US392650A - watrous - Google Patents

watrous Download PDF

Info

Publication number
US392650A
US392650A US392650DA US392650A US 392650 A US392650 A US 392650A US 392650D A US392650D A US 392650DA US 392650 A US392650 A US 392650A
Authority
US
United States
Prior art keywords
arm
needle
twine
binding
discharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Publication date
Application granted granted Critical
Publication of US392650A publication Critical patent/US392650A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D59/00Equipment for binding harvested produce

Definitions

  • FIG. 1 A first figure.
  • This invention relates to novel devices for gathering, compacting, and confining the cut grain of which the sheaf is composed preparatory to and during the operation of binding the same, to devices used in connection therewith for discharging the bound sheaf from the binding-table, and also to a new combination of the operative parts of a grain-biuder, whereby the tension may be wholly or partially applied to or withdrawn from the binding-twine as the exigencies of the binding pro cess may requlrel
  • my apparatus is susceptible of being applied or adapted to a great variety of grainbiuders, especially to different styles of knot or band tyers, I have not shown in the drawings any knot or band tying mechanism, and only so much of a binding-table as is necessary to elucidate my invention.
  • Figure 1 of the drawings shows the relative position of the several members of my apparatus at the finish of the stroke or throw which discharges the bound sheaf, in which position the machine remains at rest pending the accumulation of straw for the neXt sheaf.
  • Fig. 2 shows the position of the same parts at the moment of tying the knot or of securing the sheafband.
  • Fig. 3 shows an adaptation of the needle-arm to co-operate with the device provided to regulate the degree of tension applied to the binding-twine.
  • My apparatus as here shown is adapted to be used in connection with any variety of knotter,or band-tyer located beneath the bindingtable A. It consists of a needle-arm, E,
  • Needle-arm E has a projection
  • the discharging-arm M is substantially of the shape shown, and is hung from the top of a bracket-arm, G, which is an upward projection from standard B.
  • the compressing-arm R is attached.
  • This has a slotted prolongation, K, and through the slot R the set-screw N passes and screws into the discharging-arm.
  • the slot R and set-screw N are provided as a means of adjusting the gap of separation between arm R and the needle arm E when they are in the act of compressing a bundle.
  • To the compressing-arm R is affixed the compressing-spring E.
  • This spring is so constructed and attached that normally it stands about asin Fig. l-that is, with its free end advanced a little ahead of the lower end of arm B, so as to engage with the accumulated straw a little in advance of the arm It. This, among other things, is to prevent the paying out of more binding-twine than will be taken up by the needle-arm in the act of binding.
  • the lower end of the discharging-limb M is bent back, as at O, as a provision forhanging thereto the foot J.
  • This foot is pivoted to the discharging-arm at 00, and its position is controlled and regulated byaspring, s, in connection with the stop lug or pin 6.
  • This construction permits foot J to be forced back into position shown in dotted lines in Fig. 2 as arm 11?. sweeps back over the straw accumulated to form the next sheaf.
  • the knotting apparatus is located beneath table A, directly under sheaf S, in Fig. 2.
  • the oscillating motion of the needle-arm E is imparted through shaft D,which is provided at the end opposite the one in view with a crankarm, which is connected by a pitman or otherwise with some driver on the binder.
  • a tension device or twine brake, as it may more appropriately be called, through which the cord passes from the twineball to the needle-arm, the action of which is controlled as to its time of operation by the motion of the needle-arm or of some other part of the binding machinery which has motion synchronous with that of the needle-arm.
  • It consists of a pair of jaws, a and h, connected .by a bolt, f, which carries spring b, as shown,
  • the twine runs between jaws a and h,the outward lips of which are everted, so that the beveled edge U of arm B may easily enter between them and force them apart when the needle-arm makes its back-throw, and thus relieves the tension on the twine.
  • the machine operates as follows: The twine is carried from the twine-ball through the twine brake, thence through the various guides and eyes of the needle-arm to the knotter'at W, leaving the parts in position, as in Fig. 1, the jaws of the twine-brake being open, so that the twine may pay out freely as it is crowded back by the impact of the inflowing current of grain.
  • the cut crop is carried up in the direction of the arrows and forced under and against twine g. until a sufficient amount is accumulated for a sheaf. Then at the proper moment the binder'is started.
  • Foot J is thus promptly and energetically impelled against sheaf S, with the result of sweeping it free and clear of the binding-table, disengaging it from the current of infiowing grain, and delivering it to a bundle-carrier or onto the ground, as may be arranged.
  • the setscrcw N may be loosened and arm It swung in or out, to suit the object sought, when it can be tightened up.
  • a marked advantage accruing from this construction is the complete and effectual severance of the bound sheaf from the current of inflowing grain, a separation of from two to two and a half feet being secured.
  • Fig. 3 The arrangement of devices shown in Fig. 3 is made with reference to a needle-arm which swings from a position beneath the bindingtable, the twine-brake being attached to some convenient part of the frame of the machine.
  • a grain-binder the combination of an oscillating needle or binding arm pivoted to a standard above the bindingtable, an oscillating discharging-arm providedwith a springcontrolled tripping-foot and pivoted to said standard above the axis of the needle-arm, a pitman adj ustably connected to said arm, and a compressing-arm provided with a compress ingspring and attached to said dischargingarm, substantially as and for the purposes set forth.
  • the described discharging-arm provided with a discharging foot at its lower end and adapted to oscillate,substantially as shown, in combination with acompressingarm equipped with a compressing-spring fastened near its upper end, said compressing-arm being adjustably attached to the upper end of said dischargingarm, substantially as described, and for the purpose set forth.

