US3943046A - UV curing process employing flash photolysis - Google Patents

UV curing process employing flash photolysis Download PDF

Info

Publication number
US3943046A
US3943046A US05/515,511 US51551174A US3943046A US 3943046 A US3943046 A US 3943046A US 51551174 A US51551174 A US 51551174A US 3943046 A US3943046 A US 3943046A
Authority
US
United States
Prior art keywords
phase
film
superficial
polymerization
sustained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/515,511
Inventor
Miksa De Sorga
Vincent D. McGinniss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lilly Industries Inc
Original Assignee
SCM Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US373374A external-priority patent/US3875067A/en
Application filed by SCM Corp filed Critical SCM Corp
Priority to US05/515,511 priority Critical patent/US3943046A/en
Application granted granted Critical
Publication of US3943046A publication Critical patent/US3943046A/en
Assigned to GLIDDEN COMPANY, THE, A CORP. OF DE. reassignment GLIDDEN COMPANY, THE, A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SCM CORPORATION
Anticipated expiration legal-status Critical
Assigned to LILLY INDUSTRIES, INC. A CORP. OF INDIANA reassignment LILLY INDUSTRIES, INC. A CORP. OF INDIANA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GLIDDEN COMPANY, THE A CORP. OF DELAWARE
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/12Spreading-out the material on a substrate, e.g. on the surface of a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultra-violet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/001Shaping in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
    • B41M7/0081After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock using electromagnetic radiation or waves, e.g. ultraviolet radiation, electron beams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers

