US3921382A - Method of making a covered elastic yarn - Google Patents

Method of making a covered elastic yarn Download PDF

Info

Publication number
US3921382A
US3921382A US405167A US40516773A US3921382A US 3921382 A US3921382 A US 3921382A US 405167 A US405167 A US 405167A US 40516773 A US40516773 A US 40516773A US 3921382 A US3921382 A US 3921382A
Authority
US
United States
Prior art keywords
yarn
elastic
thread
filaments
twisting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US405167A
Inventor
Yasuo Tsujita
Toshihiko Kimura
Shigeji Yamashita
Kazuo Yuki
Hiroshi Asami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP45041579A external-priority patent/JPS5028536B1/ja
Priority to DE2207614A priority Critical patent/DE2207614B2/en
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to US405167A priority patent/US3921382A/en
Application granted granted Critical
Publication of US3921382A publication Critical patent/US3921382A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/32Elastic yarns or threads ; Production of plied or cored yarns, one of which is elastic
    • D02G3/328Elastic yarns or threads ; Production of plied or cored yarns, one of which is elastic containing elastane
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/02Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist
    • D02G1/0286Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist characterised by the use of certain filaments, fibres or yarns
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/40Yarns in which fibres are united by adhesives; Impregnated yarns or threads
    • D02G3/402Yarns in which fibres are united by adhesives; Impregnated yarns or threads the adhesive being one component of the yarn, i.e. thermoplastic yarn

