US3916889A - Patient ventilator apparatus - Google Patents

Patient ventilator apparatus Download PDF

Info

Publication number
US3916889A
US3916889A US401739A US40173973A US3916889A US 3916889 A US3916889 A US 3916889A US 401739 A US401739 A US 401739A US 40173973 A US40173973 A US 40173973A US 3916889 A US3916889 A US 3916889A
Authority
US
United States
Prior art keywords
patient
pressure
flip flop
circuit
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US401739A
Inventor
George K Russell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sandoz AG
Monaghan Medical Corp
Sandoz Inc
Original Assignee
Sandoz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandoz AG filed Critical Sandoz AG
Priority to US401739A priority Critical patent/US3916889A/en
Priority to CH1266374A priority patent/CH585551A5/xx
Priority to DK494074A priority patent/DK494074A/da
Priority to SE7411865A priority patent/SE398044B/en
Priority to NL7412628A priority patent/NL7412628A/en
Priority to GB41604/74A priority patent/GB1488358A/en
Priority to DE19742446055 priority patent/DE2446055A1/en
Priority to IT7427774A priority patent/IT1022370B/en
Priority to FR7432547A priority patent/FR2271806B1/fr
Priority to JP49110060A priority patent/JPS5063795A/ja
Priority to SU7402063442A priority patent/SU579853A3/en
Priority to CA210,232A priority patent/CA1014040A/en
Priority to BE148996A priority patent/BE820457A/en
Priority to DD181376A priority patent/DD116556A5/xx
Priority to ES430505A priority patent/ES430505A1/en
Priority to US05/590,616 priority patent/US3991790A/en
Application granted granted Critical
Publication of US3916889A publication Critical patent/US3916889A/en
Assigned to MONAGHAN MEDICAL CORPORATION, A CORP. OF N.Y. reassignment MONAGHAN MEDICAL CORPORATION, A CORP. OF N.Y. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: HOSPAL MEDICAL CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M16/0009Accessories therefor, e.g. sensors, vibrators, negative pressure with sub-atmospheric pressure, e.g. during expiration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M16/0009Accessories therefor, e.g. sensors, vibrators, negative pressure with sub-atmospheric pressure, e.g. during expiration
    • A61M16/0012Accessories therefor, e.g. sensors, vibrators, negative pressure with sub-atmospheric pressure, e.g. during expiration by Venturi means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0081Bag or bellow in a bottle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0075Bellows-type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/105Filters
    • A61M16/106Filters in a path
    • A61M16/107Filters in a path in the inspiratory path
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/42Reducing noise