Definitions

  • This invention relates to process and apparatus for polymerizing oxygen-inhibited ultraviolet photopolymerizable resin-forming material such as a film or a deposit thereof on a substrate.
  • resin-forming material such as a film or a deposit thereof on a substrate.
  • films For convenience herein such masses of the resin-forming material will be referred to from time to time simply as "films.”
  • Superficial curing herein connotes polymerization of the binding vehicle in such film to convert the surface of the film from a liquid or tacky condition into a tack-free condition, detectable by touch; full curing connotes substantially complete polymerization of the film throughout its thickness to a finished state.
  • Films that are undercured often have poor adhesion to substrates. Films with mainly a superficial cure (and somewhat undercured therebelow) frequently will develop defects such as wrinkling, "orangepeeling,” or “alligatoring.” Films that are well cured below, but which have a tacky or undercured surface, are generally unusable because of such tacky or undercured and thus unsatisfactory condition.
  • the generally advantageous ultraviolet wave energy useful for the instant process is that U.V. energy in the so-called “near-visible” or “near-U.V.” region, in other words, the wavelengths of the U.V. spectrum that are transmittable through a quartz or other transparent window.
  • Such advantageous range should be understood herein as lying between about 1600-1800 A wavelength and about 4000-4200 A wavelength, and preferably between about 2500 A and 4000 A wavelength.
  • paint can be a fluent, liquid phase continuous material, a jelly-like material, or a powdery mixture. It can have, if desired, opacifying pigment and/or added colorants and fillers in conjunction with such polymerizable binding vehicle.
  • paint also can have various other conventional additives such as pesticides, odorants, flow-control agents, bubble breakers, defoamers, plasticizers, intercoat adhesion promoters, and other ingredients conventional in surface-coating films and adhesives.
  • U.S. Pat. Nos. 3,364,387 and 3,650,669 A fairly intense radiation source which emits a minor proportion of its radiation in the near-U.V. region is shown in U.S. Pat. Nos. 3,364,387 and 3,650,669; the latter patent teaches the curing of paint films by exposure to such radiation.
  • This sustained source of U.V. energy is conveniently described as a plasma arc torch operating at essentially atmospheric pressure. It usually operates with a swirl flow. The intensity of such torch integrated throughout the entire spectrum range of its continuum light radiation can be at least about 350 watts per square centimeter steradian. Ordinarily, such apparatus is used with an inert gas atmosphere blanketing the coated workpiece to be irradiated so as to prevent inhibition of polymerization from air.
  • Electric lamps and lasers have been made to emit sustained U.V. radiation also for such curing purpose.
  • An example of laser application to the cure of U.V.-polymerizable materials is in the copending U.S. patent application of Antonio de Souza and A. M. Buhoveckey, U.S. Ser. No. 189,254, filed Oct. 14, 1971.
  • Other examples of U.V. laser and U.V. electric lamp curing of such materials are shown in U.S. Ser. No. 342,038 now abandoned of Antonio de Souza, filed Mar. 16, 1973.
  • U.V. lamps for this sustained curing purpose are shown, for example, in U.S. Pat. Nos. 3,499,781 and 3,673,140. Such commercial lamps are usually referred to as "mercury U.V. lamps" even though they can have gases mixed with the mercury which modify the emanations. They ordinarily have medium filling pressure.
  • U.V. light sources for flash photolysis also can be conventional and devised on principles related to the sustained electrical U.V. photolysis light sources except that they are controlled to emit short bursts or flashes of energy interrupted by down time.
  • a typical flash photolysis source is shown in West German patent No. 2,019,270 of Nov. 16, 1972. The subject matter of these patents and all the patent applications cited herein is expressly incorporated herein by reference.
  • Advantages of U.V. curing over other conventional curing in ovens or the like include especially the ability of the U.V. irradiation to perform "cold" polymerization ("curing") of the film at high speed with attendant suppression of losses due to volatilization of components of the film, suppression of discoloration or degradation of the film, suppression of shrinkage and distortion of the film and of the substrate (preservation of dimensional stability), and suppression of degradation of the substrate to which the film is applied, particularly when such substrate is plastic, paper, or fabric.
  • Special advantages of the instant invention include effective U.V. curing of the films or deposits in economical atmospheres such as air, a lessened cooling load on the individual U.V. light sources of the apparatus, and the ability to distribute such load over a plurality of U.V. light sources.
  • the sustained operation of U.V. lamps at about their highest intensity often overheats them and causes production slowdowns.
  • This invention permits, in many cases, beneficial reduction of energy intensity from the sustained irradiating U.V. light source or sources used according to invention principles.
  • the instant improvement in a process for polymerizing an oxygen-inhibited ultraviolet photopolymerizable resin-forming material by exposing a surface thereof to U.V. radiation comprises:
  • Imaging reflectors can be used to direct both the superficial and the sustained U.V. irradiation onto the same surface area for simultaneous performance of both phases.
  • the sustained phase and the superficial phase can be conducted as follows:
  • said profound phase being performed with sustained irradiation by said U.V. energy effective for substantially completely polymerizing said mass except for inhibition of polymerization at the surface thereof due to said oxygen,
  • said superficial phase being performed with a flash of said U.V. energy effective for forming a tack-free skin over said mass and, in so doing, either
  • the instant apparatus for polymerizing such resin-forming material by so irradiating it comprises a pair of light sources providing said U.V. energy, one of said pair being a flash photolysis light source, the other of said pair being a sustained photolysis light source, both of said sources being disposed for irradiating said mass simultaneously or sequentially as it abides in an atmosphere containing polymerization-inhibiting oxygen.
  • the kind of polymerizable vehicle in the film will affect the intensity useful for curing the film rapidly, as well as will the thickness of such film, kind and proportion of pigmentation and/or dye in the film, the gaseous atmosphere around the film, the type of sensitizers or other polymerization activators and their proportion in the film, and the wavelength or wavelengths emanated from the particular ultraviolet source of radiation being used in the near-visible region. That is to say, thicker films up to thicknesses of 3-5 mils but even more generally 1.5-2.5 mils often will call for a higher critical intensity than thinner films of the same material, as will kinds and porportions of pigments, dyes and mineral fillers, the particular wavelengths of light available from the source in the near-U.V.
  • the drawing is a flow diagram of one simple form of the invention using conventional light sources providing the U.V. energy sequentially as preferred.
  • Substrate 11 is coated on its top surface with a film of oxygen-inhibited ultraviolet photopolymerizable resin-forming material 12.
  • the ambient atmosphere surrounding this coating at this position and also at position 2 is air.
  • Conventional flash photolysis light source 15 then is turned on to flash irradiate the top surface of film 12 with U.V. energy depicted as rays 14, this irradiation being effective for forming a tack-free skin superficially over the top of coating 12.
  • Conveyor deck 13 then moves coated workpiece 11 to the right and to position 2 beneath conventional sustained photolysis light source 16.
  • the pre-treated workpiece in position 2 is indicated as item 11', and the thus-pretreated coating thereon as 12'.
  • the rays emanating from the sustained U.V. photolysis source are depicted as item 17.
  • This exposure to sustained irradiation can last from a few milliseconds up to several seconds and is called for convenience herein the "profound phase.” It substantially completely polymerizes the remainder of the coating throughout its thickness; the underlying resin-forming material in this instance is protected from polymerization inhibition by virtue of the skin formed over the coating in the earlier or superficial phase of the operation.
  • flash photolysis light sources can be used if necessary or desirable. Frequently it can be desirable to have two or more of such sources operating in sequence as workpieces travel beneath them on a conveyor. When such flash units are off, they can be cooling effectively and advantageously. Similarly, a plurality of sustained U.V. photolysis sources can be used in a series to provide adequate energy dosage for effecting the profound phase of the film curing.
  • the light sources can use imaging means such as reflectors to direct and concentrate their beams on the films being treated.
  • Flash photolysis operates extremely rapidly, the irradiation often lasting only 1/1000 to 1/100,000 of a second, typically about 1/50,000 of a second.
