the particular Example. Enlarged photographs were taken of each of the four impressions, and a unit-cell of knuckles, i.e., one repeating pattern of knuckles, was enclosed in each photograph. The total area of each enclosed unit-cell and the total area of the knuckles inside each such unit-cell'we re then 40 The Examples below compare the finished sheet properties of paper samples produced in accordance with the present invention with the sheet properties of paper samples produced utilizing the conventional face side of a similar imprinting fabric at various stages of fabric treatment.
EXAMPLE 1 Back side of imprinting fabric contacting web Cal Basis Sample no. ipcr at Knuckle weight Bending (for indentigm/ imprint pounds] Tensile Tensile Handle Handle- Stretch Stretch Modulus fication pursq.in., area, 3,000 MD,gm./ CD,gm./ O-Meter O-Meter MD. CD. q",kg./ poses only) inches percent sq.ft. in. in. MD CD "/1 71 sq.cm.
EXAMPLE 11 Conventional face side of imprinting fabric contacting web Cal- Basis Sample no.' iper at Knuckle weight Bending (for indenti- 80 gm/ imprint pounds/ Tensile Tensile Handle- Handle- Stretch Stretch Modulus fication pursq.in., area, 3,000 MD,gm./ CD,gm./ O-Meter O-Meter MD, CD, q,kg./ poses only) inches percent sq.ft. in. in. MD CD sq.cm.
EXAMPLE 111 Back side of imprinting fabric contacting web Cal- Basis Sample no. iper at Knuckle weight Bending (for indenti- 80 gm/ imprint pounds/ Tensile Tensile Handle- Handle- Stretch Stretch Modulus fication pursq.in.. area, 3,000 MD,gm./ CD,gm./ O-Meter OMeter MD. CD, q,kg./ poses only). inches percent sq.ft. in. in. MD CD 7: sq.cm.
EXAMPLE lV Conventional face side of imprinting fabric contacting web Cal- Basis Sample no. iper at Knuckle weight Bending 1 (for indenti- 80 gm/ imprint pounds/ Tensile Tensile Handle Handle- Stretch Stretch Modulus fication pursq.in., area, 3,000 MD,gm./ CD,gm./ O-Meter O-Meter MD, CD. q".kg./ poses only) inches percent sq.ft. in. in. MD CD sq.cm.
EXAMPLE V Back side of imprinting fabric contacting web Cal- Basis Sample no. iper at Knuckle weight Bending (for indenti- 80 gm/ imprint pounds/ Tensile Tensile Handle- Handle- Stretch Stretch Modulus fication pursq.in., area. 3,000 MD,gm./ CD.gm./ O Metcr O-Meter MD, CD, q",kg./ poses only) inches percent sq.ft. in. in. MD CD "/1 7r sq cm.
EXAMPLE V1 Conventional face side of imprinting fabric contacting weh Cal- 7 Basis Sample no. iper at Knuckle weight Bending (for indenti- 80 gm/ imprint pounds/ Tensile Tensile Handle- Handle- Stretch Stretch Modulus fication pursq.in., area. 3,000 MD.gm./ CD.gm./ O-Mcter O-Mctcr MD, CD. q",kg./ poses only) inches percent sq.ft. in. in. MD CD /1 sq.cm.
EXAMPLE Vl Continued Conventional face side of imprinting fabric contacting web Cal- Basis Sample no. iper at Knuckle weight Bending (for indenti- 80 gm/ imprint pounds} Tensile Tensile Handle- Handle- Stretch Stretch Modulus fication pursq.in., area, 3,000 MD,gm./ CD,gm./ O-Meter O-Meter MD. CD, q",kg./ poses only) inches percent sq.ft. in. in. MD CD sq.cm.
4 0.009] 40.0 l4.5 304 2l3 12.25 2.0 23.0 2.0 l5.66
The data presented in the Examples above clearly show the advantages of the present invention in producing a paper sheet characterized by having significantly improved cross-directional stretch, softness, surface feel and drape.
It is to be understood that the forms of the invention herein illustrated and described are to be taken as preferred embodiments. Various changes or omissions may be made in the weaving process, the heat treating process, or in the process for increasing the knuckle imprint area of the fabric without departing from the spirit or scope of the invention as defined in the attached claims.
Having thus defined and described the invention, what is claimed is:
1. A process for the manufacture of a soft, bulky and absorbent paper sheet which comprises the steps of:
a. forming an uncompacted paper web having a uniform basis weight of about 5 to about 40 pounds per 3000 square feet,
b. supporting said uncompacted paper web on the back side of a semi-twill imprinting fabric having about to about 60 meshes per inch, the knuckle imprint area on the back side of said fabric consti-.
tuting between about 20 and about 50 percent of the total fabric surface area, as measured in the plane of the knuckles, said imprinting fabric being formed from filaments having a diameter of about 0.008 to about 0.025 inches,
c. thermally pre-drying said uncompacted paper web to a fiber consistency between about 30 and about 98 percent,
d. imprinting a dot-dash knuckle pattern with said semi-twill imprinting fabric such that the long axis of the dash impressions in said pattern is aligned parallel to the machine direction .of the pre-dryed, uncompacted paper web, and
e. final drying and creping the paper sheet so formed.
2. The process for the manufacture of a soft, bulky and absorbent paper sheet as described in claim 1 wherein the final drying of the paper sheet is performed on the imprinting fabric.
3. The process for the manufacture of a soft, bulky and absorbent paper sheet as described in claim 1 wherein the final drying of the paper sheet is performed on a Yankee dryer drum and the creping is performed by means of a doctor blade.
4. The process for the manufacture of a soft, bulky and absorbent paper sheet as described in claim 1 wherein the uncompacted paper web formed in step (a) is molded to conform to the pattern of the imprinting fabric prior to thermally pre-drying the uncompacted paper web in step (c).
5. A process for the manufacture of a soft, bulky and absorbent paper sheet which comprises the steps of: a. forming an uncompacted paper web having a uniform basis weight of about 9 to about 25 pounds per 3000 square feet,
b. supporting said paper web on the back side of a semi-twill imprinting fabric having about 20 to about 60 meshes per inch, the knuckle imprint area on the back side of said fabric constituting between about 20 and about 50 percent of the total fabric surface area, as measured in the plane of the knuckles, said imprinting fabric being formed from filaments having a diameter of about 0.008 to about 0.025 inches,
0. thermally pre-drying said uncompacted paper web to a fiber consistency between about 40 and about 98 percent,
d. imprinting a dot-dash knuckle pattern with said semi-twill imprinting fabric such that the long axis of the dash impressions in said pattern is aligned parallel to the machine direction of the pre-dryed, uncompacted paper web, and
e. final drying and creping the paper sheet so formed by means of a Yankee dryer drum and a doctor blade.
6. The process for the manufacture of a soft, bulky and absorbent paper sheet as described in claim 5 5 wherein the uncompacted paper web formed in step (a) is molded to conform to the pattern of the imprinting fabric prior to thermally pre-drying the uncompacted web in step (c).
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION PATENT NO.
DATED INVENTOR(S) Column Column Column Column Column Column Column Column [SEAL] September 16,
It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
1, line 42, "embodimen" should read, embodiment 1, line 61, "to" should read as 4, line 36, after "uniform" insertheights 16, line 43, "two" should read too 16, line 44, "oocures" should read ocours 18, line 29, "basic" should read basis 19, line 42, "of" should read on 20, line 50, "of" should read or Signed and Sealed this Eighth Day of February 1977 Arrest:
RUTH C. MASON Arresting Officer

Claims (8)