Description

(No Model.) 2 Sheets-Sheet 1.
E. G. WATROUS.
AUTOMATIG'GRAIN BINDER.
No. 392,650. Patented Nov. 13, 1888.
FIG 1.
WITNESSES: INVEN'I'CIR:
n1. PEYEfii Pmo-mmm hm Walhingmn, 04 c.
(No Model.) 2 Sheets-Sheet 2. E. G. WATROUS.
AUTOMATIG GRAIN BINDER. No. 392,650. Patented Nov. 13, 1888..
WITNESSES: INVIEIN'I'EJR:
' EARL 5-. WA'I'RDU'S.
//r /3, YWA 8 N, PETERS. Phulc-Uhographnr. Washinglnm 11;
time rares lt a'rnnr rarest EARL G. VATROUS, OF SMITHS MILLS, NEW YORK.
AoToiuATie eamti emoea.
$PECIFICATION forming part of Letters Patent No. 392,650, dated November 13, 1888.
Application filed March 20, 1885. Serial No. 159,506. (No model.)
To all whom it may concern.-
Be it known that I, EARL G. VVATROUS, of Smiths Mills, in the town of Hanover, county of Chautauqua, and State of New York, have invented certain Improvements in Automatic Grain -Binders, of which the following description, in connection with the accompanying two sheets of drawings,constitutes a specification.
This invention relates to novel devices for gathering, compacting, and confining the cut grain of which the sheaf is composed preparatory to and during the operation of binding the same, to devices used in connection therewith for discharging the bound sheaf from the binding-table, and also to a new combination of the operative parts of a grain-biuder, whereby the tension may be wholly or partially applied to or withdrawn from the binding-twine as the exigencies of the binding pro cess may requlrel As my apparatus is susceptible of being applied or adapted to a great variety of grainbiuders, especially to different styles of knot or band tyers, I have not shown in the drawings any knot or band tying mechanism, and only so much of a binding-table as is necessary to elucidate my invention.
Figure 1 of the drawings shows the relative position of the several members of my apparatus at the finish of the stroke or throw which discharges the bound sheaf, in which position the machine remains at rest pending the accumulation of straw for the neXt sheaf. Fig. 2 shows the position of the same parts at the moment of tying the knot or of securing the sheafband. Fig. 3 shows an adaptation of the needle-arm to co-operate with the device provided to regulate the degree of tension applied to the binding-twine.
My apparatus as here shown is adapted to be used in connection with any variety of knotter,or band-tyer located beneath the bindingtable A. It consists of a needle-arm, E,
mounted on shaft D, which has a rotary reciprocating motion imparted to it from some part of the machinery of the binder, so thatit can oscillate from the position seen in Fig. 1 around to the position shown in Fig. 2, and back again. Needle-arm E has a projection,
L, to the extremity of which the link G is pivoted at v. This link connects with the discharging-arm M at u. The discharging-arm M is substantially of the shape shown, and is hung from the top of a bracket-arm, G, which is an upward projection from standard B. At the point non the discharging-arm the compressing-arm R is attached. This has a slotted prolongation, K, and through the slot R the set-screw N passes and screws into the discharging-arm. The slot R and set-screw N are provided as a means of adjusting the gap of separation between arm R and the needle arm E when they are in the act of compressing a bundle. To the compressing-arm R is affixed the compressing-spring E. This spring is so constructed and attached that normally it stands about asin Fig. l-that is, with its free end advanced a little ahead of the lower end of arm B, so as to engage with the accumulated straw a little in advance of the arm It. This, among other things, is to prevent the paying out of more binding-twine than will be taken up by the needle-arm in the act of binding.
The lower end of the discharging-limb M is bent back, as at O, as a provision forhanging thereto the foot J. This foot is pivoted to the discharging-arm at 00, and its position is controlled and regulated byaspring, s, in connection with the stop lug or pin 6. This construction permits foot J to be forced back into position shown in dotted lines in Fig. 2 as arm 11?. sweeps back over the straw accumulated to form the next sheaf.
The knotting apparatus is located beneath table A, directly under sheaf S, in Fig. 2.
The oscillating motion of the needle-arm E is imparted through shaft D,which is provided at the end opposite the one in view with a crankarm, which is connected by a pitman or otherwise with some driver on the binder.
