US3906508A - Multimode horn antenna - Google Patents

Multimode horn antenna Download PDF

Info

Publication number
US3906508A
US3906508A US488770A US48877074A US3906508A US 3906508 A US3906508 A US 3906508A US 488770 A US488770 A US 488770A US 48877074 A US48877074 A US 48877074A US 3906508 A US3906508 A US 3906508A
Authority
US
United States
Prior art keywords
apertures
side wall
mode
coupled
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US488770A
Inventor
Peter Foldes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Priority to US488770A priority Critical patent/US3906508A/en
Priority to CA229,771A priority patent/CA1046631A/en
Application granted granted Critical
Publication of US3906508A publication Critical patent/US3906508A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/04Multimode antennas

Definitions

  • Troike 57 ABSTRACT A horn antenna is described including a funnel-shaped coupler with a port at the narrow end of the coupler adapted to excite a symmetrical waveguide mode in the coupler and a plurality of side wall input ports adapted to excite at least two difference waveguide modes.
  • the port at the narrow end of the coupler is coupled by a first step to a smaller diameter cylindrical section capable of propagating the dominant symmetrical mode.
  • a larger diameter cylindrical section is coupled to the larger end of the coupler by a second step.
  • a ring divides the larger diameter cylindrical section into two parts. The first and second steps and the dimensioning and placement of the ring are arranged so that the two difference mode radiation patterns have essentially the same combined beam width or pattern envelope as the symmetrical mode radiation pattern.
  • This invention relates to horn antennas and horn an tenna feed systems and more particularly to a horn antenna feed system that when properly excited generates at least one symmetrical mode and two asymmetrical modes where the radiated pattern associated with the asymmetrical modes has two main lobes which essentially have the same pattern envelope as the radiated pattern associated with the symmetrical mode having one main lobe.
  • a multiple beam position radiating element it is desirable in many applications, such as steerable radar antennas, aircraft collision prevention equipments, tracking antennas, and radiating elements for steerable arrays that a multiple beam position radiating element be provided. It is of particular interest to construct a multiple beam position radiating element in which the beam can be switched several positions, for example, four or five, electronically with *a medium gain (in the range of 8 to 20 db) in the peak direction while the sidelobes of the switched beam in the rear hemisphere remain below *25 db relative to the peak of the beam.
  • *a medium gain in the range of 8 to 20 db
  • a horn antenna is provided by a structure including a funnel-shaped coupler with an aperture at the narrow end of the coupler adapted to excite a symmetrical mode therein, a larger diameter aperture at the opposite end, and a plurality of side wall coupling apertures adapted to excite two orthogonal asymmetrical difference modes.
  • the narrow end of the coupler is coupled by a first step to a smaller dimensional waveguide section capable of propagating the dominant symmetrical mode.
  • the larger diameter end of the coupler is coupled by a second step to a larger diameter cylindrical waveguide section.
  • the larger diameter cylindrical waveguide section is divided by a ring into two subwaveguide sections.
  • the first and second steps and the ring are dimensioned and arranged so that the radiation patterns associated with the two asymmetrical modes have substantially the same pattern envelope as the radiation pattern associated with the symmetrical mode.
  • FIG. 1 is a side elevation view of the horn antenna according to a preferred embodiment of the present invention.
  • FIG. 2 is an end view of the antenna of FIG. 1.
  • FIG. 3 is a front view of the antenna of FIG. 1.
  • FIG. 4 is a cross'sectional view of the horn antenna in FIG. 2 taken along lines 44.
  • FIG. 5 illustrates the dominant symmetrical TE mode, the asymmetrical TE mode and the orthogonal asymmetrical, hybrid TE TM mode.
  • FIG. 6 illustrates the patterns associated with the symmetrical and asymmetrical modes from the antenna of FIG. 1.
  • FIG. 7 is a schematic diagram of a switched beam position antenna using the horn in FIG. 1.
  • FIG. 9 illustrates a combined radiation pattern observed by adding the sum and one set of difference modes. 7
  • a horn antenna 10 includes a funnelshaped coupler 11, a cylindrical waveguide section 13 coupled to one end 1 1a of coupler 11, a smaller cylindrical waveguide section 15 coupled to the smaller opposite end 111), a rectangular waveguide section 17 coupled to smaller cylindrical waveguide section 15 at end 17a, and a choke section 19 coupled to the end 130 of cylindrical waveguide 13.
  • the coupler 11 is a hollow, conically shaped member of a diameter at end 1117 sufficient at least to excite the dominant TE mode and to reflect those of the TE TE, and TM modes that may be coupled thereto.
  • FIG. 5 illustrates these modes.
  • the large aperture at the opposite end 11a is made large enough to couple the TE T15 TE, and TM modes.
  • side wall slot apertures 21, 23, and 27 are located in the side wall of the coupler. See FIGS. 2 thru 4.
  • the center of apertures 21 and 25 lie in plane 26 and the center of apertures 23 and 27 lie in plane 29.
  • the planes 26 and 29 are at an angle at 45 with respect to the vertical axis 28.
  • the orientation of these slots in the side wall of the coupler determines the polarization of the asymmetrical mode. For vertical polarization shown in FIGS. 2 and 3, the slots are rotated 45 around their centers and relative to the plane containing the centers of the four slots.
  • a rectangular coupling cavity is mounted above each of the side wall apertures.
  • a rectangular cavity 31 is mounted above coupling aperture 21, a rectangular coupling cavity 33 is mounted above coupling aperture 23; a rectangular coupling cavity 35 is mounted above coupling aperture 25; and a rectangular coupling cavity 37 is mounted above coupling. aperture 27.
  • the width w and length 1; as shown in FIGS. 2 and 4. of each of the cavities 31. 33, 35 and 37 is made sufficient to support the TE") and theTaEm rectangular waveguide modes.
  • Coupling probes 41, 43, and 47 act to excite the TE. mode in the cavities from some external source to be discussed later.
  • the diameter D of the coupler 11 taken as shown in FIG. 4 at the center of the slot apertures 21, 23; 25 and 27 is made so as to support at least the TE T15 and TM, modes in the coupler.
  • the TE mode has the lowest ratio of ) ⁇ ;./D 0.5892, and thus D, 3 M05892, where A is the operational wavelength.
  • a hybrid mode made up of the TE: TM, modes is also excited at the apertures 21, 23, 25 and 27.
  • the dimension of the coupler at the end 11b and the axial distance from the center of apertures 21, 23, 25 and 27 to the end 11b are determined so that the hybrid difference mode (TE +TM is reflected back toward the larger aperture of the coupler and combines in phase with the waves directly travelling from the slot apertures toward the wider end 11a of the coupler.