Definitions

  • the present invention relates to a method of making a covered elastic yarn with an elastic thread as a core yarn, and a continuous thermoplastic multifilament thread as a sheath yarn, wherein the respective filaments forming said covered elastic yarn are respectively tangled with each other to retain flux form, and at the same time to form the sheath-core system, and said sheath yarn wraps the outer periphery of said core yarn but is reversed irregularly and intermittently in said direction, and said sheath yarn and said core yarn are substantially twistless.
  • a novel elastic invention relates a method of making this yarn.
  • the yarn according to the method of this invention is a covered yarn wherein a multifilament, continuous filament thread as a sheath yarn wraps a core yarn in such a manner that said multi-filament thread wraps round said elastic thread, and said core yarn and said sheath yarn are substantially twistless.
  • elastic yarn such as rubber yarn or polyurethane elastic filament yarn is used as the core in the convection of ejected fluid, and other filament yarns are tangled therewith, or elastic yarn and thermoplastic filament yarn are associated, and the associated yarns are crimped in twisting-heat setting-untwisting type" method so called Italian type twister to produce overuntwisting yarn.
  • the conventional covered elastic yarns have excellent characteristics, they have the following drawbacks.
  • the present invention has the following structure.
  • This invention relates to a covered elastic yarn comprising an elastic thread as a core yarn and a multi-filament continuous filament thread as a sheath yarn; wherein the respective filaments forming said covered elastic yarn are tangled to retain the fluxability and at the same time to form sheath-core state, and said sheath yarn wraps the outer periphery of said core' yarn, and is reversed intermittently and irregularly in said direction, and said sheath yarn and said core yarn are substantially twistless.
  • the yarn of this invention is produced by using elastic thread having remarkably high elongation and recovery, such as rubber yarn or polyurethane filament yarn, as the core yarn.
  • Said core yarn may be monofilamerit but it is preferable to use a plural number of associated filaments, i.e., multi-filament; and as a matter of course it is most preferable that'the number of filaments should be great.
  • a crimped yarn composed of multi-filament yarn composed of thermoplastic filaments can be used as said sheath yarn.
  • Said sheath yarn covers and is twisted around said core yarn. and the core yarn is placed almost in the centre of said covering elastic yarn, and in regard to the direction of twisting of said sheath yarn, said sheath yarn is twisted in such a direction that said sheath yarn is twisted with random interval and intermittently in the lengthwise direction of said covered elastic yarn, and either filaments themselves forming said sheath or the filaments forming said sheath yarn and said core yarn are is mutually tangled to retain fluxability.
  • thermoplastic synthetic yarn When thermoplastic synthetic yarn is used as the core yarn, random untwisting or slight crimping can be observed intermittently in the same manner as in the case of said sheath yarn.
  • FIG. I (A) is a schematic view of a length of conven tional covered elastic yarn, in its fully, or nearly fully elongated condition.
  • FIG. 1 (B) is a schematic view of a length of the yarn of FIG. 1 (A), contracted more than in FIG. 1 (A).
  • FIG. 2 is a schematic view of a length of covered elastic yarn prepared by a conventional false-twisting method, in its fully, or nearly fully elongated condition.
  • FIG. 2 (B) is a schematic view of a length of the yarn of FIG. 2 (A) contracted more than in FIG. 2 (A).
  • FIG. 2 (C) is a schematic view of a length of the yarn of FIG. 2 (B) further twisted.
  • FIG. 3 (A) is a schematic view of a length of the yarn in accordance with this invention, in its fully, or nearly fully elongated condition.
  • FIG. 3 (B) is a schematic view of a length of the yarn of FIG. 3 (A) contracted more than in FIG. 3 (A).
  • FIG. 4 (A) is an enlarged cross sectional view of the yarn of FIG. 2 (A);
  • FIG. 4 (B) is an enlarged cross sectional view of the yarn of FIG. 2 (B);
  • FIG. 5 (A) is an enlarged cross sectional view of the yarn of FIG. 3 (A);
  • FIG. 5 (B) is an enlarged cross sectional view of the yarn of FIG. 3 (B).
  • FIG. 6 (A) is a schematic view of partly cut off falsetwisting apparatus shown partially in cross-section which can be used to make the yarn in accordance with the present invention.
  • FIG. 6 (B) is a vertical sectional view of a guide (10) in the apparatus shown in FIG. 6 (B).
  • FIG. 7 (A) is a schematic view, partially in cross-section, of modified false twisting apparatus which can be used to make the yarn in accordance with this invention.
  • FIG. 7 (B) is a vertical sectional view of a star-wheel type pulley usable for FIG. 7 (A).
  • FIG. 1 (A) is a schematic view of the covered elastic yarn twisting two yarns 2 and 2 on the core yarn 1 by a conventional spinning machine or a conventional twister. in elongated state.
  • FIG. 1 (B) is a model schematic view of the covered elastic yarn of FIG. 1 (A) contracted by As is apparent from FIG. I (A). the filaments of the sheath yarns 2, 2' of the covered yarn are regularly twisted and therefore the covering property of the covered elastic is remarkably excellent. but since the filaments of the covered yarns 2, 2' are controlled by twisting, and therefore the space occupied by said filaments becomes narrower, and the bulkiness thereof deteriorated, and this is a drawback.
  • FIG. 2 (A) is a schematic view of a covered yarn under tension prepared by simply associating and conventional false-twisting the core yarn 1 and the covering yarns 2, 2'
  • FIG. 2 (B) is a schematic view of the same yarn shown in FIG. 2 (A) contracted by 30%.
  • the core yarn l and the covering yarns 2, 2' have no twist at all, and it is very bulky but there is no contact of the filaments composing the core yarn and the covering yarn see FIG. 4 described below.
  • the covering property is very poor, and the core yarn and the covering yarn can be separated by a slight external effect when the covered yarn passes through a guide or tensioner, and the separated core yarn and the covering yarn are not restored to their original state, and this is a serious drawback.
  • FIG. 2 (C) shows the form of the yarn after such additional twisting or pre-twisting.
  • FIG. 3 (A) and FIG. 3 (B) show the covered elastic yarns obtained in accordance with the present invention in comparison with the covered elastic yarns obtained in accordance with the prior art.
  • FIG. 3 (A) shows the covered elastic yarn of the present invention under tension in the same manner as in FIG. 1 (A) and FIG. 2 (A), and FIG. 3 (B) shows said yarn contracted by about 30%.
  • FIG. 3 (B) is a schematic view of the structure which makes use of the merits of the yarn of FIG. 2 (B) and FIG. 1 (B). so as to compensate for the respective drawbacks thereof.
  • FIG. 3 (A) and FIG. 3 (B) shows the twist reversing point of said filaments.
  • the above described phenomena are demonstrated by all of the filaments forming the sheath yarn, and therefore the covered elastic yarn as a whole has remarkably excellent covering property, and at the same time.
  • the filaments forming the sheath yarn have almost no contact against the core filaments attributable to twisting because the filaments forming the core yarn and sheath yarn are substantially twistless, and therefore excellent bulkiness can be attained.
  • a covered elastic yarn of FIG. 2 (A), (B), produced in accordance with a conventional falsetwisting method is covered with the covering yarn not being closely adhered on the elastic yarn (1) as is apparent from FIG. 4 (A), (B), in a covered elastic yarn produced in accordance with the present invention, as is apparent from FIG. 5 (A), (B), the thermoplastic continuous multifilament thread is partially laid in the elastic thread (1) in such a manner that the thermosetting continuous multifilament thread is inserted into said elastic thread.
  • the yarn of the present invention has remarkably excellent fluxability, and the slipping-off of the core yarn (l) is reduced when the yarn is subjected to tension and pulling, and the covering property is not at all deteriorated.
  • an elastic thread is taken off its package under tension, and a thermoplastic continuous multi-filament thread and said elastic thread are associated together, and thus associated thermoplastic; continuous multi-filament and the elastic thread are passed through a fluxing guide, and are arranged in such a manner that said elastic thread can becomes the core and that said multifilamerit thread wraps around said elastic thread, and the thus obtained combined and associated yarns are then supplied into a false twisting machine, to carry out a twisting, heat setting and untwisting process.
  • the relation of said elastic thread and thermoplastic multi-filament thread is such that the filaments of said thermoplastic multifilament thread are arranged in such a manner that the elastic thread can be wrapped by said filaments, and the covered elastic yarn thus obtained has elastic thread within the fiber flux of the crimped thermoplastic multi-fila'ments by means of false twisting, and the elastic thread is covered with the crimped multi-filament, and therefore the two cannot be easily separated.
  • the elastic thread as the core yarn and the filaments forming the sheath yarn are substantially untwisted, and the generation of torque and kink can be hardly observed.
  • temperature should be adjusted to be sufficient to fix the desirable crimping of the thermoplastic multi-filament to be used as the sheath thread, but it is necessary that the kind of the elastic thread used as the core yarn should be taken into consideration.
  • the temperature at which false twisting is carried out must be adjusted to be low so as not to damage the elastic thread or said elastic thread must be protected by the sheath thread, and therefore it is a matter of course that the conditions such as the kind of the sheath thread, temperature and the number of twisting turns should be taken into consideration.
  • thermoplastic elastic thread such as polyurethane fibers
  • the elastic thread is supplied under a high tension or high elongation in a high temperature zone
  • the elongation of the covered elastic yarn product is less; on the contrary, when the elastic thread is supplied under less tension or at low elongation, the elongation of the covered elastic yarn product is larger.
  • the polyurethane elastic yarn as the core yarn is subjected to the false twisting treatment at a temperature in the neighbourhood of the melting point of the core yarn, i.e. if the heat-setting of the false twisting is carried out at a temperature ranging from C to 200C, or more preferably at C, the poly urethane elastic yarn is softened, and, in addition, the twists attributable to the false twisting is generated on the surface of said polyurethane elastic yarn, and therefore the fibers forming said sheath strand are laid into the concave portions produced by the twisting of said elastic yarn.
  • the covering property of the covered elastic yarn which can be obtained as described above can be further improved, and at the same time the migration of said sheath thread cannot be brought about by the external frictional force.
  • thermoplastic multi-filament thread as the sheath yarn to the same false twisting machine
  • the filaments forming the thermoplastic multifilaments should be parallelly arranged in such a manner as to wrap the core yarn.
  • the above mentioned arrangement determines the superiority of the covering property of the covered elastic yarn of this invention.
  • said elastic thread in order to place the elastic thread in the center, said elastic thread should be supplied under tension to preventthe free slipping-off thereof, and furthermore the multi-filament thread should be supplied under low tension to wrap said elastic thread.
  • the fibers which are to become sheath form the outer side, and the elastic thread which is to can become the core thread is placed in the center.
  • a guide for fluxing the threads i.e. a U or V shaped yarn guide or a star-wheel type pulley guide having a U or V shaped concave portion on the periphery thereof to arrange the filaments in the neighbourhood of the twist-starting point, to prevent, from that point backward, the twisting of the fluxed threads which abruptly starts beyond that point, using a nip roller guide to define that point.
  • the elastic thread and non-elastic thread are directly introduced into a false twisting machine after they have been associated, but it is necessary to keep said elastic thread and non-elastic thread in the associated state for a predetermined time, and said elastic thread is introduced into the center of said non-elastic thread by the above mentioned treatment.
  • said core yarn and said sheath yarn are doubled, and thereafter, the doubling state is retained for a predetermined distance, while a tension difference is maintained therebetween in a yarn introducing zone of a false-twisting apparatus, in which the yarn is falsetwisted while the backward travel of twist is controlled, and thereby said core yarn is sufficiently placed into said sheath yarn.