Definitions

  • Colo' Disclosed herein is a patient ventilator apparatus hav- [73] Assignee: Sandoz, Inc., E. Hanover, NJ. ing a pneumatic control system operable in three different modes wherein the apparatus assists the breath- [22] Flled' Sept' 1973 ing of the patient, controls the patients breathing in a PP 401,739 timed manner, or operates in a combination assistlcontrol mode according to certain predetermined [52] U S C] 128/145 8 conditions.
  • Fluidic circuitry controls a valved bellows In ⁇ .Cl .2 pp in turn ppli i t a ti nt ub- [58] Field of Search 128/1458, 145.7, 145.6, hmtatms "i volume and prissure 128/1455 142 188 wherein the gas supplled to the bellows compnses an ad ustable oxygen/a r m1xture.
  • FluldlC timers are pro- [56] References Cited vided for use in the control mode of the circuitry, and identical fluidic circuitry combinations are provided UNITED STATES PATENTS for use in the assist mode to automatically trigger the 3,669,108 6/ 1972 Sundblom 128/ 145.8 ventilator apparatus into an inspiratory state accord- 373O1180 5/ 1973 f f 128/145-3 ing to the patients breathing requirements and to trig- 3,754,550 8/1973 Kipling 128/1458 Such apparatus into an exhalation state when a 3,756,229 9/1973 Olliver 128/1458 Primary ExaminerRichard A. Gaudet Assistant ExaminerHenry J. Recla Attorney, Agent, or FirmGerald D. Sharkin; Robert S. Honor; Walter F. Jewell MEZWEQ MODE 7o SWITCH FILTER predetermined inspiratory pressure is attained.
  • Certain respiratory apparatus is known in the art wherein fluidic circuits are provided for controlling the exhalation and inhalation cycles of a patient.
  • the instant disclosure relates to an improved patient ventilator apparatus utilizing totally pneumatic control circuitry for operating the ventilator apparatus in a plurality of desired modes wherein the breathing of the patient is assisted, completely controlled, or subjected to a combination assist/control operation according to predetermined parameters.
  • a pneumatic ventilator apparatus utilizing a pressurized source of gas for operating fluidic circuitry, which in turn controls a source of gas supplied to a patient.
  • air is exhausted from a bellows apparatus, and supplied through an outlet value to a patient breathing hose.
  • the bellows is surrounded by a confined volume, and it is evacuated by supplying oxygen to that confined volume, thus causing the bellows to collapse.
  • a weight is provided in the free lower end of the bellows, so that upon release of the oxygen pressure in the confined area surrounding the bellows, the latter will automatically be exposed under the influence of the weight, thereby pushing the oxygen out from the confined area and through a mixing valve, wherein the oxygen is either vented to the atmosphere or mixed with a supply of room air and then injected into the expanding bellows for use in the next succeeding inhalation cycle.
  • An inlet valve couples the mixing valve to the confined volume surrounding the bellows, and the inlet and outlet valves for the bellows apparatus are actuated alternately during the exhalation and inhalation cycles, respectively, by means of a logic circuit having its input coupled to one output of a master flip flop which in turn is controlled at one input by an exhalation timer signal and an automatic patient trigger signal, and controlled at its other input side by an inspiration timer signal, a pressure limit triggering circuit signal, and a volume limit signal coupled from the bellows apparatus.
  • the ventilator apparatus is provided with three different modes of operation selectable by means of a manually operable pneumatic switch.
  • the selecting switch is connected to activate the patient trigger circuit which, together with the pressure limit circuit, is responsive to the air pressure in a patient reference line, so that the master flip flop switches states to control the exhalation and respiration cycles of the bellows apparatus in accordance with the patients breathing demands. That is, when the air pressure in the patient reference line drops to a low level indicating the completion of an inspiratory cycle, that low level pressure is detected by the patient trigger circuit which then triggers the master flip-flop to initiate the inspiratory cycle of the bellows apparatus.
  • the pressure limit circuit provides a trigger signal to the master flip-flop to terminate the inspiratory cycle if the pressure in the patient reference line exceeds a predetermined value
  • the volume limit detector device in the bellows apparatus also provides a trigger signal to the master flip-flop to terminate the inspiratory cycle after a predetermined maximum amount of air has been supplied to the patient from the bellows apparatus, or a fluidic timing device provides a trigger signal to the master flip-flop to terminate the inspiratory cycle after a predetermined amount of time. Therefore, the first one of the pressure, volume, or time signals to reach its predetermined maximum value is the signal which triggers the flip-flop to terminate the inspiration cycle; and the command from the patient trigger circuit terminates the exhalation cycle.
  • the exhalation timer When the manually operable mode switch is positioned to select a CONTROL mode, the exhalation timer is activated and the patient trigger circuit is deactivated, so that the master flip-flop is controlled at one input by the output of the exhalation timer, while it is controlled at its other input by the pressure limit circuit, the inspiration timer, and the volume limit detector. Accordingly, in the CONTROL mode the exhalation cycle is automatically timed, as is the inspiration cycle, but the latter is also terminated prematurely of the inspiration timer output if the pressure limit signal or volume limit signal reach their predetermined maximum values.
  • the bellows for supplying air to the patient has an adjustable volume which is determined by a movable plate positioned to control the expansion of the bellows and which also contributes to defining the confined volume surrounding the bellows.
  • the master flip flop controls a power valve which supplies oxygenunder pressure to the confined volume thereby causing contraction of the bellows.
  • the bellows starts to expand under the force of a weight carried therein and the oxygen is forced out of the confined area and through the inlet valve which is actuated to an open condition by the logic circuit.
  • a mixing valve which receives the oxygen from the inlet valve is adjustable to conduct a controlled amount of the oxygen through to the bellows along with a partial supply of filtered room air.
  • the room air is received at ambient pressure and is drawn into the bellows due to a vacuum caused by its expansion.
  • the oxygen is supplied under pressure as a result of its forced expulsion from the confined area so that the mixing valve permits the oxygen content of the gas supplied to the bellows to be varied from 2l-l00%.
  • Each of the timer devices comprises a bellows housed within a chamber having an input orifice for receiving oxygen at a predetermined pressure to cause a timed contraction of the bellows.
  • a shaft has one end fixed to the movable end of the bellows, while the opposite end of the shaft closes a vent on a back pressure detector which is coupled to the input of the master flip-flop. Therefore, a pair of opposed inputs to the master flipflop are controlled respectively by the movable shafts on the two timer bellows.
  • each of the chambers surrounding the timer bellows have dump valves mounted therein, such valves being actuable by opposed outputs of the master flip-flop, so that as soon as the back pressure detector of one of the bellows provides an output for switching the master flip-flop, the resultant output of the flip-flop is coupled back to that bellows chamber to cause its depressurization, and to prepare it for its next timing cycle.
  • the two bellows devices and their surrounding chambers are mounted side by side and their back pressure sensing elements are movable mounted movably springs, so that they are adjustably positioned by means of a pair of cams fixed on a shaft, so that rotation of the shaft causes movement of the cams and adjustable movement of the two sensing devices.
  • this movement of the sensing devices changes the timing periods for both the exhalation and inspiration timers which can be adjusted in unison by rotation of the shaft.
  • a by-pass valve is provided in parallel with the input orifice to the inspira-.
  • the timing devices are constructed so that the I/E ratio has a maximum value of unity.
  • the patient trigger circuitry, and the pressure limit circuit have identical configurations, and each comprises a more universal trigger circuit for automatic operation in a patient ventilator.
  • the universal trigger circuit consists of a six-gate fluidic circuit having three proportional amplifiers connected in series with each other and with three serially connected fluidic flip-flops.
  • the universal circuit can be used as the patient trigger and the pressure limit circuit as described above, and depending on the input connections thereto it can function to provide an output in response to a small differential pressure at its inputs; it can function to provide an output in response to pressures slightly below ambient, as would be caused by a patients breathing efforts; it can function to provide an output in response to pressure levels above or below atmospheric, wherein the device is automatically biased so that it can be used in conjunction with end expiratory pressure signals; it can function to provide an output in response to air pressure inputs indicating maximum levels; and it can function to provide an output in response to flow signals, or rate of change of pressure as is sometimes desirable.
  • the circuit is utilized to provide an output in response to small differential pressures.
  • PEEP Positive End Expiratory Pressures
  • the PEEP pressure is fed through a diaphragm valve to the patient trigger module, to bias that module so that it can be triggered while the patient reference line is still above the ambient pressure level.
  • FIG. I shows a block diagram of a patient ventilator apparatus according to the invention
  • FIG. 2 is a schematic view of the fluidic circuitry illustrated in FIG. 1;
  • FIG. 3 is a front elevation of the mixing device mounted on the bellows apparatus disclosed in FIG. 1;
  • FIG. 4' is a sectional view taken along the line 4-4 of FIG. 3;
  • FIG. 5 is a sectional view taken along the line 55 of FIG. 3;
  • FIG. 6 is a sectional view taken along the lines 66 of FIG. 3;
  • FIG. 7 is a perspective view of the mixer valve stem illustrated in FIGS. 3-5;
  • FIG. 8 is a sectional view of the timer devices illustrated schematically in FIG. 2;
  • FIG. 9 is a sectional view of a dump valve used with the timer devices of FIG. 4.
  • FIG. 1 of the drawings An embodiment of the invention is depicted in block diagram form in FIG. 1 of the drawings, and includes a bellows apparatus 10 having a bellows element 12 fixedly held at its upper end within a cylindrically formed chamber 14.
  • the chamber 14 is provided at its upper end with a connecting conduit 16, and is provided at its lower end with an adjustable plate 18 having a seal 20 connected at its periphery for sealing the plate against the sidewalls of the chamber 14.
  • the plate is adjustably movable through the chamber 14 by means of an adjusting device 15, so that when the plate is moved upwardly the confined volume of the chamber within which the bellows can expand and contract is decreased, while such volume is increased when the plate 18 is moved downwardly within the chamber 14.
  • the bellows element 12 is charged with air through an input duct 22 having a check valve 24 mounted thereon, and the bellows element is connected in communication with an outlet valve 26 for actuation to allow air within the bellows element to be discharged to the patient during the inspiration cycle.
  • the discharge of air from the bellows element 12 is effected by pressurizing the chamber 14 with oxygen supplied through the conduit 16. When the chamber 14 is so pressurized with oxygen, it causes the bellows element 12 to collapse to expel the air previously charged therein.
  • the tidal volume of the system is determined by the placement of the plate 18 which plate also minimizes gas consumption by limiting the confined volume surrounding the bellows element 12.
  • the check valve 24 closes off the input port to the bellows element during its collapse.
  • the output valve 26 also includes a check valve to prevent air from the patient hose 28 from being injected into the bellows element, and the valve 26 is controlled by a diaphragm 30, which in turn is controlled by the fluidic circuitry described below.
  • the bellows element 12 continues its collapsing movement until the chamber 14 is depressurized in response to one of four different control signals which are adapted to terminate the inspiration cycle.
  • One of these four control signals is initiated by a rod 32 mounted above the bellows element 12 and spring loaded in a downward direction, but movable upwardly due to pressure exerted by the upward movement of the lower portion of the bellows element wherein such upward movement of the rod indicates the total exhaustion of the air previously charged into the bellows element.
  • the rod 32 closes a vent in a pressurized conduit 34, thus providing a back pressure signal along a volume limit conduit 36.
  • the conduit 34 is pressurized by a regulated supply of oxygen fed through an orifice 37.
  • the inspiration cycle is terminated when the chamber 14 is depressurized, and at that time the bellows element 12 automatically expands under the force of a weight 38 housed in its lower extremity.
  • the bellows element expands it creates a partial vacuum which opens the inlet check valve 24 and draws air inwardly through the conduit 22 which has a filter 40 connected thereto and disposed in communication with room air.
  • Depressurization of the chamber 14 is obtained by opening a bellows inlet valve 42 so that the oxygen which is forced out of the chamber 14 by the expanding bellows element 12 is coupled through the inlet valve 42 to a three port mixing valve 44 as described in detail below in conjunction with FIGS. 37.
  • the oxygen discharged from the chamber 14 through the valve 42 is vented to atmosphere by the valve 44, or is directed in an adjustablycontrolled volume to the conduit 22 which supplied air to the bellows element 12. Since the oxygen is discharged under pressure from the chamber 14, due to the expansion of the bellows element 12, the pressure of the oxygen exiting the mixer valve 44 is greater than the ambient pressure of the room air coupled through the filter 40, and therefore the oxygen/air mixture can be varied by positioning the valve 44 to a desired position.
  • the input and output valves 26 and 42 of the bellows apparatus 10, and the supply of oxygen to the chamber 14, are controlled by the fluidic circuitry shown in block diagram form in FIG. 1, such circuitry being energized by a 50 psig oxygen supply source indicated at reference numeral 46.
  • the pressurized oxygen is cou pled through a filter 48 to a power valve 50 which is gated to supply oxygen through an adjustable flow valve 52, and through a silencer-filter 54 to the input conduit 16 for the bellows chamber 14.
  • the output of the filter 48 is also coupled to a regulator 56 wherein the oxygen pressure is reduced so that the oxygen emanating from the regulator 56 can be used as a supply source for the active elements of the fluidic circuitry.
  • the regulated oxygen which may be at a pressure of about 5 psig, is also coupled through a three position mode selector switch 58, which permits the selection of three modes of operation, including an ASSIST mode, a CONTROL mode, and an ASSIST/CONTROL mode.
  • the fluidic circuitry includes a master flip flop 60 having a principle output 62 which actuates the power valve 50, and which operates a dual OR/NOR circuit 64 to provide regulated oxygen pressure signals along the respective conduits 66 and 68 to the inlet and outlet valves 42 and 26 of the bellows apparatus 10.
  • the dual OR/NOR circuit provides a positive signal on the output conduit 66 to close the inlet port to the bellows apparatus, while the outlet port 26 is allowed to open so that the inspiration cycle will commence due to collapsing movement of the bellows element 12, which in turn results from pressurization of the chamber 14.
  • the flip flop 60 will switch to its opposite stable state whereby a positive regulated pressure signal will be coupled along conduit 68 to close the outlet valve 26 while the pressure on conduit 66 will be decreased to allow the valve 42 to open so that he oxygen discharged from the bellows chamber 14 will pass through that input valve 42 to the mixing valve 44.
  • the flip flop 60 has three inputs which cause it to switch to its inspiration command state wherein it provides an output to conduit 62, and those three inputs are supplied from a manually operable input signal device 70, a patient trigger device 72, and an exhalation timer device 74.
  • the flip flop has four inputs for causing it to terminate its inspiration command, and those inputs are coupled from a manually operable exhalation triggering device 76, a pressure limit circuit 78, an inspiration timer device 80, and the volume limit detector device formed by the elements 32, 34, and 36 disposed in the bellows apparatus 10.
  • a pressure limit display device 82 is actuable to exhibit a red display in response to an indicator signal from a driver device 84 which in turn is energized by the output of the pressure limit circuit 78.
  • the display device 82 utilizes reflected light.
  • a red display device 86 is operated by a driver 88 in response to an output from the inspiration timer 80, while a green display light 90 operates in a similar manner under the control of an indicator driver 92 which is energized by an output from the patent trigger circuit 72.
  • a regulated oxygen pressure signal is applied to the patient trigger circuit through a conduit 93 to put it in an energized condition, and an input con trol port for the patient trigger circuit is coupled through a patient reference line 94 to the patient hose line 28, so that the patient trigger circuit provides an output to switch the master flip flop 60 to its inspiration state when the pressure in the patient reference line 94 decreases to a minimum indicating the completion of an exhalation cycle, While the system is operating in its ASSIST mode, the green light 90 will be actuated at each instance of a patient trigger output signal, which in turn is controlled by the patients breathing in response to a signal coupled along the patient reference line 94.
  • An additional input to the patient trigger device 72 includes a regulated oxygen signal coupled through an adjustable input port 96 to control the sensitivity of the trigger device 72, and an input signal from a Positive End Expiratory Pressure (PEEP) 98, wherein the patient trigger device 72 is adaptable to provide an output in response to a small differential input pressure between the input coupled along the conduit 94 and the PEEP input.
  • PEEP Positive End Expiratory Pressure
  • the PEEP circuit 98 has a gate input coupled from an output conduit 100 of the dual OR/NOR circuit 64, and the gate is maintained in a closed condition by the positive regulated oxygen supply coupled through a small orifice 102, an adjustable orifice 104, and a one way valve 106, to the gate input, wherein the junction of the adjustable orifice 104 and the one way valve 106 are vented to the atmosphere through an orifice 108.
  • the pressure in the conduit 100 opens the PEEP driver circuit to permit the regulated pressure coupled through the orifices 102 and 104 to be applied though an offset adjust orifice 110 and a spike damping volumetric chamber 112 to the patient trigger device 72.
  • the pressure limit circuit is identical in construction to the patient trigger circuit, but provides an output in response to a high pressure sensed on the patient reference line 94, and the sensitivity of the device is adjustable by means of a variable orifice 114 coupled as a second input thereto. Also, a pressure gauge 116 is connected at the second input to the pressure limit circuit 78 for displaying the selected pressure limit adjustment to which the circuit is sensitive, and a second pressure gausge 118 is connected to the patient reference line so that the actual pressure such line can be monitored. An adjustment is provided but not shown in FIG.
  • a conduit 122 for coupling to a nebulizer device wherein that conduit 122 is connected through an adjustable orifice 124 to an OFF position, an INTERMITTENT position wherein the nebulizer is operated by the output of the power valve 50, and a CONTINUOUS position wherein the nebulizer is operated by the supply source of oxygen as coupled through an orifice 128.