  • the symmetrical TE circular waveguide mode and the other symmetrical modes are excited at the end 11b by means of the rectangular waveguide section 17, the circular waveguide section 15 and the step 20 between the waveguide section 15 and the end 11b of the coupler 11.
  • the TE rectangular waveguide mode is excited in rectangular waveguide .17 by means of coupling probe 51.
  • Each of the coupling probes as used herein are coaxial probes having the outer conductor connected to the waveguiding section and the insulated inner conductor extending into the waveguiding section through an aperture therein.
  • This TE mode is coupled through an aperture in the top wall 17a of waveguide 17 into the larger diameter circular waveguide section 15 wherein the TE circular waveguide mode is excited in cylindrical waveguide section 15.
  • the cylindrical waveguide section 15 terminates in the step 20 at the narrow end 11b of the coupler 1 1 as mentioned previously.
  • This step 20 acts as a controlling device for generating a set of symmetrical modes to produce a Gaussian shape resultant amplitude distribution in the large aperture at end 12 of the device 10 with the Gaussian shaped pattern in both the E and H planes.
  • the TE mode Signals together with the other higher order symmetrical modes (for example TE mode) generated by the step 20 are radiated out of end 11a of the coupler 11.
  • the second step 30 provides refinement in the control of the symmetrical modes and provides proper phasing of the asymmetricaldifference modes TE and hybrid TE. TM modes to maintain their orthogonal elationships. Es-
  • the TE mode is compensated for the difference in phase velocity relative to the signals in the hybrid TE TM. modes. Additional compensation for the phasing between the TE modes and the hybrid TE; TM modes is achieved by the ring 13b in the cylindrical waveguide section 13 and by the distance FIG. 4, the ring 1312 is from the step 30. Further, the ring 13h contributes to matching of the different modes to free space.
  • a choke member 19 is locatedbetween the output aperture at end 12 and is a continuation of thesection 13 from the end 13a of the cylindrical sec tion 13.
  • the choke 19 includes a section in which the inside diameter is reduced and the outside surface diameter of the horn antenna is reduced approximately a quarter wavelength for an axial length of approxi mately a quarter wavelength. where a wavelength is taken at an operating frequency of the antenna. This quarter wave choke l9 helps to eliminate the flow of surface currents on the outside of the horn antenna.
  • the hom antenna described above and shown in FIGS. 1 thru 4 has the following dimensions:
  • Coupler l l 7.37 inches Length between end 11b and center line of slots 2125, 23-27 inches Length 1;, of cavities 33 and 37 6.25 inches Diameter (D of coupler 11 at end 1111 7.30 inches Diameter (D of coupler 11 at end 11a 10.20 in.
  • Diameter of aperture (D in ring 13h, diameter of aperture (D at end 13a of section 13, and diameter (D of aperture at end 12 are each 10.12 inches
  • Diameter (D of circular waveguide section 15 5.36 inches Height H, of rectangular waveguide section 17 2.880 inches
  • Length (1 of circular waveguide section 13 5 inches The distance (1 ring 13b is from step 30 3.39 inches Width (w) of coupling cavity 31, 33, 35 and 37 4.4 inches.
  • the symmetrical mode generated at the step 20 and processed through the antenna has an aperture distribution as shown by curve 54 in FIG. 6.
  • This response approximates a Gaussian type response.
  • the asymmetrical difference modes generated in both the azimuth and elevation plane or in the TE mode and the hybrid T15 TM. modes
  • the asymmetrical difference modes generated in has an aperture distribution similar to that shown by the dashed line 56 in FIG. 6.
  • the symmetrical mode beam width is about :18".
  • the difference modes fall within the envelope of the pattern defined by the sum mode with the null of the difference mode pattern in the center (at the symmetry axis) and the two peaks of the difference mode at the 3 db point at the 118 points on either side of the null.
  • This difference mode characteristic is achieved by the step 30 and the ring 13b.
  • a switched beam position antenna or scanning antenna system is provided by coupling the horn antenna 10 shown in FIGS. 1 thru 4 to a circuitry including a monopulse comparator and a switchable power divider network 85 as shown in FIG. 7.
  • the TE mode coupling port 51. FIGS. 1 and 4 is represented by terminal 51a in FIG. 7, and the sidewall apertures 21, 23, 25 and 27 are represented by probes 21a, 23a, and 27a.
  • the coupling cavities 31, 33, 35 and 37 are represented by boxes 31a, 33a. 35a and 37a in FIG. 7.
  • the sidewall coupling members 21a, 23a. 25a and 270 are coupled to a monopulse comparator network 55 via the coupling cavities 31a, 33a and 37a.
  • This comparator 55 network is like that of comparator network 15 in applicants copending application, Ser. No. 470,574, filed May 16, I974.
  • the comparator 55 consists of two magic-tee (0 hybrids) hybrids and 67 and two short-slot hybrids (90 hybrids) 69 and 71 and connections therebetween.
  • One terminal of each of the magictee hybrids is coupled to a load (indicated by resistor).
  • One of the magic-tee hybrids 65 is coupled at one end to terminal 75 of the comparator 55 and at the opposite end to terminal 691; of short-slot hybrid 69 and terminal 71a of short-slot hybrid 71.
  • the other magic-tee hybrid 67 is coupled at one end to the terminal 77 of the comparator 55 and at the opposite end to terminal 69a of short-slot hybrid 69 and terminal 71b of short-slot hybrid 71.
  • the terminals 69c, 69d, 71c and 71d of short-slot hybrids 69 and 71 form the terminals of the monopulse comparator 55.
  • the terminals 690. 691, 7ld of the comparator 55 are coupled via suitable transmission lines 79, 80, 81 andj82 and the respective coupling cavities 33a, 31a, 37a and 35a to the coupling members 23a, 21a, 27a and 25a.
  • the signal waves at terminal 75 are power divided at hybrid 65 and are coupled with equal phase to terminal 69b of hybrid 69 and terminal 71a of hybrid 71.
  • the wave at terminal 69b is power divided with the output waves coupled to coupling member 23a via terminal 69c undergoing 90 more phase shift than the wave coupled to coupling member 21 a.
  • This additional phase shift is due to the coupling of the waves through the short slot 69e of hybrid 69.
  • the signal waves at terminal 71a are power divided with the output power divided waves coupled through slot 71e to coupling member 25a undergoing 90 more phase shift than the power divided waves coupled to coupling member 27a. With this phase distribution the signals at coupling members 23a and 25a undergo 90 more phase shift than the signals at the coupling members 21a and27a.
  • the linearly polarized T13 mode circular waveguide as shown in FIG. 5 is excited with the null in the plane of coupling members 23a and 27a.
  • the waves at terminal 77 are power divided by hybrids 67, 69 and 71. This re sults in 90 more phase shift to the waves at coupling members 21a and 27a than at coupling members 23a and 25a.