  • FIG. 6 and FIG. 7 are diagrams showing embodiments for carrying out the process and for making the porudct of the present invention.
  • the thread 8 which is released from package 7 of the thermoplastic multi-filament yarn which becomes the sheath -yarn passes through the guide 9, and is supplied to the feed roller 6 of the falsetwisting machine, and is associated with the elastic thread (5).
  • the elastic thread (5) supplied by the feed rollers (6), and the continuous multi-filament thread (8) are arranged by the grooved guide (10) having a V shaped groove in the lateral cross section perpendicular to the running direction of said threads (5) and (8) in such a manner that said thread (5) is arranged within the central portion of said continuous multi-filament thread (8).
  • Said elastic thread (5) and continuous multi-filament thread (8) are then subjected to false twisting by means of the false twisting spindle (13), and the twisted portion thereof is thermally set by means of the heater (12), and when said threads have passed through said spindle (13), they are untwisted, and are drawn out by a pair of delivery rollers (14), and said threads pass through the guide (15), and are taken up into a package (17) by means of a take up device such as drum type winder.
  • the false twisting is perfectly stopped by a nip roller (11), and the two threads keep their associated state between the feed roller (6) and nip roller (11). This prevents twist from travelling backward to grooved guide (10) or said feed rollers (6) so that the state of core-sheath of the two threads is not destroyed thereby.
  • FIG. 6 (B) is a diagram showing the cross sectional form of grooved guide (10) in the plane perpendicular to the running direction of the threads 5, 8, and said elastic thread 5 is arranged into the central portion fo said continuous multi-filament thread 8 in said groove.
  • FIG. 7 is a diagram showing a modified form of the apparatus of FIG. 6 (A), (B).
  • the elastic thread 5 released by the positive feed-roller 4 from the package 3 thereof is elongated by a predetermined degree between said feed roller 4 and delivery roller 14.
  • Said elastic thread 5 is associated with the thermoplastic multi-filament thread 8 released from the package 7 thereof in an almost tensionless state, and is supplied into the star-wheel type pulley 18.
  • FIG. 7 (B) is a cross sectional view of said star-wheel pulley across the center of said star-wheel type pulley. Said star-wheel type pulley is light and is rotated in the running direction of the threads 5, 8 of the shaft 20 by contact with the threads.
  • the peripheral portion 21 of said pulley (as seen in FIG. 7 (B) has a shaped groove, and that helps said two threads take on a sheath-core form without adding high tension to said continuous multifilament thread which becomes sheath thread by using said pulley and said elastic thread 5 arranged in the central portion of said continuous multi-filament thread 8 therein.
  • a pair of nip rollers 11 is provided in order to prevent the travelling of the twist of the false-twisting machine during the false twisting process, but when a pair of the nip rollers 11 is used, there is a fear that the sheath-core arrangement of the threads 5, 8 attained by the groove guide 10, may be upset thereby.
  • the star wheel type pulley as is shown in FIG. 7 (A) is rotated along with the running of the threads 5, 8, and therefore it is not necessary to use such a pair of nip rollers 11 as is shown in FIG. 6 (A) because there is no fear that the twist of the false twisting machien may arrive at the entrance portion of the groove 21 of said pulley 18, and only the guide 19 for converting the running direction suffices.
  • the respective threads 5, 8 associated in the sheath-core state are taken up on the package 17 after they are subjected to the process for twisting-heatsettinguntwisting.
  • the covered elastic yarn thus obtained is an elastic yarn having remarkably strong covering property, and the covering cannot be destroyed even if it is used over and over again, and partial exposure of the core yarn thereof can be hardly observed, and the covered elastic yarn has a very uniform shape in the lengthwise direction thereof.
  • thermoplastic filaments are slightly melted and adhered by raising the temperature of the heater of the false-twisting machine, it is needless to mention here that faster covering can be attained and the covering becomes more compact.
  • the covered elastic yarn of the present invention has almost the same processability as the ordinary crimped yarns, and it is possible to adjust the crimping degree by adjusting the temperature of the heater of the falsetwisting machine and the strich power thereof is almost the same as that of thermatic set single covered yarn, or
  • the covered elastic yarn of the present invention is twistless yarn, and snarls and kinks are in easily formed in the yarn of this invention when compared with the conventional single covered yarn to say nothing of the conventional false twisted crimped yarn.
  • the hank reeling property, hank dyeing property, hank winding property, cone-up property, preparing property for weaving, and preparing property for knitting of the covered elastic yarn of the present invention are the same as or more excellent than those of the conventional false twisted crimped yarns or single covered yarns.
  • the woven or knit fabrics obtained from the covered elastic yarn of the present invention can present the soft touch of wooly yarn by crimping process of the thermoplastic filaments and twistless covering process into the elastic filament yarn attained thereby, without being controlled by twist thereof, and has a special appearance as woven or knit goods.
  • the covered elastic yarn of the present invention can be directly used for producing the ordinary knit goods, longitudinally stretchable woven fabric, and laterally stretchable woven fabric, without employing any heat setting process or twisting process, and this is accounted to be an advantage of the present invention.
  • the longitudinally stretchable woven fabric it is possible to omit sizing process by using the covered elastic yarn prepared by slightly melting and adhering the thermoplastic filaments at the time when false twisting is carried out.
  • the covered elastic yarn of the present invention is used for knit goods, there is a remarkable advantage that the yarn having the same stretch power as that of the conventional thermoplastic yarn can be directly wovenlfrom the cheese of the false-twisted yarns since in accordance with the prior art, the covered elastic suspended thereon so to separate the core yarn and the sheath yarn thereof.
  • the length 1 of the yarn with the weight hanging down is read.
  • the yarn of the present invention was wound on the periphery of a 50 cm frame for 10 times, and thermal treatment was carried out with 60C hot water for 30 minutes.
  • a weight of 40 g was suspended on the yarn of the present invention for 30 seconds, and the length of 50 cm was marked on the yarn, and thereafter the weight was removed, and then the yarn was left out to be shrunk for 120 seconds, and then, a weight of 0.5 g was X 100 Peripheral speed of delivery roller DEFINITION OF POLYURETHANE ELASTIC THREAD USED IN RESPECTIVE EXAMPLES
  • a polyurethane elastic thread 40 denier-l filament used in the following examples and comparative examples is a monofilament in which six polyurethane elastic filaments are coalesced, and a polyurethane elastic thread denier-l filament is a monofilament in which 18 polyurethane elastic filaments are coalesced.
  • Examples 1 and 2 A polyurethane elastic thread 40 denier-I filament elongated by 3.5 times of the original length thereof and Nylon-6, 70 denier-34 filaments being tensioned by 0.1g were associated with each other, and thereafter the associated filaments were supplied into the apparatus embodiment as shown in FIG. 6. (A), (B), and treated under conditions as shown in items EX-l and EX-Z of Table-l.
  • the covered elastic yarns of the present invention in the production of which there is a relatively high difference between the tension of the polyurethane elastic thread and that-of the Nylon-6 multi-filament, and heat-setting of the false-twisting is carried out at a temperature ranging from 180C, to 200C have excellent covering property, because the respective filaments of Nylon-6 are adhered to the outer surface of the polyurethane elastic thread.
  • the covered elastic yarn in accordance with Example-3 produced with only slight differential tension between of the polyurethane elastic thread and the Nylon-6 mtilti-filament and with heat- EX- l EX-Z EX'3 94 8O 0 54 58 60 l7) 190 I91 ll 8 6 yes yes do.
  • Example 5 The associated filaments as mentioned above were supplied into and treated in apparatus of the embodimer t as shown in FIG. 6(A), (B) under conditions as shown in item EX-S of Table-3.
  • the covered elastic yarn of the present invention can be obtained by either apparatus embodment as shown in FIG. 6 or as shown in FIG. 7. But the covering property of the covered elastic yarn of Example 4 produced with the apparatus embodiment of FIG. 7 which is provided with a starwheel type guide, is more excellent than that of the covered elastic yarn of Example 5 produced with the apparatus embodiment of FIG. 6 which is provided with a simple grooved guide.
  • Example-4 it seems as ifthere is only a slight difference between the covering property of Example-4 and Example-5, but actually there is five fold difference in the mean value of the length differential used in calculating covering property defined herein prior to the description of Example 1.
  • Table-5 all of the five samples showed little tendency to permit slipping-off between said polyurethane elastic thread and Nylon6 multi-filament thread, when a weight of 0.5g was suspended thereon.
  • EX-6 EX7 Materials polyurethane thread (denierfilament) 40-l 40-1 Nylon6 multi filament (denier-filament) 7024 70-24 an elongating degree of elastic thread (times) 3.6 2.2 doubling tension of Nylon-6 multi-filament (g) 0,2 3.8 ratio of tension between an entry and an exit of the L08 1.95 star-wheel type grooved guide existence of a grooved guide yes yes coefficient of feeding it processing (71) conditions number of rotations of false-twisting spindle 2OX10 ZOXlO of processing (r.p.m.)
  • the covered elastic yarn in accordance with' Example-6 in which the temperature of heat setting of false-twisting is the same as that of conventional falsetwisting methods has a small covering property. Therefore, in order to obtain a covered elastic yarn having excellent covering property, it is preferable that the temperature of heat setting of false-twisting, as is in Ex- 15 ample-6, is higher than that of conventional false-twisting methods.
  • Example 11 As is apparent from the foregoing discussion the cov- The covered elastic yarn of this example was devising property of the covered elastic yarn of Example 8 tained by the method of Example 10, but without any produced with the apparatus embodiment of FIG. 7 is pre-twisting. better than that of the covered elastic yarn of Example In the covered elastic yarn of this example, the elastic 9 produced with the apparatus embodiment of FIG. 6.
  • Example 10 stantially twistless, but the covering property thereof On the other hand, threads used in Examples 8 and 9 was very poor as is apparent from item EX-1 1 of Tablewere treated by a conventional method. 9.
  • the conventional method used as taught in comprises a weight of 0.5g) and 34 (with a weight of 2.0g) seem to first step of associating said elastic thread with said some degrees of covering property, but as a matter of thermoplastic multi-filament thread, a second step of fact, the yarn obtained by this example is of almost no pre-twisting said associated threads, 21 third step of practical value, because the covered portions uncovtwisting said threads in the direction opposite to that of ered and with said thermoplastic multi-filament were the original twist-heat settingand untwisting said randomly distributed along the longitudinal direction threads in the same direction as that of the original of said yarn.
  • Example 12 Conditions of treatment of the present example are Furthermore, to make sure of the result reported in shown in item EX-9 of Table-8 and the effects thereof Example 11 the method of Example 1 l, but at the heatare shown in item EX-9 of Table-9. As is apparent from 35 setting temperature in the vicinity of Examples that in the above result, the covered elastic yarn produced in 8 and 9. As a result, the covering property of the covaccordance with Example-l0 has practically rubbing ered elastic yarn of this example was more excellent resistance and forms a twisting mass in the longitudinal than that of Example-l 1, but the covering property direction thereof directly after it was rubbed, because it thereof was not completely perfect, and the coefficient is twisted slightly. of recovery of elasticity was lower than that of Examples 10 and 11.
  • Method for producing a covered elastic yarn comprising l. arranging a plurality of thermoplastic heat-settable substantially inelastic filaments in the form of a running bundle,