  • the U.V. energy can be quite intense, e.g., up to several watts per square cm. or, advantageously, much higher, e.g., hundreds or thousands, if desired, or it can be of an intensity as low as a few tens of milliwatts per square cm. of the exposed film.
  • Flash photolysis units emitting a fairly continuous spectrum of near-U.V. light energy are available, for example, a xenon gas-containing lamp, from the Xenon Corporation.
  • a condenser bank in which is built up a high-voltage electrical charge to light the lamp periodically, actuating a trigger electrode.
  • a pulsed near-U.V. laser of high output energy e.g., a nitrogen laser
  • the pulses can be, for example, from 1 to 500 per second and last about a monosecond.
  • Optical means can be used to spread, concentrate, and scan light beams over the work.
  • Sustained photolysis units are designed to irradiate substantially continuously even though they might be using alternating electric current which makes for variable output.
  • the polymerizable film-forming material can constitute the entire film or be the polymerizable binder for discrete, substantially inert solids and additives therein such as pigments to yield the cured product in the nature of a paint, varnish, enamel, lacquer, filler, stain, ink, or adhesive.
  • the uncured films are fluent at ordinary irradiation temperature (between about 30° and about 300°F. and advantageously between ordinary room temperature and about 180°F.).
  • a tack-free film that is durable enough for ordinary handling results rapidly.
  • the binder of such film is resinous or polymeric in nature, often crosslinked.
  • such paint consists essentially of a monomer or a mixture of monomers, or a further polymerizable oligomer, prepolymer, resin, or mixture of same, or a resinous material dispersed or dissolved in a solvent that is copolymerizable therewith.
  • solvent ordinarily is monomeric, but can be an oligomer (i.e., up to four monomer units connected) or prepolymer (molecular weight rarely above about 2000).
  • Oligomers and prepolymers should be understood herein as being polymeric in nature.
  • the main such vehicles or binders are those which also are conventionally polymerizable by free-radical-induced addition polymerization using peroxy or azo catalysis or a redox system.
  • the binders can be a fluent material wherein the ultraviolet wave energy causes photochemical generation of a catalytic material or effects a rearrangement which starts a polymerization that continues until a usefully polymerized deposit results.
  • the useful vehicles can be polymeric, monomeric, or a mixture, especially those exhibiting polymerizable vinyl, acrylic, allylic, mercaptan, fumaric, maleic, or like unsaturated functionality.
  • Reactive polymeric types include unsaturated polyesters, acrylics, epoxies, urethanes, and silicones.
  • Representative polymeric vehicles include those derived from the reaction of dibasic acids or their anhydrides with polyols.
  • equimolar amounts of maleic anhydride and phthalic anhydride can be condensed with propylene glycol in slight excess to form an unsaturated polyester which can be diluted with styrene to a sirup of resin solids, generally between 40 and 80% n.v.
  • the polyester resin thus prepared has an acid number of about 60 and less.
  • Fumaric acid can be substituted for the maleic anhydride.
  • propylene oxide can be substituted for the major portion of propylene glycol.
  • styrene other copolymerizable monomers such as hydroxyethylacrylate can be used.
  • curing examples include trimethylolpropane triacrylate, pentaerythritol triacrylate, ethyleneglycol diacrylate, diacrylic acid adduct of the diglycidyl ether of bisphenol A (DER 332 diacrylate), a di- or tri-isocyanate reacted with a hydroxy-containing acrylate.
  • Reactive monomer types include a variety of acrylates such as hydroxyethyl, cyclohexyl, hydroxypropyl, 2-ethylhexyl, benzyl, phenoxyethoxy, lower alkoxyethoxy, tetrahydrofurfuryl, and similar acrylates, and also N-vinyl pyrrolidone, vinyl acetate, vinyl acetate-butyrate, styrene and substituted styrenes.
  • Sensitizer types useful in promoting U.V. polymerization of the film in accordance with the instant invention include the types: chlorosulfonated polynuclear ketones blended with alpha-haloalkylated polynuclear ketones; chlorosulfonated benzanthrones blended with alpha-haloalkylated benzanthrones; chlorosulfonated fluorenones plus alpha-haloaklylated fluorenones; carbonylated phenyl nuclear sulfonyl chlorides; and carbonylated polynuclear sulfonyl chlorides as shown in the copending U.S. patent applications of Vincent R. McGinniss, Ser. No.
  • the depth of cure also is usually quite practical so that the resulting polymerized deposit not only is tack-free, but also resists scratching or disruption when first ostensibly tack-free. Curing can continue on stored pieces.
  • substrate workpieces coated with the uncured paint deposit or deposits are passed transversely to the U.V.-providing light beam by a conveyor.
  • the substrate being coated can be metal, mineral, glass, wood, paper, plastic, fabric, ceramic, etc.
  • opacifying pigments such as zinc oxide can be used quite well. Titania, e.g., anatase and particularly rutile, makes for a much more difficult film to cure by U.V. radiation, but such opacifying pigmentation can be used.
  • Other filler materials and coloring pigments such as basic lead sulfate, magnesium silicate, silica, clays, wollastonite, talcs, mica, chromates, iron pigments, wood flour, microballoons, hard polymer particles, and even reinforcing glass fiber or flake also are suitable in the vehicle to make a paint.
  • pigments which do not absorb a great deal of U.V. wavelength in the same region of the U.V. spectrum as is absorbed by the U.V. sensitizer.
  • U.V.-sensitizing materials such as Michler's ketone in the sensitizing mixture
  • sensitizers such as the carbonylated phenyl nuclear sulfonyl chloride types and enhance the curing of pigmented systems.
  • the wavelength of the U.V. source should not be too similar to or close to the wavelength absorbed by the pigment in the U.V. range for best advantage of the irradiation process.
  • Pigmented or filled films for the process preferably are no more than about a mil thick and generally about 0.1-0.5 mil thick maximum, for efficiency and economy of curing.
  • the superficial phase of this curing operation merely polymerizes the resin-forming material into a protective skin which is either sufficient to substantially complete polymerization of the mass when it has been treated in the profound phase previously or to protect the less-fully-polymerized resin-forming material therebelow from polymerization inhibition when said superficial phase is the first one to be performed.
  • the superficial phase and the profound phase are, of course, susceptible to being divided up into a series of "subsuperficial” and "subprofound” phases, each of said series acting simultaneously or sequentially to perform a complete superficial phase or a complete profound phase collectively.
  • the profound or in-depth curing phase will substantially complete polymerization throughout the mass, except for the top surface thereof exposed to oxygen inhibition or previously skinned-over by the superficial phase of the irradiation.
  • the superficial phase will form the "skin" at the top surface and effect minor polymerization into the depth of the film, perhaps affecting only 10-40% of the film depth by way of polymerization to some appreciable degree.
  • Paint compounded as follows is applied at 1 mil wet thickness to an aluminum panel 1 inch by 1 inch. This paint is air-inhibited and when irradiated by the sustained U.V. energy in accordance with the second step of the example, it will yield a film having a tacky surface.
  • the freshly coated side of the panel is subjected to irradiation from a Xenon Corporation flash photolysis lamp operating to emit a substantially continuous spectrum of U.V. energy in the 2000-4000 A range of wavelength.
  • the gap of atmospheric air at room temperature between the lamp and the panel is about 4 inches. The lamp emits such energy for up to about 1/1000 second.
  • the lamp is about 8 inches long and 10 mm. in diameter and housed in an elongated housing of essentially square cross section that is black inside.
  • the U.V. light is emitted from a 1-inch diameter exit port about 1 inch in front of the lamp surface and mid-way to the length of the lamp tube.
  • the power supply is 400 volts d.c. charging a bank of 10 capacitators parallel, each of 100 microfarads rating.
  • the housing acts poorly as a reflector; it is estimated that about one-half to 1 Joule of near-U.V. energy per flash is the near-U.V. light output through such exit port.
  • a superficial top surface cure results on the paint of the panel struck by the flash of U.V. energy. This area of the paint is non-tacky to the touch, but examination shows that the film is soft and decidedly underpolymerized slightly below its surface and further to its bottom.
  • the thus-treated panel then is passed, paint-side-up, by conveyor successively under a pair of like commercial mercury vapor lamps in parallel array and designed for emitting far-U.V. energy. These lamps are Hanovia model No. 652-OA431 U.V. lamps having a 4000-watt demand, and they are 20 inches long. Each is equipped with an efficient reflector.
  • the conveyor travel is normal to the axis of said lamps and 6 inches below said lamps at the rate of about 100 feet per minute. Air is the atmosphere between lamps and panel.
  • the result is a fullycured (substantially completely polymerized throughout) paint film having excellent adhesion, gloss, and resistance for its type.