I have shown in connection with the needlearm in Figs. 1 and 3 a tension device, or twine brake, as it may more appropriately be called, through which the cord passes from the twineball to the needle-arm, the action of which is controlled as to its time of operation by the motion of the needle-arm or of some other part of the binding machinery which has motion synchronous with that of the needle-arm. It consists of a pair of jaws, a and h, connected .by a bolt, f, which carries spring b, as shown,
the force of which is normally exerted to keep the jaws closed. The twine runs between jaws a and h,the outward lips of which are everted, so that the beveled edge U of arm B may easily enter between them and force them apart when the needle-arm makes its back-throw, and thus relieves the tension on the twine.
The machine operates as follows: The twine is carried from the twine-ball through the twine brake, thence through the various guides and eyes of the needle-arm to the knotter'at W, leaving the parts in position, as in Fig. 1, the jaws of the twine-brake being open, so that the twine may pay out freely as it is crowded back by the impact of the inflowing current of grain. The cut crop is carried up in the direction of the arrows and forced under and against twine g. until a sufficient amount is accumulated for a sheaf. Then at the proper moment the binder'is started. The instant the needle-arm commences its descent wedge U moves out from between jaws a and h of the twine-brake, thus permitting spring I) to act to close them and bind the bindingtwine between them. The degree of pinch or tension thus brought to act on the twine is regulated by the regulating-nut 70, which acts to compress or elongate the helical spring b. The amount of such tension, however, is sufficient, as arm E descends, carrying the twine around the sheaf in the usual way, to firmly compact the straw inclosed within its embrace and make a tight, firm, and compact sheaf.
It is not material whereabout between the needle-arm and the twine-supply the twinebrake is located, provided the time of its ac tion and intervals between its intermittent op erations are synchronous with the movements of the needle-arm. The improved results attending. upon the foregoing-described use of the twine-brake are these: Then the binder is at rest and the operation of gathering and compacting material for a new bundle is going on, which operation consists of forcing the cut straw against the binding-cord until a sufficiency for a bundle is accumulated,thetwine yielding and gradually paying out during such process, it is obvious that the more tension there is put on the twine the more power will be used to overcome such tension,in order to force the twine back to admit the straw, and this expenditure of power in this way is great and materially adds to the hard working of the machine, and such tension so maintained is wholly or mainly unnecessary and harmful, inasmuch as with some machines it compacts the strawinto a V-shaped mass, and
when the needle-arm carries the cord around the bundle it folds or laps the thin edge of the mass around upon itself, and often leaves a lank or hollow space in the bundle under the knot. When all or nearly all obstruction to the free running of the cord through its guideways, eyes, &c., is taken off, this does not oc our, and the straw is banked up in front of the twine in a symmetrically-homogeneous mass, which the encircling cord uniformly contracts and compacts.
To revert to the action of the needle and compressing arms, it may be stated that after the material of the bundle has been gathered and compacted, as before stated, and the binding mechanism started, as the needle-arm E descends, by means of connection G, the discharging and compressing arms are dragged down and advanced to meet and eo-operate with arm E. In this movement the compressiug-spring H acts by first engaging the straw and gradually yielding to the increasing pressure until mm B comes fully into position to accomplish its ofiice in compressing the bundle. If the spring H were not provided and arranged so to operate, it would result that when arm R did finally engage the straw and compress the same such compression, coming on so late in the process, would produce more slack in the band than arm E and the knotting devices could take care of. Meanwhile discharging-arm M has swept across the sheaf, dragging the discharging-foot J over the bun dle, as seen in Fig. 2, and has assumed the position shown in that figure. \Vhile the several parts are in this position the knot is tied and the cord severed. Then, by a reversed movement of shaft D,arm E recedes, and, concurrently, arm M and foot J advance. Foot J is thus promptly and energetically impelled against sheaf S, with the result of sweeping it free and clear of the binding-table, disengaging it from the current of infiowing grain, and delivering it to a bundle-carrier or onto the ground, as may be arranged.