Abstract

The present invention relates to a method of making a covered elastic yarn with an elastic thread as a core yarn, and a continuous thermoplastic multifilament thread as a sheath yarn, wherein the respective filaments forming said covered elastic yarn are respectively tangled with each other to retain flux form, and at the same time to form the sheath-core system, and said sheath yarn wraps the outer periphery of said core yarn but is reversed irregularly and intermittently in said direction, and said sheath yarn and said core yarn are substantially twistless.

Description

United States Patent Tsujita et al.
1 Nov. 25, 1975 METHOD OF MAKING A COVERED ELASTIC YARN Inventors: Yasuo Tsujita; Toshihiko Kimura,
both of Otsu; Shigeji Yamashita, Shiga; Kazuo Yuki; Hiroshi Asami, both of Otsu, all of Japan Assignee: Toray Industries, Inc., Tokyo, Japan Filed: Oct. 10, 1973 Appl. No.: 405,167
Related U.S. Application Data Division of Ser. No. 143,940, May 17, 1971, Pat. No. 3,807,162.
Foreign Application Priority Data May 18, 1970 Japan 45-41579 U.S. Cl. 57/157 TS; 57/34 HS; 57/163 Int. Cl. D02G 1/02; D02G 3/32 Field of Search 57/157 TS, 34 HS, 152,
References Cited UNITED STATES PATENTS 11/1966 Rapoza 57/152 3,334,478 8/1967 Milne 57/12 3,393,505 7/1968 Reid et al. 57/152 3,447,296 6/1969 Chidgey et al.... 57/34 HS 3,540,204 11 /1970 Tanaka et al. 57/163 3,645,081 2/1972 Salama 57/34 HS 3,656,288 4/1972 Gilchrist 57/34 HS 3,763,640 10/1973 Nagel et a1 57/34 HS Primary Examiner.lohn Petrakes [57] ABSTRACT The present invention relates to a method of making a covered elastic yarn with an elastic thread as a core yarn, and a continuous thermoplastic multifilament thread as a sheath yarn, wherein the respective filaments forming said covered elastic yarn are respectively tangled with each other to retain flux form, and at the same time to form the sheath-core system, and said sheath yarn wraps the outer periphery of said core yarn but is reversed irregularly and intermittently in said direction, and said sheath yarn and said core yarn are substantially twistless.
1 Claim, 10 Drawing Figures US. Patent Nov. 2 5, 1975 Sheet1of3 3,921,382
PRIOR ART Fig; I
PRIOR ART Fig. 2
US. Patent Nov. 25, 1975 Sheet 2 of3 3,921,382
Fig. 4
US. Patent Nov. 25; 1975 Sheet3of3 3,921,382
METHOD OF MAKING A COVERED ELASTIC YARN This is a division of application Ser. No. 143,940, filed May 17, 1971, now US. Pat. No. 3,807,162,
BACKGROUND OF THE PRESENT INVENTION:
A novel elastic invention relates a method of making this yarn.
The yarn according to the method of this invention is a covered yarn wherein a multifilament, continuous filament thread as a sheath yarn wraps a core yarn in such a manner that said multi-filament thread wraps round said elastic thread, and said core yarn and said sheath yarn are substantially twistless.
In conventional covered elastic yarns which are generally used at present rubber yarn or polyurethane elastic fiber yarn is used as the elastic core yarn, and the other filament yarn or spun yarn is twisted around said core, or said yarns are associated and twisted thereon.
In addition, elastic yarn such as rubber yarn or polyurethane elastic filament yarn is used as the core in the convection of ejected fluid, and other filament yarns are tangled therewith, or elastic yarn and thermoplastic filament yarn are associated, and the associated yarns are crimped in twisting-heat setting-untwisting type" method so called Italian type twister to produce overuntwisting yarn. While, the conventional covered elastic yarns have excellent characteristics, they have the following drawbacks.
First of all, in the case of single or double covered yarn prepared either in such a manner that non-elastic yarn wound on a bobbin mounted on a rotating hollow spindle is wound onto the rubber or polyurethane elastic core filament as that filament is drawn through the spindle, or in another case of single covered yarn prepared in such a manner that non-elastic sheath yarn and rubber or polyurethane elastic core filament yarn are twisted under tension in a ring twister, excellent covering properties can be obtained but it is necessary to carry out appropriate thermal setting for power down and the setting of twisting torque because of the high torque attributable to the twisting operation. Other problems include excessive stretch power and, in addition, there is a limitation to the spindle speed in the experimental calculation of the productivity of fine yarn (total denier 9O denier,) there is no such a case that the processing speed should go beyond ZOm/min even when the number of revolutions of the spindle is adjusted to be 10,000 rpm, the number of twists is adjusted to 10,000 rpm, and the number of twists is adjusted to 500 turns/m. 7
On the other hand, in addition to the foregoing drawbacks, there is a crimped yarn such as wooly yarn to be used as covering yarn must be separately prepared.
In addition, in the case of the conventional sheath core type bulked elastic yarn prepared in such a manner that polyurethane elastic filament yarn and other filament yarn are passed through ejected fluid convection, wherein the filaments are disturbed around said polyurethane elastic filament yarn to be tangled, the covering yarn is not twisted, and therefore the tangling property thereof is poor, and not satisfactory. and there is a fear that the core yarn may be exposed, and at the same time the cost of air is expensive. In addition to these this process drawbacks, as above, has a remarkable over-all drawback in the cost of labor attributable:
to the complicated processes, and the cost 0t processing is therefore high.
On the other hand, in the case of over twisted yarn produced from the associated elastic yarns and thermoplastic filament yarns by using the ltalian type twister. the covering property is excellent but in view of the ordinary twisting process which is requiredin this case. the productivity thereof is not more than that of single covered yarn, at the same time, the number of processes is increased, and the cost of production is high, and therefore over-twisted yarn produced by the Italian type twister is not practical.
Thus, there is no twistless covered elastic yarn although there are those conventional covered elastic yarns having actual twists, or poor tangling property caused by fluidal convection.
It is a principal object of this invention to remove the above mentioned drawbacks of the prior arts, and to provide a novel covered elastic yarn having fast elasticity and remarkably excellent covering property.
it is another object of this invention to provide a method for producing the above mentioned novel covered elastic yarn.
In order to attain the above described objects of this invention, the present invention has the following structure.
This invention relates to a covered elastic yarn comprising an elastic thread as a core yarn and a multi-filament continuous filament thread as a sheath yarn; wherein the respective filaments forming said covered elastic yarn are tangled to retain the fluxability and at the same time to form sheath-core state, and said sheath yarn wraps the outer periphery of said core' yarn, and is reversed intermittently and irregularly in said direction, and said sheath yarn and said core yarn are substantially twistless.
The present invention is explained more in detail in the following paragraphs;
The yarn of this invention is produced by using elastic thread having remarkably high elongation and recovery, such as rubber yarn or polyurethane filament yarn, as the core yarn. Said core yarn may be monofilamerit but it is preferable to use a plural number of associated filaments, i.e., multi-filament; and as a matter of course it is most preferable that'the number of filaments should be great.
The reason for this is that the tangling property of core yarn against sheath yarn increases as the number of filaments in the core yarn increases.
On the other hand, as the above mentioned elastic yarn, crimped yarn or such elastic yarn having shrinkability attained by chemicals, can be used.
On the other hand, as said sheath yarn, a crimped yarn composed of multi-filament yarn composed of thermoplastic filaments can be used.
Said sheath yarn covers and is twisted around said core yarn. and the core yarn is placed almost in the centre of said covering elastic yarn, and in regard to the direction of twisting of said sheath yarn, said sheath yarn is twisted in such a direction that said sheath yarn is twisted with random interval and intermittently in the lengthwise direction of said covered elastic yarn, and either filaments themselves forming said sheath or the filaments forming said sheath yarn and said core yarn are is mutually tangled to retain fluxability.
Sometimes. it is possible to partially melt the filaments forming said sheath yarn in order to improve the fluxability further.
When thermoplastic synthetic yarn is used as the core yarn, random untwisting or slight crimping can be observed intermittently in the same manner as in the case of said sheath yarn.
In such a structure as described above, it is possible for said sheath yarn to be more excellently tangled against said core yarn.
For a better understanding of the nature of this invention, reference should be had to the following de tailed description fo specific embodiments thereof. when read in conjunction with the accompanying drawings forming a part thereof. wherein.
FIG. I (A) is a schematic view ofa length of conven tional covered elastic yarn, in its fully, or nearly fully elongated condition.
FIG. 1 (B) is a schematic view of a length of the yarn of FIG. 1 (A), contracted more than in FIG. 1 (A).
FIG. 2 is a schematic view ofa length of covered elastic yarn prepared by a conventional false-twisting method, in its fully, or nearly fully elongated condition. FIG. 2 (B) is a schematic view ofa length of the yarn of FIG. 2 (A) contracted more than in FIG. 2 (A).
FIG. 2 (C) is a schematic view ofa length of the yarn of FIG. 2 (B) further twisted.
FIG. 3 (A) is a schematic view ofa length of the yarn in accordance with this invention, in its fully, or nearly fully elongated condition.
FIG. 3 (B) is a schematic view of a length of the yarn of FIG. 3 (A) contracted more than in FIG. 3 (A).
FIG. 4 (A) is an enlarged cross sectional view of the yarn of FIG. 2 (A);
FIG. 4 (B) is an enlarged cross sectional view of the yarn of FIG. 2 (B);
FIG. 5 (A) is an enlarged cross sectional view of the yarn of FIG. 3 (A);
FIG. 5 (B) is an enlarged cross sectional view of the yarn of FIG. 3 (B).
FIG. 6 (A) is a schematic view of partly cut off falsetwisting apparatus shown partially in cross-section which can be used to make the yarn in accordance with the present invention.
FIG. 6 (B) is a vertical sectional view of a guide (10) in the apparatus shown in FIG. 6 (B).
FIG. 7 (A) is a schematic view, partially in cross-section, of modified false twisting apparatus which can be used to make the yarn in accordance with this invention. 1
FIG. 7 (B) is a vertical sectional view of a star-wheel type pulley usable for FIG. 7 (A).
Referring first to FIG. 1 (A), FIG. 1 (A) is a schematic view of the covered elastic yarn twisting two yarns 2 and 2 on the core yarn 1 by a conventional spinning machine or a conventional twister. in elongated state. FIG. 1 (B) is a model schematic view of the covered elastic yarn of FIG. 1 (A) contracted by As is apparent from FIG. I (A). the filaments of the sheath yarns 2, 2' of the covered yarn are regularly twisted and therefore the covering property of the covered elastic is remarkably excellent. but since the filaments of the covered yarns 2, 2' are controlled by twisting, and therefore the space occupied by said filaments becomes narrower, and the bulkiness thereof deteriorated, and this is a drawback.
FIG. 2 (A) is a schematic view of a covered yarn under tension prepared by simply associating and conventional false-twisting the core yarn 1 and the covering yarns 2, 2', and FIG. 2 (B) is a schematic view of the same yarn shown in FIG. 2 (A) contracted by 30%.
As is apparent from FIG. 2 (B), the core yarn l and the covering yarns 2, 2' have no twist at all, and it is very bulky but there is no contact of the filaments composing the core yarn and the covering yarn see FIG. 4 described below.
Therefore, the covering property is very poor, and the core yarn and the covering yarn can be separated by a slight external effect when the covered yarn passes through a guide or tensioner, and the separated core yarn and the covering yarn are not restored to their original state, and this is a serious drawback.
Therefore additional twisting is required after false twisting, or pre-twisting is required before false twist- FIG. 2 (C) shows the form of the yarn after such additional twisting or pre-twisting. The increase of the number of processes. in making this yarn and its poor bulkiness are accounted to be drawbacks.
FIG. 3 (A) and FIG. 3 (B) show the covered elastic yarns obtained in accordance with the present invention in comparison with the covered elastic yarns obtained in accordance with the prior art.
FIG. 3 (A) shows the covered elastic yarn of the present invention under tension in the same manner as in FIG. 1 (A) and FIG. 2 (A), and FIG. 3 (B) shows said yarn contracted by about 30%.
FIG. 3 (B) is a schematic view of the structure which makes use of the merits of the yarn of FIG. 2 (B) and FIG. 1 (B). so as to compensate for the respective drawbacks thereof.
In other words, in the yarn structure of FIG. 3 (B) the filaments composing the sheath yarns (2), (2') covering the core yarn (l are reversed in twist direction at random intervals.
Point a of FIG. 3 (A) and FIG. 3 (B) shows the twist reversing point of said filaments.
The above described phenomena are demonstrated by all of the filaments forming the sheath yarn, and therefore the covered elastic yarn as a whole has remarkably excellent covering property, and at the same time. the filaments forming the sheath yarn have almost no contact against the core filaments attributable to twisting because the filaments forming the core yarn and sheath yarn are substantially twistless, and therefore excellent bulkiness can be attained.
In addition, a covered elastic yarn of FIG. 2 (A), (B), produced in accordance with a conventional falsetwisting method is covered with the covering yarn not being closely adhered on the elastic yarn (1) as is apparent from FIG. 4 (A), (B), in a covered elastic yarn produced in accordance with the present invention, as is apparent from FIG. 5 (A), (B), the thermoplastic continuous multifilament thread is partially laid in the elastic thread (1) in such a manner that the thermosetting continuous multifilament thread is inserted into said elastic thread.
Therefore. the yarn of the present invention has remarkably excellent fluxability, and the slipping-off of the core yarn (l) is reduced when the yarn is subjected to tension and pulling, and the covering property is not at all deteriorated.
