US3906684A - Abrasive articles and their method of manufacture - Google Patents

Abrasive articles and their method of manufacture Download PDF

Info

Publication number
US3906684A
US3906684A US145275A US14527571A US3906684A US 3906684 A US3906684 A US 3906684A US 145275 A US145275 A US 145275A US 14527571 A US14527571 A US 14527571A US 3906684 A US3906684 A US 3906684A
Authority
US
United States
Prior art keywords
abrasive
binder
layer
material according
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US145275A
Inventor
Charles W Marshall
Loran A Henderson
Jr William F Zimmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Abrasives Inc
Original Assignee
Norton Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norton Co filed Critical Norton Co
Priority to US145275A priority Critical patent/US3906684A/en
Priority to CA139,719A priority patent/CA996759A/en
Priority to FR7217804A priority patent/FR2138739B3/fr
Priority to IT68598/72A priority patent/IT958926B/en
Priority to DE2224589A priority patent/DE2224589A1/en
Priority to GB2399272A priority patent/GB1370853A/en
Application granted granted Critical
Publication of US3906684A publication Critical patent/US3906684A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • B24D11/001Manufacture of flexible abrasive materials
    • B24D11/005Making abrasive webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • B24D3/285Reaction products obtained from aldehydes or ketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • B24D3/30Resins or natural or synthetic macromolecular compounds for close-grained structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/02Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/02Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
    • B29C70/021Combinations of fibrous reinforcement and non-fibrous material
    • B29C70/025Combinations of fibrous reinforcement and non-fibrous material with particular filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/58Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2061/00Use of condensation polymers of aldehydes or ketones or derivatives thereof, as moulding material
    • B29K2061/04Phenoplasts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/736Grinding or polishing equipment