  • the inspiration cycle is terminated by the pressure limit circuit 78, by the manually operable signal device 76, by the volume limit signal coupled along the conduit 36, or by the inspiration timer 80, and the exhalation cycle is termi nated by the patient trigger circuit 72, or the manually operable signal device 70.
  • the regulated oxygen supply is coupled throgh the selecting switch 58 to energize the exhalation timer, while the patient trigger circuit 72 is deenergized. Therefore, in the CONTROL mode the inspiratory command generated in the conduit 62 is initiated by the exhalation timer 74 or the manual signal device 70, while the inspiratory cycle is terminated by any one of the four inputs to the master flip-flop 60 from the manually operable device, such inputs including signal pressure limit circuit 78, the inspiratory timer 80, or the volume limit signal conducted along conduit 36.
  • the master flip-flop may be operated during both the inspiratory and exhalation cycles in a timed manner determined by the timers 74 and 80, respectively. However, the inspiratory cycle is terminated prematurely of its timed duration if either pressure limit or the volume limit exceeds its maximum predetermined value.
  • FIG. 2 wherein a preferred form of the patient trigger circuit 72 is shown as comprising a six section fluidic device incorporating three proportional amplifiers 130A, 130B, 130C, connected in series with each other and in series with three serially connected flip flops 132A, 132B, 132C.
  • Each of the six circuits has its supply input coupled along the conduit 73 to the mode selector switch 58 while each of circuits 130B, 130C, 132A, 1328, and 132C, have their control inputs coupled to the respective outputs of the preceeding stage; while the control inputs to the first proportional amplifier 130A are coupled respectively to the output of the PEEP circuit 98 and to the patient reference line 94.
  • the adjustable sensitivity orifice 96 is coupled to a second control input to the proportional amplifier 1308, and this configuration permits a stable sensitivity adjustment from +1 to more than l0 cm H O with respect to ambient pressure.
  • the fourth input to the amplifier 1303 is vented.
  • the gating device for the PEEP driver 98 which is shown schematically in FIG. 2 comprises a diaphragm 134 which closes off the conduit leading to the PEEP input for the proportional amplifier 130A, and it is seen that the PEEP driver 98 is maintained in a closed condition by that diaphragm 134 due to pressure from conduit 100 during inspiration.
  • the pressure through the one way valve 106 is negated by a signal from the dual OR/- NOR circuit 17 during the inspiration cycle.
  • Diaphragm 134 permits oxygen flow'from the valves 102 and 104 and then through the adjustable valve and the damping chamber 112 through to the proportional amplifier A during exhalation. Also, during exhalation the pressure through 106 is delivered to conduit 100 where it is used to hold the patient circuit exhalation valve at the PEEP pressure.
  • an end expiratory pressure which remains higher than ambient pressure is generated by bleeding a small amount of the driving gas into the exhalation exhaust line through the one way valve 106. This keeps the diaphragm 134 of the PEEP device 98 at a slight positive pressure. Then, since most exhalation valves hold patient hose pressures slightly higher than their actuation pressures, the OR/NOR output pressure with PEEP will usually be less than the PEEP pressure shown on the patient pressure gauge. Therefore, variations in the obtainable PEEP pressures will be experienced with exhalation manifolds of different manufacturers.
  • the PEEP pressure is fed to the patient trigger module to bias that module so that it can be triggered while the patient hose pressure is still above the ambient pressure level.
  • the amount of pressure differ ence required to switch the trigger module is preset by the offset-adjust valve 110.
  • the diaphragm 134 is closed to remove the bias signal from the patient trigger module so that high exhalation valve pressures will not hold the ventilator in an inspiration condition.
  • the diaphragm 134 opens and allows the PEEP pressure to reach the patient trigger module circuit 130A.
  • the system is ususally preset so that the pressure difference required to trigger the patient trigger module is relatively large as compared to that normally required without PEEP to compensate for leaks.
  • the offset-adjust valve 110 is provided to function as a leak compensator for desensitizing the patient trigger module during PEEP operation.
  • the pressure limit circuit 78 is identical to the abovedescribed patient trigger circuit 72 in its construction, with the exception that the source supplied for each of the six individual circuits is coupled to the regulated source of oxygen provided at the output of the regulator 56, while the control inputs to the pressure limit circuit 78 are as described above in conjunction with FIG. 1.
  • the circuits 72 and 78 as illustrated in FIG. 2' of the drawings are identical, although their input signals may be connected in different ways to make the circuit responsive to different input parameters.
  • the inputs to the six-state circuit can be coupled in at least three different configurations so that the circuit may be described as a universal trigger circuit.
  • the inputs can be connected as illustrated at 72 in FIG. 2, while the PEEP input is replaced by an ambient pressure input so that the circuit will be sensitive to small negative pressures.
  • the PEEP input to the circuit 72 as illustrated in FIG. 2 may be connected to be automatically biased to allow triggering at pressure levels above or below atmospheric pressure.
  • the input may be connected to a three-position switch so that when PEEP pressures are used, a pressure slightly above atmospheric is applied, while with negative endexpiratory pressures (NEEP), a pressure slightly below atmospheric is applicable through a second position of the switch.
  • NEEP negative endexpiratory pressures
  • the referenceadjust gas is used to drive a venturi for evacuating the patient hose, thereby generating the vacuum necessary for the negative bias.
  • the third position of the switch may provide for normal operation so that the universal trigger circuit may be switched from NORMAL, to PEEP, to NEEP without requiring readjustment of the sensitivity control.
  • a further example of the responsiveness of the universal circuit results when a suitable restriction is placed in the patient hose input, while a feedback connection is coupled to the circuit 72 in place of the PEEP input so that the ventilator will be cycled as a function of flow, or as a function of the rate of change of pressure. That is, the feedback connection can be used to sense flow since the pressure differential across the restriction in the patient hose will give an indication of such flow.
  • This last-described configuration can be used to turn on the ventilator due to a slight patient breathing effort, and if a time delay circuit such as a fluidic RC circuit is provided in a parallel feedback line, the patient trigger signal can be extended.
  • the OR/NOR circuit 64 is also depicted in schematic form in FIG. 2 and comprises a two stage device, wherein the first stage 136 provides a positive pressure output along the conduit 66 in response to an input signal received from the flip flop 60 along the conduit 62. Similarly, the second stage 138 provides an output along conduit 100 during the inspiration cycle to maintain the exhalation valve on the patient hose in a closed condition during such inspiration cycle.
  • fluidic timers for respiratory equipment have been constructed to allow a certain volume (capacitance) of fluid to slowly increase or decrease to a desired switching pressure level.
  • a certain volume (capacitance) of fluid to slowly increase or decrease to a desired switching pressure level.
  • Another type of known timer comprises a fluidic oscillator combined with complex digital counter stages, and this configuration also has obvious drawbacks.
  • each of the timing devices 74 and 80 comprises a logic circuit 74A and 80A, and a bellows device 748 and 808, respectively.
  • the logic circuit 80A provides a regulated pressure output coupled through an orifice 80C to the chamber of the bellows device 808, and causes the bellows element thereof to collapse.
  • a rod 80D is fixed to the moveable portion of the bellows element, and is mounted to engage a sensor E for causing a back pressure along a conduit 80F which is connected as an inspiration cycle terminating signal of the flip flop 60.
  • the timing device 74 has the input of its logic circuit 74A connected for actuation by the opposing output of the flip flop 60 while the sensor device 74E couples a signal along the conduit 74F to terminate the exhalation cycle of the apparatus by switching the flip flop 60. Additionally, the ad justable orifice is connected in parallel with the orifice 80C to vary the [IE ratio as described above.
  • FIG. 3 shows an embodiment of the valve construction utilized with the bellows apparatus 10 wherein the room air is drawn through the filter 40, the oxygen/air mixture is controlled by the valve knob 44A, and the patient output hose is connected to the output port 28A.
  • the internal configuration of the valve apparatus is shown in FIGS. 4-6 which comprise sectional views wherein the opening 140, as shown in FIG. 4, comprises the port opening of the bellows element 12, while the input check valve 24 is shown in communication with a duct 22 corresponding with the duct 22 illustrated in FIGS. 5 and 6.
  • the air filter 40 is also shown in FIG.
  • FIG. 5 Also, the adjustable flow control orifice 52, and the oxygen filter 54 are shown in FIG. 6, while the valve stem for the mixing valve 44 is shown as element 448 in FIGS. 5 and 7.
  • the valve stem 44B When the valve stem 44B is rotated by means of the valve knob 44A to its extreme counterclockwise position, all of the oxygen forced out of the chamber 14 by the expanding bellows element 12 is vented to the atmosphere through a vent opening 142 as illustrated in FIG. 3.
  • the oxygen/air mixture is effected by the expanding bellows, and proportioned by the valve 44, the oxygen concentration is unaffected by the patients breathing, the inspiratory flow rate, the tidal volume, the patient hose pressure, or the cycle time, thereby providing an accurately controllable system in this regard.
  • the timing devices 748 and 808, shown schematically in FIG. 2, are illustrated in FIG. 8, wherein the device 74B, is depicted in a partially sectional view.
  • the timing devices include sealed cannisters 150, 151, each having a sealed collapsible bellows device 152 mounted therein.
  • the sensor device 74E is supported on a spring 154 and its elevation position is determined by the pressure exerted thereon by a cam 156 mounted on a shaft 158.
  • the sensor device 80E is positioned by a corresponding cam 160 mounted on the shaft 158.
  • a regulated air pressure is selectively applied through one of the orifices 74C and 80C to the cannisters and 151. Then,
  • the bellows 152 will collapse causing the spring-loaded rod 74D attached thereto to move upwardly untilvit engages the sensor 74E, thus closing a vent in the line 74F so that the flip flop 60 receives an input signal for switching it to provide an inspiratory command along conduit 62 as shown in FIGS. 1 and 2.
  • the bellows 152 and the spring loading on the rod 74D. are so proportioned that the movement of the rod does not require a large pressure change, so that the travel time for the rod canbe accurately established.
  • the adjustable orifice 120 as shown in FIGS.
  • the cam 156 and 160 are adjusted to provide the necessary exhalation and inspiratory time periods so that the desired maximum value for the quantity I/E .is defined. Then, the timing periods for both of the timers 74B and 80B can be sis multaneously adjusted by rotating the shaft 158 to reposition the sensing devices 74E and 80E by means of the cams 156 and 160. Subsequently, the I/E ratio can be decreased by opening the valve 120 to a desired position.
  • FIG. 8 The dump valves described above in conjunction with FIG. 2, are shown in FIG. 8, and a sectional view of the dump valve 74G is illustrated in FIG. 9 wherein it is seen that a bladder 162 maintains a valve seat 164 in a closed position on a discharge opening in the side wall of the cannister 150. Then, when the master flip flop is actuated by the exhalation timer 74 to provide an inspiratory command along the output conduit 62, the opposing output of the flip flop 60 is coupled to the bladder 162 to provide a slight negative pressure thereto so that the oxygen stored in the timer cannister 150 is exhausted to the atmosphere through the port 166 by the released valve seat 164.
  • the dump valve seals the outlet opening in the cannister 150 when the flip flop is switched out of its inspi-- ratory command state.
  • the apparatus disclosedin the foregoing specification, and in the accompanying drawings provides a patient ventilator which is controlled solely by fluidic circuitry to function manually, automatically, or semiautomatically, in response to the breathing requirements of a patient.
  • a fluidically controlled patient ventilator apparatus comprising:
  • a fluidic flip flop circuit switchable into first and second states, said flip flop circuit having opposed input ports for controlling said switching, and having at least one output port providing a pressure signal while said flip flop circuit is switched into said first stable state;
  • first fluidic timing means actuable during said inspi- ,ratory period and a second fluidic timing means ac- .tuable during an exhalation period, said first and second timing means having respective output ports coupled;to said opposed input ports of said flip flop for controlling said flip flop to switch be tween said stable states, wherein an output signal from said first timing means actuates said flip flop to switch from its first to its second stable state, nd an output from said second timing means actuates said flip flop to switch from its second to its first I stable state;
  • a fluidic trigger circuit having an input coupled to said patient breathing hose for providing a trigger signal at an output port thereof in reponse to a minimum pressure in said patient breathing hose corresponding to the termination of a patient exhalationcycle and means coupling said trigger signal to one of said input ports of said flip flop to control said flip flop to switch from its second to its first stable state to initiate said inspiratory period;
  • a fluidic pressure limit circuit having an input port coupled to said patient breathing hose for providing a limit signal at an output port thereof in reponse to a predetermined maximum pressure in the patient breathing hose, andmeans coupling said limit signal to one of said input ports of said flip flop to control said flip flop to switch from its first to its second stable state to terminate said inspiratory period;
  • a volume limit signal generating means coupled to said patient breathing hose for providing a trigger output signal in response to the sensing of a predetermined quantity of air supplied to the patient breathing hose by the air supply means, and means coupling said trigger signal to one of said input ports'of said flip flop to control said flip-flop to switch from its first to its second stable state to terminate said inspiratory period;
  • mode selecting means for selectively deenergizing said trigger circuit and said first timing means, one at a time.
  • a fluidically controlled patient ventilator apparatus as set forth in-claim 1 further comprising an adjustable oxygen/air mixing valve means coupled between said inlet valve and said bellows element for selective positioning-to control the oxygen content of the air within-the bellows, element wherein said mixing valve means is coupled to a source of room air, and is coupled through said inlet valve means to a source of oxygen.
  • a fluidically controlled ventilator apparatus as set forth in claim 2 wherein said bellows chamber comprises a fixed volume surrounding said bellows element, and further comprising means responsive to said pressure signal from said one output port of said flip flop circuit for charging said bellows chamber with oxygen to collapse said bellows and discharge the air therein through said outlet valve means;
  • said bellows element having a weight mountedtherein for causing its expansion upon depressurization of said bellows chamber; and further comprising conduit means interconnecting said bellows chamber and said inlet valve means wherein said oxygen charged into said bellows chamber escapes through said inlet valve for selective coupling through said mixing valve means to said expanding bellows element.
  • a fluidically controlled patient ventilator apparatus as set forth in claim 1 wherein said flip flop circuit has a second output port for generating a pressure signal while said flip flop is switched into its second stable state defining an exhalation period of the apparatus,
  • said first and second timing means comprise respective first and second fluidic logic switching circuits, first and second sealed cannisters, and first and second pressurized bellows members disposed within said sealed cannisters, said first switching circuit having output port means coupled for actuation by the pressure signal from said second output port of said flip flop circuit to charge a regulated quantity of air into said first cannister, and said second switching circuit having output pot means coupled for actuation by the pressure signal of said first output port of said flip flop circuit to charge said second cannister, wherein said charging of said cannisters causes the bellows members therein to collapse, and first and second sensing means for generating said timing means output signals in response to said collapse of said respective bellows after a predetermined air charging time of said cannisters, said sensing means being coupled to said opposed input ports of said flip flop circuits.
  • a fluidically controlled patient ventilator apparatus as set forth in claim 4 wherein said first and second sensing means are movably mounted, and wherein movement thereof changes said predetermined air charging times at which said output signals are generated, and further comprising a rotatable shaft having a pair of cams mounted thereon in a spaced relation for engaging said first and second sensing means, whereby rotation of said shaft and cams moves said sensing means and changes the timing periods of said first and second timing means.
  • a fluidically controlled patient ventilator apparatus as set forth in claim 5 further comprising an adjustable by-pass valve connected to change the charging time of said first cannister for independently adjusting the timing period of said first timing means.
  • a fluidically controlled patient ventilator apparatus as set forth in claim 6 further comprising first and second dump valve means mounted respectively on said first and second cannisters for depressurizing said cannisters in response to input signals received respectively from said second output port and said one output port of said flip flop circuit.
  • a fluidically controlled patient ventilator apparatus as set forth in claim 1 wherein said trigger circuit and said pressure limit circuit are constructed identically and comprise three proportional amplifiers con nected in series, and three fluidic flip flops connected in series with each other and in series with an output of said three fluidic amplifiers, and wherein said trigger circuit further comprises means for connecting inputs of one of said three fluidic amplifiers to a pressure source for adjusting the sensitivity thereof, and for connecting inputs of another one of said fluidic amplifiers to a positive end expiratory pressure signal and to said patient breathing hose.
  • a fluidically controlled patient ventilator apparatus as set forth in claim 1 further comprising a positive end expiratory pressure circuit having an output coupled to an input port of said patient trigger circuit for providing a bias signal thereto, said end expiratory pressure circuit including a fluidic capacitance having an output port coupled as said input to said trigger circuit; an adjustable offset pressure valve having an output coupled as an input to said fluidic capacitance; a pressure actuated gate valve having an output coupled to the input of said offset valve, having an input coupled to a source of positive end expiratory pressure sinals, and having a gate'input coupled for actuation by said flip flop circuit during said inspiratory period.
  • a fluidically controlled patient ventilator apparatus as set forth in claim 1 further comprising first and second manually operable pressure switches connected respectively to said opposed inputs of said flip flop for switching said flip flop from one of its stable states to its other stable state, and first, second and third indicator displaymeans coupled respectively to the outputs of said patient trigger circuit, said pressure limit circuit, and said first timing means for indicating the presence of signals at the outputs thereof.