1. A PROCESS FOR THE MANUFACTURE OF A SOFT, BULKY AND ABSORBENT PAPER SHEET WHICH COMPRISES THE STEPS OF: A. FORMING AN UNCOMPACTED PAPER WEB HAVING A UNIFORM BASIS WEIGHT OF ABOUT 5 TO ABOUT 40 POUNDS PER 3000 SQUARE FEET, B. SUPPORTING SAID UNCOMPACTED PAPER WEB ON THE BACK SIDE OF A SEMI-TWILL IMPRINTING FABRIC HAVING ABOUT 2/ TO ABOUT 60 MESHES PER INCH, THE KNUCKLE IMPRINT AREA ON THE BACK SIDE OF SAID FABRIC CONSTITUTING BETWEEN ABOUT 20 AND ABOUT 50 PERCENT OF THE TOTAL FABRIC SURFACE AREA, AS MEASURED IN THE PLANE OF THE KNUCKLES, SAID IMPRINTING FABRIC BEING FORMED FROM FILAMENTS HAVING A DIAMEER OF ABOUT 0.008 TO ABOUT 0.025 INCHES, C. THERMALLY PRE-DRYING SAID UNCOMPACTED PAPER WEB TO A FIBER CONSISTENCY BETWEEN ABOUT 30 AND 98 PERCENT, D. IMPRINTING A DOT-DASH KNUCKLE PATTERN WITH SAID SEMITWILL IMPRINTING FABRIC SUCH THAT LONG AXIS OF THE DASH IMPRESSIONS IN SAID PATTERN IS ALIGNED PARALLEL TO THE MACHINE DIRECTION OF THE PRE-DRYED, UNCOMPACTED PAPER WEB, AND E. FINAL DRYING AND CREPING THE PAPER SHEET SO FORMED.
2. The process for the manufacture of a soft, bulky and absorbent paper sheet as described in claim 1 wherein the final drying of the paper sheet is performed on the imprinting fabric.
3. The process for the manufacture of a soft, bulky and absorbent paper sheet as described in claim 1 wherein the final drying of the paper sheet is performed on a Yankee dryer drum and the creping is performed by means of a doctor blade.
4. The process for the manufacture of a soft, bulky and absorbent paper sheet as described in claim 1 wherein the uncompacted paper web formed in step (a) is molded to conform to the pattern of the imprinting fabric prior to thermally pre-drying the uncompacted paper web in step (c).
5. A process for the manufacture of a soft, bulky and absorbent paper sheet which comprises the steps of: a. forming an uncompacted paper web having a uniform basis weight of about 9 to about 25 pounds per 3000 square feet, b. supporting said paper web on the back side of a semi-twill imprinting fabric having about 20 to about 60 meshes per inch, the knuckle imprint area on the back side of said fabric constituting between about 20 and about 50 percent of the total fabric surface area, as measured in the plane of the knuckles, said imprinting fabric being formed from filaments having a diameter of about 0.008 tO about 0.025 inches, c. thermally pre-drying said uncompacted paper web to a fiber consistency between about 40 and about 98 percent, d. imprinting a dot-dash knuckle pattern with said semi-twill imprinting fabric such that the long axis of the dash impressions in said pattern is aligned parallel to the machine direction of the pre-dryed, uncompacted paper web, and e. final drying and creping the paper sheet so formed by means of a Yankee dryer drum and a doctor blade.
6. The process for the manufacture of a soft, bulky and absorbent paper sheet as described in claim 5 wherein the uncompacted paper web formed in step (a) is molded to conform to the pattern of the imprinting fabric prior to thermally pre-drying the uncompacted web in step (c).
7. A soft, bulky and absorbent paper sheet characterized by having a uniform basis weight of about 5 to about 40 pounds per 3000 square feet, by having imprinted in its surface, to a depth of at least 30 percent of its machine glazed caliper, the knuckle pattern of the back side of a semi-twill imprinting fabric having about 20 to about 60 meshes per inch, by having about 20 to about 50 percent of its surface compressed in said dot-dash knuckle pattern such that the long axis of the dash impressions in said pattern is aligned parallel to the machine direction during the formation of said paper sheet, said paper sheet being further characterized by having a cross-directional stretch of from about 3.5 percent to about 6 percent.
8. The soft, bulky and absorbent sheet described in claim 7 which sheet exhibits a diamond-shaped pattern in its surface after creping.
US457043A 1973-06-08 1974-04-01 Process for forming absorbent paper by imprinting a semi-twill fabric knuckle pattern thereon prior to final drying and paper thereof Expired - Lifetime US3905863A (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
US457043A US3905863A (en) 1973-06-08 1974-04-01 Process for forming absorbent paper by imprinting a semi-twill fabric knuckle pattern thereon prior to final drying and paper thereof
CA201,613A CA1007911A (en) 1973-06-08 1974-06-04 Process for forming absorbent paper by imprinting a semi-twill fabric knuckle pattern thereon prior to final drying and paper thereof
DK303474AA DK137248B (en) 1973-06-08 1974-06-06 Method for making a soft, full and absorbent sheet of paper.
DE19742427291 DE2427291A1 (en) 1973-06-08 1974-06-06 PROCESS FOR MANUFACTURING SOFT, THICK-HAND, ABSORBENT PAPER
AU69861/74A AU6986174A (en) 1973-06-08 1974-06-06 Absorbent paper
CH771274A CH592209A5 (en) 1973-06-08 1974-06-06
IT23743/74A IT1014871B (en) 1973-06-08 1974-06-07 PROCESS FOR FORMING ABSOR RENT PAPER BY IMPRESSING A KNOT PATTERN OF SEMI-GONAL FABRIC ON IT BEFORE FINAL DRYING AND PAPER SO OTTE NUTA
NL7407635A NL7407635A (en) 1973-06-08 1974-06-07
FR7419847A FR2241642B1 (en) 1973-06-08 1974-06-07
NO742069A NO141904C (en) 1973-06-08 1974-06-07 PROCEDURE FOR THE MAKING OF ABSORBING PAPER
SE7407532A SE412262B (en) 1973-06-08 1974-06-07 PROCEDURE FOR PREPARING A SOFT, VOLUMINOST AND ABSORBING PAPER SHEET
IE1204/74A IE40284B1 (en) 1973-06-08 1974-06-07 Paper sheets and processes for their manufacture
FI1753/74A FI175374A (en) 1973-06-08 1974-06-07
JP49065508A JPS5742760B2 (en) 1973-06-08 1974-06-08
GB2558974A GB1436067A (en) 1973-06-08 1974-06-10 Paper sheets and processes for their manufacture
US05/588,580 US3974025A (en) 1974-04-01 1975-06-19 Absorbent paper having imprinted thereon a semi-twill, fabric knuckle pattern prior to final drying

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36844073A 1973-06-08 1973-06-08
US457043A US3905863A (en) 1973-06-08 1974-04-01 Process for forming absorbent paper by imprinting a semi-twill fabric knuckle pattern thereon prior to final drying and paper thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US36844073A Continuation-In-Part 1973-06-08 1973-06-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/588,580 Division US3974025A (en) 1974-04-01 1975-06-19 Absorbent paper having imprinted thereon a semi-twill, fabric knuckle pattern prior to final drying

Publications (1)

Publication Number Publication Date
US3905863A true US3905863A (en) 1975-09-16

Family

ID=27004184

Family Applications (1)

Application Number Title Priority Date Filing Date
US457043A Expired - Lifetime US3905863A (en) 1973-06-08 1974-04-01 Process for forming absorbent paper by imprinting a semi-twill fabric knuckle pattern thereon prior to final drying and paper thereof

Country Status (15)

Country Link
US (1) US3905863A (en)
JP (1) JPS5742760B2 (en)
AU (1) AU6986174A (en)
CA (1) CA1007911A (en)
CH (1) CH592209A5 (en)
DE (1) DE2427291A1 (en)
DK (1) DK137248B (en)
FI (1) FI175374A (en)
FR (1) FR2241642B1 (en)
GB (1) GB1436067A (en)
IE (1) IE40284B1 (en)
IT (1) IT1014871B (en)
NL (1) NL7407635A (en)
NO (1) NO141904C (en)
SE (1) SE412262B (en)