  • the coupling slots are oriented in the same direction as stated previously (shown in FIG. 2), the signals in the coupler 11 of antenna are excited in the TE TM so called circular waveguide hybrid mode as shown in FIG. 5.
  • the null plane is in the plane of the coupler determined by coupling members 21a and 25a.
  • the radiation pattern from these two sets of modes will have two out of phase main lobes and their null planes will be orthogonal to each other and will co incide with the plane of the coupling members.
  • the difference mode pattern is illustrated by dashed line 56 in FIG. 6.
  • a switched beam position antenna system is provided.
  • This switchable power division is provided by the switchable power divider network 85.
  • the switchable power dividing network 85 includes a power divider 95, three switches 96, 97 and 99 and a 180 phase shifter 101.
  • the terminal 91 of switchable power divider network 85 is coupled to a source of signal waves.
  • the power from that source is power divided at power divider 95 wherein waves with a selected percentage of the input power from the source are coupled via a trimming phase shifter 104 to terminal 51a of antenna l0 and the remaining power in the form of signal waves is coupled to switch 96.
  • the switch 99 in a first position (contacting terminal 99a) couples theapplied remaining power via synchronized switches 96 and 97 to terminal 75 of comparatornetwork 55. In a second position of switch 99 (contacting terminal 991)) the applied remaining power is coupled to terminal 77. If
  • switches 96 and 97 are in a first position (contacting terminals 96a and 97a) the remaining power is coupled over a transmission line path 105 therebetween to terminal 75 or 77. If switches 96 and 97 are in their second position (contacting terminals 96b and 9712), the remaining power is coupled over a transmission path 106 including 180 phase shifter 101 to terminal 75 or 77.
  • the switchablepower divider delivers the remaining power to either terminal or 77 in either 0 or 180 phase, providing a total of four conditions.
  • variable power divider 95 couples one half of the power b terminal 51a and the remaining power to switch 96, four additional beam positions are provided by the four conditions of switchable power divider 85 which have their maximum in die 45, 225 and 315 azimuth directions and at /z 6;, angle away from the original mechanical (symmetry) axis of the system.
  • 0 is the 3 db beamwidth of the symmetrical mode beam associated with signals in the TE mode coupled to terminal 51a.
  • the square 120 outlined in FIG. 8 illustrates a given required angular coverage
  • the dot 123 in the center represents the mechanical axis of the antenna
  • the small circle 121 represents the angular coverage when all the input power is delivered to the sum port 51a.
  • the center of the radiated pattern is switched in the direction of the arrows to provide the coverage areas A, B, C and D which are quadrants of coverage area 120.
  • the two difference mode patterns have two out of phase main lobes.
  • a first of these two main lobes associated with each difference mode is in phase with the single main lobe associated with the TE mode.
  • These in phase lobes add and the out of phase lobe subtracts, resulting in a combined beam with max imum signal in a direction toward the peak of the in phase lobe of the difference mode.
  • the sum mode (symmetrical mode) wave associated with terminal 51a is in phase with the second of the two main lobes associated with each difference mode and is out of phase with the first of these modes. Consequently, the maximum beam direction is moved to the directly opposite quadrant (for example from A to D or C to B).
  • variable power divider switch 95 controls the percentage of the: power to excite the main symmetrical TE mode.
  • the switch 99 switches the remaining percentage of power to excite either the TE mode via terminal 75 (if 50 percent of the power at that terminal 75 illuminate quadrants A or D in FIG. 8) or excite the hybrid mode of T15 TM, modes via terminal 77 (if 50 percent of the power at the terminal 77 illuminate quadrants B or C :in FIG. 7).
  • the synchronized switches 96 and 97 control which of the two quadrants A or D are illuminated when the power goes via terminal 75.
  • the synchronized switches 96 and 97 control which of the two quadrants B or C are illuminated when the power goes via terminal 77.
  • FIG. 9 illustrates a combined beam 131 which is the result of 50 percent of the power being coupled to terminal 51a and 50 percent of the power to either terminals 75 or 77. Because the sum and difference mode component patterns have the :same envelope, the resultant scanned pattern is practically sidelobe free. This same envelope characteristic'zas discussed previously is achieved by the dimensioning of the steps at the junction of the conical coupler section 11 and the cylindrical section, by the length of the cylindrical section and the position of the ring 13b in the cylindrical section.
  • a horn antenna comprising:
  • a funnel-shaped coupling member having two orthogonal symmetry planes and having an aperture at the narrow end adapted to excite a symmetrical mode wave therein and a larger diameter aperture at the opposite end,
  • a variable beam position antenna comprising,
  • a hollow member having a first opening at one end and an opening at the opposite end;
  • a first power divider means coupled between said plurality of side wall coupling apertures and a terminal thereof for in response to signal waves coupled to said terminal power dividing said waves and coupling the power divided waves in a given phase relationship to said side wall apertures to excite within said member a first asymmetrical difference mode that provides a radiated pattern with two main out of phase lobes;
  • controllable power divider means adapted to be coupled to a source of signal waves for coupling signal waves of a selected percentage of the power from said source to said one end, whereby a symmetrical mode radiated pattern with one main lobe is produced, and for coupling signal waves at the remaining power from said source to said terminal of said first power divider means.
  • said first power divider means includes a second terminal which in response to signal waves coupled thereto power divides said waves and couples these power divided waves in a phase relationship to excite within said member a second asymmetrical difference mode orthogonal to said first asymmetrical difference mode.
  • a variable beam position antenna comprising, in combination:
  • a funnel-shaped hollow member having two orthogo nal symmetry planes and a first opening at one end and a larger opening at the opposite end adapted to be coupled to free space;
  • controllable power divider means adapted to be coupled to a source of radio frequency signals for power dividing said signals in a selective manner to provide at least one half of the signal energy of said signals at said source to said first terminal means, whereby a symmetrical mode pattern is exited in the member, and the remaining percentage of signal energy of said signals at said source to a selected one of said second and third terminals in either a selective in phase at out of phase relationship with said signals applied to said first terminal.