Definitions

  • abrasive grain is first coated with a liquid resinous binder composition after which the coated grain is then mixed with a solid, particulate, resinous binder composition, the latter binder being more resistant, after curing, to distortion when subjected to heat and pressure.
  • the thus-formed freeflowing abrasive mixture is then coated continuously onto a flexible backing member.
  • the layer of abrasive mixture is heated to cause fusion of the solid binder at the interface with the liquid binder. It is then compacted into a relatively dense abrasive layer, and is wound up into a jumbo roll in which condition the abrasive layer is subjected to further heat to cure the binder material.
  • the invention is concerned with abrasive'material and abrasive articles formed therefrom in which a somewhatporous abrasive layer comprising a bindercoated grain in a binder matrix is secured to a flexible backing member.
  • Abrasive products are classified broadly into two distinct classes, namely, coated abrasives and bonded abrasives. Those abrasive articlesfound inthe firstmentioned class are commonlyreferred to collectively as sandpapenof the latter-mentioned class of abrasives, grinding wheels are a representative type.
  • Conventional coated abrasive material in general, is characterized by a high degree of flexibility and versatility and by a layer of somewhat elongated abrasive grains adhesively secured to a flexible backing member in such a way that their longest axes are generally perpendicular, or nearly so, to the plane of the backing member.
  • the abrasive layer in this material is substan-. tially a single layer of abrasive grain, ofa controlled variation in size, and the-grains are bonded only at their base. i.e., nearest adjacent the backing member material so that they stick up, cantilever-fashion, in random heights and spacings.
  • coated abrasive products are-also well known to have an inordinately short life.
  • coated abrasive products are-also well known to have an inordinately short life.
  • these products during continued usentlie number of abrasive 'grains in contact With'thC workpiece, because of the variation in grain size and their Orientation, increases. This is because shorter abrasive-grains arev continually exposed as the taller abrasive grains are worn down. Moreover, the area of contact per grain increases very rapidly as the abrasive. grain wears away to flat areas.
  • any abrasive article continues to function by reason of the fact that fresh, sharp abrading surfaces are presentedwhen the old abrading surfaces become too dull or smooth to.cut. Sharp abrasive surpassage of dull abrasive grain that'the adhesive bond holding theabrasivegrainis fractured and broken away and the dull grainis shed. Thus, in a coated abrasive product, shorter, fresh abrasive grains are exposed to the workpiece and cutting ability is somewhat restored.
  • abrasive wheel would show the abrasive grains held-bya .latticework of bond postsl. So long as anabrasive grain, remains. sharp enough tobpenetrate thematerial being ground, the. v bond'will hold onto it. As the. al n asive grain begins .to get dull, the material being ground begins to resist pen-:- etration. When the force of the. resistance overcomes the strength of the bond post, the post fractures, releasing the dull abrasive grain from the wheel face. Y Y An organic bonded wheel does the same thing ina different way. Here there are no clearly definedbond posts holding the abrasive grain together.
  • the abrasive grains are evenly distributed throughout a mass of bond. When an abrasive grain dulls and is unable to penetrate the material being ground, it gets hot enough to overcome the thermal resistance of the bond surrounding it. The bond softens and releases the dull grain. i A
  • the abrasive mixture on formation of a layer thereof and after curing, comprises basically abrasive grain coated with a binder in a matrix binder of greater thermal resistance.
  • the binder forming the abrasive grain socket or coating on being subjected to heat and pressure, deforms and permits the abrasive grain on meeting sufficient resistance to penetration by the workpiece to be picked out of and shed from the abrasive layer.
  • the abrasive material of our invention has the desirable characteristics found generally in coated abrasive material; however, quiteadvantageously, this abrasive material additionally provides, during use, an abrasive layer in the nature of a bonded abrasive which sheds, however, under relatively low grinding pressures thus resulting in restored cutting ability, a relatively constant rate of cut, and maintenance of a uniform surface finish.
  • abrasive layer of our invention which preferably is a layer at least several grain diameters thick
  • an abrasive product of predetermined grinding characteristics, flexibility, wide track capability, cool running, and the general adaptability of a coated abrasive article can be provided and of longer product life than realized heretofore in coated abrasive products.
  • the usefulness of coated abrasive type products may be extended into heavier stock removal applications.
  • the abrading of difficult-to-machine metals such as, e.g. titanium and stainless steel alloys has been greatly improved.
  • FIG. 1 is a cross-sectional view in part of an abrasive product according to the invention
  • FIG. 2 is a greatly enlarged view of a section of the abrasive layer only in FIG. 1 showing the physical nature of this layer;
  • FIG. 3 is a schematic representation of the process by which our novel abrasive materials is manufactured.
  • FIG. 1 a portion of abrasive material 10 having a physical appearance somewhat similar to that of conventional coated abrasive material.
  • Abrasive material 10 has a flexible backing member 11 on the front side of which is provided an adhesive layer 12 which anchors a porous, compacted abrasive layer 13 to the backing member.
  • a similar abrasive layer may be desired in some instances, for examples, in the manufacture of an abrasive disc, on the other side of the backing member.
  • the backing member I which is employed in our invention, may be any of various flexible materials conventionally used in the manufacture of coated abrasives.
  • the backing member may be of paper, cloth, vulcanized fiber, metal, etc.
  • the so-called cloth backings may be of natural fibrous materials such as cotton, linen, etc.; man-made fibrous materials, of staple or continuous length fibers, such as nylon, polyester, etc.; or of inorganic fibrous materials such as glass.
  • These cloth backing members may be either of woven or non-woven construction. Particularly good results have been obtained in the practice of the invention with backing members of woven natural fibrous material.
  • Adhesive layer 12 is a thin layer of suitable adhesive material preferably a rigid, high modulus thermosetting resin, the more preferred one being a heat-hardened phenol-formaldehyde resinous composition.
  • suitable adhesive material preferably a rigid, high modulus thermosetting resin, the more preferred one being a heat-hardened phenol-formaldehyde resinous composition.
  • These adhesive compositions are conventionally used as maker adhesives in the manufacture of coated abrasive material and a detailed description thereof is deemed unnecessary,
  • phenol-formaldehyde adhesive compositions are applied to a backing member as a solvent solution, a desirable solvent such as water or alcohol/water being used to adjust the solution to the desired viscosity for coating.
  • the adhesive composi tion may contain, if desired, fillers such as calcium carbonate, cryolite, clay, etc...
  • Other adhesive compositions which, on curing, result in a relatively hard, heat resistant adhesive layer may be used rather than a phenolic, such as those compris
  • Abrasive layer 13 contrary to that conventionally found in coated abrasive articles, has abrasive grains 14 unoriented and distributed throughout the abrasive layer.
  • the abrasive grains are surrounded by or encapsulated in a socket 15 of adhesive binder. These binder coated abrasive grains are in turn bonded together in abrasive layer 13 in a matrix 16 of binder. The amount of binder matrix is insufficient, however, to till the interstitial space between the abrasive grains thus leaving pores 17. in the abrasive layer.
  • the structural configuration of the abrasive layer is better seen in the greatly enlarged view of a section thereof in FIG.
  • Binder material 15 surrounding the abrasive grains is, at the temperatures usually attained during coated abrasive usage, distortable, particularly under pressure. This feature i.e., the thermal distortable nature of the binder material, results in, as hereinafter will become more ev ident, breakdown of the abrasive layer.
  • abrasive grains 14 In application of pressure during grinding, abrasive grains 14, as they become excessively dull, become hotter. This is turn imparts more heat to binder material 15 and permits abrasive grains 14 to be picked out, so to speak, on dislortion of the binder. 15 from the socket formed thereby. The picked out abrasive grains are then shed thus providing new cutting surfaces.
  • Binder matrix 16 remains heat resistant at the grinding temperatures attained and, moreover, tends to resist fracture. Nevertheless, with this combination of binder materials, i.e., one more heat resistant than the other, an abrasive layer is obtained having the desired combination of performance characteristics.
  • binder material combinations may be used in the practice of the invention so long as they possess the necessary differences in thermal resistance.
  • a particularly useful combination has been found in using an epoxy resin in conjunction with a phenol-formaldehyde resinous composition.
  • a suitable, and one of the preferred epoxy resins for use in the invention is EPON 812 available from Shell Chemical Company.
  • EPON 812 available from Shell Chemical Company.
  • Such an epoxy resin is preferred because ofits relatively low viscosity (9l5 poises) and its rather high level of solubility of powdered phenol-formaldehyde resin.
  • Other epoxy resins of higher viscosity may be used, for example EPON 1009, also available from Shell Chemical Company.
  • it must be less heat resistant than the matrix binder and, in general, will be deformable at temperature above about 240F.
  • a two stage, heat reactive, powdered resinous phenolic composition is preferred;
  • One such material which can be used with good results in combination with EPON 812, is available commercially from Union Carbide Corporation (Plastics Division) under the trade designation BRP5417. This material, once cured, is heat resistant and will char i.e., degrade and pyrolyze, at about 500F.
  • the epoxy component should be at least about 0.6 per cent by weight of the abrasive grain. In any event, the amount of binder should be sufficient to provide a coating around, or socket for, the abrasive grains.
  • binder material combinations are useable in the practice of the invention.
  • other epoxy resins such as Dow D.E.R. 669 (Dow Chemical Company), and Bakelite ERL250 (Union Carbide Corporation) may be used as well as other resinous binders which are less resistant to distortion at temperature above about 240F.
  • Varcum I364 Varcum Chemical, Division ofReichold Chemicals, Inc.
  • Mon. Resinox 755 Monsanto Company, Plastics Division
  • Durite AD 5042 Borden Chemical Company
  • the binder material making up the matrix is, preferably, at least somewhat soluble in the binder composition surrounding the abrasive grain.
  • a solvent component can be used in the socket binder composition in which both binders are relatively soluble.
  • furfural which is a solvent for both epoxy resins and phenolformaldehyde resins is desirably added to the binder composition for coating the abrasive grain.
  • any type abrasive grain material may be used in the practice of the invention. Those materials which may be found especially suitable are silicon carbide, aluminum oxide, garnet, flint, diamond, emery, fused zirconia-alumina, etc., in grits of I20 and more coarse. Depending upon the abrasive product characteristics desired, the abrasive grain can be of the blocky type ordinarily used in bonded abrasives or of the spindly type usually found in coated abrasive material.
  • abrasive material with abrasive layers of various performance characteristics.
  • the optimum abrasive product for any one application may be determined readily by one skilled in the art.
  • the inventive concept is deemed useful in any abrasive mixture having from about 3852% (by volume) abrasive grain, and from about 10-50% (by volume) resinous binder composition, the remainder being voids.
  • the binder composition is from about -32% and the abrasive grain is from about 40-52%, and even more desirably these components in the abrasive layer are about 24-32% and about 42-48%, respectively, the remainder being voids.
  • an abrasive layer of any desired hardness can be made in accordance with the invention. In general, however, the density of this layer is no greaterthan the loose packed density of the abrasive grain. Otherwise, during manufacture of the abrasive material the backing member may be damaged, or the abrasive grain may be fractured.
  • a more easily friable bond may be obtained by adding certain fillers to the matrix composition.
  • Those filler materials having a modulus lower than that of the matrix resin binder may be used in the invention. Examples of those suitable include hollow phenolic spheres, calcuium carbonate, powdered polyethylene, and polyvinyl chloride, etc.
  • suitable include hollow phenolic spheres, calcuium carbonate, powdered polyethylene, and polyvinyl chloride, etc.
  • the filler component can be added to the matrix composition in quantities sufficient to weaken the matrix bond the degree desired or to accomplish and other result desired.
  • some fillers may be used to accomplish a dual purpose, e,g., bond diluent and grinding aid. The exact amount of any filler required to accomplish any desired result will depend upon the kind of filler and the fineness thereof, this being readily determined by one skilled in the art of abrasive manufacture.
  • an abrasive material having an abrasive layer of intermediate hardness and having desirable performance characteristics may be manufactured using grain having either a blocky shape or a spindly shape in an amount from 42-48% by volume.
  • Softer abrasive layers which are particularly suitable in applications involving high stock removal thus requiring shedding resulting in exposure of new cutting points, are manufactured using conventional spinly shaped coated abrasive grain in order to obtain uniform volume distribution.
  • the grain shape preferably is blocky in order to allow, as hereinafter described, adequate compaction of the abrasive layer in manufacture.
  • the thickness of the abrasive layer will, of course, determine to some extent the life of the abrasive material. We have discovered the preferred thickness for abrasive belts to be from about mils (0.025 inch), which represents about 1 grain layer for 40 mesh abrasive grain, to about 125 mils (0.125 inches). At thicknesses above about 125 mils the abrasive layer tends to become unwieldly and too strong for proper flexing and performance. Other than in abrasive belts, the abrasive layer thickness can be essentially as thick as desired.
  • the abrasive product loses its resemblance to a coated abrasive product and more nearly resembles a bonded abrasive.
  • the abrasive layer thickness should be at least slightly greater than the largest dimension of the biggest abrasive grain in the layer.
  • FIG. 3 of the drawing in which is illustrated apparatus which may be used in the method of manufacture of abrasive material according to the invention.
  • This apparatus basically includes an unwind section, an adhesive coating section, a coated grain section, a drying section, a compacting section, and a windup section. All of these are indicated in the drawing by appropriate legend.