Cited By (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3994771A (en) * 1975-05-30 1976-11-30 The Procter & Gamble Company Process for forming a layered paper web having improved bulk, tactile impression and absorbency and paper thereof
US4042740A (en) * 1974-09-20 1977-08-16 Minnesota Mining And Manufacturing Company Reinforced pillowed microfiber webs
US4103058A (en) * 1974-09-20 1978-07-25 Minnesota Mining And Manufacturing Company Pillowed web of blown microfibers
US4191609A (en) * 1979-03-09 1980-03-04 The Procter & Gamble Company Soft absorbent imprinted paper sheet and method of manufacture thereof
DE3008344A1 (en) * 1979-03-09 1980-09-18 Procter & Gamble PAPER MACHINE TOWEL
US4309246A (en) * 1977-06-20 1982-01-05 Crown Zellerbach Corporation Papermaking apparatus and method
DE3127359A1 (en) * 1980-07-10 1982-07-15 Albany International Corp., 12202 Menands, N.Y. TEXTILE MATERIAL FOR A DRY FELT AND DRY FELT MADE THEREOF
US4533437A (en) * 1982-11-16 1985-08-06 Scott Paper Company Papermaking machine
US4612231A (en) * 1981-10-05 1986-09-16 James River-Dixie Northern, Inc. Patterned dry laid fibrous web products of enhanced absorbency
US4671983A (en) * 1985-06-12 1987-06-09 Marcal Paper Mills, Inc. Embossments for minimizing nesting in roll material
US4942077A (en) * 1989-05-23 1990-07-17 Kimberly-Clark Corporation Tissue webs having a regular pattern of densified areas
US4941239A (en) * 1989-02-14 1990-07-17 Albany International Corporation Method to reduce forming fabric edge curl
US5100512A (en) * 1990-09-11 1992-03-31 The Mead Corporation Dandy roll having a twill weave wiremark and related method for papermaking
US5160789A (en) * 1989-12-28 1992-11-03 The Procter & Gamble Co. Fibers and pulps for papermaking based on chemical combination of poly(acrylate-co-itaconate), polyol and cellulosic fiber
US5213588A (en) * 1992-02-04 1993-05-25 The Procter & Gamble Company Abrasive wiping articles and a process for preparing such articles
US5324392A (en) * 1989-04-18 1994-06-28 Nippon Filcon Co., Ltd. Extendable and heat shrinkable polyamide mono-filament for endless fabric and endless fabric
US5399412A (en) * 1993-05-21 1995-03-21 Kimberly-Clark Corporation Uncreped throughdried towels and wipers having high strength and absorbency
US5429686A (en) * 1994-04-12 1995-07-04 Lindsay Wire, Inc. Apparatus for making soft tissue products
WO1996004418A1 (en) * 1994-08-01 1996-02-15 Wangner Systems Corporation Woven fabric
US5510001A (en) * 1993-05-21 1996-04-23 Kimberly-Clark Corporation Method for increasing the internal bulk of throughdried tissue
US5580423A (en) * 1993-12-20 1996-12-03 The Procter & Gamble Company Wet pressed paper web and method of making the same
US5607551A (en) * 1993-06-24 1997-03-04 Kimberly-Clark Corporation Soft tissue
WO1997024488A1 (en) * 1995-12-29 1997-07-10 Kimberly-Clark Worldwide, Inc. Improved system for making absorbent paper products
WO1997024487A1 (en) * 1995-12-29 1997-07-10 Kimberly-Clark Worldwide, Inc. Improved system for making absorbent paper products
US5667636A (en) * 1993-03-24 1997-09-16 Kimberly-Clark Worldwide, Inc. Method for making smooth uncreped throughdried sheets
US5776307A (en) * 1993-12-20 1998-07-07 The Procter & Gamble Company Method of making wet pressed tissue paper with felts having selected permeabilities
US5795440A (en) * 1993-12-20 1998-08-18 The Procter & Gamble Company Method of making wet pressed tissue paper
US5806569A (en) * 1996-04-04 1998-09-15 Asten, Inc. Multiplanar single layer forming fabric
US5830316A (en) * 1997-05-16 1998-11-03 The Procter & Gamble Company Method of wet pressing tissue paper with three felt layers
US5839479A (en) * 1996-04-04 1998-11-24 Asten, Inc. Papermaking fabric for increasing bulk in the paper sheet
US5853547A (en) * 1996-02-29 1998-12-29 Asten, Inc. Papermaking fabric, process for producing high bulk products and the products produced thereby
US5855739A (en) * 1993-12-20 1999-01-05 The Procter & Gamble Co. Pressed paper web and method of making the same
US5861082A (en) * 1993-12-20 1999-01-19 The Procter & Gamble Company Wet pressed paper web and method of making the same
US5897745A (en) * 1994-06-29 1999-04-27 The Procter & Gamble Company Method of wet pressing tissue paper
US5925217A (en) * 1995-12-29 1999-07-20 Kimberly-Clark Tissue Company System for making absorbent paper products
US5980691A (en) * 1995-01-10 1999-11-09 The Procter & Gamble Company Smooth through air dried tissue and process of making
US6039839A (en) * 1998-02-03 2000-03-21 The Procter & Gamble Company Method for making paper structures having a decorative pattern
US6103062A (en) * 1998-10-01 2000-08-15 The Procter & Gamble Company Method of wet pressing tissue paper
US6117270A (en) * 1999-07-01 2000-09-12 The Procter & Gamble Company Papermaking belts having a patterned framework with synclines therein and paper made therewith
US6387217B1 (en) 1998-11-13 2002-05-14 Fort James Corporation Apparatus for maximizing water removal in a press nip
US6434856B1 (en) * 2001-08-14 2002-08-20 The Procter & Gamble Company Variable wet flow resistance drying apparatus, and process of drying a web therewith
US20020119721A1 (en) * 2000-10-13 2002-08-29 The Procter & Gamble Company Multi-layer dye-scavenging article
US6551453B2 (en) 1995-01-10 2003-04-22 The Procter & Gamble Company Smooth, through air dried tissue and process of making
US20030118730A1 (en) * 2000-10-13 2003-06-26 Aouad Yousef Georges Method for manufacturing laundry additive article
US20030136530A1 (en) * 1995-01-10 2003-07-24 The Procter & Gamble Company Smooth, micropeak-containing through air dried tissue
US20030139320A1 (en) * 2002-01-18 2003-07-24 The Procter & Gamble Company Laundry articles
US20030158075A1 (en) * 2000-10-13 2003-08-21 The Procter & Gamble Company Laundering aid for preventing dye transfer
US6701637B2 (en) 2001-04-20 2004-03-09 Kimberly-Clark Worldwide, Inc. Systems for tissue dried with metal bands
US6733626B2 (en) 2001-12-21 2004-05-11 Georgia Pacific Corporation Apparatus and method for degrading a web in the machine direction while preserving cross-machine direction strength
US20040128770A1 (en) * 2003-01-07 2004-07-08 Todd Copeland Transportation seat with release barrier fabrics
US20040197538A1 (en) * 2002-09-26 2004-10-07 Tomoegawa Paper Co., Ltd. Paper string reticulated structure
US20040209058A1 (en) * 2002-10-02 2004-10-21 Chou Hung Liang Paper products including surface treated thermally bondable fibers and methods of making the same
US20050006040A1 (en) * 2002-04-12 2005-01-13 Boettcher Jeffery J. Creping adhesive modifier and process for producing paper products
US6860968B1 (en) 2000-05-24 2005-03-01 Kimberly-Clark Worldwide, Inc. Tissue impulse drying
US20050092195A1 (en) * 2001-12-21 2005-05-05 Fort James Corporation Apparatus and method for degrading a web in the machine direction while preserving cross-machine direction strength
US20050136099A1 (en) * 2003-12-22 2005-06-23 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Exfoliating personal care wipe article
US20050133062A1 (en) * 2003-12-09 2005-06-23 Seikoh Giken Co., Ltd. Cleaning tool for a connecting end face of an optical connecting part and method
US20050173085A1 (en) * 2004-02-11 2005-08-11 Schulz Galyn A. Apparatus and method for degrading a web in the machine direction while preserving cross-machine direction strength
US20050245669A1 (en) * 2004-04-28 2005-11-03 Nancy Clungeon Modified creping adhesive composition and method of use thereof
US20060042204A1 (en) * 2004-09-02 2006-03-02 O-Den Corporation Mist removing apparatus and mist removing method
EP1632604A1 (en) 2004-09-01 2006-03-08 Fort James Corporation Multi-ply paper product and method of making the same
US20060065382A1 (en) * 1998-08-06 2006-03-30 Kimberly-Clark Worldwide, Inc. Method for making rolls of tissue sheets having improved properties
US20060083899A1 (en) * 1998-08-06 2006-04-20 Kimberly-Clark Worldwide, Inc. Tissue sheets having improved properties
US20070062655A1 (en) * 2005-09-16 2007-03-22 Thorsten Knobloch Tissue paper
US20070175534A1 (en) * 2006-01-31 2007-08-02 Astenjohnson, Inc. Single layer papermakers fabric
US7265067B1 (en) 1998-06-19 2007-09-04 The Procter & Gamble Company Apparatus for making structured paper
US20080110591A1 (en) * 2006-10-27 2008-05-15 Cristina Asensio Mullally Rippled papermaking fabrics for creped and uncreped tissue manufacturing processes
US20080142177A1 (en) * 2006-12-15 2008-06-19 Thomas Gerard Shannon Environmentally sustainable multiple ply paper product
US20080271868A1 (en) * 2004-05-19 2008-11-06 Wagner Gmbh & Co. Kg Forming Sieve for the Wet End Section of a Paper Machine
EP1212483B2 (en) 1999-09-07 2009-07-29 The Procter & Gamble Company Papermaking apparatus and process for removing water from a cellulosic web
US20090239025A1 (en) * 2008-03-04 2009-09-24 High Voltage Graphics, Inc. Flocked articles having a woven graphic design insert and methods of making the same
US20100092720A1 (en) * 2008-10-15 2010-04-15 High Voltage Graphics, Inc. Multi-Colored Two-Part Flocked Transfer and Method of Making and Process of Using the Same
US20100137773A1 (en) * 2000-06-12 2010-06-03 Buckeye Technologies, Inc. Absorbent products with improved vertical wicking and rewet capability
US7744723B2 (en) 2006-05-03 2010-06-29 The Procter & Gamble Company Fibrous structure product with high softness
WO2011139950A2 (en) 2010-05-03 2011-11-10 The Procter & Gamble Company A papermaking belt having a permeable reinforcing structure
WO2011139999A1 (en) 2010-05-03 2011-11-10 The Procter & Gamble Company A papermaking belt having increased de-watering capability
WO2012024463A2 (en) 2010-08-19 2012-02-23 The Procter & Gamble Company A paper product having unique physical properties
WO2012024459A1 (en) 2010-08-19 2012-02-23 The Procter & Gamble Company A papermaking belt with a knuckle area forming a geometric pattern that is repeated at ever smaller scales to produce irregular shapes and surfaces
WO2012024077A1 (en) 2010-08-19 2012-02-23 The Procter & Gamble Company A papermaking belt with a knuckle area forming a geometric pattern that is repeated at ever smaller scales to produce irregular shapes and surfaces
WO2012024460A1 (en) 2010-08-19 2012-02-23 The Procter & Gamble Company A paper product having unique physical properties
US8178025B2 (en) 2004-12-03 2012-05-15 Georgia-Pacific Consumer Products Lp Embossing system and product made thereby with both perforate bosses in the cross machine direction and a macro pattern
US8361278B2 (en) 2008-09-16 2013-01-29 Dixie Consumer Products Llc Food wrap base sheet with regenerated cellulose microfiber
US8475905B2 (en) 2007-02-14 2013-07-02 High Voltage Graphics, Inc Sublimation dye printed textile
US20140133734A1 (en) * 2012-11-13 2014-05-15 Georgia-Pacific Consumer Products Lp Apparatus, system, and process for determining characteristics of a surface of a papermaking fabric
US20140254885A1 (en) * 2012-11-13 2014-09-11 Georgia-Pacific Consumer Products Lp Apparatus, system, and process for determining characteristics of a surface of a papermaking fabric
US9062414B2 (en) 2012-04-02 2015-06-23 Astenjohnson, Inc. Single layer papermaking fabrics for manufacture of tissue and similar products
USRE45802E1 (en) 2005-07-28 2015-11-17 High Voltage Graphics, Inc. Flocked articles having noncompatible insert and porous film
US9193214B2 (en) 2012-10-12 2015-11-24 High Voltage Graphics, Inc. Flexible heat sealable decorative articles and method for making the same
US9266301B2 (en) 2005-06-30 2016-02-23 Nalco Company Method to adhere and dislodge crepe paper
US20160059162A1 (en) * 2013-04-30 2016-03-03 M-I Drilling Fluids Uk Ltd. Screen having frame members with angled surface(s)
WO2016186562A1 (en) * 2015-05-19 2016-11-24 Valmet Aktiebolag A method of making a structured fibrous web and a creped fibrous web
US9988763B2 (en) 2014-11-12 2018-06-05 First Quality Tissue, Llc Cannabis fiber, absorbent cellulosic structures containing cannabis fiber and methods of making the same
US9995005B2 (en) 2012-08-03 2018-06-12 First Quality Tissue, Llc Soft through air dried tissue
US10099425B2 (en) 2014-12-05 2018-10-16 Structured I, Llc Manufacturing process for papermaking belts using 3D printing technology
US10132042B2 (en) 2015-03-10 2018-11-20 The Procter & Gamble Company Fibrous structures
US10208426B2 (en) 2016-02-11 2019-02-19 Structured I, Llc Belt or fabric including polymeric layer for papermaking machine
US10273635B2 (en) 2014-11-24 2019-04-30 First Quality Tissue, Llc Soft tissue produced using a structured fabric and energy efficient pressing
US10301779B2 (en) 2016-04-27 2019-05-28 First Quality Tissue, Llc Soft, low lint, through air dried tissue and method of forming the same
US10422078B2 (en) 2016-09-12 2019-09-24 Structured I, Llc Former of water laid asset that utilizes a structured fabric as the outer wire
US10422082B2 (en) 2016-08-26 2019-09-24 Structured I, Llc Method of producing absorbent structures with high wet strength, absorbency, and softness
US10450703B2 (en) 2017-02-22 2019-10-22 Kimberly-Clark Worldwide, Inc. Soft tissue comprising synthetic fibers
WO2019222348A1 (en) 2018-05-15 2019-11-21 Structured I, Llc Manufacturing process for papermaking endless belts using 3d printing technology
US10501892B2 (en) 2016-09-29 2019-12-10 Kimberly-Clark Worldwide, Inc. Soft tissue comprising synthetic fibers
US10538882B2 (en) 2015-10-13 2020-01-21 Structured I, Llc Disposable towel produced with large volume surface depressions
US10544547B2 (en) 2015-10-13 2020-01-28 First Quality Tissue, Llc Disposable towel produced with large volume surface depressions
US10619309B2 (en) 2017-08-23 2020-04-14 Structured I, Llc Tissue product made using laser engraved structuring belt
US10704203B2 (en) 2013-11-14 2020-07-07 Gpcp Ip Holdings Llc Absorbent sheets having high absorbency and high caliper, and methods of making soft, absorbent sheets
EP3748076A1 (en) 2019-06-06 2020-12-09 Structured I, LLC Papermaking machine that utilizes only a structured fabric in the forming of paper
US10934665B2 (en) 2015-06-08 2021-03-02 Gpcp Ip Holdings Llc Methods of making soft absorbent sheets and absorbent sheets made by such methods
US11021840B2 (en) 2015-06-08 2021-06-01 Gpcp Ip Holdings Llc Soft absorbent sheets, structuring fabrics for making soft absorbent sheets, and methods of making soft absorbent sheets
US11098453B2 (en) 2019-05-03 2021-08-24 First Quality Tissue, Llc Absorbent structures with high absorbency and low basis weight
US11220394B2 (en) 2015-10-14 2022-01-11 First Quality Tissue, Llc Bundled product and system
US11391000B2 (en) 2014-05-16 2022-07-19 First Quality Tissue, Llc Flushable wipe and method of forming the same
US11408129B2 (en) 2018-12-10 2022-08-09 The Procter & Gamble Company Fibrous structures
US11505898B2 (en) 2018-06-20 2022-11-22 First Quality Tissue Se, Llc Laminated paper machine clothing
US11583489B2 (en) 2016-11-18 2023-02-21 First Quality Tissue, Llc Flushable wipe and method of forming the same
US11697538B2 (en) 2018-06-21 2023-07-11 First Quality Tissue, Llc Bundled product and system and method for forming the same
WO2023233268A1 (en) 2022-05-31 2023-12-07 Gpcp Ip Holdings Llc Embossed multi-ply paper products and methods for making the same
US11891759B2 (en) 2018-11-20 2024-02-06 Structured I, Llc. Heat recovery from vacuum blowers on a paper machine
WO2024038337A1 (en) 2022-08-19 2024-02-22 Gpcp Ip Holdings Llc Multi-ply lamination in a single lamination stack