Namely, in accordance with this invention, an elastic thread is taken off its package under tension, and a thermoplastic continuous multi-filament thread and said elastic thread are associated together, and thus associated thermoplastic; continuous multi-filament and the elastic thread are passed through a fluxing guide, and are arranged in such a manner that said elastic thread can becomes the core and that said multifilamerit thread wraps around said elastic thread, and the thus obtained combined and associated yarns are then supplied into a false twisting machine, to carry out a twisting, heat setting and untwisting process.
The method of the present invention is explained in more detail in the following paragraphs.
In supplying elastic thread and thermoplastic multifilament thread simultaneously to the same false twisting machine, the relation of said elastic thread and thermoplastic multi-filament thread is such that the filaments of said thermoplastic multifilament thread are arranged in such a manner that the elastic thread can be wrapped by said filaments, and the covered elastic yarn thus obtained has elastic thread within the fiber flux of the crimped thermoplastic multi-fila'ments by means of false twisting, and the elastic thread is covered with the crimped multi-filament, and therefore the two cannot be easily separated.
Moreover, in regard to the covered elastic yarn thus obtained the elastic thread as the core yarn and the filaments forming the sheath yarn are substantially untwisted, and the generation of torque and kink can be hardly observed.
In regard to the determination of the temperature at which the false twisting is carried out in accordance with the present invention, it is a matter of course that temperature should be adjusted to be sufficient to fix the desirable crimping of the thermoplastic multi-filament to be used as the sheath thread, but it is necessary that the kind of the elastic thread used as the core yarn should be taken into consideration.
For example, when an elastic thread which is subject to thermal deterioration (such as natural rubber) is used, the temperature at which false twisting is carried out must be adjusted to be low so as not to damage the elastic thread or said elastic thread must be protected by the sheath thread, and therefore it is a matter of course that the conditions such as the kind of the sheath thread, temperature and the number of twisting turns should be taken into consideration.
On the other hand, when a thermoplastic elastic thread, such as polyurethane fibers, is used as the core yarn, and the elastic thread is supplied under a high tension or high elongation in a high temperature zone, the elongation of the covered elastic yarn product is less; on the contrary, when the elastic thread is supplied under less tension or at low elongation, the elongation of the covered elastic yarn product is larger.
Conversely when the elastic thread is supplied under a high tension or at high elongation, in a low temperature zone, the elongation of the covered elastic yarn becomes larger, while if the elastic thread is supplied under a low tension or at low elongation, the elongation of the covered elastic yarn product becomes small. Therefore in accordance with the method of the present invention, it is possible to select the tension of the core yarn elastic thread and the temperature at which false twisting is carried out to meet the object of this invention.
Furthermore, it is possible to select the temperature at which false twisting is carried out in such a manner that the fibers forming the sheath strand can be partially melted and adhered to each other.
In addition, when polyurethane elastic yarn, as the core yarn is subjected to the false twisting treatment at a temperature in the neighbourhood of the melting point of the core yarn, i.e. if the heat-setting of the false twisting is carried out at a temperature ranging from C to 200C, or more preferably at C, the poly urethane elastic yarn is softened, and, in addition, the twists attributable to the false twisting is generated on the surface of said polyurethane elastic yarn, and therefore the fibers forming said sheath strand are laid into the concave portions produced by the twisting of said elastic yarn.
Therefore, the covering property of the covered elastic yarn which can be obtained as described above, can be further improved, and at the same time the migration of said sheath thread cannot be brought about by the external frictional force.
What is important in the method of the present invention is that in supplying the elastic thread as the core yarn and the thermoplastic multi-filament thread as the sheath yarn to the same false twisting machine, the filaments forming the thermoplastic multifilaments should be parallelly arranged in such a manner as to wrap the core yarn.
The above mentioned arrangement determines the superiority of the covering property of the covered elastic yarn of this invention.
In order to arrange the respective filaments to be supplied to the false twisting zone, it is necessary that the relation of the respective threads, at the same time when they are supplied, be sufficiently taken into consideration.
First of all, in order to place the elastic thread in the center, said elastic thread should be supplied under tension to preventthe free slipping-off thereof, and furthermore the multi-filament thread should be supplied under low tension to wrap said elastic thread.
When the respective threads are supplied in such a manner as described above, the fibers which are to become sheath form the outer side, and the elastic thread which is to can become the core thread is placed in the center.
In the above described embodiment, it is necessary to have a guide for fluxing the threads, i.e. a U or V shaped yarn guide or a star-wheel type pulley guide having a U or V shaped concave portion on the periphery thereof to arrange the filaments in the neighbourhood of the twist-starting point, to prevent, from that point backward, the twisting of the fluxed threads which abruptly starts beyond that point, using a nip roller guide to define that point.
In other words, in the present invention, the elastic thread and non-elastic thread are directly introduced into a false twisting machine after they have been associated, but it is necessary to keep said elastic thread and non-elastic thread in the associated state for a predetermined time, and said elastic thread is introduced into the center of said non-elastic thread by the above mentioned treatment.
Therefore, a U or V shaped guide is preferable.
In other words, in accordance with the present invention, said core yarn and said sheath yarn are doubled, and thereafter, the doubling state is retained for a predetermined distance, while a tension difference is maintained therebetween in a yarn introducing zone of a false-twisting apparatus, in which the yarn is falsetwisted while the backward travel of twist is controlled, and thereby said core yarn is sufficiently placed into said sheath yarn.
FIG. 6 and FIG. 7 are diagrams showing embodiments for carrying out the process and for making the porudct of the present invention.
7 In FIG. 6 (A). the elastic thread which is positively released from the package 3 thereof by the roller 4, is supplied to a pair of feed rollers 6 of the false-twisting machine while being subjected to tension.
On the other hand, the thread 8 which is released from package 7 of the thermoplastic multi-filament yarn which becomes the sheath -yarn passes through the guide 9, and is supplied to the feed roller 6 of the falsetwisting machine, and is associated with the elastic thread (5).
The elastic thread (5) supplied by the feed rollers (6), and the continuous multi-filament thread (8) are arranged by the grooved guide (10) having a V shaped groove in the lateral cross section perpendicular to the running direction of said threads (5) and (8) in such a manner that said thread (5) is arranged within the central portion of said continuous multi-filament thread (8). Said elastic thread (5) and continuous multi-filament thread (8) are then subjected to false twisting by means of the false twisting spindle (13), and the twisted portion thereof is thermally set by means of the heater (12), and when said threads have passed through said spindle (13), they are untwisted, and are drawn out by a pair of delivery rollers (14), and said threads pass through the guide (15), and are taken up into a package (17) by means of a take up device such as drum type winder.
In other words, the false twisting is perfectly stopped by a nip roller (11), and the two threads keep their associated state between the feed roller (6) and nip roller (11). This prevents twist from travelling backward to grooved guide (10) or said feed rollers (6) so that the state of core-sheath of the two threads is not destroyed thereby.
FIG. 6 (B) is a diagram showing the cross sectional form of grooved guide (10) in the plane perpendicular to the running direction of the threads 5, 8, and said elastic thread 5 is arranged into the central portion fo said continuous multi-filament thread 8 in said groove.
On the other hand, FIG. 7 is a diagram showing a modified form of the apparatus of FIG. 6 (A), (B). In FIG. 7 (A), the elastic thread 5 released by the positive feed-roller 4 from the package 3 thereof is elongated by a predetermined degree between said feed roller 4 and delivery roller 14.
Said elastic thread 5 is associated with the thermoplastic multi-filament thread 8 released from the package 7 thereof in an almost tensionless state, and is supplied into the star-wheel type pulley 18.
FIG. 7 (B) is a cross sectional view of said star-wheel pulley across the center of said star-wheel type pulley. Said star-wheel type pulley is light and is rotated in the running direction of the threads 5, 8 of the shaft 20 by contact with the threads.
The peripheral portion 21 of said pulley (as seen in FIG. 7 (B) has a shaped groove, and that helps said two threads take on a sheath-core form without adding high tension to said continuous multifilament thread which becomes sheath thread by using said pulley and said elastic thread 5 arranged in the central portion of said continuous multi-filament thread 8 therein.
Further, in FIG. 6 (A), a pair of nip rollers 11 is provided in order to prevent the travelling of the twist of the false-twisting machine during the false twisting process, but when a pair of the nip rollers 11 is used, there is a fear that the sheath-core arrangement of the threads 5, 8 attained by the groove guide 10, may be upset thereby.
On the other hand, the star wheel type pulley as is shown in FIG. 7 (A) is rotated along with the running of the threads 5, 8, and therefore it is not necessary to use such a pair of nip rollers 11 as is shown in FIG. 6 (A) because there is no fear that the twist of the false twisting machien may arrive at the entrance portion of the groove 21 of said pulley 18, and only the guide 19 for converting the running direction suffices.
As described so far in the foregoing paragraphs, the respective threads 5, 8 associated in the sheath-core state, are taken up on the package 17 after they are subjected to the process for twisting-heatsettinguntwisting.
The covered elastic yarn thus obtained is an elastic yarn having remarkably strong covering property, and the covering cannot be destroyed even if it is used over and over again, and partial exposure of the core yarn thereof can be hardly observed, and the covered elastic yarn has a very uniform shape in the lengthwise direction thereof.
In addition, when the thermoplastic filaments are slightly melted and adhered by raising the temperature of the heater of the false-twisting machine, it is needless to mention here that faster covering can be attained and the covering becomes more compact.
The covered elastic yarn of the present invention has almost the same processability as the ordinary crimped yarns, and it is possible to adjust the crimping degree by adjusting the temperature of the heater of the falsetwisting machine and the strich power thereof is almost the same as that of thermatic set single covered yarn, or
core spun yarn.
Since the covered elastic yarn of the present invention is twistless yarn, and snarls and kinks are in easily formed in the yarn of this invention when compared with the conventional single covered yarn to say nothing of the conventional false twisted crimped yarn.
Thus, the hank reeling property, hank dyeing property, hank winding property, cone-up property, preparing property for weaving, and preparing property for knitting of the covered elastic yarn of the present invention are the same as or more excellent than those of the conventional false twisted crimped yarns or single covered yarns.
The woven or knit fabrics obtained from the covered elastic yarn of the present invention can present the soft touch of wooly yarn by crimping process of the thermoplastic filaments and twistless covering process into the elastic filament yarn attained thereby, without being controlled by twist thereof, and has a special appearance as woven or knit goods.
The covered elastic yarn of the present invention can be directly used for producing the ordinary knit goods, longitudinally stretchable woven fabric, and laterally stretchable woven fabric, without employing any heat setting process or twisting process, and this is accounted to be an advantage of the present invention.
In particular, in the case of the longitudinally stretchable woven fabric, it is possible to omit sizing process by using the covered elastic yarn prepared by slightly melting and adhering the thermoplastic filaments at the time when false twisting is carried out.
When the covered elastic yarn of the present invention is used for knit goods, there is a remarkable advantage that the yarn having the same stretch power as that of the conventional thermoplastic yarn can be directly wovenlfrom the cheese of the false-twisted yarns since in accordance with the prior art, the covered elastic suspended thereon so to separate the core yarn and the sheath yarn thereof.
The length 1 of the yarn with the weight hanging down is read.
Covering property 50 3. DETERMINATION OF COEFFICIENT OF FEEDING Peripheral speed of feed roller Peripheral speed of delivery roller Coefficient of Feeding (7r working out the method of this invention is hardly different from that of the conventional methods.
The following are the examples to further illustrate the present invention.
The method for measuring the elongation and covering property, and coefficient of feeding as described in the following examples of the present invention are explained below;
1. METHOD FOR MEASURING ELONGATION The yarn of the present invention was wound on the periphery of a 50 cm frame for 10 times, and thermal treatment was carried out with 60C hot water for 30 minutes.