To graduate the size of the bundle, the setscrcw N may be loosened and arm It swung in or out, to suit the object sought, when it can be tightened up.
A marked advantage accruing from this construction is the complete and effectual severance of the bound sheaf from the current of inflowing grain, a separation of from two to two and a half feet being secured.
Another advantage results from the fact that the binding and compressing arms and the compressing-springs are all hung upon or are attached to the same limb or member of the binder-frame, whereby it is possible to make IIO aforesaid pitman-connection a special advantage accrues in the avoidance of any sudden shock or blow to the sheaf at the moment of starting it from the table. By reference to Fig. 2 it will be seen that when the discharging movement is initiated pivot 1) moves in a direction almost at right angles to the line of motion of pivot it, thus starting the bundle very gently, its momentum gradually increasing until pivoto sweeps up around into position, where D, o, and a form a right angle, at which point its greatest force is exerted. By this time the sheaf is swept clear of the binding-table, either into a'repository or carrier, or else into the field. This characteristic of the delivery-stroke cannot be obtained when the binding or needle arm and the dischargingarm are geared together, as when so connected they approach and recede with uniform momentum and force.
The arrangement of devices shown in Fig. 3 is made with reference to a needle-arm which swings from a position beneath the bindingtable, the twine-brake being attached to some convenient part of the frame of the machine.
I therefore claim- 1. In a grain-binder, the combination of an oscillating needle or binding a'rm pivoted above the binding-table, an oscillating discharging-arm pivoted above the axis of the needle-arm, a compressing-arm attached to the discharging arm, and a pitman connecting said needle and discharging arms, substantially as and for the purposes set forth.
2. In a grain-binder, the combination of an oscillating needle or binding arm pivoted above the bindingtable, an oscillating discharging-arm pivoted above the axis of the needle-arm and connected thereto by a pitman, and a spring-controlled discharging-foot pivoted to the lower end of said dischargingarm, substantially as and for the purposes set forth.
3. In a grain-binder, the combination of an oscillating needle or binding arm pivoted above the binding-table, an oscillating dischargingarm pivoted above the axis of said needle-arm and connected thereto by a pitman, and a compressing-arm adjust-ably attached to said discharging-arm, substantially as and for the purposes set forth.
4. In a grain-binder, the combination of an oscillating needle or binding arm pivoted to a standard above the bindingtable, an oscillating discharging-arm providedwith a springcontrolled tripping-foot and pivoted to said standard above the axis of the needle-arm, a pitman adj ustably connected to said arm, and a compressing-arm provided with a compress ingspring and attached to said dischargingarm, substantially as and for the purposes set forth.
5. In a grain-binder, the combination, with the needle-arm, of a twine-brake located in the path and plane of the same, and consisting of the jaws to and h, the spring I), for compressing said jaws together, and an adj ustingnut, k, for regulating the tension of said spring, said needle arm having a sharpened back adapted to enter the jaws a and h and force them apart as the needle-arm descends, for the purposes set forth, substantially as described.
6. The described discharging-arm provided with a discharging foot at its lower end and adapted to oscillate,substantially as shown, in combination with acompressingarm equipped with a compressing-spring fastened near its upper end, said compressing-arm being adjustably attached to the upper end of said dischargingarm, substantially as described, and for the purpose set forth.
7. The combination of the dischargingarm M, spring-controlled foot J at the lower end thereof, compressing-arm R, pivoted to said dischargingarm, and spring H, slotted projection K at the upper end of said arm, and setscrew N, all combined for the purpose set forth.
In testimony whereof I have hereto affixed my name, at Smiths Mills, New York, this 14th day of February, A. D. 1885.
EARL G. W'ATROUS.
In presence of- S. H. YORK, G. E. WATROUS.
US392650D watrous Expired - Lifetime US392650A (en)