Abstract

Process and apparatus for polymerizing oxygen-inhibited ultraviolet photopolymerizable resin-forming material such as a film is shown. The apparatus comprises a pair of U.V. light sources, one being a flash photolysis source, the other a sustained photolysis source, both disposed for irradiating said mass as it abides in an atmosphere such as air which tends to inhibit such polymerization. The process has two essential phases, a superficial phase and a profound phase, performed simultaneously or one in advance of and as preparation for the other. The profound phase is performed with sustained irradiation effective for substantially completely polymerizing said material except for inhibition of polymerization at the surface thereof due to said atmosphere. The superficial phase is performed with flash irradiation effective for forming a tack-free skin over said material. Said skin helps to protect the less fully polymerized material therebelow from oxygen inhibition when such superficial phase is performed first or simultaneously with the other phase. When such superficial phase is performed after the profound phase, said superficial phase acts to complete polymerization of said material throughout its thickness.

Description

This is a division of application Ser. No. 373,374, filed June 25, 1973 now U.S. Pat. No. 3,875,067.
BACKGROUND OF THE INVENTION
This invention relates to process and apparatus for polymerizing oxygen-inhibited ultraviolet photopolymerizable resin-forming material such as a film or a deposit thereof on a substrate. For convenience herein such masses of the resin-forming material will be referred to from time to time simply as "films."
Superficial curing herein connotes polymerization of the binding vehicle in such film to convert the surface of the film from a liquid or tacky condition into a tack-free condition, detectable by touch; full curing connotes substantially complete polymerization of the film throughout its thickness to a finished state. Films that are undercured often have poor adhesion to substrates. Films with mainly a superficial cure (and somewhat undercured therebelow) frequently will develop defects such as wrinkling, "orangepeeling," or "alligatoring." Films that are well cured below, but which have a tacky or undercured surface, are generally unusable because of such tacky or undercured and thus unsatisfactory condition.
The generally advantageous ultraviolet wave energy useful for the instant process is that U.V. energy in the so-called "near-visible" or "near-U.V." region, in other words, the wavelengths of the U.V. spectrum that are transmittable through a quartz or other transparent window. Such advantageous range should be understood herein as lying between about 1600-1800 A wavelength and about 4000-4200 A wavelength, and preferably between about 2500 A and 4000 A wavelength.
Conventionally convection ovens and infrared sources have been used to cure (polymerize) films in the nature of a paint, varnish, enamel, lacquer, stain filler, ink, or adhesive. The instant film or deposit can be a clear one, optionally tinted, or an opaque one, either kind in a variety of colors for the purpose of protecting, decorating, and/or applying a message on a substrate, or for adhesively uniting a plurality of U.V. light-transmitting layers one with another. For convenience herein the film or deposit for such curing, whether it is virtually totally polymerizable, such as a binding-type vehicle by itself, or such vehicle compounded with other ingredients such as pigments and fillers, will be referred to herein from time to time as a "paint." Such paint can be a fluent, liquid phase continuous material, a jelly-like material, or a powdery mixture. It can have, if desired, opacifying pigment and/or added colorants and fillers in conjunction with such polymerizable binding vehicle. Such paint also can have various other conventional additives such as pesticides, odorants, flow-control agents, bubble breakers, defoamers, plasticizers, intercoat adhesion promoters, and other ingredients conventional in surface-coating films and adhesives.
More recently ultraviolet wave energy curing of materials has been suggested, usually using various U.V. sensitizers for sensitizing photopolymerization in ultraviolet wavelengths in the near-visible region. The literature on such photopolymerization and sensitization is abundant. Films (deposits) of paint for such U.V. curing can be quite thin, e.g., 0.1 mil or less, often are 0.5-2 mils in thickness, and can be as high as 50 or 60 mils, although heretofore such extremely thick films have often been difficult to cure. For the purpose of this specification, films (including deposits) can be continuous or discontinuous upwards to the thickness of 75 mils.
A fairly intense radiation source which emits a minor proportion of its radiation in the near-U.V. region is shown in U.S. Pat. Nos. 3,364,387 and 3,650,669; the latter patent teaches the curing of paint films by exposure to such radiation. This sustained source of U.V. energy is conveniently described as a plasma arc torch operating at essentially atmospheric pressure. It usually operates with a swirl flow. The intensity of such torch integrated throughout the entire spectrum range of its continuum light radiation can be at least about 350 watts per square centimeter steradian. Ordinarily, such apparatus is used with an inert gas atmosphere blanketing the coated workpiece to be irradiated so as to prevent inhibition of polymerization from air.
Electric lamps and lasers have been made to emit sustained U.V. radiation also for such curing purpose. An example of laser application to the cure of U.V.-polymerizable materials is in the copending U.S. patent application of Antonio de Souza and A. M. Buhoveckey, U.S. Ser. No. 189,254, filed Oct. 14, 1971. Other examples of U.V. laser and U.V. electric lamp curing of such materials are shown in U.S. Ser. No. 342,038 now abandoned of Antonio de Souza, filed Mar. 16, 1973.
Commercial electric U.V. lamps for this sustained curing purpose are shown, for example, in U.S. Pat. Nos. 3,499,781 and 3,673,140. Such commercial lamps are usually referred to as "mercury U.V. lamps" even though they can have gases mixed with the mercury which modify the emanations. They ordinarily have medium filling pressure. U.V. light sources for flash photolysis also can be conventional and devised on principles related to the sustained electrical U.V. photolysis light sources except that they are controlled to emit short bursts or flashes of energy interrupted by down time. A typical flash photolysis source is shown in West German patent No. 2,019,270 of Nov. 16, 1972. The subject matter of these patents and all the patent applications cited herein is expressly incorporated herein by reference.
Molecular oxygen in the atmosphere surrounding the film usually is inhibitory to the full curing of otherwise U.V.-photopolymerizable resin-forming masses. In such instance often the surface in contact with such atmosphere remains undercured. Additionally, any ozone present is especially so inhibiting. Hence the masses to be cured usually are protected from air atmosphere with nitrogen or other inert blanketing gas at considerable expense and trouble. Such inhibiting atmosphere also can be substantially more or less rich in molecular oxygen than air is and still be quite inhibitory to satisfactory curing of the film or deposit.
Advantages of U.V. curing over other conventional curing in ovens or the like include especially the ability of the U.V. irradiation to perform "cold" polymerization ("curing") of the film at high speed with attendant suppression of losses due to volatilization of components of the film, suppression of discoloration or degradation of the film, suppression of shrinkage and distortion of the film and of the substrate (preservation of dimensional stability), and suppression of degradation of the substrate to which the film is applied, particularly when such substrate is plastic, paper, or fabric.
Special advantages of the instant invention include effective U.V. curing of the films or deposits in economical atmospheres such as air, a lessened cooling load on the individual U.V. light sources of the apparatus, and the ability to distribute such load over a plurality of U.V. light sources. The sustained operation of U.V. lamps at about their highest intensity often overheats them and causes production slowdowns. This invention permits, in many cases, beneficial reduction of energy intensity from the sustained irradiating U.V. light source or sources used according to invention principles.
SUMMARY OF THE INVENTION
The instant improvement in a process for polymerizing an oxygen-inhibited ultraviolet photopolymerizable resin-forming material by exposing a surface thereof to U.V. radiation comprises:
subjecting the exposed surface of said material to superficial polymerization initiated by a flash of U.V. energy effective for forming a tack-free skin over said mass during, prior to, or subsequent to photopolymerizing the balance of the material below said exposed surface by sustained U.V. irradiation.