  • These various sections are supported by a table or flat-like support denoted in the drawing by reference numeral 18.
  • the table or flat-like support 18 is supported in a horizontal plane by a plurality of vertical posts 19.
  • flexible backing member 11 is withdrawn continuously from supply roll 20 rotating in the direction indicated in the drawing by the arrow.
  • Supply roll 20 comprising idler roll 21 and backing member 11 is located on a conventional unwind stand 21.
  • the backing member passes around brake roll 22, guide rolls 23, 24 and through the nip formed by rolls 25, 26.
  • Brake roll 22 is fitted with an air actuated cylinder (not shown) which is conventionally used to give controlled tension on a traveling web-like member.
  • a reverse roll coater is particularly suitablein obtaining a uniformly thick adhesive layer over a relatively wide thickness range.
  • Roll 26 having a rubber periphery is driven while rolls 25, 27, both of which have steel surfaces, are idler rolls. The rolls, as is conventional, can be adjusted to provide the desired nip and therefore adhesive layer thickness.
  • a film 28 of adhesive formed by extruding adhesive mass 29 through the nip formed by rolls 26, 27 is applied to the backing member.
  • the adhesive mass is desirably a composition, as before-mentioned, comprising a liquid, heat reactive phenolic resin having a viscosity of at least 1000 cps.
  • a preferred coating weight for this composition is from about 3.0 to about 15.0 lbs., more preferably from about 3.0 to about 9.0 lbs. per sandpaper makers ream.
  • this maker adhesive may be desirable to provide this maker adhesive by other methods.
  • One such alternate method involves coating the backing member previously with a front size which can be dried to a nontacky state but still remains heat flowable.
  • the abrasive mixture as hereinafter described, is applied to this dried front size layer, the front size, as well as the abrasive .mixture, being then subsequently subjected to heat, whereby the front size layer becomes tacky and the layer of abrasive mixture adhered to the backing member.
  • Support member 30 used in the practice of our invention, is a grid of square metal bars that have been surface ground to give an uniformly planar surface. The bars are spaced apart to allow excess coated grain from the coating and spreading operation, hereinafter described, to fall through the support means and be recovered and-recycled.'Ob viously, if desired, other support rneanscan be provided such as, for example, a plurality of sequential rot'atingrollsora perforated metal plate. 3 5
  • a sufficient amount of the abrasive mixture, which is dry and free flowing, is applied to the backing member to result in an abrasive layer having a thickness of at least as great as the largest dimension of the largest size abrasive grain in the mixture.
  • a primary advantage in our invention resides in the ability to provide an abrasive article having more than substantiallyja single layer of abrasive grain. Where flexibility is of concern, however, a layer having a thickness no greater than about 0.250 inch, preferably no greater than about 0.125 inch, is desired.
  • the abrasive mixture in the preferred aspect of the. invention, is prepared by mixing with a predetermined amount of solid binder material the desired abrasive grain coated with a liquid binder composition.
  • a predetermined amount of solid binder material the desired abrasive grain coated with a liquid binder composition.
  • Any combinationof solid and liquid binder materials may be used in the practice of the invention so long as it provides in the abrasive product an abrasive layer which sheds desirably at relatively low grinding pressures and in such a manner as to'produce an extended uniform rate of cut.
  • the liquid resin binder should, however, have a relatively long flowor gel time; This allows for more uniform bond formation between abrasive grains.
  • the preferred combination of binder materials has been determined to be a composition comprising a liquid epoxy binder-and a composition comprising particulate, solid phenolformaldehyde.
  • the abrasive mixture remains free flowing allowing storage in relatively great quantities and continuous application to a backing member.
  • Furfural is a solvent found to be highly suitable. Howeventhere is no requirement that the solid binder material in fact need be soluble at all in the liquid binder composition or solvent therein. The solid binder need be merely wet by the liquid binder composition for the abrasive mixture to'remain free flowing.
  • abrasive mixture to be used in the practice of our invention can vary considerably depending upon the characteristics desired in the abrasive layer. In general, however, a satisfactory abrasive mixture will be obtained, where, in the case of the preferred binder combination, the weight ratio of epoxy to furfural is from about A; to about Va and the wet to dry (solid phenolic binder) weight ratio is from about A; to /4. Obviously this ratio depends on many factors including grain size and shape, as well as particular binder mateabrasive grain can be, for example, precoated with an epoxy resin, the resin partially cured or dried ma nontacky state, and thensubsequently tackified or solvated atits otuer exposed surface prior to or in conjunction.
  • abrasive grain initially with a solvent, e.g. furfural for the resin binder:
  • the dry, free flowing, abrasive mixture, after deposition on the backing member, is then spread uniformly into an uncured abrasive layer 13-. by means of spreader 32.
  • This spreader which may be adjusted vertically, is desirably a V-shaped member having the apex extending opposite to the direction of travel of the backing member 11.
  • the base of the spreader extends laterally the width of the backing member whereby an abrasive layer is provided uniformly over the .entire backing member. 7
  • backing member 11 with the layer of abrasive mixture thereon, supported onmembers 33 is passed through a conventional tunnel.
  • heater 34 Therein the abrasive layer temperature will depend, of course, upon a number of factors, e.g., heater media temperature, residence time, etc. However, .the temperature of the abrasive mixture should be high. enough to cause further fusion of the solid binder material and to prepare the layer of abrasive mixture so that it can be easily compacted into a cohesive layer. In general, and preferably, the temperature of the layer of abrasive mixture should not be above about 240F. Otherwise, blistering of the abrasive layer may occur dueto rapid release of volatiles. However, by using the highest pos-.
  • a shorter hot soak cure cycle as hereinafter described, may be used.
  • the heating means may be of the non-contact type, e.g. dielectric and infrared.
  • the layer of abrasive mixture is then, while still sufficiently hot to be flowable under pressure, uniformly compacted, to the desired thickness in passing through the nip formed by driven rolls 35, 36.
  • driven rolls 35, 36 These rolls are steel surfaced, roll 36 being chilled by circulating cold .water therethrough.
  • the nip formedby compacting rolls 35, 36 is adjustable by means of air cylinder 37 or the like whereby any degree of compaction desired is obtain-' the usual practice in winding jumbo rolls, we have found it absolutely necessary that the abrasive layer be concave in the roll rather than convex.
  • the winding must be accomplished in such a manner that the abrasive layer faces toward the roll center, as shown in the drawing, rather than toward the outer periphery of the roll. Otherwise, on subsequent unwinding and flexing, the abrasive web will have the tendency to coil thus making it unsuitable in the formation of coated abrasive type articles. Moreover, should the abrasive web be wound with the abrasive layer convex in the jumbo roll, flexing results in a disrupted abrasive layer which does not lay flat and has a tendency to delaminate, during use, from the backing member.
  • the roll is built slowly, as the roll gets larger in diameter, and particularly with extra large diameter rolls, to maintain the abrasive web in a plane no more than about degrees with respect to the horizontal.
  • the coated abrasive web between the compacting rolls and the windup roll is substantially in a horizontal plane. This manner of winding avoids any tendency for the abrasive layer to delaminate from the backing member.
  • release web 41 is unwound from roll 42 thereof and is interleaved with the still hot abrasive layer.
  • Roll 42 is mounted in a conventional roll stand 43.
  • the release web may be of any material conventionally used for this purpose, e.g, silicone treated paper, or the like.
  • the jumbo roll 38 after removal from the windup section, is then heated, as is conventional in the manufacture of coated abrasive material in a hot air soaking room (not shown) to complete cure of the resinous adhesive binders.
  • a suitable curing cycle will depend upon the particular resinous binders used, as well as upon the size of the roll; however, a hot air temperature of from about 200F. to about 310F. for from about hour to about 10 hours is in general found satisfactory.
  • the cured abrasive web is made flexible by flexing procedures commonly used in the coated abrasive art.
  • This flexing will permit abrasive articles made in accordance with our invention to be used in grinding applications generally limited to conventional, substantially single layered grain, coated abrasive material.
  • the flexing is accomplished, in general, by passing the abrasive web over a small diameter steel bar while compression is applied by a rubber roll to the material in the nip.
  • the abrasive web is forced to conform to the curvature of the small diameter steel bar so as to crack or break the abrasive layer at regular intervals. Fracturing of the abrasive layer takes place without disrupting the adhesion thereof to the flexible backing member.
  • the abrasive layer breaks into irregularly shpaed strips or bars about A; inch wide of varying length running transverse to the web length.
  • the abrasive layer may be broken so that the flex lines run laterally to the edge, as above-described, or, if desired, so that the lines of break intersect so as to cause diamond-shaped sections of the abrasive layer between the flex cracks.
  • the flex pattern may be predetermined by impressing grooves or lines in the abrasive layer prior to curing of the binder matrix.
  • EXAMPLE I A cotton, twill weave fabric, saturated and backsizcd with water resistant binders, all of which is conven- PARTS BY COMPONENTS WElGHT BRL2028 (a liquid, caustic catalyzed 3 phenol-formaldehyde resinous composition available from U.C.C. having 83.5% solids (avg) a P/F ratio of L3, a gel time (G.E.
  • BRLl 100 (a liquid, caustic catalyzed l phenol-formaldehyde resinous composition available from U.C.C. having 68% solids (avg) a P/F ratio of L3, a gel time (G.E. gel test) of l9.26 min., a viscosity (77F) of 800-1200 c.p.s., a pH of 7.5, and a water tolerance of 30007:)
  • the thus-coated backing member was then forwarded to a second coating station whereat an abrasive mixture was applied on the adhesive coated backing member in sufficient amount to provide an abrasive layer, after spreading, having a thickness of 0.105 inch.
  • the abrasive mixture was prepared by first mixing together, in a Hobart Mfg. Co. vertical, planetary drive mixer, aluminum oxide abrasive grain (spindly shaped) having an average particle size of 335 microns with a liquid adhesive composition comprising:
  • PARTS BY COMPONENT WEIGHT epoxy resin (condensation product 3 of epichlorohydrin and bisphenol-A having an epoxide equivalent of l75-l95, a molecular weight of 306, and a viscosity of 9-15 poises (available from Shell Chemical Company under the trade designation EPON 815) furfural 1 PARTS BY COMPONENTS WEIGHT a novolak phenol-formaldehyde resinous 50.9 composition available commercially from U.C.C. under the trade designation Bakelite BRP54l7 and containing 8.7-9.5'7: hexamethylene tetramine Fe 5 (available from Frank Samuel Co.) 3 l .9 KBF (available from B&A Chemical Co.) 15.9
  • each liquid binder composition coated grain was uniformly coated with the dry solid binder material composition and the abrasive mixture was of a free flowing character.
  • each abrasive grain will beseen to be coated with the liquid binder compositiomthis composition in turn containing on-its exposed surface the particles of solid binder composition.
  • the abrasive mixture is easily dissipatedby mere blowing thereon.
  • thefree flowing abrasive mixture was then spread into a layer of the desired thickness by passing the backing member with the abrasive mixture thereon under a conventional spreader shaped like a snow plow (90V).
  • This spreader which at its base end extended the width of the backing member, was'positioned so that its apex faced opposite the direction of travel of the backing member.
  • the coated backing member was passed through an infra-red oven wherein the abrasive layer was heated for 1 minute at 220F. This heating results in devedlopment of sufficient green strength in the abrasive layer for it to be compacted.
  • the heated abrasive coated web was then passed through the nip formed by a pair of steel compacting rolls being spaced apart so as to provide a nip spacing of 0.078 inch.
  • the upper roll was cooled by circulating water there through,-whereby th'eabrasive layer was prevented from sticking to the roll surface.
  • the abrasive coated backing member was then advanced, in a horizontal plane, to a windup section where it was wound up (abrasive layer concave) into a jumbo roll.
  • a release paper (Patapar 34-24T available from Patterson Parchment Paper Co.) was inter-wound with the abrasive web. During winding, as the roll increased in diameter, it was moved vertically upwardly to thereby maintain the backing member being wound at an angle no greater than about below the horizontal.
  • the jumbo roll was removed from the windup section and was then subjected to hot soaking conditions as follows: start cure at 200F; heat for hour and raise tem perature to 310F and heat for 5 hours.
  • the binder materials are thus cured to the desired degree after which the abrasive web is ready for processing, in conventional fashion, into various coated abrasive type articles.
  • Abrasive material comprising a porous, compacted abrasive layer comprising particulate abrasive grains each being encapsulated in a'first binder material, the encapsulated abrasive grains being distributed throughout the abrasive layer in a matrix of a second binder material, said second binder materialbeing more resis tant to distortion than said first binder material under pressure at the temperature attained during usage'of an abrasive article comprising the abrasive material whereby in usage the first binder material will become heated and distortedsufficiently that said abrasive grains will be desirably shed from the abrasive layer.
  • Abrasive material in accordance with claim 1 further comprising a flexible backing member having a front side and a back side, said abrasive layer being adhesively secured to said front side.
  • Abrasive material according to claim 4 further comprising an adhesive layer interposed between said front side and said abrasive layer.
  • Process for the manufacture of abrasive material including the following steps:
  • liquid binder composition comprises epoxy resin and said solid binder composition comprises phenol-formaldehyde.
  • Process for the manufacture of abrasive material according to claim 18 including winding said abrasive coated web into a roll prior to said further heating, said winding being performed so that the abrasive layer faces the center of the roll.
  • Process for the manufacture of abrasive material according to claim 19 including moving said roll vertically upwardly during said winding thereby to maintain the abrasive coated web in a plane no more than 10 with respect to the horizontal plane.