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1061620A (en) * 1977-06-20 1979-09-04 David D. Hulit Selectively mechanically pre-dried paper and system for manufacture of same
GB2127868B (en) * 1979-11-09 1984-12-05 Milliken Res Corp Surface-abraded textile fabrics
DK439282A (en) * 1981-10-05 1983-04-06 James River Dixie Northern Inc HIGH-ABSORBING STRIP FIBER PRODUCT AND PROCEDURE FOR ITS MANUFACTURING
US5277761A (en) * 1991-06-28 1994-01-11 The Procter & Gamble Company Cellulosic fibrous structures having at least three regions distinguished by intensive properties
CA2142805C (en) * 1994-04-12 1999-06-01 Greg Arthur Wendt Method of making soft tissue products
CA2134594A1 (en) * 1994-04-12 1995-10-13 Kimberly-Clark Worldwide, Inc. Method for making soft tissue products
US5814190A (en) * 1994-06-29 1998-09-29 The Procter & Gamble Company Method for making paper web having both bulk and smoothness
US5938893A (en) * 1997-08-15 1999-08-17 The Procter & Gamble Company Fibrous structure and process for making same
JP5301866B2 (en) * 2008-03-31 2013-09-25 大王製紙株式会社 Industrial wipers
CA2927463C (en) * 2013-11-12 2021-01-19 Georgia-Pacific Consumer Products Lp Process for determining features of a fabric

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3159530A (en) * 1960-06-23 1964-12-01 Kimberly Clark Co Papermaking machine
US3301746A (en) * 1964-04-13 1967-01-31 Procter & Gamble Process for forming absorbent paper by imprinting a fabric knuckle pattern thereon prior to drying and paper thereof
US3473576A (en) * 1967-12-14 1969-10-21 Procter & Gamble Weaving polyester fiber fabrics
US3573164A (en) * 1967-08-22 1971-03-30 Procter & Gamble Fabrics with improved web transfer characteristics
US3812000A (en) * 1971-06-24 1974-05-21 Scott Paper Co Soft,absorbent,fibrous,sheet material formed by avoiding mechanical compression of the elastomer containing fiber furnished until the sheet is at least 80%dry
US3817827A (en) * 1972-03-30 1974-06-18 Scott Paper Co Soft absorbent fibrous webs containing elastomeric bonding material and formed by creping and embossing
US3821068A (en) * 1972-10-17 1974-06-28 Scott Paper Co Soft,absorbent,fibrous,sheet material formed by avoiding mechanical compression of the fiber furnish until the sheet is at least 80% dry
US3851681A (en) * 1973-04-18 1974-12-03 Albany Int Corp Woven papermaking drainage fabric having four shed weave pattern and weft threads of alternating diameter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3159530A (en) * 1960-06-23 1964-12-01 Kimberly Clark Co Papermaking machine
US3301746A (en) * 1964-04-13 1967-01-31 Procter & Gamble Process for forming absorbent paper by imprinting a fabric knuckle pattern thereon prior to drying and paper thereof
US3573164A (en) * 1967-08-22 1971-03-30 Procter & Gamble Fabrics with improved web transfer characteristics
US3473576A (en) * 1967-12-14 1969-10-21 Procter & Gamble Weaving polyester fiber fabrics
US3812000A (en) * 1971-06-24 1974-05-21 Scott Paper Co Soft,absorbent,fibrous,sheet material formed by avoiding mechanical compression of the elastomer containing fiber furnished until the sheet is at least 80%dry
US3817827A (en) * 1972-03-30 1974-06-18 Scott Paper Co Soft absorbent fibrous webs containing elastomeric bonding material and formed by creping and embossing
US3821068A (en) * 1972-10-17 1974-06-28 Scott Paper Co Soft,absorbent,fibrous,sheet material formed by avoiding mechanical compression of the fiber furnish until the sheet is at least 80% dry
US3851681A (en) * 1973-04-18 1974-12-03 Albany Int Corp Woven papermaking drainage fabric having four shed weave pattern and weft threads of alternating diameter