Imaging reflectors can be used to direct both the superficial and the sustained U.V. irradiation onto the same surface area for simultaneous performance of both phases. Alternatively, and preferably for greater flexibility in the process, the sustained phase and the superficial phase can be conducted as follows:
staging said polymerization process as two essential phases, specifically a superficial phase and a profound phase, and
performing one of said phases in advance of and as preparation for the other with both in the ambience of atmosphere containing polymerization-inhibiting oxygen,
said profound phase being performed with sustained irradiation by said U.V. energy effective for substantially completely polymerizing said mass except for inhibition of polymerization at the surface thereof due to said oxygen,
said superficial phase being performed with a flash of said U.V. energy effective for forming a tack-free skin over said mass and, in so doing, either
a. improving protection of the less fully polymerized resin-forming material therebelow from polymerization inhibition due to said oxygen when said superficial phase is the first one to be performed, or
b. substantially completing polymerization of said mass throughout its thickness when said superficial phase is the second one to be performed.
The instant apparatus for polymerizing such resin-forming material by so irradiating it comprises a pair of light sources providing said U.V. energy, one of said pair being a flash photolysis light source, the other of said pair being a sustained photolysis light source, both of said sources being disposed for irradiating said mass simultaneously or sequentially as it abides in an atmosphere containing polymerization-inhibiting oxygen.
The kind of polymerizable vehicle in the film will affect the intensity useful for curing the film rapidly, as well as will the thickness of such film, kind and proportion of pigmentation and/or dye in the film, the gaseous atmosphere around the film, the type of sensitizers or other polymerization activators and their proportion in the film, and the wavelength or wavelengths emanated from the particular ultraviolet source of radiation being used in the near-visible region. That is to say, thicker films up to thicknesses of 3-5 mils but even more generally 1.5-2.5 mils often will call for a higher critical intensity than thinner films of the same material, as will kinds and porportions of pigments, dyes and mineral fillers, the particular wavelengths of light available from the source in the near-U.V. region, and all those things which tend to absorb or transmit the particular U.V. energy being utilized, as well as the activity of the particular sensitizer system and the inertness of the gas atmosphere towards the film surface. As a practical matter a U.V. sensitizer or sensitizer mixture is used in virtually every film for this photopolymerization.
DESCRIPTION OF THE DRAWING
The drawing is a flow diagram of one simple form of the invention using conventional light sources providing the U.V. energy sequentially as preferred. Conveyor deck 13, traveling from left to right, positions substrate 11 (suitably wood or metal) at position 1. Substrate 11 is coated on its top surface with a film of oxygen-inhibited ultraviolet photopolymerizable resin-forming material 12. The ambient atmosphere surrounding this coating at this position and also at position 2 is air. Conventional flash photolysis light source 15 then is turned on to flash irradiate the top surface of film 12 with U.V. energy depicted as rays 14, this irradiation being effective for forming a tack-free skin superficially over the top of coating 12. Conveyor deck 13 then moves coated workpiece 11 to the right and to position 2 beneath conventional sustained photolysis light source 16. The pre-treated workpiece in position 2 is indicated as item 11', and the thus-pretreated coating thereon as 12'. The rays emanating from the sustained U.V. photolysis source are depicted as item 17. This exposure to sustained irradiation can last from a few milliseconds up to several seconds and is called for convenience herein the "profound phase." It substantially completely polymerizes the remainder of the coating throughout its thickness; the underlying resin-forming material in this instance is protected from polymerization inhibition by virtue of the skin formed over the coating in the earlier or superficial phase of the operation.
When the conveyor deck travel is reversed in direction with the freshly coated workpiece traveling from right to left, then the following occurs: the profound phase substantially completely polymerizes the mass of the film except for inhibition of polymerization at the surface thereof due to the air environment. The thus-treated workpiece is then moved leftwardly and positioned under the flash U.V. photolysis source, and the polymerization of the entire film mass is substantially completed throughout its thickness. In either case the high intensity of the U.V. flash can be used to overwhelm the inhibition to cure.
Obviously multiple flash photolysis light sources can be used if necessary or desirable. Frequently it can be desirable to have two or more of such sources operating in sequence as workpieces travel beneath them on a conveyor. When such flash units are off, they can be cooling effectively and advantageously. Similarly, a plurality of sustained U.V. photolysis sources can be used in a series to provide adequate energy dosage for effecting the profound phase of the film curing. The light sources can use imaging means such as reflectors to direct and concentrate their beams on the films being treated.
Usually the freshly coated workpieces are moved continuously by conveyor under the flash and sustained U.V. units. However, it is conceivable to move or refocus these light sources relative to the workpiece position or to use one conveyor for one phase of the operation and another for the second phase.
Flash photolysis operates extremely rapidly, the irradiation often lasting only 1/1000 to 1/100,000 of a second, typically about 1/50,000 of a second. The U.V. energy can be quite intense, e.g., up to several watts per square cm. or, advantageously, much higher, e.g., hundreds or thousands, if desired, or it can be of an intensity as low as a few tens of milliwatts per square cm. of the exposed film. Flash photolysis units emitting a fairly continuous spectrum of near-U.V. light energy are available, for example, a xenon gas-containing lamp, from the Xenon Corporation. Usually they are operated off a condenser bank in which is built up a high-voltage electrical charge to light the lamp periodically, actuating a trigger electrode. Alternatively, a pulsed near-U.V. laser of high output energy, e.g., a nitrogen laser, also can be used. The pulses can be, for example, from 1 to 500 per second and last about a monosecond. Optical means can be used to spread, concentrate, and scan light beams over the work. Sustained photolysis units are designed to irradiate substantially continuously even though they might be using alternating electric current which makes for variable output.
Typically the polymerizable film-forming material can constitute the entire film or be the polymerizable binder for discrete, substantially inert solids and additives therein such as pigments to yield the cured product in the nature of a paint, varnish, enamel, lacquer, filler, stain, ink, or adhesive. Preferably the uncured films are fluent at ordinary irradiation temperature (between about 30° and about 300°F. and advantageously between ordinary room temperature and about 180°F.). When polymerized in accordance with this invention, a tack-free film that is durable enough for ordinary handling results rapidly. In the cured state the binder of such film is resinous or polymeric in nature, often crosslinked. Uncured for application to a substrate or uncured on such substrate, such paint consists essentially of a monomer or a mixture of monomers, or a further polymerizable oligomer, prepolymer, resin, or mixture of same, or a resinous material dispersed or dissolved in a solvent that is copolymerizable therewith. Such solvent ordinarily is monomeric, but can be an oligomer (i.e., up to four monomer units connected) or prepolymer (molecular weight rarely above about 2000). Oligomers and prepolymers should be understood herein as being polymeric in nature.
In the main such vehicles or binders are those which also are conventionally polymerizable by free-radical-induced addition polymerization using peroxy or azo catalysis or a redox system. Alternatively, however, the binders can be a fluent material wherein the ultraviolet wave energy causes photochemical generation of a catalytic material or effects a rearrangement which starts a polymerization that continues until a usefully polymerized deposit results. The useful vehicles can be polymeric, monomeric, or a mixture, especially those exhibiting polymerizable vinyl, acrylic, allylic, mercaptan, fumaric, maleic, or like unsaturated functionality. Reactive polymeric types include unsaturated polyesters, acrylics, epoxies, urethanes, and silicones. Representative polymeric vehicles include those derived from the reaction of dibasic acids or their anhydrides with polyols. For example, equimolar amounts of maleic anhydride and phthalic anhydride can be condensed with propylene glycol in slight excess to form an unsaturated polyester which can be diluted with styrene to a sirup of resin solids, generally between 40 and 80% n.v. The polyester resin thus prepared has an acid number of about 60 and less. Fumaric acid can be substituted for the maleic anhydride. Similarly, propylene oxide can be substituted for the major portion of propylene glycol. Also instead of styrene other copolymerizable monomers such as hydroxyethylacrylate can be used.