Abstract

Abrasive material is provided in which a relatively thick, flexible, porous, abrasive layer is secured adhesively to a flexible backing member. In the manufacture of the abrasive material, abrasive grain is first coated with a liquid resinous binder composition after which the coated grain is then mixed with a solid, particulate, resinous binder composition, the latter binder being more resistant, after curing, to distortion when subjected to heat and pressure. The thus-formed free-flowing abrasive mixture is then coated continuously onto a flexible backing member. Afterwards, the layer of abrasive mixture is heated to cause fusion of the solid binder at the interface with the liquid binder. It is then compacted into a relatively dense abrasive layer, and is wound up into a jumbo roll in which condition the abrasive layer is subjected to further heat to cure the binder material.

Description

[ ABRASIVE ARTICLES AND THEIR METHOD OF MANUFACTURE Inventors: Charles W. Marshall, Troy; Loran A. Henderson, Elnora, both of N.Y.; William F. Zimmer, Jr., Paxton, Mass.
Assignee: Norton Company, Worcester, Mass.
Filed: May 20, 1971 Appl. No.2 145,275
U.S. Cl. 51/295; 51/296; 51/298 Int. Cl. B2413 1/00; B24D 11/00 Field of Search 51/295, 297, 298, 296
[56] References Cited UNITED STATES PATENTS 4/1956 Ball 51/298.1 8/1959 Barc|ay.... 51/295 6/1960 Goepfert 51/2-98 8/1970 Yoshikawa et al. 51/295 9/1971 Haywood 51/295 [451 Sept. 23, 1975 Primary Examiner-Donald .L Arnold Attorney, Agent, or FirmOliver W. Hayes [57] ABSTRACT Abrasive material is provided in which a relatively thick, flexible, porous, abrasive layer is secured adhesively to a flexible backingmember. In the manufacture of the abrasive material, abrasive grain is first coated with a liquid resinous binder composition after which the coated grain is then mixed with a solid, particulate, resinous binder composition, the latter binder being more resistant, after curing, to distortion when subjected to heat and pressure. The thus-formed freeflowing abrasive mixture is then coated continuously onto a flexible backing member. Afterwards, the layer of abrasive mixture is heated to cause fusion of the solid binder at the interface with the liquid binder. It is then compacted into a relatively dense abrasive layer, and is wound up into a jumbo roll in which condition the abrasive layer is subjected to further heat to cure the binder material.
25 Claims, 3 Drawing Figures I t A I BACKGROUND OF 'T'H "INVENTION 1..Field ofthe Invention I l This invention relates to abrasive material and itsmethod of manufacture having, in general, the physical.
form of coated abrasive materialand the performance attributes of a bonded abrasive.- More specifically, the invention is concerned with abrasive'material and abrasive articles formed therefrom in which a somewhatporous abrasive layer comprising a bindercoated grain in a binder matrix is secured to a flexible backing member. I l
2. Description of the Prior Art Abrasive products are classified broadly into two distinct classes, namely, coated abrasives and bonded abrasives. Those abrasive articlesfound inthe firstmentioned class are commonlyreferred to collectively as sandpapenof the latter-mentioned class of abrasives, grinding wheels are a representative type.
Conventional coated abrasive material, in general, is characterized by a high degree of flexibility and versatility and by a layer of somewhat elongated abrasive grains adhesively secured to a flexible backing member in such a way that their longest axes are generally perpendicular, or nearly so, to the plane of the backing member. The abrasive layer in this material is substan-. tially a single layer of abrasive grain, ofa controlled variation in size, and the-grains are bonded only at their base. i.e., nearest adjacent the backing member material so that they stick up, cantilever-fashion, in random heights and spacings. I I
The initial aggressiveness of a properly made coated abrasive product is well known; however, coated abrasive products are-also well known to have an inordinately short life. With these products, during continued usentlie number of abrasive 'grains in contact With'thC workpiece, because of the variation in grain size and their Orientation, increases. This is because shorter abrasive-grains arev continually exposed as the taller abrasive grains are worn down. Moreover, the area of contact per grain increases very rapidly as the abrasive. grain wears away to flat areas.
It is well known that any abrasive article continues to function by reason of the factthat fresh, sharp abrading surfaces are presentedwhen the old abrading surfaces become too dull or smooth to.cut. Sharp abrasive surpassage of dull abrasive grain that'the adhesive bond holding theabrasivegrainis fractured and broken away and the dull grainis shed. Thus, in a coated abrasive product, shorter, fresh abrasive grains are exposed to the workpiece and cutting ability is somewhat restored.
Where fracture or shedding in an-abrasive article occurs during grinding, the decline in cutting rate is retarded and the abrasive product life is extended considerably.Howevenflwhcredulling of the; abrasive grain occurs without shedding, the cutting vrate ofthe abrasive article declines exponentially, and rapidlyreaches a value below which, even though 5a'majo'r portion of the abrasive grain is unused,'it is uneeonomical to continue.
In contrast to coated abrasive products,, bonded abrasive products, such as=grinding wheels, are characterized by a rigid, molded, porous mixture of binder and abrasive grain in whichthe abrasive grains are more or less supported in all three dimensions. The bond in, the'seabrasive products; as in,-coat ed abrasives, plays, two important roles. It must hold the abrasive grains: so that they can do their work and the bondmust be-de-. signed to release the abrasive grains which lose' .their cutting ability There are t wo basic ;types, of .bonds. in a bonded abrasive product, namely, vitrif ed and organic bonds.
A close-up view of avitrified. abrasive wheel would show the abrasive grains held-bya .latticework of bond postsl. So long as anabrasive grain, remains. sharp enough tobpenetrate thematerial being ground, the. v bond'will hold onto it. As the. al n asive grain begins .to get dull, the material being ground begins to resist pen-:- etration. When the force of the. resistance overcomes the strength of the bond post, the post fractures, releasing the dull abrasive grain from the wheel face. Y Y An organic bonded wheel does the same thing ina different way. Here there are no clearly definedbond posts holding the abrasive grain together. The abrasive grains are evenly distributed throughout a mass of bond. When an abrasive grain dulls and is unable to penetrate the material being ground, it gets hot enough to overcome the thermal resistance of the bond surrounding it. The bond softens and releases the dull grain. i A
Regardless'of the type 'bondi'however, in a bon'ded abrasive article, the same geometry is found therein at all levels, and the number and orientation" of abrasive grains in contact with the workpiece remains constant.
In the manufacture ofbonded abrasive products, the choice of and amount of various c'omponents'i'n the' abrasive mixture are carefully selected so that during is obtained in which as the wheel grinds away the metal the latter wears away the wheel. This results in a relatively constant rate of cut together with a uniformsurface finish of the workpiece. However, in certain instances, for example, where size, form or surface finish is of primary importance, it may be necessary to forego 1 reliance on the self-sharpening characteristics of the abrasive wheeland resort to dressing techniques to give the wheel the desired sharpness.
Heretofore, others skilled in the coated abrasive art have made various and numerous attempts to provide ina single abrasive product the desirable features of coated abrasives and bonded abrasives. ln general, however, to out knowledge, where these attempts have involved the provision of a thicker abrasive layer, in the nature of a bonded abrasive article, on a flexible backing member, they have been metwith only a limited degree of commercial success. Examples of prior art disclosing such a thick abrasive layer on a flexible backing. 1
member are US. Pat. Nos. 1,953,983; 2,001,911; 2,115,897; 2,194,472; 2,242,877; 2,682,733; 2,682,735; 2,743,559; and 2,770,928. 2
In the research and development work which culminated in our invention, an initial attempt was made to utulize abrasive mixtures conventionally usedin bonded abrasive wheel manufacture. These wheel mixes, however, were found unsuitable for the continuous manufacture of a coated abrasive-type product. Al-
though initially free flowing, the conventional wheel mixes, during storage, showed a marked tendency to pack and become agglomerated in the lower part of the coating feed storage vessel. These agglomerations, particularly in the lower part of the vessel, made it most difficult and sometimes impossible to discharge the abrasive mixture. While it is not definitely known what caused these agglomerations, it is theorized that such is caused at any one point in the storage vessel by the mere weight of the abrasive mixture above on that below it. Apparently this weight (static pressure) acts on the mix below it similar to the pressure in a wheel mold thus tending to compress the bond and abrasive grains together into a bonded abrasive form. In any event, we have found the problem of agglomerations has prevented the making up, in advance, of any great quantities of a conventional bonded abrasive mixuture for continuous coating onto a backing member.
Even when making up and coating less quantities of conventional wheel mixes, thus tending to avoid the packing problem, these abrasive mixes have been found to result in an abrasive layer having undesirable fracture and shedding characteristics. In contrast to bonded abrasives, the use of coated abrasive articles normally involves the application of considerably less pressure during grinding. Thus, adhesive bonds which would normally fracture in a wheel and permit the abrasive grain to desirably shed have not been found to suitably fracture when the abrasive mixture was coated on a flexible backing member. The application of grinding pressures higher than that used conventionally in coated abrasive usage and necessary to fracture the bond in conventional wheel mixes to permit shedding was found undesirable as it resulted in, in many instances, destruction of the flexible backing member. On the other hand, modifying the abrasive mixture by the inclusion of fillers therein to make the bond weaker and therefore more friable, as is conventionally done in bonded abrasive manufacture, failed to produce a suitably desirable failure rate. These modifications although the fillers and amounts thereof were widely varied, resulted in bonds either excessively friable, even at the relatively low grinding pressure utilized in coated abrasive applications, or not friable to the degree desired.
SUMMARY OF THE INVENTION Quite surprisingly and, it is believed, contrary to what one might expect in view of the prior art, we have discovered an abrasive mixture and a process for using it to manufacture an improved abrasive article which not only remains free flowing, thus making it particularly suitable for storage and the continuous coating onto a flexible backing member, but which also allows the manufacture of an abrasive materials in the nature of a coated abrasive material having an abrasive layer of improved cutting and wearing characteristics.
The abrasive mixture, in accordance with our invention, on formation of a layer thereof and after curing, comprises basically abrasive grain coated with a binder in a matrix binder of greater thermal resistance. Thus, the binder forming the abrasive grain socket or coating, on being subjected to heat and pressure, deforms and permits the abrasive grain on meeting sufficient resistance to penetration by the workpiece to be picked out of and shed from the abrasive layer.
The abrasive material of our invention has the desirable characteristics found generally in coated abrasive material; however, quiteadvantageously, this abrasive material additionally provides, during use, an abrasive layer in the nature of a bonded abrasive which sheds, however, under relatively low grinding pressures thus resulting in restored cutting ability, a relatively constant rate of cut, and maintenance of a uniform surface finish. Moreover, with the abrasive layer of our invention, which preferably is a layer at least several grain diameters thick, an abrasive product of predetermined grinding characteristics, flexibility, wide track capability, cool running, and the general adaptability of a coated abrasive article, can be provided and of longer product life than realized heretofore in coated abrasive products.
By our invention, the usefulness of coated abrasive type products may be extended into heavier stock removal applications. Moreover, it has been found possible to grind metals usually considered too hard for conventional coated abrasive material. In particular, the abrading of difficult-to-machine metals such as, e.g. titanium and stainless steel alloys has been greatly improved.
BRIEF DESCRIPTION OF THE DRAWING The invention will be better understood by reference to the drawing in which like numerals refer to the same parts in the various views and in which:
FIG. 1 is a cross-sectional view in part of an abrasive product according to the invention;
FIG. 2 is a greatly enlarged view of a section of the abrasive layer only in FIG. 1 showing the physical nature of this layer; and
FIG. 3 is a schematic representation of the process by which our novel abrasive materials is manufactured.
DETAILED DESCRIPTION OF THE INVENTION Turning now to the drawing, there is disclosed in FIG. 1 thereof a portion of abrasive material 10 having a physical appearance somewhat similar to that of conventional coated abrasive material. Abrasive material 10 has a flexible backing member 11 on the front side of which is provided an adhesive layer 12 which anchors a porous, compacted abrasive layer 13 to the backing member. A similar abrasive layer may be desired in some instances, for examples, in the manufacture of an abrasive disc, on the other side of the backing member.
The backing member I], which is employed in our invention, may be any of various flexible materials conventionally used in the manufacture of coated abrasives. Merely by way of example, the backing member may be of paper, cloth, vulcanized fiber, metal, etc. The so-called cloth backings may be of natural fibrous materials such as cotton, linen, etc.; man-made fibrous materials, of staple or continuous length fibers, such as nylon, polyester, etc.; or of inorganic fibrous materials such as glass. These cloth backing members may be either of woven or non-woven construction. Particularly good results have been obtained in the practice of the invention with backing members of woven natural fibrous material.
Adhesive layer 12 is a thin layer of suitable adhesive material preferably a rigid, high modulus thermosetting resin, the more preferred one being a heat-hardened phenol-formaldehyde resinous composition. These adhesive compositions are conventionally used as maker adhesives in the manufacture of coated abrasive material and a detailed description thereof is deemed unnecessary, As is well known, phenol-formaldehyde adhesive compositions are applied to a backing member as a solvent solution, a desirable solvent such as water or alcohol/water being used to adjust the solution to the desired viscosity for coating. The adhesive composi tion, as is conventional, may contain, if desired, fillers such as calcium carbonate, cryolite, clay, etc... Other adhesive compositions which, on curing, result in a relatively hard, heat resistant adhesive layer may be used rather than a phenolic, such as those comprising epoxy, polyester, polyurethane and the like.
Abrasive layer 13, contrary to that conventionally found in coated abrasive articles, has abrasive grains 14 unoriented and distributed throughout the abrasive layer. The abrasive grains, the reason for which will appear hereinafter, are surrounded by or encapsulated in a socket 15 of adhesive binder. These binder coated abrasive grains are in turn bonded together in abrasive layer 13 in a matrix 16 of binder. The amount of binder matrix is insufficient, however, to till the interstitial space between the abrasive grains thus leaving pores 17. in the abrasive layer. The structural configuration of the abrasive layer is better seen in the greatly enlarged view of a section thereof in FIG. 2; however, this illustration, it will be understood, is not intended to picture any exact arrangement of theabrasive grains. Some of the grains in an actual abrasive layer in a product of our invention may be substantially in contact with one another and others more or less slightly spaced apart.