Cited By (250)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042740A (en) * 1974-09-20 1977-08-16 Minnesota Mining And Manufacturing Company Reinforced pillowed microfiber webs
US4103058A (en) * 1974-09-20 1978-07-25 Minnesota Mining And Manufacturing Company Pillowed web of blown microfibers
US3994771A (en) * 1975-05-30 1976-11-30 The Procter & Gamble Company Process for forming a layered paper web having improved bulk, tactile impression and absorbency and paper thereof
US4309246A (en) * 1977-06-20 1982-01-05 Crown Zellerbach Corporation Papermaking apparatus and method
US4191609A (en) * 1979-03-09 1980-03-04 The Procter & Gamble Company Soft absorbent imprinted paper sheet and method of manufacture thereof
DE3008344A1 (en) * 1979-03-09 1980-09-18 Procter & Gamble PAPER MACHINE TOWEL
US4239065A (en) * 1979-03-09 1980-12-16 The Procter & Gamble Company Papermachine clothing having a surface comprising a bilaterally staggered array of wicker-basket-like cavities
DE3127359A1 (en) * 1980-07-10 1982-07-15 Albany International Corp., 12202 Menands, N.Y. TEXTILE MATERIAL FOR A DRY FELT AND DRY FELT MADE THEREOF
US4612231A (en) * 1981-10-05 1986-09-16 James River-Dixie Northern, Inc. Patterned dry laid fibrous web products of enhanced absorbency
US4533437A (en) * 1982-11-16 1985-08-06 Scott Paper Company Papermaking machine
US4671983A (en) * 1985-06-12 1987-06-09 Marcal Paper Mills, Inc. Embossments for minimizing nesting in roll material
US4941239A (en) * 1989-02-14 1990-07-17 Albany International Corporation Method to reduce forming fabric edge curl
US5324392A (en) * 1989-04-18 1994-06-28 Nippon Filcon Co., Ltd. Extendable and heat shrinkable polyamide mono-filament for endless fabric and endless fabric
US4942077A (en) * 1989-05-23 1990-07-17 Kimberly-Clark Corporation Tissue webs having a regular pattern of densified areas
US5443899A (en) * 1989-12-28 1995-08-22 The Procter & Gamble Company Fibers and pulps for papermaking based on chemical combination of poly(acrylate-co-itaconate), polyol and cellulosic fiber
US5160789A (en) * 1989-12-28 1992-11-03 The Procter & Gamble Co. Fibers and pulps for papermaking based on chemical combination of poly(acrylate-co-itaconate), polyol and cellulosic fiber
US5698074A (en) * 1989-12-28 1997-12-16 The Procter & Gamble Company Fibers and pulps for papermaking based on chemical combination of poly (acrylate-co-itaconate), polyol and cellulosic fiber
US5100512A (en) * 1990-09-11 1992-03-31 The Mead Corporation Dandy roll having a twill weave wiremark and related method for papermaking
AU643558B2 (en) * 1990-09-11 1993-11-18 Mead Corporation, The Dandy roll for manufacturing paper
US5213588A (en) * 1992-02-04 1993-05-25 The Procter & Gamble Company Abrasive wiping articles and a process for preparing such articles
US5888347A (en) * 1993-03-24 1999-03-30 Kimberly-Clark World Wide, Inc. Method for making smooth uncreped throughdried sheets
US5667636A (en) * 1993-03-24 1997-09-16 Kimberly-Clark Worldwide, Inc. Method for making smooth uncreped throughdried sheets
US5399412A (en) * 1993-05-21 1995-03-21 Kimberly-Clark Corporation Uncreped throughdried towels and wipers having high strength and absorbency
US5510001A (en) * 1993-05-21 1996-04-23 Kimberly-Clark Corporation Method for increasing the internal bulk of throughdried tissue
US5616207A (en) * 1993-05-21 1997-04-01 Kimberly-Clark Corporation Method for making uncreped throughdried towels and wipers
US6849157B2 (en) 1993-06-24 2005-02-01 Kimberly-Clark Worldwide, Inc. Soft tissue
US20030089475A1 (en) * 1993-06-24 2003-05-15 Farrington Theodore Edwin Soft tissue
US6171442B1 (en) 1993-06-24 2001-01-09 Kimberly-Clark Worldwide, Inc. Soft tissue
US5607551A (en) * 1993-06-24 1997-03-04 Kimberly-Clark Corporation Soft tissue
US7156954B2 (en) 1993-06-24 2007-01-02 Kimberly-Clark Worldwide, Inc. Soft tissue
US5656132A (en) * 1993-06-24 1997-08-12 Kimberly-Clark Worldwide, Inc. Soft tissue
US20040206465A1 (en) * 1993-06-24 2004-10-21 Farrington Theodore Edwin Soft tissue
US6827818B2 (en) 1993-06-24 2004-12-07 Kimberly-Clark Worldwide, Inc. Soft tissue
US5772845A (en) * 1993-06-24 1998-06-30 Kimberly-Clark Worldwide, Inc. Soft tissue
US20050006039A1 (en) * 1993-06-24 2005-01-13 Farrington Theodore Edwin Soft tissue
US5932068A (en) * 1993-06-24 1999-08-03 Kimberly-Clark Worldwide, Inc. Soft tissue
US5795440A (en) * 1993-12-20 1998-08-18 The Procter & Gamble Company Method of making wet pressed tissue paper
US5776307A (en) * 1993-12-20 1998-07-07 The Procter & Gamble Company Method of making wet pressed tissue paper with felts having selected permeabilities
US5846379A (en) * 1993-12-20 1998-12-08 The Procter & Gamble Company Wet pressed paper web and method of making the same
US5580423A (en) * 1993-12-20 1996-12-03 The Procter & Gamble Company Wet pressed paper web and method of making the same
US5855739A (en) * 1993-12-20 1999-01-05 The Procter & Gamble Co. Pressed paper web and method of making the same
US5861082A (en) * 1993-12-20 1999-01-19 The Procter & Gamble Company Wet pressed paper web and method of making the same
US5904811A (en) * 1993-12-20 1999-05-18 The Procter & Gamble Company Wet pressed paper web and method of making the same
US5637194A (en) * 1993-12-20 1997-06-10 The Procter & Gamble Company Wet pressed paper web and method of making the same
US5429686A (en) * 1994-04-12 1995-07-04 Lindsay Wire, Inc. Apparatus for making soft tissue products
US5897745A (en) * 1994-06-29 1999-04-27 The Procter & Gamble Company Method of wet pressing tissue paper
WO1996004418A1 (en) * 1994-08-01 1996-02-15 Wangner Systems Corporation Woven fabric
US5542455A (en) * 1994-08-01 1996-08-06 Wangner Systems Corp. Papermaking fabric having diagonal rows of pockets separated by diagonal rows of strips having a co-planar surface
US6551453B2 (en) 1995-01-10 2003-04-22 The Procter & Gamble Company Smooth, through air dried tissue and process of making
US6821386B2 (en) 1995-01-10 2004-11-23 The Procter & Gamble Company Smooth, micropeak-containing through air dried tissue
US5980691A (en) * 1995-01-10 1999-11-09 The Procter & Gamble Company Smooth through air dried tissue and process of making
US20030136530A1 (en) * 1995-01-10 2003-07-24 The Procter & Gamble Company Smooth, micropeak-containing through air dried tissue
WO1997024488A1 (en) * 1995-12-29 1997-07-10 Kimberly-Clark Worldwide, Inc. Improved system for making absorbent paper products
US6039838A (en) * 1995-12-29 2000-03-21 Kimberly-Clark Worldwide, Inc. System for making absorbent paper products
US5832962A (en) * 1995-12-29 1998-11-10 Kimberly-Clark Worldwide, Inc. System for making absorbent paper products
US5925217A (en) * 1995-12-29 1999-07-20 Kimberly-Clark Tissue Company System for making absorbent paper products
WO1997024487A1 (en) * 1995-12-29 1997-07-10 Kimberly-Clark Worldwide, Inc. Improved system for making absorbent paper products
CN1077940C (en) * 1995-12-29 2002-01-16 金伯利-克拉克环球有限公司 Absorbent paper products
US5853547A (en) * 1996-02-29 1998-12-29 Asten, Inc. Papermaking fabric, process for producing high bulk products and the products produced thereby
US5806569A (en) * 1996-04-04 1998-09-15 Asten, Inc. Multiplanar single layer forming fabric
US5839479A (en) * 1996-04-04 1998-11-24 Asten, Inc. Papermaking fabric for increasing bulk in the paper sheet
US6051105A (en) * 1997-05-16 2000-04-18 The Procter & Gamble Company Method of wet pressing tissue paper with three felt layers
US5830316A (en) * 1997-05-16 1998-11-03 The Procter & Gamble Company Method of wet pressing tissue paper with three felt layers
US6039839A (en) * 1998-02-03 2000-03-21 The Procter & Gamble Company Method for making paper structures having a decorative pattern
US7265067B1 (en) 1998-06-19 2007-09-04 The Procter & Gamble Company Apparatus for making structured paper
US20060083899A1 (en) * 1998-08-06 2006-04-20 Kimberly-Clark Worldwide, Inc. Tissue sheets having improved properties
US7611605B2 (en) 1998-08-06 2009-11-03 Kimberly-Clark Worldwide, Inc. Method for making rolls of tissue sheets having improved properties
US7935409B2 (en) * 1998-08-06 2011-05-03 Kimberly-Clark Worldwide, Inc. Tissue sheets having improved properties
US20060065382A1 (en) * 1998-08-06 2006-03-30 Kimberly-Clark Worldwide, Inc. Method for making rolls of tissue sheets having improved properties
US20070074834A1 (en) * 1998-08-06 2007-04-05 Burazin Mark A Method for making rolls of tissue sheets having improved properties
US7166189B2 (en) * 1998-08-06 2007-01-23 Kimberly-Clark Worldwide, Inc. Method for making rolls of tissue sheets having improved properties
US6103062A (en) * 1998-10-01 2000-08-15 The Procter & Gamble Company Method of wet pressing tissue paper
US7754049B2 (en) 1998-11-13 2010-07-13 Georgia-Pacific Consumer Products Lp Method for maximizing water removal in a press nip
US7300552B2 (en) 1998-11-13 2007-11-27 Georgia-Pacific Consumer Products Lp Method for maximizing water removal in a press nip
US6517672B2 (en) 1998-11-13 2003-02-11 Fort James Corporation Method for maximizing water removal in a press nip
US6458248B1 (en) 1998-11-13 2002-10-01 Fort James Corporation Apparatus for maximizing water removal in a press nip
US6387217B1 (en) 1998-11-13 2002-05-14 Fort James Corporation Apparatus for maximizing water removal in a press nip
US6669821B2 (en) 1998-11-13 2003-12-30 Fort James Corporation Apparatus for maximizing water removal in a press nip
US6117270A (en) * 1999-07-01 2000-09-12 The Procter & Gamble Company Papermaking belts having a patterned framework with synclines therein and paper made therewith
US6193847B1 (en) 1999-07-01 2001-02-27 The Procter & Gamble Company Papermaking belts having a patterned framework with synclines therein
EP1212483B2 (en) 1999-09-07 2009-07-29 The Procter & Gamble Company Papermaking apparatus and process for removing water from a cellulosic web
US8142617B2 (en) 1999-11-12 2012-03-27 Georgia-Pacific Consumer Products Lp Apparatus and method for degrading a web in the machine direction while preserving cross-machine direction strength
US6860968B1 (en) 2000-05-24 2005-03-01 Kimberly-Clark Worldwide, Inc. Tissue impulse drying
US20100137773A1 (en) * 2000-06-12 2010-06-03 Buckeye Technologies, Inc. Absorbent products with improved vertical wicking and rewet capability
US20030158075A1 (en) * 2000-10-13 2003-08-21 The Procter & Gamble Company Laundering aid for preventing dye transfer
US6887524B2 (en) 2000-10-13 2005-05-03 The Procter & Gamble Company Method for manufacturing laundry additive article
US20060019564A1 (en) * 2000-10-13 2006-01-26 The Procter & Gamble Company Multi-layer dye-scavenging article
US20020119721A1 (en) * 2000-10-13 2002-08-29 The Procter & Gamble Company Multi-layer dye-scavenging article