After having dried the yarn for 24 hours, 40 g a weight of par a yarn was suspended thereon for 30 seconds, and the length I was read. Thereafter, the load was removed, and the yarn was left out to be shrunk for seconds, and then a weight of 0.16 g par a yarn was suspended thereon for 30 seconds, and the length I was read.
2. METHOD FOR MEASURING THE COVERING PROPERTY A weight of 40 g was suspended on the yarn of the present invention for 30 seconds, and the length of 50 cm was marked on the yarn, and thereafter the weight was removed, and then the yarn was left out to be shrunk for 120 seconds, and then, a weight of 0.5 g was X 100 Peripheral speed of delivery roller DEFINITION OF POLYURETHANE ELASTIC THREAD USED IN RESPECTIVE EXAMPLES A polyurethane elastic thread 40 denier-l filament used in the following examples and comparative examples is a monofilament in which six polyurethane elastic filaments are coalesced, and a polyurethane elastic thread denier-l filament is a monofilament in which 18 polyurethane elastic filaments are coalesced.
EXAMPLES I, 2, and 3.
1. Examples 1 and 2 A polyurethane elastic thread 40 denier-I filament elongated by 3.5 times of the original length thereof and Nylon-6, 70 denier-34 filaments being tensioned by 0.1g were associated with each other, and thereafter the associated filaments were supplied into the apparatus embodiment as shown in FIG. 6. (A), (B), and treated under conditions as shown in items EX-l and EX-Z of Table-l.
The results as shown in items EX-l and EX-2 of Table-2 were obtained.
2. Examples 3 On the other hand, a polyurethane elastic thread 40 denier-l filament elongated 2.8 times the original length thereof and Nylon-6, 70 denier-34 filaments being tensioned by 1.0g were associated with each other, and thereafter the associated filaments were supplied into the apparatus embodiment as shown in FIG. 6.(A), (B) and treated under conditions as shown in item EX'3 of Table-l.
The results as shown in item EX-2 of Table-2 were obtained.
TABLE I EX-l EX-Z EX-3 materials polyurethane thread (denier-filament) 40-1 40-! 40-I Nylon-6 multi filament (denienfilament) 70-34 70-34 70-34 elongating degree of elastic thread (times) 3.5 3.5 2,8 doubling tension of Nylon-6 multi-filament (g) 0| 0.! 1.0 existence of grooved guide be exist be exist yes coefficient of feeding of processing (71) +1 +2 I conditions number of rotations of false-twisting spindle 20x10 20Xl0 20Xl0 of processing trpm.)
number of false-twisting (Turns/Meter) 3600 3600 3600 temperature of heater ((1) 190 I I70 length of heater (mm) 900 900 900 tension of twisting (g) 7 7 7 tension of untwisting (g) l4 16 20 a number of true twist (Turns/Meter) 0 O 0 TABLE 2 Cl value: It is based on the rule of HS.
3. Considerations As is apparent from EX-l and EX-2 of Table-2, the covered elastic yarns of the present invention, in the production of which there is a relatively high difference between the tension of the polyurethane elastic thread and that-of the Nylon-6 multi-filament, and heat-setting of the false-twisting is carried out at a temperature ranging from 180C, to 200C have excellent covering property, because the respective filaments of Nylon-6 are adhered to the outer surface of the polyurethane elastic thread.
On the other hand, the covered elastic yarn in accordance with Example-3, produced with only slight differential tension between of the polyurethane elastic thread and the Nylon-6 mtilti-filament and with heat- EX- l EX-Z EX'3 94 8O 0 54 58 60 l7) 190 I91 ll 8 6 yes yes do.
EXAMPLES 4 and lfExample 4 setting of the false-twisting at a temperature lower than 180C, ile. l7O C,'hasp0or covering property, because the respective filaments of Nylon-6 are generally not adhered to the outer surface of the polyurethane elastic A polyurethane elastic thread denier-l filament elongated by 3.6 times the original length thereof and Nylon-6, denier-24 filaments, under 0.2 grams tension were associated with each other, and thereafter the associated filaments were supplied into and treated in apparatus of the embodiment as shown in FIG. 7(A),v
(B) under in conditions as shown in item EX-4 of Table-3 The results as shown in item EX-4 of Table-4 were obtained.
2. Example 5 The associated filaments as mentioned above were supplied into and treated in apparatus of the embodimer t as shown in FIG. 6(A), (B) under conditions as shown in item EX-S of Table-3.
The results as shown in item EX-S of Table-4 were thread. 35 b i d TABLE 3 EX-4 EX-S Materials polyurethane thread (denier-filament) 4l 4l Nylon-6 multi filament (denier-filament) 70-24 70-24 elongating degree of elastic thread (times) 3.6 3.6 doubling tension of Nylon-6 multi-filament (g) 0.2 0.2 ratio of tension between an entry and an exit of the [.06 star-wheelitype grooved guide existence of a grooved g'uide yes yes coefficient of feeding of processing (71) conditions number of rotations of false-twisting spindle 20 l0 20x10 of processing (r.p.m.)
number of false-twisting (Turns/Meter) 3.300 3,300 temperature of heater (C) 195 I length of heater (mm) 900 900 tension of twisting (g) 12 ll tension of untwisting (g) 22 20 number of true twist (Turns/Meter) 0 0 TABLE 4 EX-4 EX-S number of filaments of Nylon-6 multi-filament adhered to polyurethane elastic thread l4 l0 (number/an optional cross section of the covered elastic yarn) multi-filament not adhered to polyurethane elasticthread l0 l4 (number/an optional cross section of the covered elastic yarn) weight of 0.5g I00 98 covering property (71) weight of 2.0g 99 96 *Cl: coefficient of recovery of elasticity (71) 57 S8 coefficient of elongation (71) M7 l5l index of torque 9 82 none none existence of the twisting mass produced by rubbing motion -Cl value: It is based on the rule of HS.
3. Considerations As is apparent from items EX-4 and EX-S ofTable-4, the covered elastic yarn of the present invention can be obtained by either apparatus embodment as shown in FIG. 6 or as shown in FIG. 7. But the covering property of the covered elastic yarn of Example 4 produced with the apparatus embodiment of FIG. 7 which is provided with a starwheel type guide, is more excellent than that of the covered elastic yarn of Example 5 produced with the apparatus embodiment of FIG. 6 which is provided with a simple grooved guide.
In both example mentioned above, it seems as ifthere is only a slight difference between the covering property of Example-4 and Example-5, but actually there is five fold difference in the mean value of the length differential used in calculating covering property defined herein prior to the description of Example 1. As a matter of fact, in the covered elastic yarn produced in accordance with Example-4, as shown in Table-5, all of the five samples showed little tendency to permit slipping-off between said polyurethane elastic thread and Nylon6 multi-filament thread, when a weight of 0.5g was suspended thereon.
On the other hand, in the covered elastic yarn produced in accordance with Example-5, as shown in Ta- 49.5 covering property ('71) x too 0 X: arithmetical mean value EXAMPLES 6 and 7 A polyurethane elastic thread 40 denier-l filament and Nylon-6, denier-24 filaments were treated under conditions as shown in items EX-6 and EX-7 of Table-6 with the apparatus embodiment as shown in FIG. 7, and thereby the effects as shown in items EX-6 and EX-7 of Table-8. were obtained.
TABLE 6 EX-6 EX7 Materials polyurethane thread (denierfilament) 40-l 40-1 Nylon6 multi filament (denier-filament) 7024 70-24 an elongating degree of elastic thread (times) 3.6 2.2 doubling tension of Nylon-6 multi-filament (g) 0,2 3.8 ratio of tension between an entry and an exit of the L08 1.95 star-wheel type grooved guide existence of a grooved guide yes yes coefficient of feeding it processing (71) conditions number of rotations of false-twisting spindle 2OX10 ZOXlO of processing (r.p.m.)
number of false-twisting (Turns/Meter) 3400 3400 temperature of heater (C) I length of heater (mm) 900 900 tension of twisting (g) 13 28 tension of untwisting (g) 24 39 number of true twist (Turns/Meter) 0 0 TABLE 7 EX-6 EX-7 number of filaments of Nylon-6 multi-fllament adhered to polyurethane elastic thread l2 0 (number/an optional cross section of the covered elastic yarn) multi-l'ilament not adhered to polyurethane elastic thread 12 24 (number/an optional cross section of the covered elastic yarn weight of 0.5g 89 0 covering property ('71) weight of 2.0g 83 0 *Cl: a coefficient of recovery of elasticity (71) 61 63 coefficient of elongation (71) l62 |70.2 index of torque 7 7 none existence of the twisting mass produced by rubbing motion Cl value: based on the rule of HS.
As is apparent from the forgoing discussion above deble-5, one of five samples showed about 20% (about 60 scribed mention, in either a star-wheel type grooved Example-5.
pulley is used in both example 6 and in example 7 however, the covered elastic yarn in accordance with' Example-6 in which the temperature of heat setting of false-twisting is the same as that of conventional falsetwisting methods has a small covering property. Therefore, in order to obtain a covered elastic yarn having excellent covering property, it is preferable that the temperature of heat setting of false-twisting, as is in Ex- 15 ample-6, is higher than that of conventional false-twisting methods.
EXAMPLES 8,9,10,11 AND 12 16 The covering property of said yarn of the present example has somewhat similar property to that of the yarn ofthe present invention.
The reason for said effect is that some of the original 1. Examples 8 and 9 twist imparted by the pre-twisting process is retained A polyurethane elastic thread 70 denier-1 filament after twisting-heat setting-untwisting. elongated by 3.6 times the original length thereof and However, in said covered elastic yarn, the elastic Nylon-6, 7O denier-24 filaments under 0.1g tension thread and the thermoplastic multi-filament thread are were associated with each other, and thereafter the renot substantially twistless as in the present invention. spective associated filaments were supplied to appara- Furthermore, in the present example, the covered tus of the shown in FIG. 6 and FIG. 7 and treated under elastic yarns treated without any pre-twisting process conditions as shown in items EX-S and EX-9 of Tableare not always the same in covering property as the 8. above mentioned result as is apparent from the follow- The results as shown in items EX-8 and EX-9 of Taing examples (Examples 11 and 12). ble-l were obtained. 15 3. Example 11 As is apparent from the foregoing discussion the cov- The covered elastic yarn of this example was obering property of the covered elastic yarn of Example 8 tained by the method of Example 10, but without any produced with the apparatus embodiment of FIG. 7 is pre-twisting. better than that of the covered elastic yarn of Example In the covered elastic yarn of this example, the elastic 9 produced with the apparatus embodiment of FIG. 6. thread and the thermoplastic multi-filament were sub- 2. Example 10 stantially twistless, but the covering property thereof On the other hand, threads used in Examples 8 and 9 was very poor as is apparent from item EX-1 1 of Tablewere treated by a conventional method. 9.
The conventional method used as taught in (Japa- Furthermore, the covering properties of 38 with a nese Patent Publication No. 25511/'67) comprises a weight of 0.5g) and 34 (with a weight of 2.0g) seem to first step of associating said elastic thread with said some degrees of covering property, but as a matter of thermoplastic multi-filament thread, a second step of fact, the yarn obtained by this example is of almost no pre-twisting said associated threads, 21 third step of practical value, because the covered portions uncovtwisting said threads in the direction opposite to that of ered and with said thermoplastic multi-filament were the original twist-heat settingand untwisting said randomly distributed along the longitudinal direction threads in the same direction as that of the original of said yarn. twist. Example 12 Conditions of treatment of the present example are Furthermore, to make sure of the result reported in shown in item EX-9 of Table-8 and the effects thereof Example 11 the method of Example 1 l, but at the heatare shown in item EX-9 of Table-9. As is apparent from 35 setting temperature in the vicinity of Examples that in the above result, the covered elastic yarn produced in 8 and 9. As a result, the covering property of the covaccordance with Example-l0 has practically rubbing ered elastic yarn of this example was more excellent resistance and forms a twisting mass in the longitudinal than that of Example-l 1, but the covering property direction thereof directly after it was rubbed, because it thereof was not completely perfect, and the coefficient is twisted slightly. of recovery of elasticity was lower than that of Examples 10 and 11.
TABLE 8 EX-S EX-9 EX-lO EX-ll EX-lZ Materials polyurethane thread (denier-filament) l 70- 70- 1 70- l 70 l Nylon-6 multi filament (denier-filament) 70-24 70-24 70-24 70-24 70-24 elongating degree of elastic thread (times) 3.6 3.6 3.6 3.6 3.6 doubling tension of Nylon-6 multi-filament (g) 0.2 0.2 2.0 2.0 2.0 ratio of tension between an entry and an exit of 1.14 the star-wheel type grooved guide existence of a grooved guide yes yes none none none conditions coefficient of feeding of processing (71) 1 -1 1 1 of processing number of rotations of false-twisting spindle ZOXIO 20 10 20x10 201 104 number of false-twisting (Turns/Meter) 3.300 3,300 2,300 2,300 2,300 temperature of heater ("C 195 195 150 length of heater (mm) 900 900 900 900 900 tension of twisting (g) 16 15 14 14 14 tension of untwisting (g) 32 32 28 28 28 number of true twist (Turns/Meter) 0 O 300 O 0 TABLE 9 EX-8 EX-9 EX-IO EX-ll EX-lZ number of filaments of Nylon-6 multi-filament adhered to polyurethane 13 8 0 0 0 (number/an optional cross section of the covered elastic yarn) multi-filament not ahdered to polyurethane elastic thread 11 16 24 24 24 (number/an optional cross section of the covered elastic yarn) weight of 0.5g 100 81 100 38 71.6 covering property (71) weight of 2.0g 99 76 98.5 34 63.5 *CI: coefficient of recovery of elasticity ('7?) 62 59 61 64 51 coefficient of elongation (71) 167 163 159 172 143 9 9 l2 s 6 index of torque existence of the twisting mass produced by rubbing motion 110118 none none none none C1 value: It is based on the rule of 11S.
What we claim is:
1. Method for producing a covered elastic yarn comprising l. arranging a plurality of thermoplastic heat-settable substantially inelastic filaments in the form of a running bundle,
2. applying tension to an elastic thread and continuously feeding and merging it with said thermoplastic filaments while maintaining said substantially inelastic filaments under a lower tension than that of said elastic thread, and positioning said elastic twist in said filaments substantially completely.