Abstract

Disclosed herein is a patient ventilator apparatus having a pneumatic control system operable in three different modes wherein the apparatus assists the breathing of the patient, controls the patient''s breathing in a timed manner, or operates in a combination assist/control mode according to certain predetermined conditions. Fluidic circuitry controls a valved bellows apparatus, which in turn supplies air to a patient subject to limitations of time, volume, and pressure, wherein the gas supplied to the bellows comprises an adjustable oxygen/air mixture. Fluidic timers are provided for use in the control mode of the circuitry, and identical fluidic circuitry combinations are provided for use in the assist mode to automatically trigger the ventilator apparatus into an inspiratory state according to the patient''s breathing requirements and to trigger such apparatus into an exhalation state when a predetermined inspiratory pressure is attained.

Description

A United States Patent 1191 Russell Nov. 4, 1975 PATIENT VENTILATOR APPARATUS [57] ABSTRACT [75] Inventor: George K. Russell, Castle Rock,
Colo' Disclosed herein is a patient ventilator apparatus hav- [73] Assignee: Sandoz, Inc., E. Hanover, NJ. ing a pneumatic control system operable in three different modes wherein the apparatus assists the breath- [22] Flled' Sept' 1973 ing of the patient, controls the patients breathing in a PP 401,739 timed manner, or operates in a combination assistlcontrol mode according to certain predetermined [52] U S C] 128/145 8 conditions. Fluidic circuitry controls a valved bellows In} .Cl .2 pp in turn ppli i t a ti nt ub- [58] Field of Search 128/1458, 145.7, 145.6, hmtatms "i volume and prissure 128/1455 142 188 wherein the gas supplled to the bellows compnses an ad ustable oxygen/a r m1xture. FluldlC timers are pro- [56] References Cited vided for use in the control mode of the circuitry, and identical fluidic circuitry combinations are provided UNITED STATES PATENTS for use in the assist mode to automatically trigger the 3,669,108 6/ 1972 Sundblom 128/ 145.8 ventilator apparatus into an inspiratory state accord- 373O1180 5/ 1973 f f 128/145-3 ing to the patients breathing requirements and to trig- 3,754,550 8/1973 Kipling 128/1458 Such apparatus into an exhalation state when a 3,756,229 9/1973 Olliver 128/1458 Primary ExaminerRichard A. Gaudet Assistant ExaminerHenry J. Recla Attorney, Agent, or FirmGerald D. Sharkin; Robert S. Honor; Walter F. Jewell MEZWEQ MODE 7o SWITCH FILTER predetermined inspiratory pressure is attained.
10 Claims; 9 Drawing Figures 5 p 9 OXYGEN mss PATIENT PRESSURE GUAGE PATIENT REE LINE INSFIRv TIMER I E RATIO REE suns: sen; wmr 78 116511; wnzssunz 4 LIMIT I l i "4 Fur POWER 5g VALVE OXYGEN mar e MIA 92 so wmca'ron PATIENT nmvsn /\TRIGGER mxms DEVICE 3 52 A FILTER I has? NEBgkIZATION 4 Q PATIENT HOSE T0 EXHALATION VALVE on PATIENT Q VOLUME L IMIT U.S. Patent Nov, 4, 1975 Sheet 1 0f 6 3,916,889
U.S. Patent Nov. 4, 1975 Sheet2 of6 3,916,889
I U.S. Patent Nov. 4, 1975 Sheet3of6 3,916,889
US. Patent Nov.4, 1975 Sheet40f6 3,916,889
US. Patent N0v.4, 1975 SheetS 0f6 3,916,889
US. Patent Nov. 4, 1975 Sheet6of6 3,916,889
FIG. 7
FIG. 9
PATIENT VENTILATOR APPARATUS BACKGROUND OF THE DISCLOSURE Certain respiratory apparatus is known in the art wherein fluidic circuits are provided for controlling the exhalation and inhalation cycles of a patient. However, the instant disclosure relates to an improved patient ventilator apparatus utilizing totally pneumatic control circuitry for operating the ventilator apparatus in a plurality of desired modes wherein the breathing of the patient is assisted, completely controlled, or subjected to a combination assist/control operation according to predetermined parameters.
SUMMARY OF THE INVENTION In accordance with the invention there is provided a pneumatic ventilator apparatus utilizing a pressurized source of gas for operating fluidic circuitry, which in turn controls a source of gas supplied to a patient. During the inspiratory cycle air is exhausted from a bellows apparatus, and supplied through an outlet value to a patient breathing hose. The bellows is surrounded by a confined volume, and it is evacuated by supplying oxygen to that confined volume, thus causing the bellows to collapse. A weight is provided in the free lower end of the bellows, so that upon release of the oxygen pressure in the confined area surrounding the bellows, the latter will automatically be exposed under the influence of the weight, thereby pushing the oxygen out from the confined area and through a mixing valve, wherein the oxygen is either vented to the atmosphere or mixed with a supply of room air and then injected into the expanding bellows for use in the next succeeding inhalation cycle. An inlet valve couples the mixing valve to the confined volume surrounding the bellows, and the inlet and outlet valves for the bellows apparatus are actuated alternately during the exhalation and inhalation cycles, respectively, by means of a logic circuit having its input coupled to one output of a master flip flop which in turn is controlled at one input by an exhalation timer signal and an automatic patient trigger signal, and controlled at its other input side by an inspiration timer signal, a pressure limit triggering circuit signal, and a volume limit signal coupled from the bellows apparatus.
The ventilator apparatus is provided with three different modes of operation selectable by means of a manually operable pneumatic switch. First, in an AS- SIST mode the selecting switch is connected to activate the patient trigger circuit which, together with the pressure limit circuit, is responsive to the air pressure in a patient reference line, so that the master flip flop switches states to control the exhalation and respiration cycles of the bellows apparatus in accordance with the patients breathing demands. That is, when the air pressure in the patient reference line drops to a low level indicating the completion of an inspiratory cycle, that low level pressure is detected by the patient trigger circuit which then triggers the master flip-flop to initiate the inspiratory cycle of the bellows apparatus. Then, during the ASSIST mode the pressure limit circuit provides a trigger signal to the master flip-flop to terminate the inspiratory cycle if the pressure in the patient reference line exceeds a predetermined value, while the volume limit detector device in the bellows apparatus also provides a trigger signal to the master flip-flop to terminate the inspiratory cycle after a predetermined maximum amount of air has been supplied to the patient from the bellows apparatus, or a fluidic timing device provides a trigger signal to the master flip-flop to terminate the inspiratory cycle after a predetermined amount of time. Therefore, the first one of the pressure, volume, or time signals to reach its predetermined maximum value is the signal which triggers the flip-flop to terminate the inspiration cycle; and the command from the patient trigger circuit terminates the exhalation cycle.
When the manually operable mode switch is positioned to select a CONTROL mode, the exhalation timer is activated and the patient trigger circuit is deactivated, so that the master flip-flop is controlled at one input by the output of the exhalation timer, while it is controlled at its other input by the pressure limit circuit, the inspiration timer, and the volume limit detector. Accordingly, in the CONTROL mode the exhalation cycle is automatically timed, as is the inspiration cycle, but the latter is also terminated prematurely of the inspiration timer output if the pressure limit signal or volume limit signal reach their predetermined maximum values.
The bellows for supplying air to the patient has an adjustable volume which is determined by a movable plate positioned to control the expansion of the bellows and which also contributes to defining the confined volume surrounding the bellows. During the inspiration cycle, the master flip flop controls a power valve which supplies oxygenunder pressure to the confined volume thereby causing contraction of the bellows. Then, upon releasing the pressure in the confined volume, the bellows starts to expand under the force of a weight carried therein and the oxygen is forced out of the confined area and through the inlet valve which is actuated to an open condition by the logic circuit. A mixing valve which receives the oxygen from the inlet valve is adjustable to conduct a controlled amount of the oxygen through to the bellows along with a partial supply of filtered room air. The room air is received at ambient pressure and is drawn into the bellows due to a vacuum caused by its expansion. However, the oxygen is supplied under pressure as a result of its forced expulsion from the confined area so that the mixing valve permits the oxygen content of the gas supplied to the bellows to be varied from 2l-l00%.
Each of the timer devices comprises a bellows housed within a chamber having an input orifice for receiving oxygen at a predetermined pressure to cause a timed contraction of the bellows. A shaft has one end fixed to the movable end of the bellows, while the opposite end of the shaft closes a vent on a back pressure detector which is coupled to the input of the master flip-flop. Therefore, a pair of opposed inputs to the master flipflop are controlled respectively by the movable shafts on the two timer bellows. Furthermore, each of the chambers surrounding the timer bellows have dump valves mounted therein, such valves being actuable by opposed outputs of the master flip-flop, so that as soon as the back pressure detector of one of the bellows provides an output for switching the master flip-flop, the resultant output of the flip-flop is coupled back to that bellows chamber to cause its depressurization, and to prepare it for its next timing cycle. The two bellows devices and their surrounding chambers are mounted side by side and their back pressure sensing elements are movable mounted movably springs, so that they are adjustably positioned by means of a pair of cams fixed on a shaft, so that rotation of the shaft causes movement of the cams and adjustable movement of the two sensing devices. Thus, this movement of the sensing devices changes the timing periods for both the exhalation and inspiration timers which can be adjusted in unison by rotation of the shaft. Furthermore, a by-pass valve is provided in parallel with the input orifice to the inspira-.
tion timer, and that by-pass valve can be opened to decrease the inspiration time, thus adjusting the inspiration/exhalation (I/E time ratio. However, the timing devices are constructed so that the I/E ratio has a maximum value of unity.
The patient trigger circuitry, and the pressure limit circuit have identical configurations, and each comprises a more universal trigger circuit for automatic operation in a patient ventilator. In particular, the universal trigger circuit consists of a six-gate fluidic circuit having three proportional amplifiers connected in series with each other and with three serially connected fluidic flip-flops. In accordance with the invention the universal circuit can be used as the patient trigger and the pressure limit circuit as described above, and depending on the input connections thereto it can function to provide an output in response to a small differential pressure at its inputs; it can function to provide an output in response to pressures slightly below ambient, as would be caused by a patients breathing efforts; it can function to provide an output in response to pressure levels above or below atmospheric, wherein the device is automatically biased so that it can be used in conjunction with end expiratory pressure signals; it can function to provide an output in response to air pressure inputs indicating maximum levels; and it can function to provide an output in response to flow signals, or rate of change of pressure as is sometimes desirable.
In accordance with the use of the universal trigger circuits, as controlled in part by end expiratory pressure signals, the circuit is utilized to provide an output in response to small differential pressures. To allow the Positive End Expiratory Pressures (PEEP) to be used during assisted breathing, without the need for the patients inhalation effort to return the patient hose to ambient pressure, the PEEP pressure is fed through a diaphragm valve to the patient trigger module, to bias that module so that it can be triggered while the patient reference line is still above the ambient pressure level.
BRIEF DESCRIPTION OF THE DRAWINGS One embodiment of the invention is described herein in conjunction in the accompanying drawings. In such drawings:
FIG. I shows a block diagram of a patient ventilator apparatus according to the invention;
FIG. 2 is a schematic view of the fluidic circuitry illustrated in FIG. 1;
FIG. 3 is a front elevation of the mixing device mounted on the bellows apparatus disclosed in FIG. 1;
FIG. 4' is a sectional view taken along the line 4-4 of FIG. 3;
FIG. 5 is a sectional view taken along the line 55 of FIG. 3;
FIG. 6 is a sectional view taken along the lines 66 of FIG. 3;
FIG. 7 is a perspective view of the mixer valve stem illustrated in FIGS. 3-5;
FIG. 8 is a sectional view of the timer devices illustrated schematically in FIG. 2; and
FIG. 9 is a sectional view of a dump valve used with the timer devices of FIG. 4.
DETAILED DESCRIPTION OF AN EMBODIMENT OF THE INVENTION:
An embodiment of the invention is depicted in block diagram form in FIG. 1 of the drawings, and includes a bellows apparatus 10 having a bellows element 12 fixedly held at its upper end within a cylindrically formed chamber 14. The chamber 14 is provided at its upper end with a connecting conduit 16, and is provided at its lower end with an adjustable plate 18 having a seal 20 connected at its periphery for sealing the plate against the sidewalls of the chamber 14. The plate is adjustably movable through the chamber 14 by means of an adjusting device 15, so that when the plate is moved upwardly the confined volume of the chamber within which the bellows can expand and contract is decreased, while such volume is increased when the plate 18 is moved downwardly within the chamber 14. In operation, the bellows element 12 is charged with air through an input duct 22 having a check valve 24 mounted thereon, and the bellows element is connected in communication with an outlet valve 26 for actuation to allow air within the bellows element to be discharged to the patient during the inspiration cycle. The discharge of air from the bellows element 12 is effected by pressurizing the chamber 14 with oxygen supplied through the conduit 16. When the chamber 14 is so pressurized with oxygen, it causes the bellows element 12 to collapse to expel the air previously charged therein.
Accordingly, the tidal volume of the system is determined by the placement of the plate 18 which plate also minimizes gas consumption by limiting the confined volume surrounding the bellows element 12. As illustrated, the check valve 24 closes off the input port to the bellows element during its collapse. The output valve 26 also includes a check valve to prevent air from the patient hose 28 from being injected into the bellows element, and the valve 26 is controlled by a diaphragm 30, which in turn is controlled by the fluidic circuitry described below.
The bellows element 12 continues its collapsing movement until the chamber 14 is depressurized in response to one of four different control signals which are adapted to terminate the inspiration cycle. One of these four control signals is initiated by a rod 32 mounted above the bellows element 12 and spring loaded in a downward direction, but movable upwardly due to pressure exerted by the upward movement of the lower portion of the bellows element wherein such upward movement of the rod indicates the total exhaustion of the air previously charged into the bellows element. The rod 32 closes a vent in a pressurized conduit 34, thus providing a back pressure signal along a volume limit conduit 36. The conduit 34 is pressurized by a regulated supply of oxygen fed through an orifice 37.
As stated above, the inspiration cycle is terminated when the chamber 14 is depressurized, and at that time the bellows element 12 automatically expands under the force of a weight 38 housed in its lower extremity. As the bellows element expands it creates a partial vacuum which opens the inlet check valve 24 and draws air inwardly through the conduit 22 which has a filter 40 connected thereto and disposed in communication with room air. Depressurization of the chamber 14 is obtained by opening a bellows inlet valve 42 so that the oxygen which is forced out of the chamber 14 by the expanding bellows element 12 is coupled through the inlet valve 42 to a three port mixing valve 44 as described in detail below in conjunction with FIGS. 37. In operation, the oxygen discharged from the chamber 14 through the valve 42 is vented to atmosphere by the valve 44, or is directed in an adjustablycontrolled volume to the conduit 22 which supplied air to the bellows element 12. Since the oxygen is discharged under pressure from the chamber 14, due to the expansion of the bellows element 12, the pressure of the oxygen exiting the mixer valve 44 is greater than the ambient pressure of the room air coupled through the filter 40, and therefore the oxygen/air mixture can be varied by positioning the valve 44 to a desired position.
The input and output valves 26 and 42 of the bellows apparatus 10, and the supply of oxygen to the chamber 14, are controlled by the fluidic circuitry shown in block diagram form in FIG. 1, such circuitry being energized by a 50 psig oxygen supply source indicated at reference numeral 46. The pressurized oxygen is cou pled through a filter 48 to a power valve 50 which is gated to supply oxygen through an adjustable flow valve 52, and through a silencer-filter 54 to the input conduit 16 for the bellows chamber 14. The output of the filter 48 is also coupled to a regulator 56 wherein the oxygen pressure is reduced so that the oxygen emanating from the regulator 56 can be used as a supply source for the active elements of the fluidic circuitry. The regulated oxygen, which may be at a pressure of about 5 psig, is also coupled through a three position mode selector switch 58, which permits the selection of three modes of operation, including an ASSIST mode, a CONTROL mode, and an ASSIST/CONTROL mode.
The fluidic circuitry includes a master flip flop 60 having a principle output 62 which actuates the power valve 50, and which operates a dual OR/NOR circuit 64 to provide regulated oxygen pressure signals along the respective conduits 66 and 68 to the inlet and outlet valves 42 and 26 of the bellows apparatus 10. In partic ular, when the output 62 of the flip flop 60 provides a positive pressure, the dual OR/NOR circuit provides a positive signal on the output conduit 66 to close the inlet port to the bellows apparatus, while the outlet port 26 is allowed to open so that the inspiration cycle will commence due to collapsing movement of the bellows element 12, which in turn results from pressurization of the chamber 14. Similarly, upon completion of the inspiration cycle, the flip flop 60 will switch to its opposite stable state whereby a positive regulated pressure signal will be coupled along conduit 68 to close the outlet valve 26 while the pressure on conduit 66 will be decreased to allow the valve 42 to open so that he oxygen discharged from the bellows chamber 14 will pass through that input valve 42 to the mixing valve 44.
The flip flop 60 has three inputs which cause it to switch to its inspiration command state wherein it provides an output to conduit 62, and those three inputs are supplied from a manually operable input signal device 70, a patient trigger device 72, and an exhalation timer device 74. On the other hand, the flip flop has four inputs for causing it to terminate its inspiration command, and those inputs are coupled from a manually operable exhalation triggering device 76, a pressure limit circuit 78, an inspiration timer device 80, and the volume limit detector device formed by the elements 32, 34, and 36 disposed in the bellows apparatus 10. A pressure limit display device 82 is actuable to exhibit a red display in response to an indicator signal from a driver device 84 which in turn is energized by the output of the pressure limit circuit 78. The display device 82 utilizes reflected light. Similarly, a red display device 86 is operated by a driver 88 in response to an output from the inspiration timer 80, while a green display light 90 operates in a similar manner under the control of an indicator driver 92 which is energized by an output from the patent trigger circuit 72.
In the operation of the circuitry, when the ASSIST mode is selected, a regulated oxygen pressure signal is applied to the patient trigger circuit through a conduit 93 to put it in an energized condition, and an input con trol port for the patient trigger circuit is coupled through a patient reference line 94 to the patient hose line 28, so that the patient trigger circuit provides an output to switch the master flip flop 60 to its inspiration state when the pressure in the patient reference line 94 decreases to a minimum indicating the completion of an exhalation cycle, While the system is operating in its ASSIST mode, the green light 90 will be actuated at each instance of a patient trigger output signal, which in turn is controlled by the patients breathing in response to a signal coupled along the patient reference line 94.
An additional input to the patient trigger device 72 includes a regulated oxygen signal coupled through an adjustable input port 96 to control the sensitivity of the trigger device 72, and an input signal from a Positive End Expiratory Pressure (PEEP) 98, wherein the patient trigger device 72 is adaptable to provide an output in response to a small differential input pressure between the input coupled along the conduit 94 and the PEEP input. The PEEP circuit 98 has a gate input coupled from an output conduit 100 of the dual OR/NOR circuit 64, and the gate is maintained in a closed condition by the positive regulated oxygen supply coupled through a small orifice 102, an adjustable orifice 104, and a one way valve 106, to the gate input, wherein the junction of the adjustable orifice 104 and the one way valve 106 are vented to the atmosphere through an orifice 108. However, during an exhalation cycle, the pressure in the conduit 100 opens the PEEP driver circuit to permit the regulated pressure coupled through the orifices 102 and 104 to be applied though an offset adjust orifice 110 and a spike damping volumetric chamber 112 to the patient trigger device 72.
The pressure limit circuit is identical in construction to the patient trigger circuit, but provides an output in response to a high pressure sensed on the patient reference line 94, and the sensitivity of the device is adjustable by means of a variable orifice 114 coupled as a second input thereto. Also, a pressure gauge 116 is connected at the second input to the pressure limit circuit 78 for displaying the selected pressure limit adjustment to which the circuit is sensitive, and a second pressure gausge 118 is connected to the patient reference line so that the actual pressure such line can be monitored. An adjustment is provided but not shown in FIG. 1 wherein the periods of the exhalation timer and the inspiration timer can be simultaneously adjusted, and an adjustable orifice 120 is provided in the input line to the inspiration timer, so that the inspiration/exhalation (I/E) ratio can be adjusted. These adjustments are desireable since medical ventilation systems require a matching of the I/E ratio to the needs of individual patents, and since it is usually considered detremental to use I/E which is greater than unity. Also, controlled breathing required uniform cycle rates, but such rates should be adjustable to permit changes in the minutevolume, without disturbing the selected I/E ratio. The above-mentioned controls satisfy these requirements.