US6833336B2 (en) 2000-10-13 2004-12-21 The Procter & Gamble Company Laundering aid for preventing dye transfer
US20030118730A1 (en) * 2000-10-13 2003-06-26 Aouad Yousef Georges Method for manufacturing laundry additive article
US6701637B2 (en) 2001-04-20 2004-03-09 Kimberly-Clark Worldwide, Inc. Systems for tissue dried with metal bands
US6434856B1 (en) * 2001-08-14 2002-08-20 The Procter & Gamble Company Variable wet flow resistance drying apparatus, and process of drying a web therewith
US6887349B2 (en) 2001-12-21 2005-05-03 Fort James Corporation Apparatus and method for degrading a web in the machine direction while preserving cross-machine direction strength
US7326322B2 (en) 2001-12-21 2008-02-05 Georgia Pacific Consumer Products Lp Apparatus and method for degrading a web in the machine direction while preserving cross-machine direction strength
US20040180178A1 (en) * 2001-12-21 2004-09-16 Georgia Pacific Corporation Apparatus and method for degrading a web in the machine direction while preserving cross-machine direction strength
US6733626B2 (en) 2001-12-21 2004-05-11 Georgia Pacific Corporation Apparatus and method for degrading a web in the machine direction while preserving cross-machine direction strength
US7857941B2 (en) 2001-12-21 2010-12-28 Georgia-Pacific Consumer Products Lp Apparatus and method for degrading a web in the machine direction while preserving cross-machine direction strength
US7182838B2 (en) 2001-12-21 2007-02-27 Georgia Pacific Corporation Apparatus and method for degrading a web in the machine direction while preserving cross-machine direction strength
US20050092195A1 (en) * 2001-12-21 2005-05-05 Fort James Corporation Apparatus and method for degrading a web in the machine direction while preserving cross-machine direction strength
US7256166B2 (en) 2002-01-18 2007-08-14 The Procter & Gamble Company Laundry articles
US20030139320A1 (en) * 2002-01-18 2003-07-24 The Procter & Gamble Company Laundry articles
US20050006040A1 (en) * 2002-04-12 2005-01-13 Boettcher Jeffery J. Creping adhesive modifier and process for producing paper products
US20110218271A1 (en) * 2002-04-12 2011-09-08 Georgia-Pacific Consumer Products Lp Creping adhesive modifier and process for producing paper products
US7959761B2 (en) 2002-04-12 2011-06-14 Georgia-Pacific Consumer Products Lp Creping adhesive modifier and process for producing paper products
US8231761B2 (en) 2002-04-12 2012-07-31 Georgia-Pacific Consumer Products Lp Creping adhesive modifier and process for producing paper products
US20040197538A1 (en) * 2002-09-26 2004-10-07 Tomoegawa Paper Co., Ltd. Paper string reticulated structure
US20040209058A1 (en) * 2002-10-02 2004-10-21 Chou Hung Liang Paper products including surface treated thermally bondable fibers and methods of making the same
US6769146B2 (en) * 2003-01-07 2004-08-03 Milliken & Company Transportation seat with release barrier fabrics
US20040128770A1 (en) * 2003-01-07 2004-07-08 Todd Copeland Transportation seat with release barrier fabrics
US20050133062A1 (en) * 2003-12-09 2005-06-23 Seikoh Giken Co., Ltd. Cleaning tool for a connecting end face of an optical connecting part and method
US7476279B2 (en) * 2003-12-09 2009-01-13 Seikoh Giken Co., Ltd. Cleaning tool for a connecting end face of an optical connecting part and method
US20050136099A1 (en) * 2003-12-22 2005-06-23 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Exfoliating personal care wipe article
US8017145B2 (en) 2003-12-22 2011-09-13 Conopco, Inc. Exfoliating personal care wipe article containing an array of projections
US7297226B2 (en) 2004-02-11 2007-11-20 Georgia-Pacific Consumer Products Lp Apparatus and method for degrading a web in the machine direction while preserving cross-machine direction strength
US8535481B2 (en) 2004-02-11 2013-09-17 Georgia-Pacific Consumer Products Lp Apparatus and method for degrading a web in the machine direction while preserving cross-machine direction strength
US7799176B2 (en) 2004-02-11 2010-09-21 Georgia-Pacific Consumer Products Lp Apparatus and method for degrading a web in the machine direction while preserving cross-machine direction strength
US8287694B2 (en) 2004-02-11 2012-10-16 Georgia-Pacific Consumer Products Lp Apparatus and method for degrading a web in the machine direction while preserving cross-machine direction strength
US20050173085A1 (en) * 2004-02-11 2005-08-11 Schulz Galyn A. Apparatus and method for degrading a web in the machine direction while preserving cross-machine direction strength
US7404875B2 (en) 2004-04-28 2008-07-29 Georgia-Pacific Consumer Products Lp Modified creping adhesive composition and method of use thereof
US20050245669A1 (en) * 2004-04-28 2005-11-03 Nancy Clungeon Modified creping adhesive composition and method of use thereof
US8444825B2 (en) 2004-05-19 2013-05-21 Wangner Gmbh Forming sieve for the wet end section of a paper machine
US7727360B2 (en) 2004-05-19 2010-06-01 Wangner Gmbh Forming sieve for the wet end section of a paper machine
US20080271868A1 (en) * 2004-05-19 2008-11-06 Wagner Gmbh & Co. Kg Forming Sieve for the Wet End Section of a Paper Machine
US20100314064A1 (en) * 2004-05-19 2010-12-16 Wangner Gmbh Forming sieve for the wet end section of a paper machine
EP1632604A1 (en) 2004-09-01 2006-03-08 Fort James Corporation Multi-ply paper product and method of making the same
US20060042204A1 (en) * 2004-09-02 2006-03-02 O-Den Corporation Mist removing apparatus and mist removing method
US8647105B2 (en) 2004-12-03 2014-02-11 Georgia-Pacific Consumer Products Lp Embossing system and product made thereby with both perforate bosses in the cross machine direction and a macro pattern
US8178025B2 (en) 2004-12-03 2012-05-15 Georgia-Pacific Consumer Products Lp Embossing system and product made thereby with both perforate bosses in the cross machine direction and a macro pattern
US9574119B2 (en) 2005-06-30 2017-02-21 Nalco Company Method of producing creping adhesive
US9266301B2 (en) 2005-06-30 2016-02-23 Nalco Company Method to adhere and dislodge crepe paper
USRE45802E1 (en) 2005-07-28 2015-11-17 High Voltage Graphics, Inc. Flocked articles having noncompatible insert and porous film
US7749355B2 (en) 2005-09-16 2010-07-06 The Procter & Gamble Company Tissue paper
US20070062655A1 (en) * 2005-09-16 2007-03-22 Thorsten Knobloch Tissue paper
US20070175534A1 (en) * 2006-01-31 2007-08-02 Astenjohnson, Inc. Single layer papermakers fabric
US7360560B2 (en) 2006-01-31 2008-04-22 Astenjohnson, Inc. Single layer papermakers fabric
US7744723B2 (en) 2006-05-03 2010-06-29 The Procter & Gamble Company Fibrous structure product with high softness
USRE42968E1 (en) * 2006-05-03 2011-11-29 The Procter & Gamble Company Fibrous structure product with high softness
US20080110591A1 (en) * 2006-10-27 2008-05-15 Cristina Asensio Mullally Rippled papermaking fabrics for creped and uncreped tissue manufacturing processes
US7611607B2 (en) * 2006-10-27 2009-11-03 Voith Patent Gmbh Rippled papermaking fabrics for creped and uncreped tissue manufacturing processes
US20080142177A1 (en) * 2006-12-15 2008-06-19 Thomas Gerard Shannon Environmentally sustainable multiple ply paper product
US7678230B2 (en) * 2006-12-15 2010-03-16 Kimberly-Clark Worldwide, Inc. Environmentally sustainable multiple ply paper product
US20100043989A1 (en) * 2006-12-15 2010-02-25 Kimberly-Clark Worldwide, Inc. Environmentally Sustainable Multiple Ply Paper Product
US7927457B2 (en) 2006-12-15 2011-04-19 Kimberly-Clark Worldwide, Inc. Environmentally sustainable multiple ply paper product
US8475905B2 (en) 2007-02-14 2013-07-02 High Voltage Graphics, Inc Sublimation dye printed textile
US20090239025A1 (en) * 2008-03-04 2009-09-24 High Voltage Graphics, Inc. Flocked articles having a woven graphic design insert and methods of making the same
US8361278B2 (en) 2008-09-16 2013-01-29 Dixie Consumer Products Llc Food wrap base sheet with regenerated cellulose microfiber
US20100092720A1 (en) * 2008-10-15 2010-04-15 High Voltage Graphics, Inc. Multi-Colored Two-Part Flocked Transfer and Method of Making and Process of Using the Same
WO2011139950A2 (en) 2010-05-03 2011-11-10 The Procter & Gamble Company A papermaking belt having a permeable reinforcing structure
WO2011139999A1 (en) 2010-05-03 2011-11-10 The Procter & Gamble Company A papermaking belt having increased de-watering capability
US8282783B2 (en) 2010-05-03 2012-10-09 The Procter & Gamble Company Papermaking belt having a permeable reinforcing structure
US8287693B2 (en) 2010-05-03 2012-10-16 The Procter & Gamble Company Papermaking belt having increased de-watering capability
US8163130B2 (en) 2010-08-19 2012-04-24 The Proctor & Gamble Company Paper product having unique physical properties
RU2544157C2 (en) * 2010-08-19 2015-03-10 Дзе Проктер Энд Гэмбл Компани Papermaking belt with bulge area, forming geometric pattern that is repeated in any smaller scale for production of irregular figures and surfaces
US8298376B2 (en) 2010-08-19 2012-10-30 The Procter & Gamble Company Patterned framework for a papermaking belt
US8512524B2 (en) 2010-08-19 2013-08-20 The Procter & Gamble Company Patterned framework for a papermaking belt
US8211271B2 (en) 2010-08-19 2012-07-03 The Procter & Gamble Company Paper product having unique physical properties
WO2012024460A1 (en) 2010-08-19 2012-02-23 The Procter & Gamble Company A paper product having unique physical properties
US8657997B2 (en) 2010-08-19 2014-02-25 The Procter & Gamble Company Paper product having unique physical properties
WO2012024463A2 (en) 2010-08-19 2012-02-23 The Procter & Gamble Company A paper product having unique physical properties
WO2012024077A1 (en) 2010-08-19 2012-02-23 The Procter & Gamble Company A papermaking belt with a knuckle area forming a geometric pattern that is repeated at ever smaller scales to produce irregular shapes and surfaces
US8900409B2 (en) 2010-08-19 2014-12-02 The Procter & Gamble Company Paper product having unique physical properties
US8974635B2 (en) 2010-08-19 2015-03-10 The Procter & Gamble Company Paper product having unique physical properties
US8313617B2 (en) 2010-08-19 2012-11-20 The Procter & Gamble Company Patterned framework for a papermaking belt
US9017516B2 (en) 2010-08-19 2015-04-28 The Procter & Gamble Company Paper product having unique physical properties
US9034144B1 (en) 2010-08-19 2015-05-19 The Procter & Gamble Company Paper product having unique physical properties
WO2012024459A1 (en) 2010-08-19 2012-02-23 The Procter & Gamble Company A papermaking belt with a knuckle area forming a geometric pattern that is repeated at ever smaller scales to produce irregular shapes and surfaces
US9103072B2 (en) 2010-08-19 2015-08-11 The Procter & Gamble Company Paper product having unique physical properties