Abstract

A horn antenna is described including a funnel-shaped coupler with a port at the narrow end of the coupler adapted to excite a symmetrical waveguide mode in the coupler and a plurality of side wall input ports adapted to excite at least two difference waveguide modes. The port at the narrow end of the coupler is coupled by a first step to a smaller diameter cylindrical section capable of propagating the dominant symmetrical mode. A larger diameter cylindrical section is coupled to the larger end of the coupler by a second step. A ring divides the larger diameter cylindrical section into two parts. The first and second steps and the dimensioning and placement of the ring are arranged so that the two difference mode radiation patterns have essentially the same combined beam width or pattern envelope as the symmetrical mode radiation pattern.

Description

United States Patent [191 Foldes 1451 Sept. 16, 1975 Peter Foldes, Montreal, Canada [52] US. Cl. 343/786; 343/858 51 Int. c1. HOlQ 13/00 [58] Field of Search 343/776, 777, 778, 786, 343/858 [56] References Cited UNITED STATES PATENTS 3,821,741 6/1974 DOro et a] .1 343/786 Primary ExaminerEli Lieberman Attorney, Agent, or Firm-Edward J. Norton; Robert L. Troike 57 ABSTRACT A horn antenna is described including a funnel-shaped coupler with a port at the narrow end of the coupler adapted to excite a symmetrical waveguide mode in the coupler and a plurality of side wall input ports adapted to excite at least two difference waveguide modes. The port at the narrow end of the coupler is coupled by a first step to a smaller diameter cylindrical section capable of propagating the dominant symmetrical mode. A larger diameter cylindrical section is coupled to the larger end of the coupler by a second step. A ring divides the larger diameter cylindrical section into two parts. The first and second steps and the dimensioning and placement of the ring are arranged so that the two difference mode radiation patterns have essentially the same combined beam width or pattern envelope as the symmetrical mode radiation pattern.
10 Claims, 9 Drawing Figures PATENTEU SEP 1 6 ms SE-liU 1 BF 3 lie. 1
Fia. J"
IEU SEP rs i975 -45 PLANE 45 PLANE AS MMETRICAL ASYMMETRICAL MODE MODE TE2 TMOI ORIGINAL SYMMETRY AXIS [8 0+|8 Fiat? MULTIMODE HORN ANTENNA BACKGROUND OF THE INVENTION This invention relates to horn antennas and horn an tenna feed systems and more particularly to a horn antenna feed system that when properly excited generates at least one symmetrical mode and two asymmetrical modes where the radiated pattern associated with the asymmetrical modes has two main lobes which essentially have the same pattern envelope as the radiated pattern associated with the symmetrical mode having one main lobe.
It is desirable in many applications, such as steerable radar antennas, aircraft collision prevention equipments, tracking antennas, and radiating elements for steerable arrays that a multiple beam position radiating element be provided. It is of particular interest to construct a multiple beam position radiating element in which the beam can be switched several positions, for example, four or five, electronically with *a medium gain (in the range of 8 to 20 db) in the peak direction while the sidelobes of the switched beam in the rear hemisphere remain below *25 db relative to the peak of the beam.
SUMMARY OF THE INVENTION,
A horn antenna is provided by a structure including a funnel-shaped coupler with an aperture at the narrow end of the coupler adapted to excite a symmetrical mode therein, a larger diameter aperture at the opposite end, and a plurality of side wall coupling apertures adapted to excite two orthogonal asymmetrical difference modes. The narrow end of the coupler is coupled by a first step to a smaller dimensional waveguide section capable of propagating the dominant symmetrical mode. The larger diameter end of the coupler is coupled by a second step to a larger diameter cylindrical waveguide section. The larger diameter cylindrical waveguide section is divided by a ring into two subwaveguide sections. The first and second steps and the ring are dimensioned and arranged so that the radiation patterns associated with the two asymmetrical modes have substantially the same pattern envelope as the radiation pattern associated with the symmetrical mode.
DETAILED DESCRIPTION OF THE INVENTION A detailed description follows in conjunction with the attached drawing wherein:
FIG. 1 is a side elevation view of the horn antenna according to a preferred embodiment of the present invention.
FIG. 2 is an end view of the antenna of FIG. 1.
FIG. 3 is a front view of the antenna of FIG. 1.
FIG. 4 is a cross'sectional view of the horn antenna in FIG. 2 taken along lines 44.
FIG. 5 illustrates the dominant symmetrical TE mode, the asymmetrical TE mode and the orthogonal asymmetrical, hybrid TE TM mode.
FIG. 6 illustrates the patterns associated with the symmetrical and asymmetrical modes from the antenna of FIG. 1.
FIG. 7 is a schematic diagram ofa switched beam position antenna using the horn in FIG. 1.
beam antenna of FIG. 7.
FIG. 9 illustrates a combined radiation pattern observed by adding the sum and one set of difference modes. 7
Referring to FIGS. 1 through 4, there is illustrated a horn antenna 10. A horn antenna 10 includes a funnelshaped coupler 11, a cylindrical waveguide section 13 coupled to one end 1 1a of coupler 11, a smaller cylindrical waveguide section 15 coupled to the smaller opposite end 111), a rectangular waveguide section 17 coupled to smaller cylindrical waveguide section 15 at end 17a, and a choke section 19 coupled to the end 130 of cylindrical waveguide 13. The coupler 11 is a hollow, conically shaped member of a diameter at end 1117 sufficient at least to excite the dominant TE mode and to reflect those of the TE TE, and TM modes that may be coupled thereto. FIG. 5 illustrates these modes. The large aperture at the opposite end 11a, is made large enough to couple the TE T15 TE, and TM modes.
Four side wall slot apertures 21, 23, and 27 are located in the side wall of the coupler. See FIGS. 2 thru 4. The center of apertures 21 and 25 lie in plane 26 and the center of apertures 23 and 27 lie in plane 29. The planes 26 and 29 are at an angle at 45 with respect to the vertical axis 28. The orientation of these slots in the side wall of the coupler determines the polarization of the asymmetrical mode. For vertical polarization shown in FIGS. 2 and 3, the slots are rotated 45 around their centers and relative to the plane containing the centers of the four slots. A rectangular coupling cavity is mounted above each of the side wall apertures. A rectangular cavity 31 is mounted above coupling aperture 21, a rectangular coupling cavity 33 is mounted above coupling aperture 23; a rectangular coupling cavity 35 is mounted above coupling aperture 25; and a rectangular coupling cavity 37 is mounted above coupling. aperture 27. The width w and length 1; as shown in FIGS. 2 and 4. of each of the cavities 31. 33, 35 and 37 is made sufficient to support the TE") and theTaEm rectangular waveguide modes. Coupling probes 41, 43, and 47 act to excite the TE. mode in the cavities from some external source to be discussed later. The diameter D of the coupler 11 taken as shown in FIG. 4 at the center of the slot apertures 21, 23; 25 and 27 is made so as to support at least the TE T15 and TM, modes in the coupler. From the above set of modes the TE mode has the lowest ratio of )\;./D 0.5892, and thus D, 3 M05892, where A is the operational wavelength. As discussed later, a hybrid mode made up of the TE: TM, modes is also excited at the apertures 21, 23, 25 and 27. The dimension of the coupler at the end 11b and the axial distance from the center of apertures 21, 23, 25 and 27 to the end 11b are determined so that the hybrid difference mode (TE +TM is reflected back toward the larger aperture of the coupler and combines in phase with the waves directly travelling from the slot apertures toward the wider end 11a of the coupler.
The symmetrical TE circular waveguide mode and the other symmetrical modes are excited at the end 11b by means of the rectangular waveguide section 17, the circular waveguide section 15 and the step 20 between the waveguide section 15 and the end 11b of the coupler 11. The TE rectangular waveguide mode is excited in rectangular waveguide .17 by means of coupling probe 51. Each of the coupling probes as used herein are coaxial probes having the outer conductor connected to the waveguiding section and the insulated inner conductor extending into the waveguiding section through an aperture therein. This TE mode is coupled through an aperture in the top wall 17a of waveguide 17 into the larger diameter circular waveguide section 15 wherein the TE circular waveguide mode is excited in cylindrical waveguide section 15. The cylindrical waveguide section 15 terminates in the step 20 at the narrow end 11b of the coupler 1 1 as mentioned previously. This step 20 acts as a controlling device for generating a set of symmetrical modes to produce a Gaussian shape resultant amplitude distribution in the large aperture at end 12 of the device 10 with the Gaussian shaped pattern in both the E and H planes. The TE mode Signals together with the other higher order symmetrical modes (for example TE mode) generated by the step 20 are radiated out of end 11a of the coupler 11.