Binder material 15 surrounding the abrasive grains, although desirably somewhat heat resistant, is, at the temperatures usually attained during coated abrasive usage, distortable, particularly under pressure. This feature i.e., the thermal distortable nature of the binder material, results in, as hereinafter will become more ev ident, breakdown of the abrasive layer. In application of pressure during grinding, abrasive grains 14, as they become excessively dull, become hotter. This is turn imparts more heat to binder material 15 and permits abrasive grains 14 to be picked out, so to speak, on dislortion of the binder. 15 from the socket formed thereby. The picked out abrasive grains are then shed thus providing new cutting surfaces. Binder matrix 16, meanwhile, remains heat resistant at the grinding temperatures attained and, moreover, tends to resist fracture. Nevertheless, with this combination of binder materials, i.e., one more heat resistant than the other, an abrasive layer is obtained having the desired combination of performance characteristics.
Various binder material combinations may be used in the practice of the invention so long as they possess the necessary differences in thermal resistance. A particularly useful combination has been found in using an epoxy resin in conjunction with a phenol-formaldehyde resinous composition. A suitable, and one of the preferred epoxy resins for use in the invention is EPON 812 available from Shell Chemical Company. Such an epoxy resin is preferred because ofits relatively low viscosity (9l5 poises) and its rather high level of solubility of powdered phenol-formaldehyde resin. Other epoxy resins of higher viscosity may be used, for example EPON 1009, also available from Shell Chemical Company. Regardless of what binder material is used, however, to coat the abrasive grain, it must be less heat resistant than the matrix binder and, in general, will be deformable at temperature above about 240F.
For the matrix binder, a two stage, heat reactive, powdered resinous phenolic composition, as beforementioned, is preferred; One such material, which can be used with good results in combination with EPON 812, is available commercially from Union Carbide Corporation (Plastics Division) under the trade designation BRP5417. This material, once cured, is heat resistant and will char i.e., degrade and pyrolyze, at about 500F.
Although the amount of and ratio of different binder compositions will depend upon the particular componentsused in combination, where the combination is the above-mentioned epoxy-phenolic combination, the epoxy component should be at least about 0.6 per cent by weight of the abrasive grain. In any event, the amount of binder should be sufficient to provide a coating around, or socket for, the abrasive grains.
As mentioned above, other binder material combinations are useable in the practice of the invention. In place of the specific epoxy resins mentioned, other epoxy resins such as Dow D.E.R. 669 (Dow Chemical Company), and Bakelite ERL250 (Union Carbide Corporation), may be used as well as other resinous binders which are less resistant to distortion at temperature above about 240F. Instead of the phenolic component above-disclosed, Varcum I364 (Varcum Chemical, Division ofReichold Chemicals, Inc.), Mon. Resinox 755 (Monsanto Company, Plastics Division), Durite AD 5042 (Borden Chemical Company), may be substituted. However, regardless of what combination of binder material is used, the binder material making up the matrix is, preferably, at least somewhat soluble in the binder composition surrounding the abrasive grain. Where the binder material for the matrix is insoluble in, or not soluble to the desired degree, in the liquid adhesive binder for the socket, a solvent component can be used in the socket binder composition in which both binders are relatively soluble. In the practice of our invention, we have found that furfural, which is a solvent for both epoxy resins and phenolformaldehyde resins is desirably added to the binder composition for coating the abrasive grain.
Any type abrasive grain material may be used in the practice of the invention. Those materials which may be found especially suitable are silicon carbide, aluminum oxide, garnet, flint, diamond, emery, fused zirconia-alumina, etc., in grits of I20 and more coarse. Depending upon the abrasive product characteristics desired, the abrasive grain can be of the blocky type ordinarily used in bonded abrasives or of the spindly type usually found in coated abrasive material.
Within our inventive concept, it is possible to provide abrasive material with abrasive layers of various performance characteristics. The performance characteristics, e.g., amount cut, shed, etc., of abrasive layer 13, in addition to being influenced primarily by the resinous binder combination, are influenced also by the volume ratio of abrasive grain, bonding resin, and pores, as well as by the size and type of abrasive grain, fillers, active or otherwise, and the amount and type of binder materials. The optimum abrasive product for any one application may be determined readily by one skilled in the art. However, the inventive concept is deemed useful in any abrasive mixture having from about 3852% (by volume) abrasive grain, and from about 10-50% (by volume) resinous binder composition, the remainder being voids. Preferably however, the binder composition is from about -32% and the abrasive grain is from about 40-52%, and even more desirably these components in the abrasive layer are about 24-32% and about 42-48%, respectively, the remainder being voids.
An abrasive layer of any desired hardness can be made in accordance with the invention. In general, however, the density of this layer is no greaterthan the loose packed density of the abrasive grain. Otherwise, during manufacture of the abrasive material the backing member may be damaged, or the abrasive grain may be fractured.
In the event, in certain grinding applications, it is desired to alter the hardness or wear characteristics of the abrasive layer, a more easily friable bond may be obtained by adding certain fillers to the matrix composition. Those filler materials having a modulus lower than that of the matrix resin binder may be used in the invention. Examples of those suitable include hollow phenolic spheres, calcuium carbonate, powdered polyethylene, and polyvinyl chloride, etc. For certain applications it may be desirable to add to the matrix composition reactive fillers or grinding aids. In this category, in addition to the powdered polyethylene and polyvinyl chloride above-mentioned, are included, among others, potassium fluoroborate, ferrous oxide, cryolite, sodium silico fluoride, and iron pyrites. The filler component can be added to the matrix composition in quantities sufficient to weaken the matrix bond the degree desired or to accomplish and other result desired. As is believed obvious, some fillers may be used to accomplish a dual purpose, e,g., bond diluent and grinding aid. The exact amount of any filler required to accomplish any desired result will depend upon the kind of filler and the fineness thereof, this being readily determined by one skilled in the art of abrasive manufacture.
For general purpose applications, an abrasive material, according to the invention, having an abrasive layer of intermediate hardness and having desirable performance characteristics may be manufactured using grain having either a blocky shape or a spindly shape in an amount from 42-48% by volume. Softer abrasive layers, which are particularly suitable in applications involving high stock removal thus requiring shedding resulting in exposure of new cutting points, are manufactured using conventional spinly shaped coated abrasive grain in order to obtain uniform volume distribution. In relatively hard abrasive products wherein the abrasive layer the abrasive grain is greater than about 48% (by volume), the grain shape preferably is blocky in order to allow, as hereinafter described, adequate compaction of the abrasive layer in manufacture.
The thickness of the abrasive layer will, of course, determine to some extent the life of the abrasive material. We have discovered the preferred thickness for abrasive belts to be from about mils (0.025 inch), which represents about 1 grain layer for 40 mesh abrasive grain, to about 125 mils (0.125 inches). At thicknesses above about 125 mils the abrasive layer tends to become unwieldly and too strong for proper flexing and performance. Other than in abrasive belts, the abrasive layer thickness can be essentially as thick as desired. Above about /2 inch thickness, however, the abrasive product loses its resemblance to a coated abrasive product and more nearly resembles a bonded abrasive. In any event, the abrasive layer thickness should be at least slightly greater than the largest dimension of the biggest abrasive grain in the layer.
The invention will be, it is believed, better understood by reference to FIG. 3 of the drawing in which is illustrated apparatus which may be used in the method of manufacture of abrasive material according to the invention. This apparatus basically includes an unwind section, an adhesive coating section, a coated grain section, a drying section, a compacting section, and a windup section. All of these are indicated in the drawing by appropriate legend. These various sections are supported by a table or flat-like support denoted in the drawing by reference numeral 18. The table or flat-like support 18 is supported in a horizontal plane by a plurality of vertical posts 19.
In the practice of the invention, flexible backing member 11 is withdrawn continuously from supply roll 20 rotating in the direction indicated in the drawing by the arrow. Supply roll 20 comprising idler roll 21 and backing member 11 is located on a conventional unwind stand 21. The backing member passes around brake roll 22, guide rolls 23, 24 and through the nip formed by rolls 25, 26.
Brake roll 22 is fitted with an air actuated cylinder (not shown) which is conventionally used to give controlled tension on a traveling web-like member. Rolls 25, 26 in combination with roll 27, all of which rotate in the direction indicated, form a conventional 3-roll reverse roll coater. Although other coating roll systems may obviously be used, a reverse roll coater is particularly suitablein obtaining a uniformly thick adhesive layer over a relatively wide thickness range. Roll 26 having a rubber periphery is driven while rolls 25, 27, both of which have steel surfaces, are idler rolls. The rolls, as is conventional, can be adjusted to provide the desired nip and therefore adhesive layer thickness.
A film 28 of adhesive formed by extruding adhesive mass 29 through the nip formed by rolls 26, 27 is applied to the backing member. The adhesive mass is desirably a composition, as before-mentioned, comprising a liquid, heat reactive phenolic resin having a viscosity of at least 1000 cps. A preferred coating weight for this composition is from about 3.0 to about 15.0 lbs., more preferably from about 3.0 to about 9.0 lbs. per sandpaper makers ream.
In some instances, it may be desirable to provide this maker adhesive by other methods. One such alternate method involves coating the backing member previously with a front size which can be dried to a nontacky state but still remains heat flowable. The abrasive mixture, as hereinafter described, is applied to this dried front size layer, the front size, as well as the abrasive .mixture, being then subsequently subjected to heat, whereby the front size layer becomes tacky and the layer of abrasive mixture adhered to the backing member.
After being coated with adhesive mass 29, the adhesive coated backing member 11, supported on support member 30, then passes under the abrasive mixture coating apparatus 31 by means of which is deposited on the backing member a sufficient quantity of the desired abrasive mixture. Support member 30, used in the practice of our invention, is a grid of square metal bars that have been surface ground to give an uniformly planar surface. The bars are spaced apart to allow excess coated grain from the coating and spreading operation, hereinafter described, to fall through the support means and be recovered and-recycled.'Ob viously, if desired, other support rneanscan be provided such as, for example, a plurality of sequential rot'atingrollsora perforated metal plate. 3 5
A sufficient amount of the abrasive mixture, which is dry and free flowing, is applied to the backing member to result in an abrasive layer having a thickness of at least as great as the largest dimension of the largest size abrasive grain in the mixture..'However, a primary advantage in our invention resides in the ability to provide an abrasive article having more than substantiallyja single layer of abrasive grain. Where flexibility is of concern, however, a layer having a thickness no greater than about 0.250 inch, preferably no greater than about 0.125 inch, is desired. Y
The abrasive mixture, in the preferred aspect of the. invention, is prepared by mixing with a predetermined amount of solid binder material the desired abrasive grain coated with a liquid binder composition. Any combinationof solid and liquid binder materials, as before-mentioned, may be used in the practice of the invention so long as it provides in the abrasive product an abrasive layer which sheds desirably at relatively low grinding pressures and in such a manner as to'produce an extended uniform rate of cut. The liquid resin binder should, however, have a relatively long flowor gel time; This allows for more uniform bond formation between abrasive grains. I
The preferred combination of binder materials, as before-mentioned, has been determined to be a composition comprising a liquid epoxy binder-and a composition comprising particulate, solid phenolformaldehyde. A solvent component in which both the liquid and solid binder materials are soluble at least to some degree, is included, in the preferred instance.
Thus, the abrasive mixture remains free flowing allowing storage in relatively great quantities and continuous application to a backing member. Furfural is a solvent found to be highly suitable. Howeventhere is no requirement that the solid binder material in fact need be soluble at all in the liquid binder composition or solvent therein. The solid binder need be merely wet by the liquid binder composition for the abrasive mixture to'remain free flowing.
The exact abrasive mixture to be used in the practice of our invention can vary considerably depending upon the characteristics desired in the abrasive layer. In general, however, a satisfactory abrasive mixture will be obtained, where, in the case of the preferred binder combination, the weight ratio of epoxy to furfural is from about A; to about Va and the wet to dry (solid phenolic binder) weight ratio is from about A; to /4. Obviously this ratio depends on many factors including grain size and shape, as well as particular binder mateabrasive grain can be, for example, precoated with an epoxy resin, the resin partially cured or dried ma nontacky state, and thensubsequently tackified or solvated atits otuer exposed surface prior to or in conjunction.
tive procedure would involvecoating the abrasive grain initially with a solvent, e.g. furfural for the resin binder:
materials and afterwards sequentially adding the binder material, the solid binder material being added last.
The dry, free flowing, abrasive mixture, after deposition on the backing member, is then spread uniformly into an uncured abrasive layer 13-. by means of spreader 32. This spreader, which may be adjusted vertically, is desirably a V-shaped member having the apex extending opposite to the direction of travel of the backing member 11. The base of the spreader extends laterally the width of the backing member whereby an abrasive layer is provided uniformly over the .entire backing member. 7