US9169600B1 (en) 2010-08-19 2015-10-27 The Procter & Gamble Company Paper product having unique physical properties
US9169602B1 (en) 2010-08-19 2015-10-27 The Procter & Gamble Company Paper product having unique physical properties
US9175444B1 (en) 2010-08-19 2015-11-03 The Procter & Gamble Company Paper product having unique physical properties
US9062414B2 (en) 2012-04-02 2015-06-23 Astenjohnson, Inc. Single layer papermaking fabrics for manufacture of tissue and similar products
US10570570B2 (en) 2012-08-03 2020-02-25 First Quality Tissue, Llc Soft through air dried tissue
US10190263B2 (en) 2012-08-03 2019-01-29 First Quality Tissue, Llc Soft through air dried tissue
US9995005B2 (en) 2012-08-03 2018-06-12 First Quality Tissue, Llc Soft through air dried tissue
US9193214B2 (en) 2012-10-12 2015-11-24 High Voltage Graphics, Inc. Flexible heat sealable decorative articles and method for making the same
US9382663B2 (en) * 2012-11-13 2016-07-05 Georgia-Pacific Consumer Products Lp Apparatus, system, and process for determining characteristics of a surface of a papermaking fabric
US9953405B2 (en) 2012-11-13 2018-04-24 Gpcp Ip Holdings Llc Process of determining characteristics of a surface of a papermaking fabric
US20140254885A1 (en) * 2012-11-13 2014-09-11 Georgia-Pacific Consumer Products Lp Apparatus, system, and process for determining characteristics of a surface of a papermaking fabric
US9443301B2 (en) 2012-11-13 2016-09-13 Georgia-Pacific Consumer Products Lp Apparatus, system, and process for determining characteristics of a surface of a papermaking fabric
US9879378B2 (en) 2012-11-13 2018-01-30 Gpcp Ip Holdings Llc Apparatus, system, and process for determining characteristics of a surface of a papermaking fabric
US9920480B2 (en) 2012-11-13 2018-03-20 Gpcp Ip Holdings Llc Process of using a characteristic of a first papermaking fabric to form a second papermaking fabric
US9920479B2 (en) 2012-11-13 2018-03-20 Gpcp Ip Holdings Llc Apparatus, system, and process for determining characteristics of a surface of a papermaking fabric
US10392751B2 (en) 2012-11-13 2019-08-27 Gpcp Ip Holdings Llc Process of forming a second papermaking product based on characteristics of a first papermaking product
US9963828B2 (en) 2012-11-13 2018-05-08 Gpcp Ip Holdings Llc Apparatus, system, and process for determining characteristics of a surface of a papermaking fabric
US10699397B2 (en) 2012-11-13 2020-06-30 Gpcp Ip Holdings Llc Processes of determining characteristics of a surface of a papermaking fabric
US9349175B2 (en) * 2012-11-13 2016-05-24 Georgia-Pacific Consumer Products Lp Apparatus, system, and process for determining characteristics of a surface of a papermaking fabric
US20140133734A1 (en) * 2012-11-13 2014-05-15 Georgia-Pacific Consumer Products Lp Apparatus, system, and process for determining characteristics of a surface of a papermaking fabric
US20160059162A1 (en) * 2013-04-30 2016-03-03 M-I Drilling Fluids Uk Ltd. Screen having frame members with angled surface(s)
US10704203B2 (en) 2013-11-14 2020-07-07 Gpcp Ip Holdings Llc Absorbent sheets having high absorbency and high caliper, and methods of making soft, absorbent sheets
US11391000B2 (en) 2014-05-16 2022-07-19 First Quality Tissue, Llc Flushable wipe and method of forming the same
US10458069B2 (en) 2014-08-05 2019-10-29 The Procter & Gamble Compay Fibrous structures
US10822745B2 (en) 2014-08-05 2020-11-03 The Procter & Gamble Company Fibrous structures
US11725346B2 (en) 2014-08-05 2023-08-15 The Procter & Gamble Company Fibrous structures
US10472771B2 (en) 2014-08-05 2019-11-12 The Procter & Gamble Company Fibrous structures
US9988763B2 (en) 2014-11-12 2018-06-05 First Quality Tissue, Llc Cannabis fiber, absorbent cellulosic structures containing cannabis fiber and methods of making the same
US10900176B2 (en) 2014-11-24 2021-01-26 First Quality Tissue, Llc Soft tissue produced using a structured fabric and energy efficient pressing
US10273635B2 (en) 2014-11-24 2019-04-30 First Quality Tissue, Llc Soft tissue produced using a structured fabric and energy efficient pressing
US11807992B2 (en) 2014-11-24 2023-11-07 First Quality Tissue, Llc Soft tissue produced using a structured fabric and energy efficient pressing
US10099425B2 (en) 2014-12-05 2018-10-16 Structured I, Llc Manufacturing process for papermaking belts using 3D printing technology
US11752688B2 (en) 2014-12-05 2023-09-12 Structured I, Llc Manufacturing process for papermaking belts using 3D printing technology
US10675810B2 (en) 2014-12-05 2020-06-09 Structured I, Llc Manufacturing process for papermaking belts using 3D printing technology
US10132042B2 (en) 2015-03-10 2018-11-20 The Procter & Gamble Company Fibrous structures
US10633794B2 (en) 2015-05-19 2020-04-28 Valmet Aktiebolag Method of making a structured fibrous web and a creped fibrous web
WO2016186562A1 (en) * 2015-05-19 2016-11-24 Valmet Aktiebolag A method of making a structured fibrous web and a creped fibrous web
US11021840B2 (en) 2015-06-08 2021-06-01 Gpcp Ip Holdings Llc Soft absorbent sheets, structuring fabrics for making soft absorbent sheets, and methods of making soft absorbent sheets
US11753772B2 (en) 2015-06-08 2023-09-12 Gpcp Ip Holdings Llc Methods of making fabric-creped absorbent cellulosic sheets
US11686049B2 (en) 2015-06-08 2023-06-27 Gpcp Ip Holdings Llc Methods of making soft absorbent sheets and absorbent sheets made by such methods
US11788232B2 (en) 2015-06-08 2023-10-17 Gpcp Ip Holdings Llc Methods of making fabric-creped absorbent cellulosic sheets
US10934665B2 (en) 2015-06-08 2021-03-02 Gpcp Ip Holdings Llc Methods of making soft absorbent sheets and absorbent sheets made by such methods
US10544547B2 (en) 2015-10-13 2020-01-28 First Quality Tissue, Llc Disposable towel produced with large volume surface depressions
US10538882B2 (en) 2015-10-13 2020-01-21 Structured I, Llc Disposable towel produced with large volume surface depressions
US10954635B2 (en) 2015-10-13 2021-03-23 First Quality Tissue, Llc Disposable towel produced with large volume surface depressions
US11242656B2 (en) 2015-10-13 2022-02-08 First Quality Tissue, Llc Disposable towel produced with large volume surface depressions
US10954636B2 (en) 2015-10-13 2021-03-23 First Quality Tissue, Llc Disposable towel produced with large volume surface depressions
US11220394B2 (en) 2015-10-14 2022-01-11 First Quality Tissue, Llc Bundled product and system
US11577906B2 (en) 2015-10-14 2023-02-14 First Quality Tissue, Llc Bundled product and system
US10208426B2 (en) 2016-02-11 2019-02-19 Structured I, Llc Belt or fabric including polymeric layer for papermaking machine
US11028534B2 (en) 2016-02-11 2021-06-08 Structured I, Llc Belt or fabric including polymeric layer for papermaking machine
US11634865B2 (en) 2016-02-11 2023-04-25 Structured I, Llc Belt or fabric including polymeric layer for papermaking machine
US10787767B2 (en) 2016-02-11 2020-09-29 Structured I, Llc Belt or fabric including polymeric layer for papermaking machine
US11668052B2 (en) 2016-04-27 2023-06-06 First Quality Tissue, Llc Soft, low lint, through air dried tissue and method of forming the same
US11674266B2 (en) 2016-04-27 2023-06-13 First Quality Tissue, Llc Soft, low lint, through air dried tissue and method of forming the same
US10301779B2 (en) 2016-04-27 2019-05-28 First Quality Tissue, Llc Soft, low lint, through air dried tissue and method of forming the same
US10858786B2 (en) 2016-04-27 2020-12-08 First Quality Tissue, Llc Soft, low lint, through air dried tissue and method of forming the same
US10844548B2 (en) 2016-04-27 2020-11-24 First Quality Tissue, Llc Soft, low lint, through air dried tissue and method of forming the same
US10941525B2 (en) 2016-04-27 2021-03-09 First Quality Tissue, Llc Soft, low lint, through air dried tissue and method of forming the same
US11725345B2 (en) 2016-08-26 2023-08-15 Structured I, Llc Method of producing absorbent structures with high wet strength, absorbency, and softness
US10982392B2 (en) 2016-08-26 2021-04-20 Structured I, Llc Absorbent structures with high wet strength, absorbency, and softness
US10422082B2 (en) 2016-08-26 2019-09-24 Structured I, Llc Method of producing absorbent structures with high wet strength, absorbency, and softness
US11098448B2 (en) 2016-09-12 2021-08-24 Structured I, Llc Former of water laid asset that utilizes a structured fabric as the outer wire
US10422078B2 (en) 2016-09-12 2019-09-24 Structured I, Llc Former of water laid asset that utilizes a structured fabric as the outer wire
US11913170B2 (en) 2016-09-12 2024-02-27 Structured I, Llc Former of water laid asset that utilizes a structured fabric as the outer wire
US10501892B2 (en) 2016-09-29 2019-12-10 Kimberly-Clark Worldwide, Inc. Soft tissue comprising synthetic fibers
US11583489B2 (en) 2016-11-18 2023-02-21 First Quality Tissue, Llc Flushable wipe and method of forming the same
US10450703B2 (en) 2017-02-22 2019-10-22 Kimberly-Clark Worldwide, Inc. Soft tissue comprising synthetic fibers
US11286622B2 (en) 2017-08-23 2022-03-29 Structured I, Llc Tissue product made using laser engraved structuring belt
US10619309B2 (en) 2017-08-23 2020-04-14 Structured I, Llc Tissue product made using laser engraved structuring belt
WO2019222348A1 (en) 2018-05-15 2019-11-21 Structured I, Llc Manufacturing process for papermaking endless belts using 3d printing technology
US11505898B2 (en) 2018-06-20 2022-11-22 First Quality Tissue Se, Llc Laminated paper machine clothing
US11697538B2 (en) 2018-06-21 2023-07-11 First Quality Tissue, Llc Bundled product and system and method for forming the same
US11891759B2 (en) 2018-11-20 2024-02-06 Structured I, Llc. Heat recovery from vacuum blowers on a paper machine
US11408129B2 (en) 2018-12-10 2022-08-09 The Procter & Gamble Company Fibrous structures
US11732420B2 (en) 2018-12-10 2023-08-22 The Procter & Gamble Company Fibrous structures
US11098453B2 (en) 2019-05-03 2021-08-24 First Quality Tissue, Llc Absorbent structures with high absorbency and low basis weight
US11332889B2 (en) 2019-05-03 2022-05-17 First Quality Tissue, Llc Absorbent structures with high absorbency and low basis weight
US11702798B2 (en) 2019-05-03 2023-07-18 First Quality Tissue, Llc Absorbent structures with high absorbency and low basis weight
US11486091B2 (en) 2019-06-06 2022-11-01 Structured I, Llc Papermaking machine that utilizes only a structured fabric in the forming of paper
EP3748076A1 (en) 2019-06-06 2020-12-09 Structured I, LLC Papermaking machine that utilizes only a structured fabric in the forming of paper
WO2023233268A1 (en) 2022-05-31 2023-12-07 Gpcp Ip Holdings Llc Embossed multi-ply paper products and methods for making the same
WO2024038337A1 (en) 2022-08-19 2024-02-22 Gpcp Ip Holdings Llc Multi-ply lamination in a single lamination stack