Also radiated out of the aperture at end 11a of coupler 11 are waves in the TE circular waveguide mode and in the hybrid mode made up of the TE +TM circular waveguide modes. The signals at the coupler end 11a are coupled to the cylindrical waveguide section 13 which has a larger diameter than that of end 11a of coupler 11 and thus forms a step 30. The second step 30 provides refinement in the control of the symmetrical modes and provides proper phasing of the asymmetricaldifference modes TE and hybrid TE. TM modes to maintain their orthogonal elationships. Es-
sentially, the TE mode is compensated for the difference in phase velocity relative to the signals in the hybrid TE TM. modes. Additional compensation for the phasing between the TE modes and the hybrid TE; TM modes is achieved by the ring 13b in the cylindrical waveguide section 13 and by the distance FIG. 4, the ring 1312 is from the step 30. Further, the ring 13h contributes to matching of the different modes to free space. A choke member 19 is locatedbetween the output aperture at end 12 and is a continuation of thesection 13 from the end 13a of the cylindrical sec tion 13. The choke 19 includes a section in which the inside diameter is reduced and the outside surface diameter of the horn antenna is reduced approximately a quarter wavelength for an axial length of approxi mately a quarter wavelength. where a wavelength is taken at an operating frequency of the antenna. This quarter wave choke l9 helps to eliminate the flow of surface currents on the outside of the horn antenna.
In an embodiment designed to operate at a frequency of approximately 1825 MHz. the hom antenna described above and shown in FIGS. 1 thru 4 has the following dimensions:
Overall length 1 of coupler l l 7.37 inches Length between end 11b and center line of slots 2125, 23-27 inches Length 1;, of cavities 33 and 37 6.25 inches Diameter (D of coupler 11 at end 1111 7.30 inches Diameter (D of coupler 11 at end 11a 10.20 in.
Diameter (D of circular waveguide section 13 between 13a and 11a 13.23 inches Diameter of aperture (D in ring 13h, diameter of aperture (D at end 13a of section 13, and diameter (D of aperture at end 12 are each 10.12 inches Diameter of coupler 11 at center of slots D 9.25
inches 1 Diameter (D of circular waveguide section 15 5.36 inches Height H, of rectangular waveguide section 17 2.880 inches Axial length (1 and depth (D of choke 19 at 1.5 inches Length (1 of circular waveguide section 13 5 inches The distance (1 ring 13b is from step 30 3.39 inches Width (w) of coupling cavity 31, 33, 35 and 37 4.4 inches.
By the arrangement described above, the symmetrical mode generated at the step 20 and processed through the antenna has an aperture distribution as shown by curve 54 in FIG. 6. This response approximates a Gaussian type response. By the arrangement of the step 30, the placement of the ring and the dimension of the ring 13b, the asymmetrical difference modes generated in (both the azimuth and elevation plane or in the TE mode and the hybrid T15 TM. modes) has an aperture distribution similar to that shown by the dashed line 56 in FIG. 6. As shown in FIG. 6, at about the 3 db point from the center of the main beam (symmetry axis) the symmetrical mode beam width is about :18". The difference modes fall within the envelope of the pattern defined by the sum mode with the null of the difference mode pattern in the center (at the symmetry axis) and the two peaks of the difference mode at the 3 db point at the 118 points on either side of the null. This difference mode characteristic is achieved by the step 30 and the ring 13b.
A switched beam position antenna or scanning antenna system is provided by coupling the horn antenna 10 shown in FIGS. 1 thru 4 to a circuitry including a monopulse comparator and a switchable power divider network 85 as shown in FIG. 7. The TE mode coupling port 51. FIGS. 1 and 4, is represented by terminal 51a in FIG. 7, and the sidewall apertures 21, 23, 25 and 27 are represented by probes 21a, 23a, and 27a. The coupling cavities 31, 33, 35 and 37 are represented by boxes 31a, 33a. 35a and 37a in FIG. 7. The sidewall coupling members 21a, 23a. 25a and 270 are coupled to a monopulse comparator network 55 via the coupling cavities 31a, 33a and 37a.
This comparator 55 network is like that of comparator network 15 in applicants copending application, Ser. No. 470,574, filed May 16, I974. The comparator 55 consists of two magic-tee (0 hybrids) hybrids and 67 and two short-slot hybrids (90 hybrids) 69 and 71 and connections therebetween. One terminal of each of the magictee hybrids is coupled to a load (indicated by resistor). One of the magic-tee hybrids 65 is coupled at one end to terminal 75 of the comparator 55 and at the opposite end to terminal 691; of short-slot hybrid 69 and terminal 71a of short-slot hybrid 71. The other magic-tee hybrid 67 is coupled at one end to the terminal 77 of the comparator 55 and at the opposite end to terminal 69a of short-slot hybrid 69 and terminal 71b of short-slot hybrid 71. The terminals 69c, 69d, 71c and 71d of short- slot hybrids 69 and 71 form the terminals of the monopulse comparator 55. The terminals 690. 691, 7ld of the comparator 55 are coupled via suitable transmission lines 79, 80, 81 andj82 and the respective coupling cavities 33a, 31a, 37a and 35a to the coupling members 23a, 21a, 27a and 25a. The signal waves at terminal 75 are power divided at hybrid 65 and are coupled with equal phase to terminal 69b of hybrid 69 and terminal 71a of hybrid 71. The wave at terminal 69b is power divided with the output waves coupled to coupling member 23a via terminal 69c undergoing 90 more phase shift than the wave coupled to coupling member 21 a. This additional phase shift is due to the coupling of the waves through the short slot 69e of hybrid 69. The signal waves at terminal 71a are power divided with the output power divided waves coupled through slot 71e to coupling member 25a undergoing 90 more phase shift than the power divided waves coupled to coupling member 27a. With this phase distribution the signals at coupling members 23a and 25a undergo 90 more phase shift than the signals at the coupling members 21a and27a. If the coupling members 21a, 23a, 25a and 27a are oriented as shown in FIG. 7 and the above phase relationships exist, the linearly polarized T13 mode circular waveguide as shown in FIG. 5 is excited with the null in the plane of coupling members 23a and 27a. The waves at terminal 77 are power divided by hybrids 67, 69 and 71. This re sults in 90 more phase shift to the waves at coupling members 21a and 27a than at coupling members 23a and 25a. When the coupling slots are oriented in the same direction as stated previously (shown in FIG. 2), the signals in the coupler 11 of antenna are excited in the TE TM so called circular waveguide hybrid mode as shown in FIG. 5. The null plane is in the plane of the coupler determined by coupling members 21a and 25a. The radiation pattern from these two sets of modes will have two out of phase main lobes and their null planes will be orthogonal to each other and will co incide with the plane of the coupling members. The difference mode pattern is illustrated by dashed line 56 in FIG. 6.
It has been found that by controlling the amount of power to terminal 51a of the antenna 10 relative to the power at terminals 75 and 77 of the comparator 55, a switched beam position antenna system is provided. In other words with respect to the above described arrangement, by controlling the power levels of the excited symmetrical mode such as the dominant TE mode. and the asymmetrical modes such as the T and hybrid TE TE, modes in the antenna coupler 11, a switched beam position antenna system can be produced. This switchable power division is provided by the switchable power divider network 85. The switchable power dividing network 85 includes a power divider 95, three switches 96, 97 and 99 and a 180 phase shifter 101. The terminal 91 of switchable power divider network 85 is coupled to a source of signal waves. The power from that source is power divided at power divider 95 wherein waves with a selected percentage of the input power from the source are coupled via a trimming phase shifter 104 to terminal 51a of antenna l0 and the remaining power in the form of signal waves is coupled to switch 96. The switch 99 in a first position (contacting terminal 99a) couples theapplied remaining power via synchronized switches 96 and 97 to terminal 75 of comparatornetwork 55. In a second position of switch 99 (contacting terminal 991)) the applied remaining power is coupled to terminal 77. If
switches 96 and 97 are in a first position (contacting terminals 96a and 97a) the remaining power is coupled over a transmission line path 105 therebetween to terminal 75 or 77. If switches 96 and 97 are in their second position (contacting terminals 96b and 9712), the remaining power is coupled over a transmission path 106 including 180 phase shifter 101 to terminal 75 or 77. Thus, the switchablepower divider delivers the remaining power to either terminal or 77 in either 0 or 180 phase, providing a total of four conditions.
When the .variable power divider is adjusted so that all ofthe power is coupled to terminal 51a, a beam is excited having its maximum along the mechanical axis (symmetry axis in FIG. 6) of the radiating antenna 10. If the variable power divider 95 couples one half of the power b terminal 51a and the remaining power to switch 96, four additional beam positions are provided by the four conditions of switchable power divider 85 which have their maximum in die 45, 225 and 315 azimuth directions and at /z 6;, angle away from the original mechanical (symmetry) axis of the system. Here 0 is the 3 db beamwidth of the symmetrical mode beam associated with signals in the TE mode coupled to terminal 51a.