Afterwards backing member 11 with the layer of abrasive mixture thereon, supported onmembers 33, is passed through a conventional tunnel. heater 34. Therein the abrasive layer temperature will depend, of course, upon a number of factors, e.g., heater media temperature, residence time, etc. However, .the temperature of the abrasive mixture should be high. enough to cause further fusion of the solid binder material and to prepare the layer of abrasive mixture so that it can be easily compacted into a cohesive layer. In general, and preferably, the temperature of the layer of abrasive mixture should not be above about 240F. Otherwise, blistering of the abrasive layer may occur dueto rapid release of volatiles. However, by using the highest pos-. sible oven exit temperature, a shorter hot soak cure cycle, as hereinafter described, may be used. Thus, in the hot soakcycle, there will be less chance for damage to the backing member from prolonged heating. Various means of heating, as is believed obvious, may be used; however, because of the extreme free flowing nature of the abrasive mixture, the heating means providedshould be of the non-contact type, e.g. dielectric and infrared. v 3
On emerging from the tunnel heater, the layer of abrasive mixture is then, while still sufficiently hot to be flowable under pressure, uniformly compacted, to the desired thickness in passing through the nip formed by driven rolls 35, 36. These rolls are steel surfaced, roll 36 being chilled by circulating cold .water therethrough. The nip formedby compacting rolls 35, 36 is adjustable by means of air cylinder 37 or the like whereby any degree of compaction desired is obtain-' the usual practice in winding jumbo rolls, we have found it absolutely necessary that the abrasive layer be concave in the roll rather than convex. In other words, the winding must be accomplished in such a manner that the abrasive layer faces toward the roll center, as shown in the drawing, rather than toward the outer periphery of the roll. Otherwise, on subsequent unwinding and flexing, the abrasive web will have the tendency to coil thus making it unsuitable in the formation of coated abrasive type articles. Moreover, should the abrasive web be wound with the abrasive layer convex in the jumbo roll, flexing results in a disrupted abrasive layer which does not lay flat and has a tendency to delaminate, during use, from the backing member.
In practice, it has been found desirable, unless the roll is built slowly, as the roll gets larger in diameter, and particularly with extra large diameter rolls, to maintain the abrasive web in a plane no more than about degrees with respect to the horizontal. Preferably, however, the coated abrasive web between the compacting rolls and the windup roll is substantially in a horizontal plane. This manner of winding avoids any tendency for the abrasive layer to delaminate from the backing member.
During winding of the abrasive web, release web 41 is unwound from roll 42 thereof and is interleaved with the still hot abrasive layer. Roll 42 is mounted in a conventional roll stand 43. The release web may be of any material conventionally used for this purpose, e.g, silicone treated paper, or the like.
The jumbo roll 38, after removal from the windup section, is then heated, as is conventional in the manufacture of coated abrasive material in a hot air soaking room (not shown) to complete cure of the resinous adhesive binders. A suitable curing cycle will depend upon the particular resinous binders used, as well as upon the size of the roll; however, a hot air temperature of from about 200F. to about 310F. for from about hour to about 10 hours is in general found satisfactory.
After hot soaking, the cured abrasive web is made flexible by flexing procedures commonly used in the coated abrasive art. This flexing will permit abrasive articles made in accordance with our invention to be used in grinding applications generally limited to conventional, substantially single layered grain, coated abrasive material. The flexing is accomplished, in general, by passing the abrasive web over a small diameter steel bar while compression is applied by a rubber roll to the material in the nip. Thus the abrasive web is forced to conform to the curvature of the small diameter steel bar so as to crack or break the abrasive layer at regular intervals. Fracturing of the abrasive layer takes place without disrupting the adhesion thereof to the flexible backing member. The abrasive layer breaks into irregularly shpaed strips or bars about A; inch wide of varying length running transverse to the web length.
The abrasive layer may be broken so that the flex lines run laterally to the edge, as above-described, or, if desired, so that the lines of break intersect so as to cause diamond-shaped sections of the abrasive layer between the flex cracks. If desired, but this is not deemed necessary for the proper functioning of any subsequently formed coated abrasive article, the flex pattern may be predetermined by impressing grooves or lines in the abrasive layer prior to curing of the binder matrix.
The following examples, will, it is believed, more clearly illustrate the preferred embodiments of our invention.
EXAMPLE I A cotton, twill weave fabric, saturated and backsizcd with water resistant binders, all of which is conven- PARTS BY COMPONENTS WElGHT BRL2028 (a liquid, caustic catalyzed 3 phenol-formaldehyde resinous composition available from U.C.C. having 83.5% solids (avg) a P/F ratio of L3, a gel time (G.E. gel test) of l7.4 min., a viscosity (77F) of 35000-80000 c.p.s., a pH of 8.4, residual caustic 0.94%, and a water tolerance of from 20-50%) BRLl 100 (a liquid, caustic catalyzed l phenol-formaldehyde resinous composition available from U.C.C. having 68% solids (avg) a P/F ratio of L3, a gel time (G.E. gel test) of l9.26 min., a viscosity (77F) of 800-1200 c.p.s., a pH of 7.5, and a water tolerance of 30007:)
and which had been adjusted with water to provide a solution viscosity at 72F of l000il00 c.p.s. A sufficient amount of the adhesive compostion was applied on the backing member to provide a weight of 6i0.5 lbs/sandpaper makers ream.
The thus-coated backing member was then forwarded to a second coating station whereat an abrasive mixture was applied on the adhesive coated backing member in sufficient amount to provide an abrasive layer, after spreading, having a thickness of 0.105 inch.
The abrasive mixture was prepared by first mixing together, in a Hobart Mfg. Co. vertical, planetary drive mixer, aluminum oxide abrasive grain (spindly shaped) having an average particle size of 335 microns with a liquid adhesive composition comprising:
PARTS BY COMPONENT WEIGHT epoxy resin (condensation product 3 of epichlorohydrin and bisphenol-A having an epoxide equivalent of l75-l95, a molecular weight of 306, and a viscosity of 9-15 poises (available from Shell Chemical Company under the trade designation EPON 815) furfural 1 PARTS BY COMPONENTS WEIGHT a novolak phenol-formaldehyde resinous 50.9 composition available commercially from U.C.C. under the trade designation Bakelite BRP54l7 and containing 8.7-9.5'7: hexamethylene tetramine Fe 5 (available from Frank Samuel Co.) 3 l .9 KBF (available from B&A Chemical Co.) 15.9
able from Allied Chemical Corp.)
Mixing was continued until each liquid binder composition coated grain was uniformly coated with the dry solid binder material composition and the abrasive mixture was of a free flowing character. On close examination each abrasive grain will beseen to be coated with the liquid binder compositiomthis composition in turn containing on-its exposed surface the particles of solid binder composition. When taken inhand, the abrasive mixture is easily dissipatedby mere blowing thereon.
After deposition on the backing member, thefree flowing abrasive mixture was then spread into a layer of the desired thickness by passing the backing member with the abrasive mixture thereon under a conventional spreader shaped like a snow plow (90V). This spreader, which at its base end extended the width of the backing member, was'positioned so that its apex faced opposite the direction of travel of the backing member.
Afterwards the coated backing member was passed through an infra-red oven wherein the abrasive layer was heated for 1 minute at 220F. This heating results in devedlopment of sufficient green strength in the abrasive layer for it to be compacted.
The heated abrasive coated web was then passed through the nip formed by a pair of steel compacting rolls being spaced apart so as to provide a nip spacing of 0.078 inch. The upper roll was cooled by circulating water there through,-whereby th'eabrasive layer was prevented from sticking to the roll surface.
After compaction, the abrasive coated backing member was then advanced, in a horizontal plane, to a windup section where it was wound up (abrasive layer concave) into a jumbo roll. A release paper (Patapar 34-24T available from Patterson Parchment Paper Co.) was inter-wound with the abrasive web. During winding, as the roll increased in diameter, it was moved vertically upwardly to thereby maintain the backing member being wound at an angle no greater than about below the horizontal.
The jumbo roll was removed from the windup section and was then subjected to hot soaking conditions as follows: start cure at 200F; heat for hour and raise tem perature to 310F and heat for 5 hours. The binder materials are thus cured to the desired degree after which the abrasive web is ready for processing, in conventional fashion, into various coated abrasive type articles.
EXAMPLE I! Abrasive material manufactured as in Example I, was unwound. given a rubber roll flexing (upper roll, 3 inch diameter rubber (Shore D50 hardness); bottom roll, /8 inch diameter, steel) according to the usual techniques, and was then processed into an abrasive belt as conventionally done in the manufacture of coated abrasive belts.
Several of these belts were then evaluated on a modified FF-8 Hammond Surface Grinder (Hammond Machinery Builders, Inc. of Kalamazoo, Michigan) using Type 304 stainless steel workpieces, a knurled steel contact wheel, an abrasive belt speed of 3000 S.F.P.M., Thread-Kut 99 Grinding Oil, 0.100 inch downspeed, and 6-in./min. table feed. An average grinding ratio (volume metal removed/volume abrasive consumed) of 43 was obtained.
By way of comparison, a conventional, more coarse abrasive belt (Heavy duty 40 GritRESINALL Aluminum Oxide) was run, under optimum conditions, on the sametest equipment, using the same grinding oil and type workpiece. The results were about 600% better with the abrasive be'lt of our invention. However, quite unexpectedly, it is believed, though the finer'ab'rasive grain in the abrasive layer of our invention 'outcut a conventional coated abrasive article having abrasive grain two sizes more coarse, the surface'finish resulting was comparable to that produced using a conventional coated abrasive'belt of the same abrasive grain size.
As many different embodiments of our invention will readily occur to those skilled in the abrasive art, it is to be understood that the specific embodiments of the invention as presented herein are intended by way of illustration only and notlimiting on the invention but that the limitations thereon are to be determined only from the appended claims.
What we claim is:
1. Abrasive material comprising a porous, compacted abrasive layer comprising particulate abrasive grains each being encapsulated in a'first binder material, the encapsulated abrasive grains being distributed throughout the abrasive layer in a matrix of a second binder material, said second binder materialbeing more resis tant to distortion than said first binder material under pressure at the temperature attained during usage'of an abrasive article comprising the abrasive material whereby in usage the first binder material will become heated and distortedsufficiently that said abrasive grains will be desirably shed from the abrasive layer.
2. Abrasive material in accordance with claim 1 wherein said first binder material is distortable at a lower temperature than that attained during actual grinding.
3. Abrasive material in accordance with claim 1 further comprising a flexible backing member having a front side and a back side, said abrasive layer being adhesively secured to said front side.
4. Abrasive material according to claim 3 wherein said abrasive layer is at least as thick as the largest dimension of the largest grain in the abrasive layer.
5. Abrasive material according to claim 4 further comprising an adhesive layer interposed between said front side and said abrasive layer.
6. Abrasive material according to claim 5 wherein said first binder material softens with heat sufficiently to be distortable at a temperature greater than about 240F.
7. Abrasive material according to claim 6 wherein said first binder material comprises epoxy resin.
8. Abrasive material according to claim 7 wherein the matrix binder resists distortion when heated even at the temperatures attained during grinding.
9. Abrasive material according to claim 8 wherein said matrix binder material comprises phenolformaldehyde.
10. Abrasive material according to claim 9 wherein in said abrasive layer the abrasive grain comprises from about 38 to 52%, said first and second binder materials comprise from about 10 to 50%, and the remainder of said layer is voids, all of said percentages being by volume.
ll. Abrasive material according to claim wherein said abrasive layer has a thickness no greater than about 0.250 inch.
12. Abrasive material according to claim 11 wherein the density of the abrasive layer is less than the loose packed density of said abrasive grain.
13. Process for the manufacture of abrasive material including the following steps:
a. preparing a dry, freely flowable abrasive mixture comprising:
1. coating abrasive grain with a liquid binder composition; and
2. mixing with said coated grain a predetermined proportion of a solid binder composition;
b. coating the dry, free flowable abrasive mixture onto a suitable flexible backing member;
c. spreading the abrasive mixture uniformly into a layer of relatively uniform thickness;
d. heating the abrasive layer thereby to fuse said solid binder with said liquid binder;
e. compacting the heated abrasive layer to a predetermined thickness; and
f. heating further said compacted abrasive layer whereby to cure said binders, said first applied binder composition encapsulating each abrasive grain and being less resistant to distortion when heated than said binder in which the coated grains are mixed.
14. Process for the manufacture of abrasive material according to claim 13 wherein said flexible backing member is a continuous web.
15. Process for the manufacture of abrasive material according to claim 14 wherein prior to coating said abrasive mixture onto the flexible backing member, said member is provided with a layer of adhesive.
16. Process for the manufacture of abrasive material according to claim 15 wherein said adhesive layer comprises phenol-formaldehyde.
17. Process for the manufacture of abrasive material according to claim 16 wherein said liquid binder composition comprises epoxy resin and said solid binder composition comprises phenol-formaldehyde.
18. Process for the manufacture of abrasive material according to claim 17 in which said liquid binder composition further comprises furfural.
19. Process for the manufacture of abrasive material according to claim 18 including winding said abrasive coated web into a roll prior to said further heating, said winding being performed so that the abrasive layer faces the center of the roll.
20. Process for the manufacture of abrasive material according to claim 19 including moving said roll vertically upwardly during said winding thereby to maintain the abrasive coated web in a plane no more than 10 with respect to the horizontal plane.
21. Abrasive material according to claim 1 in which the abrasive layer further comprises a filler having a modulus lower than that of the matrix binder material whereby a more easily friable bond is obtained.
22. Abrasive material according to claim 21 wherein said filler is a reactive filler.
23. Process for the manufacture of abrasive material according to claim 13 wherein said solid binder composition is at least partially soluble in said liquid binder composition.
24. Process for the manufacture of abrasive material according to claim 13 wherein the weight ratio of liquid binder to solid binder varies from A; to A.
25. Process for the manufacture of abrasive material according to claim 18 wherein the weight ratio of epoxy resin to furfural varies from Va to /ia.
l l l