An additional function of the ventilator apparatus disclosed herein is provided by a conduit 122 for coupling to a nebulizer device wherein that conduit 122 is connected through an adjustable orifice 124 to an OFF position, an INTERMITTENT position wherein the nebulizer is operated by the output of the power valve 50, and a CONTINUOUS position wherein the nebulizer is operated by the supply source of oxygen as coupled through an orifice 128.
In summary, in the ASSIST mode the inspiration cycle is terminated by the pressure limit circuit 78, by the manually operable signal device 76, by the volume limit signal coupled along the conduit 36, or by the inspiration timer 80, and the exhalation cycle is termi nated by the patient trigger circuit 72, or the manually operable signal device 70.
In the CONTROL mode the regulated oxygen supply is coupled throgh the selecting switch 58 to energize the exhalation timer, while the patient trigger circuit 72 is deenergized. Therefore, in the CONTROL mode the inspiratory command generated in the conduit 62 is initiated by the exhalation timer 74 or the manual signal device 70, while the inspiratory cycle is terminated by any one of the four inputs to the master flip-flop 60 from the manually operable device, such inputs including signal pressure limit circuit 78, the inspiratory timer 80, or the volume limit signal conducted along conduit 36. During normal operation of the CONTROL mode, the master flip-flop may be operated during both the inspiratory and exhalation cycles in a timed manner determined by the timers 74 and 80, respectively. However, the inspiratory cycle is terminated prematurely of its timed duration if either pressure limit or the volume limit exceeds its maximum predetermined value.
Then, in the ASSIST/CONTROL mode, the selector switch 58 energizes both the patient trigger circuit 72 and the exhalation timer 74 through the use of a pair of one way valves 58A and 58B, so that the circuitry operates as described above with respect to the CON- TROL mode with the exception that flip-flop 60 will be triggered to generate its inspiratory command along conduit 62 by the patient trigger signal from the device 72, as well as by the exhalation timer 74.
The actual circuitry included in the blocks of FIG. 1 is shown in greater detail in FIG. 2, wherein a preferred form of the patient trigger circuit 72 is shown as comprising a six section fluidic device incorporating three proportional amplifiers 130A, 130B, 130C, connected in series with each other and in series with three serially connected flip flops 132A, 132B, 132C. Each of the six circuits has its supply input coupled along the conduit 73 to the mode selector switch 58 while each of circuits 130B, 130C, 132A, 1328, and 132C, have their control inputs coupled to the respective outputs of the preceeding stage; while the control inputs to the first proportional amplifier 130A are coupled respectively to the output of the PEEP circuit 98 and to the patient reference line 94. Furthermore, the adjustable sensitivity orifice 96 is coupled to a second control input to the proportional amplifier 1308, and this configuration permits a stable sensitivity adjustment from +1 to more than l0 cm H O with respect to ambient pressure. The fourth input to the amplifier 1303 is vented. The gating device for the PEEP driver 98 which is shown schematically in FIG. 2 comprises a diaphragm 134 which closes off the conduit leading to the PEEP input for the proportional amplifier 130A, and it is seen that the PEEP driver 98 is maintained in a closed condition by that diaphragm 134 due to pressure from conduit 100 during inspiration. The pressure through the one way valve 106 is negated by a signal from the dual OR/- NOR circuit 17 during the inspiration cycle. Diaphragm 134 permits oxygen flow'from the valves 102 and 104 and then through the adjustable valve and the damping chamber 112 through to the proportional amplifier A during exhalation. Also, during exhalation the pressure through 106 is delivered to conduit 100 where it is used to hold the patient circuit exhalation valve at the PEEP pressure.
In operation, an end expiratory pressure which remains higher than ambient pressure is generated by bleeding a small amount of the driving gas into the exhalation exhaust line through the one way valve 106. This keeps the diaphragm 134 of the PEEP device 98 at a slight positive pressure. Then, since most exhalation valves hold patient hose pressures slightly higher than their actuation pressures, the OR/NOR output pressure with PEEP will usually be less than the PEEP pressure shown on the patient pressure gauge. Therefore, variations in the obtainable PEEP pressures will be experienced with exhalation manifolds of different manufacturers. To allow PEEP to be used during assisted breathing, without the need for the patients inhalation effort to return the patient hose to ambient conditions, the PEEP pressure is fed to the patient trigger module to bias that module so that it can be triggered while the patient hose pressure is still above the ambient pressure level. The amount of pressure differ ence required to switch the trigger module is preset by the offset-adjust valve 110. During inspiration, the diaphragm 134 is closed to remove the bias signal from the patient trigger module so that high exhalation valve pressures will not hold the ventilator in an inspiration condition. However, during exhalation, the diaphragm 134 opens and allows the PEEP pressure to reach the patient trigger module circuit 130A. The system is ususally preset so that the pressure difference required to trigger the patient trigger module is relatively large as compared to that normally required without PEEP to compensate for leaks. The offset-adjust valve 110 is provided to function as a leak compensator for desensitizing the patient trigger module during PEEP operation. I
The pressure limit circuit 78 is identical to the abovedescribed patient trigger circuit 72 in its construction, with the exception that the source supplied for each of the six individual circuits is coupled to the regulated source of oxygen provided at the output of the regulator 56, while the control inputs to the pressure limit circuit 78 are as described above in conjunction with FIG. 1.
It is seen, therefore,that the circuits 72 and 78 as illustrated in FIG. 2' of the drawings are identical, although their input signals may be connected in different ways to make the circuit responsive to different input parameters. In addition to the responses described above with respect to FIG. 2 of the drawings, the inputs to the six-state circuit can be coupled in at least three different configurations so that the circuit may be described as a universal trigger circuit. In this regard, for example, the inputs can be connected as illustrated at 72 in FIG. 2, while the PEEP input is replaced by an ambient pressure input so that the circuit will be sensitive to small negative pressures. As another example, the PEEP input to the circuit 72 as illustrated in FIG. 2 may be connected to be automatically biased to allow triggering at pressure levels above or below atmospheric pressure. For example, the input may be connected to a three-position switch so that when PEEP pressures are used, a pressure slightly above atmospheric is applied, while with negative endexpiratory pressures (NEEP), a pressure slightly below atmospheric is applicable through a second position of the switch. In such NEEP applications, the referenceadjust gas is used to drive a venturi for evacuating the patient hose, thereby generating the vacuum necessary for the negative bias. The third position of the switch may provide for normal operation so that the universal trigger circuit may be switched from NORMAL, to PEEP, to NEEP without requiring readjustment of the sensitivity control. A further example of the responsiveness of the universal circuit results when a suitable restriction is placed in the patient hose input, while a feedback connection is coupled to the circuit 72 in place of the PEEP input so that the ventilator will be cycled as a function of flow, or as a function of the rate of change of pressure. That is, the feedback connection can be used to sense flow since the pressure differential across the restriction in the patient hose will give an indication of such flow. This last-described configuration can be used to turn on the ventilator due to a slight patient breathing effort, and if a time delay circuit such as a fluidic RC circuit is provided in a parallel feedback line, the patient trigger signal can be extended.
The OR/NOR circuit 64 is also depicted in schematic form in FIG. 2 and comprises a two stage device, wherein the first stage 136 provides a positive pressure output along the conduit 66 in response to an input signal received from the flip flop 60 along the conduit 62. Similarly, the second stage 138 provides an output along conduit 100 during the inspiration cycle to maintain the exhalation valve on the patient hose in a closed condition during such inspiration cycle.
In the past, fluidic timers for respiratory equipment have been constructed to allow a certain volume (capacitance) of fluid to slowly increase or decrease to a desired switching pressure level. However, it is difficult to repeat such pressures, and elaborate circuitry is usually required to provide the necessary repeatability. Another type of known timer comprises a fluidic oscillator combined with complex digital counter stages, and this configuration also has obvious drawbacks.
In the present invention accurate and relatively simple timers are provided wherein each of the timing devices 74 and 80 comprises a logic circuit 74A and 80A, and a bellows device 748 and 808, respectively. When the flip flop 60 is switched to provide an inspiration command along the conduit 62 the logic circuit 80A provides a regulated pressure output coupled through an orifice 80C to the chamber of the bellows device 808, and causes the bellows element thereof to collapse. A rod 80D is fixed to the moveable portion of the bellows element, and is mounted to engage a sensor E for causing a back pressure along a conduit 80F which is connected as an inspiration cycle terminating signal of the flip flop 60. Similarly, the timing device 74 has the input of its logic circuit 74A connected for actuation by the opposing output of the flip flop 60 while the sensor device 74E couples a signal along the conduit 74F to terminate the exhalation cycle of the apparatus by switching the flip flop 60. Additionally, the ad justable orifice is connected in parallel with the orifice 80C to vary the [IE ratio as described above.
Various additional details of the construction of the valving apparatus are shown in FIGS. 3-7. Particularly, FIG. 3 shows an embodiment of the valve construction utilized with the bellows apparatus 10 wherein the room air is drawn through the filter 40, the oxygen/air mixture is controlled by the valve knob 44A, and the patient output hose is connected to the output port 28A. The internal configuration of the valve apparatus is shown in FIGS. 4-6 which comprise sectional views wherein the opening 140, as shown in FIG. 4, comprises the port opening of the bellows element 12, while the input check valve 24 is shown in communication with a duct 22 corresponding with the duct 22 illustrated in FIGS. 5 and 6. Similarly, the air filter 40 is also shown in FIG. 4, and the duct 16, communicating with the bellows chamber 14 and valve 42, is shown in FIG. 5. Also, the adjustable flow control orifice 52, and the oxygen filter 54 are shown in FIG. 6, while the valve stem for the mixing valve 44 is shown as element 448 in FIGS. 5 and 7. When the valve stem 44B is rotated by means of the valve knob 44A to its extreme counterclockwise position, all of the oxygen forced out of the chamber 14 by the expanding bellows element 12 is vented to the atmosphere through a vent opening 142 as illustrated in FIG. 3. As the knob 44A is rotated clockwise, however, increasing quantities of oxygen are permitted to flow through the conduit 22, first through a slit portion 44C in the valve stem 44B, and then through the full open orifce 44D thereof so that when the valve knob 44A is turned completely clockwise, the entire quantity of oxygen forced out of the chamber 14 is drawn into the bellows element 12. The bladder elements 26A and 42A shown respectively in FIGS. 4 and 5 are controlled by the pressure signals coupled through conduits 68 and 66, respectively, as described above in conjunction with FIG. 1.
Since the oxygen/air mixture is effected by the expanding bellows, and proportioned by the valve 44, the oxygen concentration is unaffected by the patients breathing, the inspiratory flow rate, the tidal volume, the patient hose pressure, or the cycle time, thereby providing an accurately controllable system in this regard.
The timing devices 748 and 808, shown schematically in FIG. 2, are illustrated in FIG. 8, wherein the device 74B, is depicted in a partially sectional view. The timing devices include sealed cannisters 150, 151, each having a sealed collapsible bellows device 152 mounted therein. As shown, the sensor device 74E is supported on a spring 154 and its elevation position is determined by the pressure exerted thereon by a cam 156 mounted on a shaft 158. Similarly, the sensor device 80E is positioned by a corresponding cam 160 mounted on the shaft 158. In the operation of the timers, a regulated air pressure is selectively applied through one of the orifices 74C and 80C to the cannisters and 151. Then,
for example, if the cannister 150 is charged, the bellows 152 will collapse causing the spring-loaded rod 74D attached thereto to move upwardly untilvit engages the sensor 74E, thus closing a vent in the line 74F so that the flip flop 60 receives an input signal for switching it to provide an inspiratory command along conduit 62 as shown in FIGS. 1 and 2. The bellows 152 and the spring loading on the rod 74D. are so proportioned that the movement of the rod does not require a large pressure change, so that the travel time for the rod canbe accurately established. During calibration procedures, the adjustable orifice 120, as shown in FIGS. land 2 is completely closed, whereupon the cam 156 and 160 are adjusted to provide the necessary exhalation and inspiratory time periods so that the desired maximum value for the quantity I/E .is defined. Then, the timing periods for both of the timers 74B and 80B can be sis multaneously adjusted by rotating the shaft 158 to reposition the sensing devices 74E and 80E by means of the cams 156 and 160. Subsequently, the I/E ratio can be decreased by opening the valve 120 to a desired position.
The dump valves described above in conjunction with FIG. 2, are shown in FIG. 8, and a sectional view of the dump valve 74G is illustrated in FIG. 9 wherein it is seen that a bladder 162 maintains a valve seat 164 in a closed position on a discharge opening in the side wall of the cannister 150. Then, when the master flip flop is actuated by the exhalation timer 74 to provide an inspiratory command along the output conduit 62, the opposing output of the flip flop 60 is coupled to the bladder 162 to provide a slight negative pressure thereto so that the oxygen stored in the timer cannister 150 is exhausted to the atmosphere through the port 166 by the released valve seat 164.
. The dump valve seals the outlet opening in the cannister 150 when the flip flop is switched out of its inspi-- ratory command state.
i In summary, the apparatus disclosedin the foregoing specification, and in the accompanying drawings, provides a patient ventilator which is controlled solely by fluidic circuitry to function manually, automatically, or semiautomatically, in response to the breathing requirements of a patient.
- What is claimed is:
l. A fluidically controlled patient ventilator apparatus comprising:
a patient breathing hose;
means for supplying a predetermined quantitiy of air to the patient breathing hose;
a fluidic flip flop circuit switchable into first and second states, said flip flop circuit having opposed input ports for controlling said switching, and having at least one output port providing a pressure signal while said flip flop circuit is switched into said first stable state;
means coupled between said flip flop circuit output port and said air supply means to actuate the latter to supply air to the breathing hose in reponse to said pressure signal, thereby defining an inspiratory period of operation;
a first fluidic timing means actuable during said inspi- ,ratory period and a second fluidic timing means ac- .tuable during an exhalation period, said first and second timing means having respective output ports coupled;to said opposed input ports of said flip flop for controlling said flip flop to switch be tween said stable states, wherein an output signal from said first timing means actuates said flip flop to switch from its first to its second stable state, nd an output from said second timing means actuates said flip flop to switch from its second to its first I stable state;
a fluidic trigger circuit having an input coupled to said patient breathing hose for providing a trigger signal at an output port thereof in reponse to a minimum pressure in said patient breathing hose corresponding to the termination of a patient exhalationcycle and means coupling said trigger signal to one of said input ports of said flip flop to control said flip flop to switch from its second to its first stable state to initiate said inspiratory period;
a fluidic pressure limit circuit having an input port coupled to said patient breathing hose for providing a limit signal at an output port thereof in reponse to a predetermined maximum pressure in the patient breathing hose, andmeans coupling said limit signal to one of said input ports of said flip flop to control said flip flop to switch from its first to its second stable state to terminate said inspiratory period;
a volume limit signal generating means coupled to said patient breathing hose for providing a trigger output signal in response to the sensing of a predetermined quantity of air supplied to the patient breathing hose by the air supply means, and means coupling said trigger signal to one of said input ports'of said flip flop to control said flip-flop to switch from its first to its second stable state to terminate said inspiratory period;
and mode selecting means for selectively deenergizing said trigger circuit and said first timing means, one at a time.
2. A fluidically controlled patient ventilator apparatus as set forth in-claim 1 further comprising an adjustable oxygen/air mixing valve means coupled between said inlet valve and said bellows element for selective positioning-to control the oxygen content of the air within-the bellows, element wherein said mixing valve means is coupled to a source of room air, and is coupled through said inlet valve means to a source of oxygen.
3. A fluidically controlled ventilator apparatus as set forth in claim 2 wherein said bellows chamber comprises a fixed volume surrounding said bellows element, and further comprising means responsive to said pressure signal from said one output port of said flip flop circuit for charging said bellows chamber with oxygen to collapse said bellows and discharge the air therein through said outlet valve means;
said bellows element having a weight mountedtherein for causing its expansion upon depressurization of said bellows chamber; and further comprising conduit means interconnecting said bellows chamber and said inlet valve means wherein said oxygen charged into said bellows chamber escapes through said inlet valve for selective coupling through said mixing valve means to said expanding bellows element.
4. A fluidically controlled patient ventilator apparatus as set forth in claim 1 wherein said flip flop circuit has a second output port for generating a pressure signal while said flip flop is switched into its second stable state defining an exhalation period of the apparatus,
and wherein said first and second timing means comprise respective first and second fluidic logic switching circuits, first and second sealed cannisters, and first and second pressurized bellows members disposed within said sealed cannisters, said first switching circuit having output port means coupled for actuation by the pressure signal from said second output port of said flip flop circuit to charge a regulated quantity of air into said first cannister, and said second switching circuit having output pot means coupled for actuation by the pressure signal of said first output port of said flip flop circuit to charge said second cannister, wherein said charging of said cannisters causes the bellows members therein to collapse, and first and second sensing means for generating said timing means output signals in response to said collapse of said respective bellows after a predetermined air charging time of said cannisters, said sensing means being coupled to said opposed input ports of said flip flop circuits.
5. A fluidically controlled patient ventilator apparatus as set forth in claim 4 wherein said first and second sensing means are movably mounted, and wherein movement thereof changes said predetermined air charging times at which said output signals are generated, and further comprising a rotatable shaft having a pair of cams mounted thereon in a spaced relation for engaging said first and second sensing means, whereby rotation of said shaft and cams moves said sensing means and changes the timing periods of said first and second timing means.
6. A fluidically controlled patient ventilator apparatus as set forth in claim 5 further comprising an adjustable by-pass valve connected to change the charging time of said first cannister for independently adjusting the timing period of said first timing means.
7. A fluidically controlled patient ventilator apparatus as set forth in claim 6 further comprising first and second dump valve means mounted respectively on said first and second cannisters for depressurizing said cannisters in response to input signals received respectively from said second output port and said one output port of said flip flop circuit.
8. A fluidically controlled patient ventilator apparatus as set forth in claim 1 wherein said trigger circuit and said pressure limit circuit are constructed identically and comprise three proportional amplifiers con nected in series, and three fluidic flip flops connected in series with each other and in series with an output of said three fluidic amplifiers, and wherein said trigger circuit further comprises means for connecting inputs of one of said three fluidic amplifiers to a pressure source for adjusting the sensitivity thereof, and for connecting inputs of another one of said fluidic amplifiers to a positive end expiratory pressure signal and to said patient breathing hose.
9. A fluidically controlled patient ventilator apparatus as set forth in claim 1 further comprising a positive end expiratory pressure circuit having an output coupled to an input port of said patient trigger circuit for providing a bias signal thereto, said end expiratory pressure circuit including a fluidic capacitance having an output port coupled as said input to said trigger circuit; an adjustable offset pressure valve having an output coupled as an input to said fluidic capacitance; a pressure actuated gate valve having an output coupled to the input of said offset valve, having an input coupled to a source of positive end expiratory pressure sinals, and having a gate'input coupled for actuation by said flip flop circuit during said inspiratory period.
10. A fluidically controlled patient ventilator apparatus as set forth in claim 1 further comprising first and second manually operable pressure switches connected respectively to said opposed inputs of said flip flop for switching said flip flop from one of its stable states to its other stable state, and first, second and third indicator displaymeans coupled respectively to the outputs of said patient trigger circuit, said pressure limit circuit, and said first timing means for indicating the presence of signals at the outputs thereof.