Publications (1)

Publication Number Publication Date
US392650A true US392650A (en) 1888-11-13

Family

ID=2461622

Family Applications (1)

Application Number Title Priority Date Filing Date
US392650D Expired - Lifetime US392650A (en) watrous

Country Status (1)

Country Link
US (1) US392650A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014668A1 (en) * 2001-08-10 2003-02-20 The Boeing Company Isolated resonator gyroscope
US20030101792A1 (en) * 2001-08-10 2003-06-05 Kubena Randall L. Microgyro tuning using focused ion beams
US20030205087A1 (en) * 2001-08-10 2003-11-06 The Boeing Company Isolated resonator gyroscope with compact flexures
US20040055380A1 (en) * 2002-08-12 2004-03-25 Shcheglov Kirill V. Isolated planar gyroscope with internal radial sensing and actuation
US20040055381A1 (en) * 2002-08-12 2004-03-25 Shcheglov Kirill V. Integral resonator gyroscope
US20040088127A1 (en) * 2002-06-25 2004-05-06 The Regents Of The University Of California Integrated low power digital gyro control electronics
US20040085159A1 (en) * 2002-11-01 2004-05-06 Kubena Randall L. Micro electrical mechanical system (MEMS) tuning using focused ion beams
US20040226370A1 (en) * 2002-04-26 2004-11-18 California Institute Of Technology Electrostatic spring softening in redundant degree of freedom resonators
US20050172714A1 (en) * 2002-08-12 2005-08-11 California Institute Of Technology Isolated planar mesogyroscope
US6990863B2 (en) 2001-08-10 2006-01-31 The Boeing Company Isolated resonator gyroscope with isolation trimming using a secondary element
US20060037417A1 (en) * 2004-07-29 2006-02-23 The Boeing Company Parametrically disciplined operation of a vibratory gyroscope
US7017410B2 (en) 2001-08-10 2006-03-28 The Boeing Company Isolated resonator gyroscope with a drive and sense plate
US20070017287A1 (en) * 2005-07-20 2007-01-25 The Boeing Company Disc resonator gyroscopes
US7285844B2 (en) 2003-06-10 2007-10-23 California Institute Of Technology Multiple internal seal right micro-electro-mechanical system vacuum package
US20100024546A1 (en) * 2007-07-31 2010-02-04 The Boeing Company Disc resonator integral inertial measurement unit
US20100251817A1 (en) * 2009-04-01 2010-10-07 The Boeing Company Thermal mechanical isolator for vacuum packaging of a disc resonator gyroscope
US8138016B2 (en) 2006-08-09 2012-03-20 Hrl Laboratories, Llc Large area integration of quartz resonators with electronics
US8151640B1 (en) 2008-02-05 2012-04-10 Hrl Laboratories, Llc MEMS on-chip inertial navigation system with error correction
US8176607B1 (en) 2009-10-08 2012-05-15 Hrl Laboratories, Llc Method of fabricating quartz resonators
US8327526B2 (en) 2009-05-27 2012-12-11 The Boeing Company Isolated active temperature regulator for vacuum packaging of a disc resonator gyroscope
US8393212B2 (en) 2009-04-01 2013-03-12 The Boeing Company Environmentally robust disc resonator gyroscope
US8766745B1 (en) 2007-07-25 2014-07-01 Hrl Laboratories, Llc Quartz-based disk resonator gyro with ultra-thin conductive outer electrodes and method of making same
US8769802B1 (en) 2008-02-21 2014-07-08 Hrl Laboratories, Llc Method of fabrication an ultra-thin quartz resonator
US8782876B1 (en) 2008-11-10 2014-07-22 Hrl Laboratories, Llc Method of manufacturing MEMS based quartz hybrid filters
US8912711B1 (en) 2010-06-22 2014-12-16 Hrl Laboratories, Llc Thermal stress resistant resonator, and a method for fabricating same
US9250074B1 (en) 2013-04-12 2016-02-02 Hrl Laboratories, Llc Resonator assembly comprising a silicon resonator and a quartz resonator
US9599470B1 (en) 2013-09-11 2017-03-21 Hrl Laboratories, Llc Dielectric high Q MEMS shell gyroscope structure
US9977097B1 (en) 2014-02-21 2018-05-22 Hrl Laboratories, Llc Micro-scale piezoelectric resonating magnetometer
US9991863B1 (en) 2014-04-08 2018-06-05 Hrl Laboratories, Llc Rounded and curved integrated tethers for quartz resonators
US10031191B1 (en) 2015-01-16 2018-07-24 Hrl Laboratories, Llc Piezoelectric magnetometer capable of sensing a magnetic field in multiple vectors
US10110198B1 (en) 2015-12-17 2018-10-23 Hrl Laboratories, Llc Integrated quartz MEMS tuning fork resonator/oscillator
US10175307B1 (en) 2016-01-15 2019-01-08 Hrl Laboratories, Llc FM demodulation system for quartz MEMS magnetometer
US10266398B1 (en) 2007-07-25 2019-04-23 Hrl Laboratories, Llc ALD metal coatings for high Q MEMS structures
US10308505B1 (en) 2014-08-11 2019-06-04 Hrl Laboratories, Llc Method and apparatus for the monolithic encapsulation of a micro-scale inertial navigation sensor suite
US11237000B1 (en) 2018-05-09 2022-02-01 Hrl Laboratories, Llc Disk resonator gyroscope with out-of-plane electrodes