Other useful types of curing include trimethylolpropane triacrylate, pentaerythritol triacrylate, ethyleneglycol diacrylate, diacrylic acid adduct of the diglycidyl ether of bisphenol A (DER 332 diacrylate), a di- or tri-isocyanate reacted with a hydroxy-containing acrylate.
Reactive monomer types include a variety of acrylates such as hydroxyethyl, cyclohexyl, hydroxypropyl, 2-ethylhexyl, benzyl, phenoxyethoxy, lower alkoxyethoxy, tetrahydrofurfuryl, and similar acrylates, and also N-vinyl pyrrolidone, vinyl acetate, vinyl acetate-butyrate, styrene and substituted styrenes. The most popular curable film binders for treatment in accordance with the instant invention contain at least one polymerizable ethylenically unsaturated group of structure: >C = C<
Sensitizer types useful in promoting U.V. polymerization of the film in accordance with the instant invention include the types: chlorosulfonated polynuclear ketones blended with alpha-haloalkylated polynuclear ketones; chlorosulfonated benzanthrones blended with alpha-haloalkylated benzanthrones; chlorosulfonated fluorenones plus alpha-haloaklylated fluorenones; carbonylated phenyl nuclear sulfonyl chlorides; and carbonylated polynuclear sulfonyl chlorides as shown in the copending U.S. patent applications of Vincent R. McGinniss, Ser. No. 323,031 now U.S. Pat. No. 3,827,957, Ser. No. 323,087 now U.S. Pat. No. 3,827,956, Ser. No. 323,032 now U.S. Pat. No. 3,827,959, and Ser. No. 323,086 now U.S. Pat. No. 3,827,960, respectively, expressly incorporated herein by reference. Other sensitizers that are conventional can be used alone or in admixture with the foregoing ones, for example, benzoin, benzoin ethers, oxime ethers, and phosphines. While the speed of U.V. curing is quite remarkable using the present invention technique, the depth of cure also is usually quite practical so that the resulting polymerized deposit not only is tack-free, but also resists scratching or disruption when first ostensibly tack-free. Curing can continue on stored pieces. Typically substrate workpieces coated with the uncured paint deposit or deposits are passed transversely to the U.V.-providing light beam by a conveyor. The substrate being coated can be metal, mineral, glass, wood, paper, plastic, fabric, ceramic, etc.
Many useful pigments can be incorporated, in modest propertions, into the vehicle without much deleterious effect. Thus, opacifying pigments such as zinc oxide can be used quite well. Titania, e.g., anatase and particularly rutile, makes for a much more difficult film to cure by U.V. radiation, but such opacifying pigmentation can be used. Other filler materials and coloring pigments such as basic lead sulfate, magnesium silicate, silica, clays, wollastonite, talcs, mica, chromates, iron pigments, wood flour, microballoons, hard polymer particles, and even reinforcing glass fiber or flake also are suitable in the vehicle to make a paint. Ordinarily it is most desirable to use pigments which do not absorb a great deal of U.V. wavelength in the same region of the U.V. spectrum as is absorbed by the U.V. sensitizer. However, by use of adjunct energy-transferring, U.V.-sensitizing materials such as Michler's ketone in the sensitizing mixture, sufficient energy transfer often can be obtained to activate sensitizers such as the carbonylated phenyl nuclear sulfonyl chloride types and enhance the curing of pigmented systems. The wavelength of the U.V. source should not be too similar to or close to the wavelength absorbed by the pigment in the U.V. range for best advantage of the irradiation process. Pigmented or filled films for the process preferably are no more than about a mil thick and generally about 0.1-0.5 mil thick maximum, for efficiency and economy of curing.
In this specification, unless otherwise expressly indicated, all parts are parts by weight, all percentages are weight percentages, and all temperatures are in degrees Fahrenheit.
The superficial phase of this curing operation merely polymerizes the resin-forming material into a protective skin which is either sufficient to substantially complete polymerization of the mass when it has been treated in the profound phase previously or to protect the less-fully-polymerized resin-forming material therebelow from polymerization inhibition when said superficial phase is the first one to be performed. The superficial phase and the profound phase are, of course, susceptible to being divided up into a series of "subsuperficial" and "subprofound" phases, each of said series acting simultaneously or sequentially to perform a complete superficial phase or a complete profound phase collectively. The profound or in-depth curing phase will substantially complete polymerization throughout the mass, except for the top surface thereof exposed to oxygen inhibition or previously skinned-over by the superficial phase of the irradiation. The superficial phase will form the "skin" at the top surface and effect minor polymerization into the depth of the film, perhaps affecting only 10-40% of the film depth by way of polymerization to some appreciable degree.
The following example shows how my invention can be practiced, but should not be construed as limiting the invention.
EXAMPLE
Paint compounded as follows is applied at 1 mil wet thickness to an aluminum panel 1 inch by 1 inch. This paint is air-inhibited and when irradiated by the sustained U.V. energy in accordance with the second step of the example, it will yield a film having a tacky surface.
______________________________________                                    
Component             Parts by Weight                                     
______________________________________                                    
The reaction product of 1 mol of                                          
isophorone diisocyanate and 2 mols                                        
of hydroxyethylacrylate                                                   
                      40                                                  
Hydroxyethylacrylate  25                                                  
2-phenoxyethylacrylate                                                    
                      15                                                  
Melamine acrylate     15                                                  
Sensitizing mixture:                                                      
  Benzophenone         2                                                  
  Methyldiethanolamine                                                    
                       1                                                  
______________________________________                                    
The freshly coated side of the panel is subjected to irradiation from a Xenon Corporation flash photolysis lamp operating to emit a substantially continuous spectrum of U.V. energy in the 2000-4000 A range of wavelength. The gap of atmospheric air at room temperature between the lamp and the panel is about 4 inches. The lamp emits such energy for up to about 1/1000 second.
The lamp is about 8 inches long and 10 mm. in diameter and housed in an elongated housing of essentially square cross section that is black inside. The U.V. light is emitted from a 1-inch diameter exit port about 1 inch in front of the lamp surface and mid-way to the length of the lamp tube. The power supply is 400 volts d.c. charging a bank of 10 capacitators parallel, each of 100 microfarads rating. The housing acts poorly as a reflector; it is estimated that about one-half to 1 Joule of near-U.V. energy per flash is the near-U.V. light output through such exit port.
A superficial top surface cure results on the paint of the panel struck by the flash of U.V. energy. This area of the paint is non-tacky to the touch, but examination shows that the film is soft and decidedly underpolymerized slightly below its surface and further to its bottom. The thus-treated panel then is passed, paint-side-up, by conveyor successively under a pair of like commercial mercury vapor lamps in parallel array and designed for emitting far-U.V. energy. These lamps are Hanovia model No. 652-OA431 U.V. lamps having a 4000-watt demand, and they are 20 inches long. Each is equipped with an efficient reflector. The conveyor travel is normal to the axis of said lamps and 6 inches below said lamps at the rate of about 100 feet per minute. Air is the atmosphere between lamps and panel. The result is a fullycured (substantially completely polymerized throughout) paint film having excellent adhesion, gloss, and resistance for its type.