Claims (10)

1. A fluidically controlled patient ventilator apparatus comprising: a patient breathing hose; means for supplying a predetermined quantitiy of air to the patient breathing hose; a fluidic flip flop circuit switchable into first and second states, said flip flop circuit having opposed input ports for controlling said switching, and having at least one output port providing a pressure signal while said flip flop circuit is switched into said first stable state; means coupled between said flip flop circuit output port and said air supply means to actuate the latter to supply air to the breathing hose in reponse to said pressure signal, thereby defining an inspiratory period of operation; a first fluidic timing means actuable during said inspiratory period and a second fluidic timing means actuable during an exhalation period, said first And second timing means having respective output ports coupled to said opposed input ports of said flip flop for controlling said flip flop to switch between said stable states, wherein an output signal from said first timing means actuates said flip flop to switch from its first to its second stable state, nd an output from said second timing means actuates said flip flop to switch from its second to its first stable state; a fluidic trigger circuit having an input coupled to said patient breathing hose for providing a trigger signal at an output port thereof in reponse to a minimum pressure in said patient breathing hose corresponding to the termination of a patient exhalation cycle and means coupling said trigger signal to one of said input ports of said flip flop to control said flip flop to switch from its second to its first stable state to initiate said inspiratory period; a fluidic pressure limit circuit having an input port coupled to said patient breathing hose for providing a limit signal at an output port thereof in reponse to a predetermined maximum pressure in the patient breathing hose, and means coupling said limit signal to one of said input ports of said flip flop to control said flip flop to switch from its first to its second stable state to terminate said inspiratory period; a volume limit signal generating means coupled to said patient breathing hose for providing a trigger output signal in response to the sensing of a predetermined quantity of air supplied to the patient breathing hose by the air supply means, and means coupling said trigger signal to one of said input ports of said flip flop to control said flip-flop to switch from its first to its second stable state to terminate said inspiratory period; and mode selecting means for selectively deenergizing said trigger circuit and said first timing means, one at a time.
2. A fluidically controlled patient ventilator apparatus as set forth in claim 1 further comprising an adjustable oxygen/air mixing valve means coupled between said inlet valve and said bellows element for selective positioning to control the oxygen content of the air within the bellows, element wherein said mixing valve means is coupled to a source of room air, and is coupled through said inlet valve means to a source of oxygen.
3. A fluidically controlled ventilator apparatus as set forth in claim 2 wherein said bellows chamber comprises a fixed volume surrounding said bellows element, and further comprising means responsive to said pressure signal from said one output port of said flip flop circuit for charging said bellows chamber with oxygen to collapse said bellows and discharge the air therein through said outlet valve means; said bellows element having a weight mounted therein for causing its expansion upon depressurization of said bellows chamber; and further comprising conduit means interconnecting said bellows chamber and said inlet valve means wherein said oxygen charged into said bellows chamber escapes through said inlet valve for selective coupling through said mixing valve means to said expanding bellows element.
4. A fluidically controlled patient ventilator apparatus as set forth in claim 1 wherein said flip flop circuit has a second output port for generating a pressure signal while said flip flop is switched into its second stable state defining an exhalation period of the apparatus, and wherein said first and second timing means comprise respective first and second fluidic logic switching circuits, first and second sealed cannisters, and first and second pressurized bellows members disposed within said sealed cannisters, said first switching circuit having output port means coupled for actuation by the pressure signal from said second output port of said flip flop circuit to charge a regulated quantity of air into said first cannister, and said second switching circuit having output port means coupled for actuation by the pressure signal of said first output port of said fLip flop circuit to charge said second cannister, wherein said charging of said cannisters causes the bellows members therein to collapse, and first and second sensing means for generating said timing means output signals in response to said collapse of said respective bellows after a predetermined air charging time of said cannisters, said sensing means being coupled to said opposed input ports of said flip flop circuits.
5. A fluidically controlled patient ventilator apparatus as set forth in claim 4 wherein said first and second sensing means are movably mounted, and wherein movement thereof changes said predetermined air charging times at which said output signals are generated, and further comprising a rotatable shaft having a pair of cams mounted thereon in a spaced relation for engaging said first and second sensing means, whereby rotation of said shaft and cams moves said sensing means and changes the timing periods of said first and second timing means.
6. A fluidically controlled patient ventilator apparatus as set forth in claim 5 further comprising an adjustable by-pass valve connected to change the charging time of said first cannister for independently adjusting the timing period of said first timing means.
7. A fluidically controlled patient ventilator apparatus as set forth in claim 6 further comprising first and second dump valve means mounted respectively on said first and second cannisters for depressurizing said cannisters in response to input signals received respectively from said second output port and said one output port of said flip flop circuit.
8. A fluidically controlled patient ventilator apparatus as set forth in claim 1 wherein said trigger circuit and said pressure limit circuit are constructed identically and comprise three proportional amplifiers connected in series, and three fluidic flip flops connected in series with each other and in series with an output of said three fluidic amplifiers, and wherein said trigger circuit further comprises means for connecting inputs of one of said three fluidic amplifiers to a pressure source for adjusting the sensitivity thereof, and for connecting inputs of another one of said fluidic amplifiers to a positive end expiratory pressure signal and to said patient breathing hose.
9. A fluidically controlled patient ventilator apparatus as set forth in claim 1 further comprising a positive end expiratory pressure circuit having an output coupled to an input port of said patient trigger circuit for providing a bias signal thereto, said end expiratory pressure circuit including a fluidic capacitance having an output port coupled as said input to said trigger circuit; an adjustable offset pressure valve having an output coupled as an input to said fluidic capacitance; a pressure actuated gate valve having an output coupled to the input of said offset valve, having an input coupled to a source of positive end expiratory pressure sinals, and having a gate input coupled for actuation by said flip flop circuit during said inspiratory period.
10. A fluidically controlled patient ventilator apparatus as set forth in claim 1 further comprising first and second manually operable pressure switches connected respectively to said opposed inputs of said flip flop for switching said flip flop from one of its stable states to its other stable state, and first, second and third indicator displaymeans coupled respectively to the outputs of said patient trigger circuit, said pressure limit circuit, and said first timing means for indicating the presence of signals at the outputs thereof.
US401739A 1973-09-28 1973-09-28 Patient ventilator apparatus Expired - Lifetime US3916889A (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
US401739A US3916889A (en) 1973-09-28 1973-09-28 Patient ventilator apparatus
CH1266374A CH585551A5 (en) 1973-09-28 1974-09-18
DK494074A DK494074A (en) 1973-09-28 1974-09-19
SE7411865A SE398044B (en) 1973-09-28 1974-09-20 PATIENT VENTILATOR
GB41604/74A GB1488358A (en) 1973-09-28 1974-09-24 Ventilator apparatus for a patient
NL7412628A NL7412628A (en) 1973-09-28 1974-09-24 FAN EQUIPMENT FOR MEDICAL PURPOSES.
JP49110060A JPS5063795A (en) 1973-09-28 1974-09-26
FR7432547A FR2271806B1 (en) 1973-09-28 1974-09-26
DE19742446055 DE2446055A1 (en) 1973-09-28 1974-09-26 DEVICE FOR VENTILATING A PATIENT
IT7427774A IT1022370B (en) 1973-09-28 1974-09-26 VENTILATION SYSTEM FOR PATIENTS
CA210,232A CA1014040A (en) 1973-09-28 1974-09-27 Patient ventilator apparatus
BE148996A BE820457A (en) 1973-09-28 1974-09-27 ARTIFICIAL RESPIRATOR
SU7402063442A SU579853A3 (en) 1973-09-28 1974-09-27 Apparatus for artificial ventilation of lungs
DD181376A DD116556A5 (en) 1973-09-28 1974-09-27
ES430505A ES430505A1 (en) 1973-09-28 1974-09-28 Patient ventilator apparatus
US05/590,616 US3991790A (en) 1973-09-28 1975-06-26 Patient ventilator trigger circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US401739A US3916889A (en) 1973-09-28 1973-09-28 Patient ventilator apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/590,616 Division US3991790A (en) 1973-09-28 1975-06-26 Patient ventilator trigger circuit

Publications (1)

Publication Number Publication Date
US3916889A true US3916889A (en) 1975-11-04

Family

ID=23589024

Family Applications (1)

Application Number Title Priority Date Filing Date
US401739A Expired - Lifetime US3916889A (en) 1973-09-28 1973-09-28 Patient ventilator apparatus

Country Status (15)

Country Link
US (1) US3916889A (en)
JP (1) JPS5063795A (en)
BE (1) BE820457A (en)
CA (1) CA1014040A (en)
CH (1) CH585551A5 (en)
DD (1) DD116556A5 (en)
DE (1) DE2446055A1 (en)
DK (1) DK494074A (en)
ES (1) ES430505A1 (en)
FR (1) FR2271806B1 (en)
GB (1) GB1488358A (en)
IT (1) IT1022370B (en)
NL (1) NL7412628A (en)
SE (1) SE398044B (en)
SU (1) SU579853A3 (en)

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4003377A (en) * 1975-08-21 1977-01-18 Sandoz, Inc. Patient ventilator
US4057059A (en) * 1975-07-29 1977-11-08 Oklahoma State University Intermittent positive pressure breathing device
US4060078A (en) * 1975-08-18 1977-11-29 Bird F M Ventilator and method
US4098272A (en) * 1975-09-25 1978-07-04 Bio-Med Devices Inc. Respirator
US4141356A (en) * 1976-06-16 1979-02-27 Bourns, Inc. Respirator system and method
US4155357A (en) * 1976-12-10 1979-05-22 Sandoz, Inc. Patient ventilator disconnect alarm
US4197843A (en) * 1978-04-03 1980-04-15 Minnesota Mining And Manufacturing Company Volume limiting ventilator
US4452242A (en) * 1981-07-03 1984-06-05 Dragerwerk Aktiengesellschaft Respirator for use in pressure chambers
US4459982A (en) * 1982-09-13 1984-07-17 Bear Medical Systems, Inc. Servo-controlled demand regulator for respiratory ventilator
US4702240A (en) * 1986-07-22 1987-10-27 Bear Medical Systems, Inc. Demand-responsive gas blending system for medical ventilator
US4931285A (en) * 1988-04-28 1990-06-05 Alza Corporation Aqueous based pharmaceutical coating composition for dosage forms
US5086767A (en) * 1990-09-26 1992-02-11 Canadian Aging & Rehabilitation Product Development Corporation Ventilator for assisting the breathing of a patient
US5111809A (en) * 1988-12-01 1992-05-12 Avstar Aerospace Corporation Breathing system
US5411745A (en) * 1994-05-25 1995-05-02 Euro-Celtique, S.A. Powder-layered morphine sulfate formulations
US5564416A (en) * 1993-10-06 1996-10-15 Pneupac Limited Ventilators for promoting lung function
US5879705A (en) * 1993-07-27 1999-03-09 Euro-Celtique S.A. Sustained release compositions of morphine and a method of preparing pharmaceutical compositions
US6068855A (en) * 1994-11-03 2000-05-30 Euro-Celtique S. A. Pharmaceutical composition containing a fusible carrier and method for producing the same
US6077533A (en) * 1994-05-25 2000-06-20 Purdue Pharma L.P. Powder-layered oral dosage forms
US6103261A (en) * 1993-07-01 2000-08-15 Purdue Pharma Lp Opioid formulations having extended controlled release
US6221396B1 (en) 1998-07-17 2001-04-24 Development Center For Biotechnology Oral cisapride dosage forms with an extended duration
US6270787B1 (en) 1997-12-29 2001-08-07 Alza Corporation Osmotic delivery system with membrane plug retention mechanism
US6283953B1 (en) 1997-12-31 2001-09-04 Alza Corporation Osmotic drug delivery monitoring system and method
EP0916357A3 (en) * 1997-11-05 2001-11-14 Instrumentarium Corporation Method and arrangement in connection with ventilator
US20020058673A1 (en) * 1997-12-22 2002-05-16 Kaiko Robert F. Opioid agonist/opioid antagonist/acetaminophen combinations
US20030035837A1 (en) * 1993-11-23 2003-02-20 Sackler Richard S. Method of treating pain by administering 24 hour oral opioid formulations exhibiting rapid rate of initial rise of plasma drug level
US20030073714A1 (en) * 2001-08-06 2003-04-17 Christopher Breder Opioid agonist formulations with releasable and sequestered antagonist
US20030106554A1 (en) * 2001-11-30 2003-06-12 De Silva Adrian D. Gas identification system and volumetric ally correct gas delivery system
US20040047907A1 (en) * 2000-10-30 2004-03-11 Benjamin Oshlack Controlled release hydrocodone formulations
WO2004026283A1 (en) 2002-09-20 2004-04-01 Alpharma, Inc. Sequestering subunit and related compositions and metohds
US6806294B2 (en) 1998-10-15 2004-10-19 Euro-Celtique S.A. Opioid analgesic
US20040266807A1 (en) * 1999-10-29 2004-12-30 Euro-Celtique, S.A. Controlled release hydrocodone formulations
WO2005060968A1 (en) 2003-12-11 2005-07-07 Sepracor Inc. Combination of a sedative and a neurotransmitter modulator, and methods for improving sleep quality and treating depression
US20050245556A1 (en) * 2002-04-05 2005-11-03 Bianca Brogmann Pharmaceutical preparation containing oxycodone and naloxone
US20050287214A1 (en) * 2004-06-28 2005-12-29 Ayer Atul D Squeeze controlled oral dosage form
EP1685839A1 (en) 1997-12-22 2006-08-02 Euro-Celtique S.A. Pharmaceutical oral dosage form comprising a combination of an opioid agonist and opioid antagonist
US7267120B2 (en) 2002-08-19 2007-09-11 Allegiance Corporation Small volume nebulizer
US20070259045A1 (en) * 2005-01-28 2007-11-08 Euro-Celtique S.A. Alcohol Resistant Dosage Forms
EP1894562A1 (en) 2002-08-15 2008-03-05 Euro-Celtique S.A. Pharmaceutical compositions
US7384653B2 (en) 2001-08-06 2008-06-10 Purdue Pharma L.P. Oral dosage form comprising a therapeutic agent and an adverse-effect agent
EP1935421A1 (en) 2000-02-08 2008-06-25 Euro-Celtique S.A. Controlled-release compositions containing opioid agonist and antagonist
EP1961421A1 (en) 2004-06-08 2008-08-27 Euro-Celtique S.A. Opioids for the treatment of the chronic obstructive pulmonary disease (COPD)
US20090169626A1 (en) * 2006-01-27 2009-07-02 Euro-Celtique S.A. Tamper resistant dosage forms
EP2092936A2 (en) 2000-02-08 2009-08-26 Euro-Celtique S.A. Tamper-resistant oral opioid agonist formulations
US7682633B2 (en) 2006-06-19 2010-03-23 Alpharma Pharmaceuticals, Llc Pharmaceutical composition
US7740881B1 (en) 1993-07-01 2010-06-22 Purdue Pharma Lp Method of treating humans with opioid formulations having extended controlled release
US20100160350A1 (en) * 2007-05-29 2010-06-24 Kluge Arthur F Pyrazolopyrimidinone kinase inhibitor
US20100190831A1 (en) * 2008-12-18 2010-07-29 Metabolex, Inc. Gpr120 receptor agonists and uses thereof
EP2255808A2 (en) 2004-06-08 2010-12-01 Euro-Celtique S.A. Opioids for the treatment of the restlessness of the lower limbs
EP2298303A1 (en) 2003-09-25 2011-03-23 Euro-Celtique S.A. Pharmaceutical combinations of hydrocodone and naltrexone
EP2339328A2 (en) 2002-12-30 2011-06-29 Transform Pharmaceuticals, Inc. Pharmaceutical co-crystal compositions of celecoxib
US20110172259A1 (en) * 2005-02-28 2011-07-14 Euro-Celtique S.A. Dosage form containing oxycodone and naloxone
US8337888B2 (en) 2001-08-06 2012-12-25 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US8354124B2 (en) 2002-12-13 2013-01-15 Durect Corporation Oral drug delivery system
US8465774B2 (en) 2001-08-06 2013-06-18 Purdue Pharma L.P. Sequestered antagonist formulations
US8623418B2 (en) 2007-12-17 2014-01-07 Alpharma Pharmaceuticals Llc Pharmaceutical composition
US8808740B2 (en) 2010-12-22 2014-08-19 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
US8969369B2 (en) 2001-05-11 2015-03-03 Purdue Pharma L.P. Abuse-resistant controlled-release opioid dosage form
US9149533B2 (en) 2013-02-05 2015-10-06 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US9149436B2 (en) 2003-04-21 2015-10-06 Purdue Pharma L.P. Pharmaceutical product comprising a sequestered agent
US9271940B2 (en) 2009-03-10 2016-03-01 Purdue Pharma L.P. Immediate release pharmaceutical compositions comprising oxycodone and naloxone
US9555113B2 (en) 2013-03-15 2017-01-31 Durect Corporation Compositions with a rheological modifier to reduce dissolution variability
US9592204B2 (en) 2007-12-06 2017-03-14 Durect Corporation Oral pharmaceutical dosage forms
US9616030B2 (en) 2013-03-15 2017-04-11 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US9616055B2 (en) 2008-11-03 2017-04-11 Durect Corporation Oral pharmaceutical dosage forms
US9630979B2 (en) 2011-09-29 2017-04-25 Infinity Pharmaceuticals, Inc. Inhibitors of monoacylglycerol lipase and methods of their use
US9707180B2 (en) 2010-12-23 2017-07-18 Purdue Pharma L.P. Methods of preparing tamper resistant solid oral dosage forms
US10071089B2 (en) 2013-07-23 2018-09-11 Euro-Celtique S.A. Combination of oxycodone and naloxone for use in treating pain in patients suffering from pain and a disease resulting in intestinal dysbiosis and/or increasing the risk for intestinal bacterial translocation
US10179130B2 (en) 1999-10-29 2019-01-15 Purdue Pharma L.P. Controlled release hydrocodone formulations
US10258235B2 (en) 2005-02-28 2019-04-16 Purdue Pharma L.P. Method and device for the assessment of bowel function
US10525052B2 (en) 2004-06-12 2020-01-07 Collegium Pharmaceutical, Inc. Abuse-deterrent drug formulations
US10646485B2 (en) 2016-06-23 2020-05-12 Collegium Pharmaceutical, Inc. Process of making stable abuse-deterrent oral formulations
US10668060B2 (en) 2009-12-10 2020-06-02 Collegium Pharmaceutical, Inc. Tamper-resistant pharmaceutical compositions of opioids and other drugs
US10820833B2 (en) 2016-12-09 2020-11-03 Physio-Control, Inc. Capnograph system further detecting spontaneous patient breaths
US10844072B2 (en) 2014-01-15 2020-11-24 Rhodes Technologies Process for improved oxycodone synthesis
WO2021188909A1 (en) * 2020-03-19 2021-09-23 The Regents Of The University Of California Mechanical ventilator with a fixed number of orifice plates to generate constant flow paths