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060070440A1 (en) * 2001-08-10 2006-04-06 The Boeing Company Isolated resonator gyroscope with a drive and sense plate
US7093486B2 (en) 2001-08-10 2006-08-22 The Boeing Company Isolated resonator gyroscope with a drive and sense plate
US6629460B2 (en) 2001-08-10 2003-10-07 The Boeing Company Isolated resonator gyroscope
US20030205087A1 (en) * 2001-08-10 2003-11-06 The Boeing Company Isolated resonator gyroscope with compact flexures
US6955084B2 (en) 2001-08-10 2005-10-18 The Boeing Company Isolated resonator gyroscope with compact flexures
US7100444B2 (en) 2001-08-10 2006-09-05 The Boeing Company Isolated resonator gyroscope
US20030101792A1 (en) * 2001-08-10 2003-06-05 Kubena Randall L. Microgyro tuning using focused ion beams
WO2003014668A1 (en) * 2001-08-10 2003-02-20 The Boeing Company Isolated resonator gyroscope
US6698287B2 (en) 2001-08-10 2004-03-02 The Boeing Company Microgyro tuning using focused ion beams
US20040200280A1 (en) * 2001-08-10 2004-10-14 The Boeing Company Isolated resonator gyroscope
US6990863B2 (en) 2001-08-10 2006-01-31 The Boeing Company Isolated resonator gyroscope with isolation trimming using a secondary element
US7017410B2 (en) 2001-08-10 2006-03-28 The Boeing Company Isolated resonator gyroscope with a drive and sense plate
US6823734B1 (en) 2002-04-26 2004-11-30 California Institute Of Technology Electrostatic spring softening in redundant degree of freedom resonators
US20040226370A1 (en) * 2002-04-26 2004-11-18 California Institute Of Technology Electrostatic spring softening in redundant degree of freedom resonators
US6915215B2 (en) 2002-06-25 2005-07-05 The Boeing Company Integrated low power digital gyro control electronics
US20040088127A1 (en) * 2002-06-25 2004-05-06 The Regents Of The University Of California Integrated low power digital gyro control electronics
US20040055381A1 (en) * 2002-08-12 2004-03-25 Shcheglov Kirill V. Integral resonator gyroscope
US6944931B2 (en) 2002-08-12 2005-09-20 The Boeing Company Method of producing an integral resonator sensor and case
US20050274183A1 (en) * 2002-08-12 2005-12-15 The Boeing Company Integral resonator gyroscope
US20050172714A1 (en) * 2002-08-12 2005-08-11 California Institute Of Technology Isolated planar mesogyroscope
US20070084042A1 (en) * 2002-08-12 2007-04-19 California Institute Of Technology Isolated planar mesogyroscope
US7347095B2 (en) 2002-08-12 2008-03-25 The Boeing Company Integral resonator gyroscope
US7624494B2 (en) 2002-08-12 2009-12-01 California Institute Of Technology Method of fabricating a mesoscaled resonator
US7040163B2 (en) 2002-08-12 2006-05-09 The Boeing Company Isolated planar gyroscope with internal radial sensing and actuation
US7168318B2 (en) 2002-08-12 2007-01-30 California Institute Of Technology Isolated planar mesogyroscope