Claims (2)

We claim:
1. In a process for ultraviolet curing of an ultraviolet photopolymerizable paint film disposed within an air inhibiting atmosphere, said paint film being irradiated with ultraviolet energy, the improvement comprising:
irradiating said paint film with a pulsed photolysis light emitting flashing ultraviolet light to superficially cure the paint film and form a tack-free surface on the paint film; and
irradiating said paint film with a sustained photolysis light emitting substantially continuous ultraviolet light to profoundly cure said paint film and completely photopolymerize the paint film other than the film surface.
2. The process in claim 1 wherein said material is irradiated simultaneously by said pulsed irradiation and said sustained irradiation.
US05/515,511 1973-06-25 1974-10-17 UV curing process employing flash photolysis Expired - Lifetime US3943046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/515,511 US3943046A (en) 1973-06-25 1974-10-17 UV curing process employing flash photolysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US373374A US3875067A (en) 1973-06-25 1973-06-25 Photopolymerization apparatus
US05/515,511 US3943046A (en) 1973-06-25 1974-10-17 UV curing process employing flash photolysis

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US373374A Division US3875067A (en) 1973-06-25 1973-06-25 Photopolymerization apparatus

Publications (1)

Publication Number Publication Date
US3943046A true US3943046A (en) 1976-03-09

Family

ID=27006149

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/515,511 Expired - Lifetime US3943046A (en) 1973-06-25 1974-10-17 UV curing process employing flash photolysis

Country Status (1)