Claims (26)

1. ABRASIVE MAERIAL COMPRISING A POROUS, COMPACTED ABRASIVE LAYER COMPRISING PARTICULAE ABRASIVE GRAINS EACH BEING ENCAPSULATED IN A FIRST BINDER MATERIAL, THE ENCAPSULATED ABRASIVE GRAINS BEING DISTRIBUTED THROUGHOUT THE ABRASIVE LAYER IN A MATRIX OF A SECOND BINDER MATERIAL, SAID SECOND BINDER MATERIAL BEING MORE RESISTANT TO DISTORTION THAN SAID FIRST BINDER MATERIAL UNDER PRESSURE AT THE TEMPERATURE ATTAINED DURING USAGE OF AN ABRASIVE ARTICLE COMPRISING THE ABRASIVE MATERIAL WHEREBY IN USAGE THE FIRST BINDER MATERIAL WILL BECOME HEATED AND DISTORTED SUFFICIENTLY THAT SAID ABRASIVE GRAINS WILL BE DESIRABLY SHED FROM THE ABRASIVE LAYER.
2. Abrasive material in accordance with claim 1 wherein said first binder material is distortable at a lower temperature than that attained during actual grinding.
2. mixing with said coated grain a predetermined proportion of a solid binder composition; b. coating the dry, free flowable abrasive mixture onto a suitable flexible backing member; c. spreading the abrasive mixture uniformly into a layer of relatively uniform thickness; d. heating the abrasive layer thereby to fuse said solid binder with said liquid binder; e. compacting the heated abrasive layer to a predetermined thickness; and f. heating further said compacted abrasive layer whereby to cure said binders, said first applied binder composition encapsulating each abrasive grain and being less resistant to distortion when heated than said binder in which the coated grains are mixed.
3. Abrasive material in accordance with claim 1 further comprising a flexible backing member having a front side and a back side, said abrasive layer being adhesively secured to said front side.
4. Abrasive material according to claim 3 wherein said abrasive layer is at least as thick as the largest dimension of the largest grain in the abrasive layer.
5. Abrasive material according to claim 4 further comprising an adhesive layer interposed between said front side and said abrasive layer.
6. Abrasive material according to claim 5 wherein said first binder material softens with heat sufficiently to be distortable at a temperature greater than about 240*F.
7. Abrasive material according to claim 6 wherein said first binder material comprises epoxy resin.
8. Abrasive material according to claim 7 wherein the matrix binder resists distortion when heated even at the temperatures attained during grinding.
9. Abrasive material according to claim 8 wherein said matrix binder material comprises phenol-formaldehyde.
10. Abrasive material according to claim 9 wherein in said abrasive layer the abrasive grain comprises from about 38 to 52%, said first and second binder materials comprise from about 10 to 50%, and the remainder of said layer is voids, all of said percentages being by volume.
11. Abrasive material according to claim 10 wherein said abrasive layer has a thickness no greater than about 0.250 inch.
12. Abrasive material according to claim 11 wherein the density of the abrasive layer is less than the loose packed density of said abrasive grain.
13. Process for the manufacture of abrasive material including the following steps: a. preparing a dry, freely flowable abrasive mixture comprising:
14. Process for the manufacture of abrasive material according to claim 13 wherein said flexible backing member is a continuous web.
15. Process for the manufacture of abrasive material according to claim 14 wherein prior to coating said abrasive mixture onto the flexible backing member, said member is provided with a layer of adhesive.
16. Process for the manufacture of abrasive material according to claim 15 wherein said adhesive layer comprises phenol-formaldehyde.
17. Process for the manufacture of abrasive material according to claim 16 wherein said liquid binder composition comprises epoxy resin and said solid binder composition comprises phenol-formaldehyde.
18. Process for the manufacture of abrasive material according to claim 17 in which said liquid binder composition further comprises furfural.
19. Process for the manufacture of abrasive material according to claim 18 including winding said abrasive coated web into a roll prior to said further heating, said winding being performed so that the abrasive layer faces the center Of the roll.
20. Process for the manufacture of abrasive material according to claim 19 including moving said roll vertically upwardly during said winding thereby to maintain the abrasive coated web in a plane no more than 10* with respect to the horizontal plane.
21. Abrasive material according to claim 1 in which the abrasive layer further comprises a filler having a modulus lower than that of the matrix binder material whereby a more easily friable bond is obtained.
22. Abrasive material according to claim 21 wherein said filler is a reactive filler.
23. Process for the manufacture of abrasive material according to claim 13 wherein said solid binder composition is at least partially soluble in said liquid binder composition.
24. Process for the manufacture of abrasive material according to claim 13 wherein the weight ratio of liquid binder to solid binder varies from 1/3 to 1/4 .
25. Process for the manufacture of abrasive material according to claim 18 wherein the weight ratio of epoxy resin to furfural varies from 1/3 to 1/3 .
US145275A 1971-05-20 1971-05-20 Abrasive articles and their method of manufacture Expired - Lifetime US3906684A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US145275A US3906684A (en) 1971-05-20 1971-05-20 Abrasive articles and their method of manufacture
CA139,719A CA996759A (en) 1971-05-20 1972-04-14 Abrasive articles and their method of manufacture
FR7217804A FR2138739B3 (en) 1971-05-20 1972-05-18
IT68598/72A IT958926B (en) 1971-05-20 1972-05-19 ABRASIVE ARTICLE AND PROCEDURE FOR ITS MANUFACTURING
DE2224589A DE2224589A1 (en) 1971-05-20 1972-05-19 ABRASIVES AND METHOD OF MANUFACTURING THEREOF
GB2399272A GB1370853A (en) 1971-05-20 1972-05-22 Abrasive material and a method for its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US145275A US3906684A (en) 1971-05-20 1971-05-20 Abrasive articles and their method of manufacture

Publications (1)

Publication Number Publication Date
US3906684A true US3906684A (en) 1975-09-23

Family

ID=22512363

Family Applications (1)

Application Number Title Priority Date Filing Date
US145275A Expired - Lifetime US3906684A (en) 1971-05-20 1971-05-20 Abrasive articles and their method of manufacture

Country Status (6)

Country Link
US (1) US3906684A (en)
CA (1) CA996759A (en)
DE (1) DE2224589A1 (en)
FR (1) FR2138739B3 (en)
GB (1) GB1370853A (en)
IT (1) IT958926B (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4138228A (en) * 1977-02-02 1979-02-06 Ralf Hoehn Abrasive of a microporous polymer matrix with inorganic particles thereon
US4307544A (en) * 1979-11-28 1981-12-29 Roto-Finish Company, Inc. Finishing machine with abrasive lined chamber and method of finishing
US4317660A (en) * 1979-05-04 1982-03-02 Sia Schweizer Schmirgel-Und Schleif-Industrie Ag Manufacturing of flexible abrasives
US4364985A (en) * 1980-05-29 1982-12-21 Kao Soap Co., Ltd. Porous sheet
EP0211591A2 (en) * 1985-08-07 1987-02-25 Minnesota Mining And Manufacturing Company Erodable agglomerates and abrasive products containing the same, and method of preparation
EP0242512A2 (en) * 1986-04-25 1987-10-28 Rütgerswerke Aktiengesellschaft Composite materials, method for their production, and use
US4925457A (en) * 1989-01-30 1990-05-15 Dekok Peter T Abrasive tool and method for making
US4930266A (en) * 1988-02-26 1990-06-05 Minnesota Mining And Manufacturing Company Abrasive sheeting having individually positioned abrasive granules
US4960442A (en) * 1988-03-14 1990-10-02 Norddeutsche Schleifmittel-Industrie Christiansen & Co (Gmbh & Co) Flexible grinding tool
WO1991010538A1 (en) * 1990-01-22 1991-07-25 Tselesin Naum N Composite material
US5152809A (en) * 1990-07-16 1992-10-06 Herbert Glatt Scrub puff
US5190568A (en) * 1989-01-30 1993-03-02 Tselesin Naum N Abrasive tool with contoured surface
US5224968A (en) * 1992-07-07 1993-07-06 Ramron-Bancroft, Inc. Method for making abrasive wheels
US5322531A (en) * 1992-07-07 1994-06-21 Ramron-Bancroft, Inc. Methods for making abrasive wheels
US5370718A (en) * 1990-08-22 1994-12-06 Hitachi Maxell, Ltd. Abrasive tape
FR2706801A1 (en) * 1993-06-22 1994-12-30 Bizard Andre
US5560745A (en) * 1993-10-27 1996-10-01 Roberts; Ellis E. Oriented particles in hard surfaces
US5565011A (en) * 1993-10-19 1996-10-15 Minnesota Mining And Manufacturing Company Abrasive article comprising a make coat transferred by lamination and methods of making same
US6358133B1 (en) * 1998-02-06 2002-03-19 3M Innovative Properties Company Grinding wheel
US6471733B1 (en) * 2000-09-26 2002-10-29 Alex Cooper Polishing wheel
US6672952B1 (en) * 1998-12-23 2004-01-06 3M Innovative Properties Company Tearable abrasive article
US20040018802A1 (en) * 2002-07-26 2004-01-29 3M Innovative Properties Company Abrasive product, method of making and using the same, and apparatus for making the same
WO2005063445A1 (en) * 2003-12-29 2005-07-14 Impianti Macchine & Tecnologie S.R.L. Method and plant for manufacturing flexible abrasives, as well as flexible abrasive manufactured with said method
US20060048454A1 (en) * 2002-07-26 2006-03-09 3M Innovative Properties Company Abrasive product
US20060156634A1 (en) * 2002-07-26 2006-07-20 3M Innovative Properties Company Method of using abrasive product
US20070074455A1 (en) * 2005-10-05 2007-04-05 3M Innovative Properties Company Method of making a structured abrasive article
US20080022603A1 (en) * 2006-07-26 2008-01-31 Kinik Company Diamond disc manufacturing process
US20110009039A1 (en) * 2009-06-05 2011-01-13 Applied Materials, Inc. Method and apparatus for manufacturing an abrasive wire
US20110039070A1 (en) * 2009-08-14 2011-02-17 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body
US20110045292A1 (en) * 2009-08-14 2011-02-24 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body, and methods of forming thereof
CN104723228A (en) * 2015-04-10 2015-06-24 淄博理研泰山涂附磨具有限公司 Foam coating grinding tool and preparing method thereof
US9186816B2 (en) 2010-12-30 2015-11-17 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9211634B2 (en) 2011-09-29 2015-12-15 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated substrate body having a barrier layer, and methods of forming thereof
US9254552B2 (en) 2012-06-29 2016-02-09 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9278429B2 (en) 2012-06-29 2016-03-08 Saint-Gobain Abrasives, Inc. Abrasive article for abrading and sawing through workpieces and method of forming
US9375826B2 (en) 2011-09-16 2016-06-28 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9409243B2 (en) 2013-04-19 2016-08-09 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9878382B2 (en) 2015-06-29 2018-01-30 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9902044B2 (en) 2012-06-29 2018-02-27 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US20190314955A1 (en) * 2016-10-11 2019-10-17 Mirka Ltd Method and apparatus for producing endless abrasive articles and a produced abrasive article