The square 120 outlined in FIG. 8 illustrates a given required angular coverage, the dot 123 in the center represents the mechanical axis of the antenna and the small circle 121 represents the angular coverage when all the input power is delivered to the sum port 51a. When one half of the power is coupled either in phase or with phase reversal to either terminals 75 or 77 the center of the radiated pattern is switched in the direction of the arrows to provide the coverage areas A, B, C and D which are quadrants of coverage area 120.
As mentioned previously, the two difference mode patterns have two out of phase main lobes. By the arrangement discussed above a first of these two main lobes associated with each difference mode is in phase with the single main lobe associated with the TE mode. These in phase lobes add and the out of phase lobe subtracts, resulting in a combined beam with max imum signal in a direction toward the peak of the in phase lobe of the difference mode. By adding, the 180 phase shift to the signals coupled to terminals 75 or 77, the sum mode (symmetrical mode) wave associated with terminal 51a is in phase with the second of the two main lobes associated with each difference mode and is out of phase with the first of these modes. Consequently, the maximum beam direction is moved to the directly opposite quadrant (for example from A to D or C to B).
To summarize the variable power divider switch 95 controls the percentage of the: power to excite the main symmetrical TE mode. The switch 99 switches the remaining percentage of power to excite either the TE mode via terminal 75 (if 50 percent of the power at that terminal 75 illuminate quadrants A or D in FIG. 8) or excite the hybrid mode of T15 TM, modes via terminal 77 (if 50 percent of the power at the terminal 77 illuminate quadrants B or C :in FIG. 7). The synchronized switches 96 and 97 control which of the two quadrants A or D are illuminated when the power goes via terminal 75. The synchronized switches 96 and 97 control which of the two quadrants B or C are illuminated when the power goes via terminal 77.
FIG. 9 illustrates a combined beam 131 which is the result of 50 percent of the power being coupled to terminal 51a and 50 percent of the power to either terminals 75 or 77. Because the sum and difference mode component patterns have the :same envelope, the resultant scanned pattern is practically sidelobe free. This same envelope characteristic'zas discussed previously is achieved by the dimensioning of the steps at the junction of the conical coupler section 11 and the cylindrical section, by the length of the cylindrical section and the position of the ring 13b in the cylindrical section.
What is Claimed is:
l. A horn antenna comprising:
a funnel-shaped coupling member having two orthogonal symmetry planes and having an aperture at the narrow end adapted to excite a symmetrical mode wave therein and a larger diameter aperture at the opposite end,
a first pair of side wall coupling apertures in the side wall of said member at diametrically opposite surfaces of the member in one symmetry plane,
a second pair of side wall coupling apertures in the side wall of said member at diametrically opposite surfaces of said member in the second of said orthogonal symmetry planes, said first and second pair of side wall coupling apertures being adapted to excite two orthogonal asymmetrical modes,
a waveguide section of a diameter large enough to support said symmetrical mode and small enough to reflect said asymmetrical modes and smaller than the diameter of the aperture at the narrow end of said member coupled by a first step to said narrow end of said member,
a cylindrical waveguide of a diameter larger than said larger diameter aperture of said member coupled by a second step to said opposite end of said member, said cylindrical waveguide section having a ring-like member dividing said cylindrical waveguide into two sections, said first and second steps and said ring-like member being dimensioned and arranged so that the two main lobes in the radiation patterns associated with the two asymmetrical modes have substantially the same beamwidth pattern of the single main lobe radiation pattern associated with the symmetrical mode.
2. The combination in claim 1 including a choke in the outer surface wall of said cylindrical waveguide.
3. A variable beam position antenna comprising,
in combination:
a hollow member having a first opening at one end and an opening at the opposite end;
a plurality of side wall coupling apertures in the side wall of said member;
a first power divider means coupled between said plurality of side wall coupling apertures and a terminal thereof for in response to signal waves coupled to said terminal power dividing said waves and coupling the power divided waves in a given phase relationship to said side wall apertures to excite within said member a first asymmetrical difference mode that provides a radiated pattern with two main out of phase lobes;
means adapted at said one end of the hollow member to couple a symmetrical mode wave and reflect said asymmetrical difference mode waves, and means at said opposite end to couple said symmetrical and asymmetrical modes, and
a controllable power divider means adapted to be coupled to a source of signal waves for coupling signal waves of a selected percentage of the power from said source to said one end, whereby a symmetrical mode radiated pattern with one main lobe is produced, and for coupling signal waves at the remaining power from said source to said terminal of said first power divider means.
4. The combination claimed in claim 3, wherein said member is a funnel-shaped member.
5. The combination claimed in claim 3, wherein said member has two orthogonal symmetry planes.
6. The combination claimed in claim 5, wherein a first pair of said plurality of side wall apertures is in a first of said planes and a second pair of said plurality of side wall apertures is in a second of said planes orthogonal to said first plane.
7. The combination claimed in claim 6, including means coupled to said one end for controlling said symmetrical mode and means coupled to said opposite end for controlling said asymmetrical mode whereby the two out of phase difference lobes in the pattern associated within the asymmetrical mode fall within the main pattern lobe associated with the symmetrical mode.
8. The combination claimed in claim 6 wherein said two asymmetrical difference modes are the TE mode and a hybrid TM TE mode.
9. The combination claimed in claim 6 wherein said first power divider means includes a second terminal which in response to signal waves coupled thereto power divides said waves and couples these power divided waves in a phase relationship to excite within said member a second asymmetrical difference mode orthogonal to said first asymmetrical difference mode.
10. A variable beam position antenna comprising, in combination:
a funnel-shaped hollow member having two orthogo nal symmetry planes and a first opening at one end and a larger opening at the opposite end adapted to be coupled to free space;
a first terminal means coupled to said one end;
first and second apertures in the side wall of said member at diametrically opposite surfaces of the member in one of said symmetry planes;
third and fourth apertures in the side Wall of said member at diametrically opposite surfaces of said member in the second of said planes:
second and third terminal means;
means coupled between the first, second, third and fourth apertures and said second, and third terminal means for, in response to signal waves at said second terminal means, equally distributing the energy of said signal waves applied thereto to each of said side wall apertures with signal waves at the first and third side wall apertures being advanced relative to signal waves at the remaining second and fourth side wall apertures and for, in response to signal waves at said third terminal means, equally distributing the energy of said signal waves applied thereto to each of said sidewall apertures with the signal waves at the second and fourth apertures being advanced 90 relative to the signal waves at the first and third sidewall apertures;
a controllable power divider means adapted to be coupled to a source of radio frequency signals for power dividing said signals in a selective manner to provide at least one half of the signal energy of said signals at said source to said first terminal means, whereby a symmetrical mode pattern is exited in the member, and the remaining percentage of signal energy of said signals at said source to a selected one of said second and third terminals in either a selective in phase at out of phase relationship with said signals applied to said first terminal.
UNITED STATES PATENT OFFICE EETIFICATE 0F CORRECTION G PATENTNO. I 3 90 50 DATED I September 16, 1975 INVENTOFHS); Peter Foldes It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below: 9
Column 1, line 24 "-25 db" should be -35 db H H Column 3, llne 30 T15 should be T13 9 Column 3, line 32 "TB should be TE Column 4, line 43 "31a, 33a and 37a" should be 31a, 33a, 35a and 37a 0 fiigned and ,ficaled this eleventh Of May 1976 [SEAL] Q AIKSI.
RUTH C. MASON C. MARSHALL DANN Arrvxrmg Officer (rmzmisxium'r nflau'nls and Trademarks O