US20040055380A1 (en) * 2002-08-12 2004-03-25 Shcheglov Kirill V. Isolated planar gyroscope with internal radial sensing and actuation
US7282834B2 (en) 2002-11-01 2007-10-16 Hrl Laboratories, Llc Micro electrical mechanical system (MEMS) tuning using focused ion beams
US20050269901A1 (en) * 2002-11-01 2005-12-08 Hrl Laboratories, Llc Micro electrical mechanical system (MEMS) tuning using focused ion beams
US6922118B2 (en) 2002-11-01 2005-07-26 Hrl Laboratories, Llc Micro electrical mechanical system (MEMS) tuning using focused ion beams
US20040085159A1 (en) * 2002-11-01 2004-05-06 Kubena Randall L. Micro electrical mechanical system (MEMS) tuning using focused ion beams
US9046541B1 (en) 2003-04-30 2015-06-02 Hrl Laboratories, Llc Method for producing a disk resonator gyroscope
US7285844B2 (en) 2003-06-10 2007-10-23 California Institute Of Technology Multiple internal seal right micro-electro-mechanical system vacuum package
US20060037417A1 (en) * 2004-07-29 2006-02-23 The Boeing Company Parametrically disciplined operation of a vibratory gyroscope
US7437253B2 (en) 2004-07-29 2008-10-14 The Boeing Company Parametrically disciplined operation of a vibratory gyroscope
US7581443B2 (en) 2005-07-20 2009-09-01 The Boeing Company Disc resonator gyroscopes
US20070017287A1 (en) * 2005-07-20 2007-01-25 The Boeing Company Disc resonator gyroscopes
US8138016B2 (en) 2006-08-09 2012-03-20 Hrl Laboratories, Llc Large area integration of quartz resonators with electronics
US10266398B1 (en) 2007-07-25 2019-04-23 Hrl Laboratories, Llc ALD metal coatings for high Q MEMS structures
US8766745B1 (en) 2007-07-25 2014-07-01 Hrl Laboratories, Llc Quartz-based disk resonator gyro with ultra-thin conductive outer electrodes and method of making same
US7836765B2 (en) 2007-07-31 2010-11-23 The Boeing Company Disc resonator integral inertial measurement unit
US20100024546A1 (en) * 2007-07-31 2010-02-04 The Boeing Company Disc resonator integral inertial measurement unit
US8151640B1 (en) 2008-02-05 2012-04-10 Hrl Laboratories, Llc MEMS on-chip inertial navigation system with error correction
US8522612B1 (en) 2008-02-05 2013-09-03 Hrl Laboratories, Llc MEMS on-chip inertial navigation system with error correction
US8769802B1 (en) 2008-02-21 2014-07-08 Hrl Laboratories, Llc Method of fabrication an ultra-thin quartz resonator
US8782876B1 (en) 2008-11-10 2014-07-22 Hrl Laboratories, Llc Method of manufacturing MEMS based quartz hybrid filters
US8322028B2 (en) 2009-04-01 2012-12-04 The Boeing Company Method of producing an isolator for a microelectromechanical system (MEMS) die
US8393212B2 (en) 2009-04-01 2013-03-12 The Boeing Company Environmentally robust disc resonator gyroscope
US20100251817A1 (en) * 2009-04-01 2010-10-07 The Boeing Company Thermal mechanical isolator for vacuum packaging of a disc resonator gyroscope