Claims (3)

1. Method for producing a covered elastic yarn comprising 1. arranging a plurality of thermoplastic heat-settable substantially inelastic filaments in the form of a running bundle, 2. applying tension to an elastic thread and continuously feeding and merging it with said thermoplastic filaments while maintaining said substantially inelastic filaments under a lower tension than that of said elastic thread, and positioning said elastic thread substantially in the center of said running bundle while maintaining said substantially inelastic filaments under a lower tension than that of said elastic thread, 3. twisting, heat-setting and detwisting the merged elastic thread and substantially inelastic filaments, said heating step being carried out at a temperature which is above the heat setting temperature of said inelastic filaments and which is sufficient to set the twist in said filaments substantially completely.
2. applying tension to an elastic thread and continuously feeding and merging it with said thermoplastic filaments while maintaining said substantially inelastic filaments under a lower tension than that of said elastic thread, and positioning said elastic thread substantially in the center of said running bundle while maintaining said substantially inelastic filaments under a lower tension than that of said elastic thread,
3. twisting, heat-setting and detwisting the merged elastic thread and substantially inelastic filaments, said heating step being carried out at a temperature which is above the heat setting temperature of said inelastic filaments and which is sufficient to set the twist in said filaments substantially completely.
US405167A 1970-05-18 1973-10-10 Method of making a covered elastic yarn Expired - Lifetime US3921382A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE2207614A DE2207614B2 (en) 1970-05-18 1972-02-18 False twisting machine
US405167A US3921382A (en) 1970-05-18 1973-10-10 Method of making a covered elastic yarn