Also Published As

Publication number Publication date
FR2241642A1 (en) 1975-03-21
JPS5025811A (en) 1975-03-18
CH592209A5 (en) 1977-10-14
NO141904B (en) 1980-02-18
DK137248C (en) 1978-07-10
DK137248B (en) 1978-02-06
NO141904C (en) 1980-05-28
IE40284B1 (en) 1979-04-25
AU6986174A (en) 1975-12-11
FR2241642B1 (en) 1978-12-29
SE412262B (en) 1980-02-25
FI175374A (en) 1974-12-09
IT1014871B (en) 1977-04-30
NO742069L (en) 1975-01-06
DK303474A (en) 1975-01-27
CA1007911A (en) 1977-04-05
GB1436067A (en) 1976-05-19
NL7407635A (en) 1974-12-10
SE7407532L (en) 1974-12-09
DE2427291A1 (en) 1975-01-02
IE40284L (en) 1974-12-08
JPS5742760B2 (en) 1982-09-10

Similar Documents

Publication Publication Date Title
US3905863A (en) Process for forming absorbent paper by imprinting a semi-twill fabric knuckle pattern thereon prior to final drying and paper thereof
US3974025A (en) Absorbent paper having imprinted thereon a semi-twill, fabric knuckle pattern prior to final drying
US3994771A (en) Process for forming a layered paper web having improved bulk, tactile impression and absorbency and paper thereof
US3301746A (en) Process for forming absorbent paper by imprinting a fabric knuckle pattern thereon prior to drying and paper thereof
US3812000A (en) Soft,absorbent,fibrous,sheet material formed by avoiding mechanical compression of the elastomer containing fiber furnished until the sheet is at least 80%dry
US4208459A (en) Bonded, differentially creped, fibrous webs and method and apparatus for making same
EP2078108B1 (en) Papermaking machine with an impermeable transfer belt and associated method
US6649025B2 (en) Multiple ply paper wiping product having a soft side and a textured side
US5314584A (en) Fibrous paper cover stock with textured surface pattern and method of manufacturing the same
US4158594A (en) Bonded, differentially creped, fibrous webs and method and apparatus for making same
JP4263354B2 (en) Low density elastic web and method for producing the same
EP0617164B1 (en) Method for making smooth uncreped throughdried sheets
JPH08500644A (en) Papermaking belt with semi-continuous pattern and paper produced on this papermaking belt
TWI438320B (en) Through air drying fabric
US2874618A (en) Creped paper with improved softness and process of making the same
JP2001522411A (en) Paper structure having at least three areas including decorative indicia constituting low basis weight areas
VAN NOUHUYS et al. THE MANUFACTURE, STRUCTURAL DESIGN AND TESTING OF FELTS FOR THE PAPER-MAKING AND ALLIED INDUSTRIES