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2600353C2 (en) * 1976-01-07 1983-04-07 Elektroschmelzwerk Kempten GmbH, 8000 München Process for the production of grinding tools in web or sheet form
DE2853761B1 (en) * 1978-12-13 1980-03-27 Hoechst Ag Process for the production of abrasives
DE3043796A1 (en) * 1980-11-20 1982-07-22 Walter 6342 Haiger Klingspor FLEXIBLE ABRASIVE, EXAMPLE IN THE FORM OF SHEETS, TAPES, DISKS OR THE LIKE
DE3219567A1 (en) * 1982-05-25 1983-12-01 SEA Schleifmittel Entwicklung Anwendung GmbH, 7530 Pforzheim ELASTIC GRINDING BODY AND METHOD FOR THE PRODUCTION THEREOF
US4842619A (en) * 1987-12-11 1989-06-27 Minnesota Mining And Manufacturing Company Glass polishing article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2740725A (en) * 1953-07-02 1956-04-03 Bay State Abrasive Products Co Manufacture of flexible abrasive products
US2899288A (en) * 1959-08-11 Method of forming an abrasive sheet
US2943926A (en) * 1958-07-18 1960-07-05 Cincinnati Milling Machine Co Abrasive wheel composition
US3525600A (en) * 1966-10-29 1970-08-25 Nippon Toki Kk Abrasive grains coated with a ceramic and a silicone resin
US3607159A (en) * 1967-05-12 1971-09-21 Norton Co Saturated, resilient, flexible and porous abrasive laminate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2899288A (en) * 1959-08-11 Method of forming an abrasive sheet
US2740725A (en) * 1953-07-02 1956-04-03 Bay State Abrasive Products Co Manufacture of flexible abrasive products
US2943926A (en) * 1958-07-18 1960-07-05 Cincinnati Milling Machine Co Abrasive wheel composition
US3525600A (en) * 1966-10-29 1970-08-25 Nippon Toki Kk Abrasive grains coated with a ceramic and a silicone resin
US3607159A (en) * 1967-05-12 1971-09-21 Norton Co Saturated, resilient, flexible and porous abrasive laminate

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4138228A (en) * 1977-02-02 1979-02-06 Ralf Hoehn Abrasive of a microporous polymer matrix with inorganic particles thereon
US4317660A (en) * 1979-05-04 1982-03-02 Sia Schweizer Schmirgel-Und Schleif-Industrie Ag Manufacturing of flexible abrasives
US4307544A (en) * 1979-11-28 1981-12-29 Roto-Finish Company, Inc. Finishing machine with abrasive lined chamber and method of finishing
US4364985A (en) * 1980-05-29 1982-12-21 Kao Soap Co., Ltd. Porous sheet
EP0211591A2 (en) * 1985-08-07 1987-02-25 Minnesota Mining And Manufacturing Company Erodable agglomerates and abrasive products containing the same, and method of preparation
EP0211591A3 (en) * 1985-08-07 1989-10-11 Minnesota Mining And Manufacturing Company Erodable agglomerates and abrasive products containing the same
EP0242512A2 (en) * 1986-04-25 1987-10-28 Rütgerswerke Aktiengesellschaft Composite materials, method for their production, and use
EP0242512A3 (en) * 1986-04-25 1989-11-29 Rutgerswerke Aktiengesellschaft Composite materials, method for their production, and use
US4930266A (en) * 1988-02-26 1990-06-05 Minnesota Mining And Manufacturing Company Abrasive sheeting having individually positioned abrasive granules
US4960442A (en) * 1988-03-14 1990-10-02 Norddeutsche Schleifmittel-Industrie Christiansen & Co (Gmbh & Co) Flexible grinding tool
US5049165A (en) * 1989-01-30 1991-09-17 Tselesin Naum N Composite material
WO1990009260A1 (en) * 1989-01-30 1990-08-23 Dekok Peter T Abrasive tool and method for making
US4925457A (en) * 1989-01-30 1990-05-15 Dekok Peter T Abrasive tool and method for making
US5092910A (en) * 1989-01-30 1992-03-03 Dekok Peter T Abrasive tool and method for making
US5190568A (en) * 1989-01-30 1993-03-02 Tselesin Naum N Abrasive tool with contoured surface
WO1991010538A1 (en) * 1990-01-22 1991-07-25 Tselesin Naum N Composite material
US5152809A (en) * 1990-07-16 1992-10-06 Herbert Glatt Scrub puff
US5370718A (en) * 1990-08-22 1994-12-06 Hitachi Maxell, Ltd. Abrasive tape
US5322531A (en) * 1992-07-07 1994-06-21 Ramron-Bancroft, Inc. Methods for making abrasive wheels
US5224968A (en) * 1992-07-07 1993-07-06 Ramron-Bancroft, Inc. Method for making abrasive wheels
FR2706801A1 (en) * 1993-06-22 1994-12-30 Bizard Andre
US5520712A (en) * 1993-06-22 1996-05-28 Bizard; Andre Abrasive cleaning balls and to methods and devices for manufacturing them
US5565011A (en) * 1993-10-19 1996-10-15 Minnesota Mining And Manufacturing Company Abrasive article comprising a make coat transferred by lamination and methods of making same
US5560745A (en) * 1993-10-27 1996-10-01 Roberts; Ellis E. Oriented particles in hard surfaces
US6358133B1 (en) * 1998-02-06 2002-03-19 3M Innovative Properties Company Grinding wheel
US6672952B1 (en) * 1998-12-23 2004-01-06 3M Innovative Properties Company Tearable abrasive article
US6471733B1 (en) * 2000-09-26 2002-10-29 Alex Cooper Polishing wheel
US7044989B2 (en) 2002-07-26 2006-05-16 3M Innovative Properties Company Abrasive product, method of making and using the same, and apparatus for making the same
US7384437B2 (en) 2002-07-26 2008-06-10 3M Innovative Properties Company Apparatus for making abrasive article
US20050081455A1 (en) * 2002-07-26 2005-04-21 3M Innovative Properties Company Abrasive product, method of making and using the same, and apparatus for making the same
US7553346B2 (en) 2002-07-26 2009-06-30 3M Innovative Properties Company Abrasive product
US6969412B2 (en) 2002-07-26 2005-11-29 3M Innovative Properties Company Abrasive product, method of making and using the same, and apparatus for making the same
US20060048454A1 (en) * 2002-07-26 2006-03-09 3M Innovative Properties Company Abrasive product
US20060048704A1 (en) * 2002-07-26 2006-03-09 3M Innovative Properties Company Apparatus for making abrasive article
US20040018802A1 (en) * 2002-07-26 2004-01-29 3M Innovative Properties Company Abrasive product, method of making and using the same, and apparatus for making the same
US20060156634A1 (en) * 2002-07-26 2006-07-20 3M Innovative Properties Company Method of using abrasive product
US6833014B2 (en) * 2002-07-26 2004-12-21 3M Innovative Properties Company Abrasive product, method of making and using the same, and apparatus for making the same
US7294158B2 (en) 2002-07-26 2007-11-13 3M Innovative Properties Company Abrasive product, method of making and using the same, and apparatus for making the same
US7297170B2 (en) 2002-07-26 2007-11-20 3M Innovative Properties Company Method of using abrasive product
WO2005063445A1 (en) * 2003-12-29 2005-07-14 Impianti Macchine & Tecnologie S.R.L. Method and plant for manufacturing flexible abrasives, as well as flexible abrasive manufactured with said method
US20070074455A1 (en) * 2005-10-05 2007-04-05 3M Innovative Properties Company Method of making a structured abrasive article
US7491251B2 (en) * 2005-10-05 2009-02-17 3M Innovative Properties Company Method of making a structured abrasive article
US20080022603A1 (en) * 2006-07-26 2008-01-31 Kinik Company Diamond disc manufacturing process
US7717972B2 (en) * 2006-07-26 2010-05-18 Kinik Company Diamond disc manufacturing process
US20100186887A1 (en) * 2006-07-26 2010-07-29 Kinik Company Dies for manufaturing diamond discs
US8387942B2 (en) 2006-07-26 2013-03-05 Kinik Company Dies for manufacturing diamond discs
US20110009039A1 (en) * 2009-06-05 2011-01-13 Applied Materials, Inc. Method and apparatus for manufacturing an abrasive wire
CN102481647A (en) * 2009-08-14 2012-05-30 圣戈班磨料磨具有限公司 Abrasive Articles Including Abrasive Particles Bonded To An Elongated Body
US9862041B2 (en) 2009-08-14 2018-01-09 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body
US20110039070A1 (en) * 2009-08-14 2011-02-17 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body
US8425640B2 (en) * 2009-08-14 2013-04-23 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body
US9028948B2 (en) 2009-08-14 2015-05-12 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body, and methods of forming thereof
US20110045292A1 (en) * 2009-08-14 2011-02-24 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body, and methods of forming thereof
US9067268B2 (en) 2009-08-14 2015-06-30 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated body
CN102481647B (en) * 2009-08-14 2015-07-15 圣戈班磨料磨具有限公司 Abrasive Articles Including Abrasive Particles Bonded To An Elongated Body
US9248583B2 (en) 2010-12-30 2016-02-02 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9186816B2 (en) 2010-12-30 2015-11-17 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9375826B2 (en) 2011-09-16 2016-06-28 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9211634B2 (en) 2011-09-29 2015-12-15 Saint-Gobain Abrasives, Inc. Abrasive articles including abrasive particles bonded to an elongated substrate body having a barrier layer, and methods of forming thereof
US9902044B2 (en) 2012-06-29 2018-02-27 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9254552B2 (en) 2012-06-29 2016-02-09 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9278429B2 (en) 2012-06-29 2016-03-08 Saint-Gobain Abrasives, Inc. Abrasive article for abrading and sawing through workpieces and method of forming
US9687962B2 (en) 2012-06-29 2017-06-27 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US10596681B2 (en) 2012-06-29 2020-03-24 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9409243B2 (en) 2013-04-19 2016-08-09 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
CN104723228A (en) * 2015-04-10 2015-06-24 淄博理研泰山涂附磨具有限公司 Foam coating grinding tool and preparing method thereof
US10137514B2 (en) 2015-06-29 2018-11-27 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US10583506B2 (en) 2015-06-29 2020-03-10 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US9878382B2 (en) 2015-06-29 2018-01-30 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
US20190314955A1 (en) * 2016-10-11 2019-10-17 Mirka Ltd Method and apparatus for producing endless abrasive articles and a produced abrasive article
US11628542B2 (en) * 2016-10-11 2023-04-18 Mirka Ltd Method and apparatus for producing endless abrasive articles and a produced abrasive article

Also Published As

Publication number Publication date
FR2138739B3 (en) 1975-08-01
FR2138739A1 (en) 1973-01-05
GB1370853A (en) 1974-10-16
CA996759A (en) 1976-09-14
IT958926B (en) 1973-10-30
DE2224589A1 (en) 1973-01-18

Similar Documents

Publication Publication Date Title
US3906684A (en) Abrasive articles and their method of manufacture
US5498268A (en) Abrasive articles and method of making abrasive articles
CN100357064C (en) Abrasive product, method of making and using the same, and apparatus for making the same
US5562745A (en) Abrasive articles, methods of making abrasive articles, and methods of using abrasive articles
KR101227209B1 (en) Abrasive product, method of making and using the same, and apparatus for making the same
US7491251B2 (en) Method of making a structured abrasive article
EP0061457B1 (en) Abrasive article comprising abrasive agglomerates supported in a fibrous matrix
US6217413B1 (en) Coated abrasive article, method for preparing the same, and method of using a coated abrasive article to abrade a hard workpiece
US4486200A (en) Method of making an abrasive article comprising abrasive agglomerates supported in a fibrous matrix
US6056794A (en) Abrasive articles having bonding systems containing abrasive particles
JPH09507658A (en) Abrasive material, method of manufacturing abrasive material, and polishing apparatus
US9586308B2 (en) Abrasive product coated with agglomerated particles formed in situ and method of making the same
JP2001508362A (en) Abrasive article and manufacturing method thereof
US20080155904A1 (en) Method of abrading a metal workpiece
JPS5921751B2 (en) Method for manufacturing spherical bonded abrasives made from abrasive particles