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148312A (en) * 1976-10-08 1979-04-10 Minnesota Mining And Manufacturing Company Combination anesthesia and intensive care apparatus
JPS5447900U (en) * 1977-09-09 1979-04-03
US4539984A (en) * 1981-03-26 1985-09-10 Vas Es Moszeripari Szovetkezet Respirator device particularly for use in perinatal medicine
US4448192A (en) * 1982-03-05 1984-05-15 Hewlett Packard Company Medical ventilator device parametrically controlled for patient ventilation
DE3900276A1 (en) * 1989-01-07 1990-07-12 Draegerwerk Ag VENTILATOR WITH BREATHING CIRCUIT AND CONTROLLED FRESH GAS SUPPLY
US10232130B2 (en) 2015-03-26 2019-03-19 Becton, Dickinson And Company Anti-run dry membrane
US10702689B2 (en) 2015-03-26 2020-07-07 Becton, Dickinson And Company Auto-stop vent plug
US10201667B2 (en) 2015-03-26 2019-02-12 Becton, Dickinson And Company IV membrane attachment systems and methods
US10646648B2 (en) 2015-04-01 2020-05-12 Becton, Dickinson And Company IV flow management systems and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3669108A (en) * 1969-10-20 1972-06-13 Veriflo Corp Ventilator
US3730180A (en) * 1970-10-21 1973-05-01 Mine Safety Appliances Co Pneumatically operated ventilator
US3754550A (en) * 1969-09-15 1973-08-28 Pye Ltd Cyclically operated medical respirators
US3756229A (en) * 1970-12-14 1973-09-04 Veriflo Corp Ventilator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1162151A (en) * 1966-02-24 1969-08-20 Watson W & Sons Ltd Improvements in or relating to Medical Respirators
GB1248303A (en) * 1970-01-02 1971-09-29 Pye Ltd Improvements in or relating to medical respirators

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3754550A (en) * 1969-09-15 1973-08-28 Pye Ltd Cyclically operated medical respirators
US3669108A (en) * 1969-10-20 1972-06-13 Veriflo Corp Ventilator
US3730180A (en) * 1970-10-21 1973-05-01 Mine Safety Appliances Co Pneumatically operated ventilator
US3756229A (en) * 1970-12-14 1973-09-04 Veriflo Corp Ventilator

Cited By (240)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057059A (en) * 1975-07-29 1977-11-08 Oklahoma State University Intermittent positive pressure breathing device
US4060078A (en) * 1975-08-18 1977-11-29 Bird F M Ventilator and method
US4003377A (en) * 1975-08-21 1977-01-18 Sandoz, Inc. Patient ventilator
US4098272A (en) * 1975-09-25 1978-07-04 Bio-Med Devices Inc. Respirator
US4141356A (en) * 1976-06-16 1979-02-27 Bourns, Inc. Respirator system and method
US4155357A (en) * 1976-12-10 1979-05-22 Sandoz, Inc. Patient ventilator disconnect alarm
US4197843A (en) * 1978-04-03 1980-04-15 Minnesota Mining And Manufacturing Company Volume limiting ventilator
US4452242A (en) * 1981-07-03 1984-06-05 Dragerwerk Aktiengesellschaft Respirator for use in pressure chambers
US4459982A (en) * 1982-09-13 1984-07-17 Bear Medical Systems, Inc. Servo-controlled demand regulator for respiratory ventilator
US4702240A (en) * 1986-07-22 1987-10-27 Bear Medical Systems, Inc. Demand-responsive gas blending system for medical ventilator
US4931285A (en) * 1988-04-28 1990-06-05 Alza Corporation Aqueous based pharmaceutical coating composition for dosage forms
US5111809A (en) * 1988-12-01 1992-05-12 Avstar Aerospace Corporation Breathing system
US5086767A (en) * 1990-09-26 1992-02-11 Canadian Aging & Rehabilitation Product Development Corporation Ventilator for assisting the breathing of a patient
US6103261A (en) * 1993-07-01 2000-08-15 Purdue Pharma Lp Opioid formulations having extended controlled release
US6143322A (en) * 1993-07-01 2000-11-07 Purdue Pharma L.P. Method of treating humans with opioid formulations having extended controlled release
US7740881B1 (en) 1993-07-01 2010-06-22 Purdue Pharma Lp Method of treating humans with opioid formulations having extended controlled release
US5879705A (en) * 1993-07-27 1999-03-09 Euro-Celtique S.A. Sustained release compositions of morphine and a method of preparing pharmaceutical compositions
US6143328A (en) * 1993-07-27 2000-11-07 Euro-Celtique, S.A. Sustained release compositions and a method of preparing pharmaceutical compositions
US5564416A (en) * 1993-10-06 1996-10-15 Pneupac Limited Ventilators for promoting lung function
US20030035837A1 (en) * 1993-11-23 2003-02-20 Sackler Richard S. Method of treating pain by administering 24 hour oral opioid formulations exhibiting rapid rate of initial rise of plasma drug level
US5411745A (en) * 1994-05-25 1995-05-02 Euro-Celtique, S.A. Powder-layered morphine sulfate formulations
US6077533A (en) * 1994-05-25 2000-06-20 Purdue Pharma L.P. Powder-layered oral dosage forms
US6068855A (en) * 1994-11-03 2000-05-30 Euro-Celtique S. A. Pharmaceutical composition containing a fusible carrier and method for producing the same
EP0916357A3 (en) * 1997-11-05 2001-11-14 Instrumentarium Corporation Method and arrangement in connection with ventilator
US9205082B2 (en) 1997-12-22 2015-12-08 Purdue Pharma L.P. Opioid agonist/antagonist combinations
US20020058673A1 (en) * 1997-12-22 2002-05-16 Kaiko Robert F. Opioid agonist/opioid antagonist/acetaminophen combinations
US9474750B2 (en) 1997-12-22 2016-10-25 Purdue Pharma L.P. Opioid agonist/opioid antagonist/acetaminophen combinations
US8932630B1 (en) 1997-12-22 2015-01-13 Purdue Pharma L.P Opioid agonist/antagonist combinations
US8936808B1 (en) 1997-12-22 2015-01-20 Purdue Pharma L.P. Opioid agonist/opioid antagonist/acetaminophen combinations
US8673355B2 (en) 1997-12-22 2014-03-18 Purdue Pharma L.P. Opioid agonist/antagonist combinations
US7172767B2 (en) 1997-12-22 2007-02-06 Purdue Pharma L.P. Opioid agonist / antagonist combinations
US8822487B2 (en) 1997-12-22 2014-09-02 Purdue Pharma L.P. Opioid agonist/opioid antagonist/acetaminophen combinations
EP1685839A1 (en) 1997-12-22 2006-08-02 Euro-Celtique S.A. Pharmaceutical oral dosage form comprising a combination of an opioid agonist and opioid antagonist
US7419686B2 (en) 1997-12-22 2008-09-02 Purdue Pharma L.P. Opioid agonist/antagonist combinations
US8105631B2 (en) 1997-12-22 2012-01-31 Purdue Pharma L.P. Opioid agonist/antagonist combinations
US7749542B2 (en) 1997-12-22 2010-07-06 Purdue Pharma Lp Opioid agonist/antagonist combinations
EP2266564A1 (en) 1997-12-22 2010-12-29 Euro-Celtique S.A. Pharmaceutical oral dosage form comprising a combination of an opioid agonist and an opioid antagonist
US6976981B2 (en) 1997-12-29 2005-12-20 Alza Corporation Osmotic delivery system with membrane plug retention mechanism
US6899887B2 (en) 1997-12-29 2005-05-31 Micron Technology, Inc. Osmotic delivery system with membrane plug retention mechanism
US20050048097A1 (en) * 1997-12-29 2005-03-03 Rupal Ayer Osmotic delivery system with membrane plug retention mechanism
US20040243106A1 (en) * 1997-12-29 2004-12-02 Rupal Ayer Osmotic delivery device with membrane plug retention mechanism
US6270787B1 (en) 1997-12-29 2001-08-07 Alza Corporation Osmotic delivery system with membrane plug retention mechanism
US6283953B1 (en) 1997-12-31 2001-09-04 Alza Corporation Osmotic drug delivery monitoring system and method
US6221396B1 (en) 1998-07-17 2001-04-24 Development Center For Biotechnology Oral cisapride dosage forms with an extended duration
US6806294B2 (en) 1998-10-15 2004-10-19 Euro-Celtique S.A. Opioid analgesic
EP2269587A1 (en) 1999-10-29 2011-01-05 Euro-Celtique S.A. Controlled release hydrocodone formulations
US7943174B2 (en) 1999-10-29 2011-05-17 Purdue Pharma L.P. Controlled release hydrocodone formulations
US10179130B2 (en) 1999-10-29 2019-01-15 Purdue Pharma L.P. Controlled release hydrocodone formulations
US10076516B2 (en) 1999-10-29 2018-09-18 Purdue Pharma L.P. Methods of manufacturing oral dosage forms
US8975273B2 (en) 1999-10-29 2015-03-10 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9675611B1 (en) 1999-10-29 2017-06-13 Purdue Pharma L.P. Methods of providing analgesia
US8980291B2 (en) 1999-10-29 2015-03-17 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9056107B1 (en) 1999-10-29 2015-06-16 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9320717B2 (en) 1999-10-29 2016-04-26 Purdue Pharma L.P. Controlled release hydrocodone formulations
US20040266807A1 (en) * 1999-10-29 2004-12-30 Euro-Celtique, S.A. Controlled release hydrocodone formulations
US9669024B2 (en) 1999-10-29 2017-06-06 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9669022B2 (en) 1999-10-29 2017-06-06 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9278074B2 (en) 1999-10-29 2016-03-08 Purdue Pharma L.P. Controlled release hydrocodone formulations
EP2295043A1 (en) 1999-10-29 2011-03-16 Euro-Celtique S.A. Controlled release hydrocodone formulations
EP2277521A1 (en) 2000-02-08 2011-01-26 Euro-Celtique S.A. Tamper-resitant oral opioid agonist formulations
EP2092936A2 (en) 2000-02-08 2009-08-26 Euro-Celtique S.A. Tamper-resistant oral opioid agonist formulations
EP2517710A1 (en) 2000-02-08 2012-10-31 Euro-Celtique S.A. Tamper-resistant oral opioid agonist formulations
EP2283842A1 (en) 2000-02-08 2011-02-16 Euro-Celtique S.A. Tamper-resitant oral opioid agonist formulations
EP1935421A1 (en) 2000-02-08 2008-06-25 Euro-Celtique S.A. Controlled-release compositions containing opioid agonist and antagonist
US9205056B2 (en) 2000-10-30 2015-12-08 Purdue Pharma L.P. Controlled release hydrocodone formulations
US8951555B1 (en) 2000-10-30 2015-02-10 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9289391B2 (en) 2000-10-30 2016-03-22 Purdue Pharma L.P. Controlled release hydrocodone formulations
US8715721B2 (en) 2000-10-30 2014-05-06 Purdue Pharma L.P. Controlled release hydrocodone
US9526724B2 (en) 2000-10-30 2016-12-27 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9517236B2 (en) 2000-10-30 2016-12-13 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9669023B2 (en) 2000-10-30 2017-06-06 Purdue Pharma L.P. Controlled release hydrocodone formulations
US20040047907A1 (en) * 2000-10-30 2004-03-11 Benjamin Oshlack Controlled release hydrocodone formulations
US9572805B2 (en) 2000-10-30 2017-02-21 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9205055B2 (en) 2000-10-30 2015-12-08 Purdue Pharma L.P. Controlled release hydrocodone formulations
US8647667B2 (en) 2000-10-30 2014-02-11 Purdue Pharma, L.P. Controlled release hydrocodone formulations
US6733783B2 (en) 2000-10-30 2004-05-11 Euro-Celtique S.A. Controlled release hydrocodone formulations
US9198863B2 (en) 2000-10-30 2015-12-01 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9023401B1 (en) 2000-10-30 2015-05-05 Purdue Pharma L.P. Controlled release hydrocodone formulations
US8142811B2 (en) 2000-10-30 2012-03-27 Purdue Pharma L.P. Controlled release hydrocodone formulations
EP2932964A1 (en) 2000-10-30 2015-10-21 Euro-Celtique S.A. Controlled release hydrocodone formulations
US8551520B2 (en) 2000-10-30 2013-10-08 Purdue Pharma L.P. Controlled release hydrocodone
US8231898B2 (en) 2000-10-30 2012-07-31 Purdue Pharma L.P. Controlled release hydrocodone formulations
US7514100B2 (en) 2000-10-30 2009-04-07 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9682077B2 (en) 2000-10-30 2017-06-20 Purdue Pharma L.P. Methods of providing analgesia
US9060940B2 (en) 2000-10-30 2015-06-23 Purdue Pharma L.P. Controlled release hydrocodone
US9504681B2 (en) 2000-10-30 2016-11-29 Purdue Pharma L.P. Controlled release hydrocodone formulations
US8361499B2 (en) 2000-10-30 2013-01-29 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9572804B2 (en) 2000-10-30 2017-02-21 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9056052B1 (en) 2000-10-30 2015-06-16 Purdue Pharma L.P. Controlled release hydrocodone formulations
US10022368B2 (en) 2000-10-30 2018-07-17 Purdue Pharma L.P. Methods of manufacturing oral formulations
US9084729B2 (en) 2001-05-11 2015-07-21 Purdue Pharma L.P. Abuse-resistant controlled-release opioid dosage form
US9056051B2 (en) 2001-05-11 2015-06-16 Purdue Pharma L.P. Abuse-resistant controlled-release opioid dosage form
US9511066B2 (en) 2001-05-11 2016-12-06 Purdue Pharma L.P. Abuse-resistant controlled-release opioid dosage form
US9161937B2 (en) 2001-05-11 2015-10-20 Purdue Pharma L.P. Abuse-resistant controlled-release opioid dosage form
US8969369B2 (en) 2001-05-11 2015-03-03 Purdue Pharma L.P. Abuse-resistant controlled-release opioid dosage form
US9168252B2 (en) 2001-05-11 2015-10-27 Purdue Pharma L.P. Abuse-resistant controlled-release opioid dosage form
US9480685B2 (en) 2001-05-11 2016-11-01 Purdue Pharma L.P. Abuse-resistant controlled-release opioid dosage form
US9358230B1 (en) 2001-05-11 2016-06-07 Purdue Pharma L.P. Abuse-resistant controlled-release opioid dosage form
US9283216B2 (en) 2001-05-11 2016-03-15 Purdue Pharma L.P. Abuse-resistant controlled-release opioid dosage form
US9283221B2 (en) 2001-05-11 2016-03-15 Purdue Pharma L.P. Abuse-resistant controlled-release opioid dosage form
US9345701B1 (en) 2001-05-11 2016-05-24 Purdue Pharma L.P. Abuse-resistant controlled-release opioid dosage form
US9040084B2 (en) 2001-08-06 2015-05-26 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9308171B2 (en) 2001-08-06 2016-04-12 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US8815287B2 (en) 2001-08-06 2014-08-26 Purdue Pharma L.P. Opiod agonist formulations with releasable and sequestered antagonist
US8758825B2 (en) 2001-08-06 2014-06-24 Purdue Pharma L.P. Sequestered antagonist formulations
US11135171B2 (en) 2001-08-06 2021-10-05 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US10537526B2 (en) 2001-08-06 2020-01-21 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US10500160B2 (en) 2001-08-06 2019-12-10 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US8871265B2 (en) 2001-08-06 2014-10-28 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US10206881B2 (en) 2001-08-06 2019-02-19 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US20030073714A1 (en) * 2001-08-06 2003-04-17 Christopher Breder Opioid agonist formulations with releasable and sequestered antagonist
US10130586B2 (en) 2001-08-06 2018-11-20 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US10076497B2 (en) 2001-08-06 2018-09-18 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US8609683B2 (en) 2001-08-06 2013-12-17 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US8529948B1 (en) 2001-08-06 2013-09-10 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US10071057B2 (en) 2001-08-06 2018-09-11 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US8999961B2 (en) 2001-08-06 2015-04-07 Purdue Pharma, L.P. Pharmaceutical formulation containing gelling agent
US8518443B2 (en) 2001-08-06 2013-08-27 Purdue Pharma, L.P. Opioid agonist formulations with releasable and sequestered antagonist
US9034376B2 (en) 2001-08-06 2015-05-19 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US8465774B2 (en) 2001-08-06 2013-06-18 Purdue Pharma L.P. Sequestered antagonist formulations
US9044435B2 (en) 2001-08-06 2015-06-02 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US10064825B2 (en) 2001-08-06 2018-09-04 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US8389007B2 (en) 2001-08-06 2013-03-05 Purdue Pharma L.P. Pharmaceutical composition containing gelling agent
US10064824B2 (en) 2001-08-06 2018-09-04 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US8337888B2 (en) 2001-08-06 2012-12-25 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9060976B2 (en) 2001-08-06 2015-06-23 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9968559B2 (en) 2001-08-06 2018-05-15 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9949930B2 (en) 2001-08-06 2018-04-24 Purdue Pharma L.P. Opioid agonist formulations with releasable and sequestered antagonist
US9877924B2 (en) 2001-08-06 2018-01-30 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US8231901B2 (en) 2001-08-06 2012-07-31 Purdue Pharma L.P. Opioid agonist formulations with releasable and sequestered antagonist
US9872836B2 (en) 2001-08-06 2018-01-23 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9867784B2 (en) 2001-08-06 2018-01-16 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9867783B2 (en) 2001-08-06 2018-01-16 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9861583B2 (en) 2001-08-06 2018-01-09 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9861582B2 (en) 2001-08-06 2018-01-09 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9757341B2 (en) 2001-08-06 2017-09-12 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9693961B2 (en) 2001-08-06 2017-07-04 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
USRE45822E1 (en) 2001-08-06 2015-12-22 Purdue Pharma L.P. Oral dosage form comprising a therapeutic agent and an adverse-effect agent
US7384653B2 (en) 2001-08-06 2008-06-10 Purdue Pharma L.P. Oral dosage form comprising a therapeutic agent and an adverse-effect agent
US9517207B2 (en) 2001-08-06 2016-12-13 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9387173B2 (en) 2001-08-06 2016-07-12 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US7914818B2 (en) 2001-08-06 2011-03-29 Purdue Pharma L.P. Opioid agonist formulations with releasable and sequestered antagonist
US9387174B2 (en) 2001-08-06 2016-07-12 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9308170B2 (en) 2001-08-06 2016-04-12 Purdue Pharma L.P. Pharmaceutical formulation containing gelling agent
US9205219B2 (en) 2001-11-30 2015-12-08 Carefusion 202, Inc. Gas identification system and respiratory technologies volumetrically corrected gas delivery system
US20080105259A1 (en) * 2001-11-30 2008-05-08 Viasys Healthcare, Critical Care Division Gas identification system and respiratory technologies volumetrically corrected gas delivery system
US20030106554A1 (en) * 2001-11-30 2003-06-12 De Silva Adrian D. Gas identification system and volumetric ally correct gas delivery system
US7387123B2 (en) 2001-11-30 2008-06-17 Viasys Manufacturing, Inc. Gas identification system and volumetrically correct gas delivery system
US8846091B2 (en) 2002-04-05 2014-09-30 Euro-Celtique S.A. Matrix for sustained, invariant and independent release of active compounds
US20050245556A1 (en) * 2002-04-05 2005-11-03 Bianca Brogmann Pharmaceutical preparation containing oxycodone and naloxone
US8846090B2 (en) 2002-04-05 2014-09-30 Euro-Celtique S.A. Matrix for sustained, invariant and independent release of active compounds
US20050245483A1 (en) * 2002-04-05 2005-11-03 Bianca Brogmann Matrix for sustained, invariant and independent release of active compounds
US9655855B2 (en) 2002-04-05 2017-05-23 Purdue Pharma L.P. Matrix for sustained, invariant and independent release of active compounds
US10420762B2 (en) 2002-04-05 2019-09-24 Purdue Pharma L.P. Pharmaceutical preparation containing oxycodone and naloxone
US9907793B2 (en) 2002-04-05 2018-03-06 Purdue Pharma L.P. Pharmaceutical preparation containing oxycodone and naloxone
US9555000B2 (en) 2002-04-05 2017-01-31 Purdue Pharma L.P. Pharmaceutical preparation containing oxycodone and naloxone
US10525053B2 (en) 2002-07-05 2020-01-07 Collegium Pharmaceutical, Inc. Abuse-deterrent pharmaceutical compositions of opioids and other drugs
EP1894562A1 (en) 2002-08-15 2008-03-05 Euro-Celtique S.A. Pharmaceutical compositions
US7267120B2 (en) 2002-08-19 2007-09-11 Allegiance Corporation Small volume nebulizer
WO2004026283A1 (en) 2002-09-20 2004-04-01 Alpharma, Inc. Sequestering subunit and related compositions and metohds
EP2422772A2 (en) 2002-09-20 2012-02-29 Alpharma, Inc. Sequestering subunit and related compositions and methods
EP2422773A2 (en) 2002-09-20 2012-02-29 Alpharma, Inc. Sequestering subunit and related compositions and methods
US8685443B2 (en) 2002-09-20 2014-04-01 Alpharma Pharmaceuticals Llc Sequestering subunit and related compositions and methods
US8685444B2 (en) 2002-09-20 2014-04-01 Alpharma Pharmaceuticals Llc Sequestering subunit and related compositions and methods
EP2422775A2 (en) 2002-09-20 2012-02-29 Alpharma, Inc. Sequestering subunit and related compositions and methods
US8354124B2 (en) 2002-12-13 2013-01-15 Durect Corporation Oral drug delivery system
US9233160B2 (en) 2002-12-13 2016-01-12 Durect Corporation Oral drug delivery system
US9517271B2 (en) 2002-12-13 2016-12-13 Durect Corporation Oral drug delivery system
US8420120B2 (en) 2002-12-13 2013-04-16 Durect Corporation Oral drug delivery system
US9918982B2 (en) 2002-12-13 2018-03-20 Durect Corporation Oral drug delivery system
EP2339328A2 (en) 2002-12-30 2011-06-29 Transform Pharmaceuticals, Inc. Pharmaceutical co-crystal compositions of celecoxib
US10092519B2 (en) 2003-04-21 2018-10-09 Purdue Pharma L.P. Pharmaceutical products
US9149436B2 (en) 2003-04-21 2015-10-06 Purdue Pharma L.P. Pharmaceutical product comprising a sequestered agent
EP2298303A1 (en) 2003-09-25 2011-03-23 Euro-Celtique S.A. Pharmaceutical combinations of hydrocodone and naltrexone
WO2005060968A1 (en) 2003-12-11 2005-07-07 Sepracor Inc. Combination of a sedative and a neurotransmitter modulator, and methods for improving sleep quality and treating depression
EP2343073A2 (en) 2003-12-11 2011-07-13 Sepracor Inc. Combination of a sedative and a neurotransmitter modulator, and methods for improving sleep quality and treating depression
EP2255808A2 (en) 2004-06-08 2010-12-01 Euro-Celtique S.A. Opioids for the treatment of the restlessness of the lower limbs
EP1961421A1 (en) 2004-06-08 2008-08-27 Euro-Celtique S.A. Opioids for the treatment of the chronic obstructive pulmonary disease (COPD)
US8518925B2 (en) 2004-06-08 2013-08-27 Euro-Celtique S.A. Opioids for the treatment of the chronic obstructive pulmonary disease (COPD)
US10525052B2 (en) 2004-06-12 2020-01-07 Collegium Pharmaceutical, Inc. Abuse-deterrent drug formulations
US20050287214A1 (en) * 2004-06-28 2005-12-29 Ayer Atul D Squeeze controlled oral dosage form
US20070259045A1 (en) * 2005-01-28 2007-11-08 Euro-Celtique S.A. Alcohol Resistant Dosage Forms
US10258235B2 (en) 2005-02-28 2019-04-16 Purdue Pharma L.P. Method and device for the assessment of bowel function
US20110172259A1 (en) * 2005-02-28 2011-07-14 Euro-Celtique S.A. Dosage form containing oxycodone and naloxone
US20090169626A1 (en) * 2006-01-27 2009-07-02 Euro-Celtique S.A. Tamper resistant dosage forms
US8877247B2 (en) 2006-06-19 2014-11-04 Alpharma Pharmaceuticals Llc Abuse-deterrent multi-layer pharmaceutical composition comprising an opioid antagonist and an opioid agonist
US8846104B2 (en) 2006-06-19 2014-09-30 Alpharma Pharmaceuticals Llc Pharmaceutical compositions for the deterrence and/or prevention of abuse
US7682633B2 (en) 2006-06-19 2010-03-23 Alpharma Pharmaceuticals, Llc Pharmaceutical composition
US7682634B2 (en) 2006-06-19 2010-03-23 Alpharma Pharmaceuticals, Llc Pharmaceutical compositions
EP2526932A1 (en) 2006-06-19 2012-11-28 Alpharma Pharmaceuticals, LLC Pharmaceutical composition
US8158156B2 (en) 2006-06-19 2012-04-17 Alpharma Pharmaceuticals, Llc Abuse-deterrent multi-layer pharmaceutical composition comprising an opioid antagonist and an opioid agonist
US20100160350A1 (en) * 2007-05-29 2010-06-24 Kluge Arthur F Pyrazolopyrimidinone kinase inhibitor
US9655861B2 (en) 2007-12-06 2017-05-23 Durect Corporation Oral pharmaceutical dosage forms
US10206883B2 (en) 2007-12-06 2019-02-19 Durect Corporation Oral pharamaceutical dosage forms
US9592204B2 (en) 2007-12-06 2017-03-14 Durect Corporation Oral pharmaceutical dosage forms
US8623418B2 (en) 2007-12-17 2014-01-07 Alpharma Pharmaceuticals Llc Pharmaceutical composition
US9616055B2 (en) 2008-11-03 2017-04-11 Durect Corporation Oral pharmaceutical dosage forms
US10328068B2 (en) 2008-11-03 2019-06-25 Durect Corporation Oral pharmaceutical dosage forms
US9884056B2 (en) 2008-11-03 2018-02-06 Durect Corporation Oral pharmaceutical dosage forms
US20100190831A1 (en) * 2008-12-18 2010-07-29 Metabolex, Inc. Gpr120 receptor agonists and uses thereof
US9820983B2 (en) 2009-03-10 2017-11-21 Purdue Pharma L.P. Immediate release pharmaceutical compositions comprising oxycodone and naloxone
US9271940B2 (en) 2009-03-10 2016-03-01 Purdue Pharma L.P. Immediate release pharmaceutical compositions comprising oxycodone and naloxone
US10668060B2 (en) 2009-12-10 2020-06-02 Collegium Pharmaceutical, Inc. Tamper-resistant pharmaceutical compositions of opioids and other drugs
US9744136B2 (en) 2010-12-22 2017-08-29 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
US8808740B2 (en) 2010-12-22 2014-08-19 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
US11911512B2 (en) 2010-12-22 2024-02-27 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
US9861584B2 (en) 2010-12-22 2018-01-09 Purdue Pharma L.P. Tamper resistant controlled release dosage forms
US20160158158A1 (en) 2010-12-22 2016-06-09 Purdue Pharma L.P. Encased Tamper Resistant Controlled Release Dosage Forms
US9393206B2 (en) 2010-12-22 2016-07-19 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
US9750703B2 (en) 2010-12-22 2017-09-05 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
US10966932B2 (en) 2010-12-22 2021-04-06 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
US9572779B2 (en) 2010-12-22 2017-02-21 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
US11590082B2 (en) 2010-12-22 2023-02-28 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
US9872837B2 (en) 2010-12-22 2018-01-23 Purdue Pharma L.P. Tamper resistant controlled release dosage forms
US9895317B2 (en) 2010-12-23 2018-02-20 Purdue Pharma L.P. Tamper resistant solid oral dosage forms
US9707180B2 (en) 2010-12-23 2017-07-18 Purdue Pharma L.P. Methods of preparing tamper resistant solid oral dosage forms
US9630979B2 (en) 2011-09-29 2017-04-25 Infinity Pharmaceuticals, Inc. Inhibitors of monoacylglycerol lipase and methods of their use
US9655971B2 (en) 2013-02-05 2017-05-23 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US9149533B2 (en) 2013-02-05 2015-10-06 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US9545448B2 (en) 2013-02-05 2017-01-17 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US9579389B2 (en) 2013-02-05 2017-02-28 Purdue Pharma L.P. Methods of preparing tamper resistant pharmaceutical formulations
US10478504B2 (en) 2013-02-05 2019-11-19 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US11576974B2 (en) 2013-02-05 2023-02-14 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US9662399B2 (en) 2013-02-05 2017-05-30 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US10792364B2 (en) 2013-02-05 2020-10-06 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US9855333B2 (en) 2013-03-15 2018-01-02 Durect Corporation Compositions with a rheological modifier to reduce dissolution variability
US10517832B2 (en) 2013-03-15 2019-12-31 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US9572885B2 (en) 2013-03-15 2017-02-21 Durect Corporation Compositions with a rheological modifier to reduce dissolution variability
US10300142B2 (en) 2013-03-15 2019-05-28 Durect Corporation Compositions with a rheological modifier to reduce dissolution variability
US9555113B2 (en) 2013-03-15 2017-01-31 Durect Corporation Compositions with a rheological modifier to reduce dissolution variability
US9616030B2 (en) 2013-03-15 2017-04-11 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US9907851B2 (en) 2013-03-15 2018-03-06 Durect Corporation Compositions with a rheological modifier to reduce dissolution variability
US10751287B2 (en) 2013-03-15 2020-08-25 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US10195152B2 (en) 2013-03-15 2019-02-05 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
US10071089B2 (en) 2013-07-23 2018-09-11 Euro-Celtique S.A. Combination of oxycodone and naloxone for use in treating pain in patients suffering from pain and a disease resulting in intestinal dysbiosis and/or increasing the risk for intestinal bacterial translocation
US10844072B2 (en) 2014-01-15 2020-11-24 Rhodes Technologies Process for improved oxycodone synthesis
US10646485B2 (en) 2016-06-23 2020-05-12 Collegium Pharmaceutical, Inc. Process of making stable abuse-deterrent oral formulations
US11844607B2 (en) 2016-12-09 2023-12-19 Physio-Control, Inc. Capnograph system further detecting spontaneous patient breaths
US10820833B2 (en) 2016-12-09 2020-11-03 Physio-Control, Inc. Capnograph system further detecting spontaneous patient breaths
WO2021188909A1 (en) * 2020-03-19 2021-09-23 The Regents Of The University Of California Mechanical ventilator with a fixed number of orifice plates to generate constant flow paths