Claims (10)

1. A horn antenna comprising: a funnel-shaped coupling member having two orthogonal symmetry planes and having an aperture at the narrow end adapted to excite a symmetrical mode wave therein and a larger diameter aperture at the opposite end, a first pair of side wall coupling apertures in the side wall of said member at diametrically opposite surfaces of the member in one symmetry plane, a second pair of side wall coupling apertures in the side wall of said member at diametrically opposite surfaces of said member in the second of said orthogonal symmetry planes, said first and second pair of side wall coUpling apertures being adapted to excite two orthogonal asymmetrical modes, a waveguide section of a diameter large enough to support said symmetrical mode and small enough to reflect said asymmetrical modes and smaller than the diameter of the aperture at the narrow end of said member coupled by a first step to said narrow end of said member, a cylindrical waveguide of a diameter larger than said larger diameter aperture of said member coupled by a second step to said opposite end of said member, said cylindrical waveguide section having a ring-like member dividing said cylindrical waveguide into two sections, said first and second steps and said ring-like member being dimensioned and arranged so that the two main lobes in the radiation patterns associated with the two asymmetrical modes have substantially the same beamwidth pattern of the single main lobe radiation pattern associated with the symmetrical mode.
2. The combination in claim 1 including a choke in the outer surface wall of said cylindrical waveguide.
3. A variable beam position antenna comprising, in combination: a hollow member having a first opening at one end and an opening at the opposite end; a plurality of side wall coupling apertures in the side wall of said member; a first power divider means coupled between said plurality of side wall coupling apertures and a terminal thereof for in response to signal waves coupled to said terminal power dividing said waves and coupling the power divided waves in a given phase relationship to said side wall apertures to excite within said member a first asymmetrical difference mode that provides a radiated pattern with two main out of phase lobes; means adapted at said one end of the hollow member to couple a symmetrical mode wave and reflect said asymmetrical difference mode waves, and means at said opposite end to couple said symmetrical and asymmetrical modes, and a controllable power divider means adapted to be coupled to a source of signal waves for coupling signal waves of a selected percentage of the power from said source to said one end, whereby a symmetrical mode radiated pattern with one main lobe is produced, and for coupling signal waves at the remaining power from said source to said terminal of said first power divider means.
4. The combination claimed in claim 3, wherein said member is a funnel-shaped member.
5. The combination claimed in claim 3, wherein said member has two orthogonal symmetry planes.
6. The combination claimed in claim 5, wherein a first pair of said plurality of side wall apertures is in a first of said planes and a second pair of said plurality of side wall apertures is in a second of said planes orthogonal to said first plane.
7. The combination claimed in claim 6, including means coupled to said one end for controlling said symmetrical mode and means coupled to said opposite end for controlling said asymmetrical mode whereby the two out of phase difference lobes in the pattern associated within the asymmetrical mode fall within the main pattern lobe associated with the symmetrical mode.
8. The combination claimed in claim 6 wherein said two asymmetrical difference modes are the TE12 mode and a hybrid TM01 + TE21 mode.
9. The combination claimed in claim 6 wherein said first power divider means includes a second terminal which in response to signal waves coupled thereto power divides said waves and couples these power divided waves in a phase relationship to excite within said member a second asymmetrical difference mode orthogonal to said first asymmetrical difference mode.
10. A variable beam position antenna comprising, in combination: a funnel-shaped hollow member having two orthogonal symmetry planes and a first opening at one end and a larger opening at the opposite end adapted to be coupled to free space; a first terminal means coupled to said one end; first and second apertures in the side waLl of said member at diametrically opposite surfaces of the member in one of said symmetry planes; third and fourth apertures in the side wall of said member at diametrically opposite surfaces of said member in the second of said planes; second and third terminal means; means coupled between the first, second, third and fourth apertures and said second and third terminal means for, in response to signal waves at said second terminal means, equally distributing the energy of said signal waves applied thereto to each of said side wall apertures with signal waves at the first and third side wall apertures being advanced 90* relative to signal waves at the remaining second and fourth side wall apertures and for, in response to signal waves at said third terminal means, equally distributing the energy of said signal waves applied thereto to each of said sidewall apertures with the signal waves at the second and fourth apertures being advanced 90* relative to the signal waves at the first and third sidewall apertures; a controllable power divider means adapted to be coupled to a source of radio frequency signals for power dividing said signals in a selective manner to provide at least one half of the signal energy of said signals at said source to said first terminal means, whereby a symmetrical mode pattern is exited in the member, and the remaining percentage of signal energy of said signals at said source to a selected one of said second and third terminals in either a selective in phase at 180* out of phase relationship with said signals applied to said first terminal.
US488770A 1974-07-15 1974-07-15 Multimode horn antenna Expired - Lifetime US3906508A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US488770A US3906508A (en) 1974-07-15 1974-07-15 Multimode horn antenna
CA229,771A CA1046631A (en) 1974-07-15 1975-06-20 Multimode horn antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US488770A US3906508A (en) 1974-07-15 1974-07-15 Multimode horn antenna

Publications (1)

Publication Number Publication Date
US3906508A true US3906508A (en) 1975-09-16

Family

ID=23941054

Family Applications (1)

Application Number Title Priority Date Filing Date
US488770A Expired - Lifetime US3906508A (en) 1974-07-15 1974-07-15 Multimode horn antenna

Country Status (2)

Country Link
US (1) US3906508A (en)
CA (1) CA1046631A (en)

Cited By (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2626926A1 (en) * 1976-06-16 1977-12-29 Licentia Gmbh Radio link controlled beam direction - uses heterodyning of derived wave with fundamental in dipole port to obtain optimum aerial gain for directional operation
US4097869A (en) * 1977-03-14 1978-06-27 Stanford Research Institute Orthogonal-port, biconical-horn, direction-finder antenna
US4141015A (en) * 1976-09-16 1979-02-20 Hughes Aircraft Company Conical horn antenna having a mode generator
US4148035A (en) * 1977-12-14 1979-04-03 Rca Corp. Subwavelength monopulse antenna
US4168504A (en) * 1978-01-27 1979-09-18 E-Systems, Inc. Multimode dual frequency antenna feed horn
EP0098618A2 (en) * 1982-07-08 1984-01-18 SELENIA INDUSTRIE ELETTRONICHE ASSOCIATE S.p.A. System for the electronical sector scanning of the beam of a monopulse radar antenna
DE3421313A1 (en) * 1984-06-08 1985-12-12 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn GROOVED HORN SPOTLIGHT WITH FASHION COUPLER
EP0171149A1 (en) * 1984-06-12 1986-02-12 BRITISH TELECOMMUNICATIONS public limited company Electronic tracking system for microwave antennas
US4764775A (en) * 1985-04-01 1988-08-16 Hercules Defense Electronics Systems, Inc. Multi-mode feed horn
US4929962A (en) * 1986-12-09 1990-05-29 Societe Anonyme Dite: Alcatel Thomson Faisceaux Hertiziens Feed horn for a telecommunications antenna
EP0443526A1 (en) * 1990-02-20 1991-08-28 Andrew A.G. A microwave coupling arrangement
ES2112771A1 (en) * 1995-09-25 1998-04-01 Univ Navarra Publica Horn antennas converting wave guide modes to Gaussian structures.
EP1041672A1 (en) * 1999-03-16 2000-10-04 TRW Inc. Multimode, multi-step antenna feed horn
US20020105462A1 (en) * 2000-03-14 2002-08-08 Hans Bloecher Device and method for an antenna array with switchable wide-angle coverage
US6535174B2 (en) * 1999-12-20 2003-03-18 Hughes Electronics Corporation Multi-mode square horn with cavity-suppressed higher-order modes
US20050237253A1 (en) * 2004-04-22 2005-10-27 Kuo Steven S Feed structure and antenna structures incorporating such feed structures
WO2012172565A1 (en) 2011-06-14 2012-12-20 Indian Space Research Organisation Wideband waveguide turnstile junction based microwave coupler and monopulse tracking feed system
US8665036B1 (en) 2011-06-30 2014-03-04 L-3 Communications Compact tracking coupler
US8786508B1 (en) * 2012-09-27 2014-07-22 L-3 Communications Corp. Tri-band feed horn
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9912382B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9929755B2 (en) 2015-07-14 2018-03-27 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10051630B2 (en) 2013-05-31 2018-08-14 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10069185B2 (en) 2015-06-25 2018-09-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US11070250B2 (en) 2019-12-03 2021-07-20 At&T Intellectual Property I, L.P. Method and apparatus for calibrating waveguide systems to manage propagation delays of electromagnetic waves
US11277159B2 (en) 2019-12-03 2022-03-15 At&T Intellectual Property I, L.P. Method and apparatus for managing propagation delays of electromagnetic waves
US11502724B2 (en) 2019-12-03 2022-11-15 At&T Intellectual Property I, L.P. Method and apparatus for transitioning between electromagnetic wave modes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3821741A (en) * 1971-11-24 1974-06-28 Sits Soc It Telecom Siemens Tracking system with pointing error detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3821741A (en) * 1971-11-24 1974-06-28 Sits Soc It Telecom Siemens Tracking system with pointing error detector