US8327526B2 (en) 2009-05-27 2012-12-11 The Boeing Company Isolated active temperature regulator for vacuum packaging of a disc resonator gyroscope
US8593037B1 (en) 2009-10-08 2013-11-26 Hrl Laboratories, Llc Resonator with a fluid cavity therein
US8176607B1 (en) 2009-10-08 2012-05-15 Hrl Laboratories, Llc Method of fabricating quartz resonators
US8912711B1 (en) 2010-06-22 2014-12-16 Hrl Laboratories, Llc Thermal stress resistant resonator, and a method for fabricating same
US9250074B1 (en) 2013-04-12 2016-02-02 Hrl Laboratories, Llc Resonator assembly comprising a silicon resonator and a quartz resonator
US9599470B1 (en) 2013-09-11 2017-03-21 Hrl Laboratories, Llc Dielectric high Q MEMS shell gyroscope structure
US9977097B1 (en) 2014-02-21 2018-05-22 Hrl Laboratories, Llc Micro-scale piezoelectric resonating magnetometer
US9991863B1 (en) 2014-04-08 2018-06-05 Hrl Laboratories, Llc Rounded and curved integrated tethers for quartz resonators
US10308505B1 (en) 2014-08-11 2019-06-04 Hrl Laboratories, Llc Method and apparatus for the monolithic encapsulation of a micro-scale inertial navigation sensor suite
US11117800B2 (en) 2014-08-11 2021-09-14 Hrl Laboratories, Llc Method and apparatus for the monolithic encapsulation of a micro-scale inertial navigation sensor suite
US10031191B1 (en) 2015-01-16 2018-07-24 Hrl Laboratories, Llc Piezoelectric magnetometer capable of sensing a magnetic field in multiple vectors
US10110198B1 (en) 2015-12-17 2018-10-23 Hrl Laboratories, Llc Integrated quartz MEMS tuning fork resonator/oscillator
US10581402B1 (en) 2015-12-17 2020-03-03 Hrl Laboratories, Llc Integrated quartz MEMS tuning fork resonator/oscillator
US10175307B1 (en) 2016-01-15 2019-01-08 Hrl Laboratories, Llc FM demodulation system for quartz MEMS magnetometer
US11237000B1 (en) 2018-05-09 2022-02-01 Hrl Laboratories, Llc Disk resonator gyroscope with out-of-plane electrodes

Similar Documents

Publication Publication Date Title
US392650A (en) watrous
US11425864B2 (en) Knotter system for a baler
US2551873A (en) Bale binding mechanism for baling presses
US542742A (en) Half to the adriance
US252988A (en) John f
US263160A (en) Geain binding attachment foe eeapees
US188629A (en) Improvement in grain-binders
US369172A (en) emebso n
US614467A (en) hanson
US333922A (en) Grain binding machine
US410427A (en) Grain-binder
US264909A (en) Daniel b
US995585A (en) Cord-knotter for grain-binders.
US571072A (en) Grain-binder
US457665A (en) Self-binder
US280481A (en) Grain-binder
US266913A (en) Grain-binder
US250620A (en) Grain-binder
US391371A (en) Grain-binder
US258114A (en) Hale to eichaed j
US282445A (en) davis
US192151A (en) Improvement in grain-binders
US221235A (en) Improvement in gleaners and binders
US212420A (en) John f
US377093A (en) Assigfobs to whiteley