Also Published As

Publication number Publication date
DE2446055A1 (en) 1975-04-03
GB1488358A (en) 1977-10-12
DK494074A (en) 1975-05-26
SU579853A3 (en) 1977-11-05
NL7412628A (en) 1975-04-02
ES430505A1 (en) 1976-10-01
FR2271806B1 (en) 1979-02-16
SE7411865L (en) 1975-04-01
JPS5063795A (en) 1975-05-30
CA1014040A (en) 1977-07-19
IT1022370B (en) 1978-03-20
SE398044B (en) 1977-12-05
FR2271806A1 (en) 1975-12-19
BE820457A (en) 1975-01-16
DD116556A5 (en) 1975-12-05
CH585551A5 (en) 1977-03-15

Similar Documents

Publication Publication Date Title
US3916889A (en) Patient ventilator apparatus
US3991790A (en) Patient ventilator trigger circuit
US4285340A (en) Apparatus for controlling the pressure in a tracheal cuff
US4141354A (en) Ventilator system for controlling, assisting and monitoring a patient's breathing
US4020834A (en) Respirator and method
US3889669A (en) Respiration rate control system
US5165398A (en) Ventilator and oscillator for use therewith and method
US4044763A (en) Ventilator and method
US4459982A (en) Servo-controlled demand regulator for respiratory ventilator
US4057059A (en) Intermittent positive pressure breathing device
US4197843A (en) Volume limiting ventilator
EP0050125B1 (en) Volume ventilator
US3831595A (en) Respirator
US4182599A (en) Volume-rate respirator system and method
US4898174A (en) Automatic ventilator
US4003377A (en) Patient ventilator
US3974828A (en) Ventilator and method
US3662751A (en) Automatic respirator-inhalation therapy device
US3817246A (en) Flow responsive respiration apparatus
US3964476A (en) Respiration system and device
US3754550A (en) Cyclically operated medical respirators
US3339545A (en) Respiratory apparatus
US3556095A (en) Automatic intermittent positive pressure ventilator
US4069818A (en) Fluidic controlled ventilator
US4096858A (en) Volume-rate respirator system and method

Legal Events

Date Code Title Description
AS Assignment

Owner name: MONAGHAN MEDICAL CORPORATION, FRANKLIN BUILDING, R

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:HOSPAL MEDICAL CORPORATION;REEL/FRAME:003854/0064

Effective date: 19810511