Cited By (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2626926A1 (en) * 1976-06-16 1977-12-29 Licentia Gmbh Radio link controlled beam direction - uses heterodyning of derived wave with fundamental in dipole port to obtain optimum aerial gain for directional operation
US4141015A (en) * 1976-09-16 1979-02-20 Hughes Aircraft Company Conical horn antenna having a mode generator
US4097869A (en) * 1977-03-14 1978-06-27 Stanford Research Institute Orthogonal-port, biconical-horn, direction-finder antenna
US4148035A (en) * 1977-12-14 1979-04-03 Rca Corp. Subwavelength monopulse antenna
US4168504A (en) * 1978-01-27 1979-09-18 E-Systems, Inc. Multimode dual frequency antenna feed horn
EP0098618A3 (en) * 1982-07-08 1986-03-19 SELENIA INDUSTRIE ELETTRONICHE ASSOCIATE S.p.A. System for the electronical sector scanning of the beam of a monopulse radar antenna
EP0098618A2 (en) * 1982-07-08 1984-01-18 SELENIA INDUSTRIE ELETTRONICHE ASSOCIATE S.p.A. System for the electronical sector scanning of the beam of a monopulse radar antenna
DE3421313A1 (en) * 1984-06-08 1985-12-12 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn GROOVED HORN SPOTLIGHT WITH FASHION COUPLER
EP0171149A1 (en) * 1984-06-12 1986-02-12 BRITISH TELECOMMUNICATIONS public limited company Electronic tracking system for microwave antennas
US4704611A (en) * 1984-06-12 1987-11-03 British Telecommunications Public Limited Company Electronic tracking system for microwave antennas
US4764775A (en) * 1985-04-01 1988-08-16 Hercules Defense Electronics Systems, Inc. Multi-mode feed horn
US4929962A (en) * 1986-12-09 1990-05-29 Societe Anonyme Dite: Alcatel Thomson Faisceaux Hertiziens Feed horn for a telecommunications antenna
EP0443526A1 (en) * 1990-02-20 1991-08-28 Andrew A.G. A microwave coupling arrangement
AU634858B2 (en) * 1990-02-20 1993-03-04 Andrew Corporation A microwave coupling arrangement
ES2112771A1 (en) * 1995-09-25 1998-04-01 Univ Navarra Publica Horn antennas converting wave guide modes to Gaussian structures.
EP1041672A1 (en) * 1999-03-16 2000-10-04 TRW Inc. Multimode, multi-step antenna feed horn
US6535174B2 (en) * 1999-12-20 2003-03-18 Hughes Electronics Corporation Multi-mode square horn with cavity-suppressed higher-order modes
US20020105462A1 (en) * 2000-03-14 2002-08-08 Hans Bloecher Device and method for an antenna array with switchable wide-angle coverage
US6954176B2 (en) * 2000-03-14 2005-10-11 Daimlerchrysler Ag Device and method for an antenna array with switchable wide-angle coverage
US20050237253A1 (en) * 2004-04-22 2005-10-27 Kuo Steven S Feed structure and antenna structures incorporating such feed structures
US7034774B2 (en) * 2004-04-22 2006-04-25 Northrop Grumman Corporation Feed structure and antenna structures incorporating such feed structures
WO2012172565A1 (en) 2011-06-14 2012-12-20 Indian Space Research Organisation Wideband waveguide turnstile junction based microwave coupler and monopulse tracking feed system
US8665036B1 (en) 2011-06-30 2014-03-04 L-3 Communications Compact tracking coupler
US8786508B1 (en) * 2012-09-27 2014-07-22 L-3 Communications Corp. Tri-band feed horn
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10051630B2 (en) 2013-05-31 2018-08-14 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9960808B2 (en) 2014-10-21 2018-05-01 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9876587B2 (en) 2014-10-21 2018-01-23 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9749083B2 (en) 2014-11-20 2017-08-29 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876571B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9831912B2 (en) 2015-04-24 2017-11-28 At&T Intellectual Property I, Lp Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9967002B2 (en) 2015-06-03 2018-05-08 At&T Intellectual I, Lp Network termination and methods for use therewith
US9912382B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9935703B2 (en) 2015-06-03 2018-04-03 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10050697B2 (en) 2015-06-03 2018-08-14 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US10069185B2 (en) 2015-06-25 2018-09-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9929755B2 (en) 2015-07-14 2018-03-27 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9806818B2 (en) 2015-07-23 2017-10-31 At&T Intellectual Property I, Lp Node device, repeater and methods for use therewith
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US11070250B2 (en) 2019-12-03 2021-07-20 At&T Intellectual Property I, L.P. Method and apparatus for calibrating waveguide systems to manage propagation delays of electromagnetic waves
US11277159B2 (en) 2019-12-03 2022-03-15 At&T Intellectual Property I, L.P. Method and apparatus for managing propagation delays of electromagnetic waves
US11502724B2 (en) 2019-12-03 2022-11-15 At&T Intellectual Property I, L.P. Method and apparatus for transitioning between electromagnetic wave modes

Also Published As

Publication number Publication date
CA1046631A (en) 1979-01-16

Similar Documents

Publication Publication Date Title
US3906508A (en) Multimode horn antenna
US4458250A (en) 360-Degree scanning antenna with cylindrical array of slotted waveguides
EP0600715B1 (en) Active transmit phased array antenna
US3713167A (en) Omni-steerable cardioid antenna
Demmerle et al. A biconical multibeam antenna for space-division multiple access
US6107897A (en) Orthogonal mode junction (OMJ) for use in antenna system
US4494117A (en) Dual sense, circularly polarized helical antenna
US5359338A (en) Linear conformal antenna array for scanning near end-fire in one direction
US3568204A (en) Multimode antenna feed system having a plurality of tracking elements mounted symmetrically about the inner walls and at the aperture end of a scalar horn
US6011520A (en) Geodesic slotted cylindrical antenna
US4044360A (en) Two-mode RF phase shifter particularly for phase scanner array
US4041499A (en) Coaxial waveguide antenna
US4839663A (en) Dual polarized slot-dipole radiating element
US4063243A (en) Conformal radar antenna
US3953857A (en) Airborne multi-mode radiating and receiving system
JPH02122702A (en) Microstrip antenna system having large number of frequency element
US4010474A (en) Two dimensional array antenna
US3864687A (en) Coaxial horn antenna
US3877031A (en) Method and apparatus for suppressing grating lobes in an electronically scanned antenna array
US3576579A (en) Planar radial array with controllable quasi-optical lens
JP4163109B2 (en) Conformal two-dimensional electronic scanning antenna with butler matrix and lens ESA
JP2002359516A (en) Primary radiator and phase shifter, and beam scanning antenna
US4080579A (en) Stripline four port hybrid junction
US3757333A (en) Receiving antenna system
US3943523A (en) Airborne multi-mode radiating and receiving system