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP45041579A JPS5028536B1 (en) 1970-05-18 1970-05-18
US00143940A US3807162A (en) 1970-05-18 1971-05-17 Covered elastic yarn
DE2207614A DE2207614B2 (en) 1970-05-18 1972-02-18 False twisting machine
US405167A US3921382A (en) 1970-05-18 1973-10-10 Method of making a covered elastic yarn

Publications (1)

Publication Number Publication Date
US3921382A true US3921382A (en) 1975-11-25

Family

ID=27431424

Family Applications (1)

Application Number Title Priority Date Filing Date
US405167A Expired - Lifetime US3921382A (en) 1970-05-18 1973-10-10 Method of making a covered elastic yarn

Country Status (2)

Country Link
US (1) US3921382A (en)
DE (1) DE2207614B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4226079A (en) * 1978-05-04 1980-10-07 Du Pont Canada Inc. Heather yarn made by combining polyester and polyamide yarns
US4296597A (en) * 1979-07-24 1981-10-27 Teijin Limited Cotton yarn-like textured composite yarn and a process for manufacturing the same
US4495760A (en) * 1981-06-12 1985-01-29 Vanhelle Michel E A Process and apparatus for spinning cored filaments, and cored filaments thus obtained
US4559772A (en) * 1982-02-13 1985-12-24 Hoechst Aktiengesellschaft False twist texturized yarn, and a process for its preparation
US5154044A (en) * 1989-07-21 1992-10-13 L. Payen Et Cie, Societe Anonyme Process and machine for the continuous production of an elastane-based elastic yarn
EP0548474A1 (en) * 1991-12-11 1993-06-30 Nitto Boseki Co., Ltd. Fusible adhesive yarn
US5237808A (en) * 1991-12-18 1993-08-24 Unifi, Inc. Method of manufacturing a composite yarn
US5267430A (en) * 1989-07-21 1993-12-07 L. Payen Et Cie Apparatus for the continuous production of an elastane-based elastic yarn
US5481861A (en) * 1989-05-27 1996-01-09 Jones Stroud & Co. Ltd. Method of making a composite elastic yarn
US6267744B1 (en) * 1997-06-18 2001-07-31 Smith & Nephew Plc Bandages
US6541403B2 (en) * 1999-11-29 2003-04-01 Aplix Elastic core fibre and an elastic nonwoven
US20160194791A1 (en) * 2014-05-29 2016-07-07 Arun Agarwal Production of high cotton number or low denier core spun yarn for weaving of reactive fabric and enhanced bedding

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3126016A1 (en) * 1981-07-02 1983-01-13 Bayer Ag, 5090 Leverkusen ELASTIC STRAPPING YARN
US6148560A (en) * 1998-05-01 2000-11-21 Vinifera, Inc. Grafting machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3287892A (en) * 1963-10-23 1966-11-29 Deering Milliken Res Corp Production of elastic stretch yarns
US3334478A (en) * 1964-04-21 1967-08-08 Chemstrand Ltd Manufacture of elastic yarns
US3393505A (en) * 1963-12-11 1968-07-23 Hale Mfg Company Composite elastic yarn
US3447296A (en) * 1966-05-31 1969-06-03 Monsanto Co Method and apparatus for producting a novel high bulk continuous filament low stretch yarn
US3540204A (en) * 1967-04-18 1970-11-17 Toray Industries Method for manufacturing an improved elastic yarn covered with multifilament
US3645081A (en) * 1969-10-31 1972-02-29 Spinner Oy Machine for crimping thermoplastic filament
US3656288A (en) * 1966-09-03 1972-04-18 Klinger Mfg Co Ltd False twist texturizing method and apparatus
US3763640A (en) * 1969-02-19 1973-10-09 Akzona Inc Production of a composite thread

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3287892A (en) * 1963-10-23 1966-11-29 Deering Milliken Res Corp Production of elastic stretch yarns
US3393505A (en) * 1963-12-11 1968-07-23 Hale Mfg Company Composite elastic yarn
US3334478A (en) * 1964-04-21 1967-08-08 Chemstrand Ltd Manufacture of elastic yarns
US3447296A (en) * 1966-05-31 1969-06-03 Monsanto Co Method and apparatus for producting a novel high bulk continuous filament low stretch yarn
US3656288A (en) * 1966-09-03 1972-04-18 Klinger Mfg Co Ltd False twist texturizing method and apparatus
US3540204A (en) * 1967-04-18 1970-11-17 Toray Industries Method for manufacturing an improved elastic yarn covered with multifilament
US3763640A (en) * 1969-02-19 1973-10-09 Akzona Inc Production of a composite thread
US3645081A (en) * 1969-10-31 1972-02-29 Spinner Oy Machine for crimping thermoplastic filament

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4226079A (en) * 1978-05-04 1980-10-07 Du Pont Canada Inc. Heather yarn made by combining polyester and polyamide yarns
US4296597A (en) * 1979-07-24 1981-10-27 Teijin Limited Cotton yarn-like textured composite yarn and a process for manufacturing the same
US4495760A (en) * 1981-06-12 1985-01-29 Vanhelle Michel E A Process and apparatus for spinning cored filaments, and cored filaments thus obtained
US4559772A (en) * 1982-02-13 1985-12-24 Hoechst Aktiengesellschaft False twist texturized yarn, and a process for its preparation
US5560192A (en) * 1989-05-27 1996-10-01 Jones Stroud & Co., Ltd. Composite elastic yarn
US5481861A (en) * 1989-05-27 1996-01-09 Jones Stroud & Co. Ltd. Method of making a composite elastic yarn
US5267430A (en) * 1989-07-21 1993-12-07 L. Payen Et Cie Apparatus for the continuous production of an elastane-based elastic yarn
US5154044A (en) * 1989-07-21 1992-10-13 L. Payen Et Cie, Societe Anonyme Process and machine for the continuous production of an elastane-based elastic yarn
US5572860A (en) * 1991-09-22 1996-11-12 Nitto Boseki Co., Ltd. Fusible adhesive yarn
EP0548474A1 (en) * 1991-12-11 1993-06-30 Nitto Boseki Co., Ltd. Fusible adhesive yarn
US5237808A (en) * 1991-12-18 1993-08-24 Unifi, Inc. Method of manufacturing a composite yarn
US6267744B1 (en) * 1997-06-18 2001-07-31 Smith & Nephew Plc Bandages
US6541403B2 (en) * 1999-11-29 2003-04-01 Aplix Elastic core fibre and an elastic nonwoven
US20160194791A1 (en) * 2014-05-29 2016-07-07 Arun Agarwal Production of high cotton number or low denier core spun yarn for weaving of reactive fabric and enhanced bedding
US9708736B2 (en) * 2014-05-29 2017-07-18 Arun Agarwal Production of high cotton number or low denier core spun yarn for weaving of reactive fabric and enhanced bedding

Also Published As

Publication number Publication date
DE2207614B2 (en) 1975-06-05
DE2207614A1 (en) 1973-09-06

Similar Documents

Publication Publication Date Title
US3763640A (en) Production of a composite thread
US3921382A (en) Method of making a covered elastic yarn
US3807162A (en) Covered elastic yarn
US4365466A (en) Polyester spun-like textured yarn and method for manufacturing the same
US3691750A (en) Textured core yarns
US3596459A (en) Process of producing a nonstretch or low-stretch composite yarn of super high bulkiness
US3577873A (en) Novel core yarns and methods for their manufacture
US4307565A (en) Spun yarn-like textured composite yarn and a process for manufacturing the same
JPS6221883B2 (en)
US3991548A (en) Composite yarns
US3540204A (en) Method for manufacturing an improved elastic yarn covered with multifilament
US3952496A (en) Composite thread
US3769787A (en) Compact multi-filament textile yarn and method of making the same
US3780515A (en) Textured core yarns
EP0708850B1 (en) Composite yarn and method of manufacturing a composite yarn having a spandex core and a texturized thermoplastic covering
JPS5824536B2 (en) Fukugo Kenshiyukushi no Seizouhouhou
JPS5891839A (en) Composite false twisted crimp yarn
US3861129A (en) Production of texturised yarn
JP3253685B2 (en) Non-uniform composite textured yarn and method for producing the same
US3768245A (en) Crimping slub filaments of thermoplastic polymers
US3685276A (en) Process for the production of moderately elastic crimp yarns
US3828537A (en) Production of texturised yarn
JP3238625B2 (en) False twisting method
JPS62289635A (en) Composite processed yarn and its production
US3439485A (en) Bulking filamentary strand by false twisting