Country Link
US (1) US3943046A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4012559A (en) * 1974-10-31 1977-03-15 Toray Industries, Inc Radiation curable coating composition and precoated metal having top coat based on the same
US4035272A (en) * 1974-10-31 1977-07-12 Scm Corporation Cathodic electrocoating process
US4097783A (en) * 1976-09-13 1978-06-27 Ppg Industries, Inc. Ultraviolet light processor
US4165265A (en) * 1973-07-17 1979-08-21 Nippon Paint Co., Ltd. Multi-stage irradiation method of curing a photocurable coating composition
US4167669A (en) * 1971-09-09 1979-09-11 Xenon Corporation Apparatus for rapid curing of resinous materials and method
US4169167A (en) * 1978-06-26 1979-09-25 Lord Corporation Low gloss finishes by gradient intensity cure
US4255464A (en) * 1977-12-30 1981-03-10 Akzo N.V. Method for the manufacture of objects from an unsaturated polyester composition
WO1981000683A1 (en) * 1979-09-10 1981-03-19 Fusion Systems Corp Method and apparatus for providing low gloss and gloss controlled radiation-cured coatings
US4308120A (en) * 1978-10-02 1981-12-29 Rohm Gmbh Polymerization method using ultraviolet light
US4329421A (en) * 1980-01-07 1982-05-11 Armstrong Cork Company Use of flashed radiant energy in producing relief images in resinous coating
US4409077A (en) * 1977-10-25 1983-10-11 Sumitomo Chemical Co., Ltd. Ultraviolet radiation curable coating composition
US4421784A (en) * 1982-02-12 1983-12-20 Union Carbide Corporation Process for producing textured coatings
US4483759A (en) * 1982-07-02 1984-11-20 Thermedics, Inc. Actinic radiation cured polyurethane acrylic copolymer
US4631155A (en) * 1985-02-01 1986-12-23 American Hoechst Corporation Process for manufacture of surface-modified oriented polymeric film
US4810434A (en) * 1985-02-01 1989-03-07 American Hoechst Corporation Process for manufacture of surface-modified oriented polymeric film
US5789039A (en) * 1994-09-06 1998-08-04 Herberts Powder Coatings, Inc. Radiation curing of powder coatings on heat sensitive substrates: chemical compositions and processes for obtaining coated workpieces
US5877231A (en) * 1994-04-20 1999-03-02 Herberts Powder Coatings, Inc. Radiation curable powder coatings for heat sensitive substrates
US5932282A (en) * 1996-08-31 1999-08-03 Herberts Gesellschaft Mit Beschrankter Haftung Process for producing a repair coating
US6008264A (en) * 1997-04-30 1999-12-28 Laser Med, Inc. Method for curing polymeric materials, such as those used in dentistry, and for tailoring the post-cure properties of polymeric materials through the use of light source power modulation
US6116900A (en) * 1997-11-17 2000-09-12 Lumachem, Inc. Binary energizer and peroxide delivery system for dental bleaching
US6157661A (en) * 1999-05-12 2000-12-05 Laserphysics, Inc. System for producing a pulsed, varied and modulated laser output
US6282013B1 (en) 1997-04-30 2001-08-28 Lasermed, Inc. System for curing polymeric materials, such as those used in dentistry, and for tailoring the post-cure properties of polymeric materials through the use of light source power modulation
US6602074B1 (en) 1997-10-29 2003-08-05 Bisco, Inc. Dental composite light curing system
US20040124370A1 (en) * 2002-12-13 2004-07-01 John Gerlock Process and system for curing clearcoats
WO2005039883A1 (en) 2003-10-23 2005-05-06 Nur Macroprinters Ltd. Digital ink jet printing method and apparatus
US20100254149A1 (en) * 2009-04-02 2010-10-07 Owen Gill Curing light device
US20120325965A1 (en) * 2009-12-22 2012-12-27 Tufts University Inflatable and rigidizable support element
EP2844484A4 (en) * 2012-04-30 2015-10-07 Electronics For Imaging Inc Staggered ultra-violet curing systems, structures and processes for inkjet printing
EP2445722B1 (en) 2009-06-25 2015-10-28 Sericol Limited Printing method
US9572643B2 (en) 1998-01-20 2017-02-21 Kerr Corporation Apparatus and method for curing materials with radiation
US9693846B2 (en) 2009-04-02 2017-07-04 Kerr Corporation Dental light device
US11384526B2 (en) 2016-07-14 2022-07-12 Helios Applied Science Inc. Photoinitiation-based deployable structures
US11833742B2 (en) 2020-06-26 2023-12-05 The Regents Of The University Of California High-fidelity 3D printing using flashing photopolymerization

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3405045A (en) * 1965-01-11 1968-10-08 Union Carbide Corp Method for inducing chemical reactions with lasers
US3840448A (en) * 1972-06-26 1974-10-08 Union Carbide Corp Surface curing of acrylyl or methacrylyl compounds using radiation of 2,537 angstroms

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3405045A (en) * 1965-01-11 1968-10-08 Union Carbide Corp Method for inducing chemical reactions with lasers
US3840448A (en) * 1972-06-26 1974-10-08 Union Carbide Corp Surface curing of acrylyl or methacrylyl compounds using radiation of 2,537 angstroms

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4167669A (en) * 1971-09-09 1979-09-11 Xenon Corporation Apparatus for rapid curing of resinous materials and method
US4165265A (en) * 1973-07-17 1979-08-21 Nippon Paint Co., Ltd. Multi-stage irradiation method of curing a photocurable coating composition
US4012559A (en) * 1974-10-31 1977-03-15 Toray Industries, Inc Radiation curable coating composition and precoated metal having top coat based on the same
US4035272A (en) * 1974-10-31 1977-07-12 Scm Corporation Cathodic electrocoating process
US4097783A (en) * 1976-09-13 1978-06-27 Ppg Industries, Inc. Ultraviolet light processor
US4409077A (en) * 1977-10-25 1983-10-11 Sumitomo Chemical Co., Ltd. Ultraviolet radiation curable coating composition
US4255464A (en) * 1977-12-30 1981-03-10 Akzo N.V. Method for the manufacture of objects from an unsaturated polyester composition
US4169167A (en) * 1978-06-26 1979-09-25 Lord Corporation Low gloss finishes by gradient intensity cure
US4308120A (en) * 1978-10-02 1981-12-29 Rohm Gmbh Polymerization method using ultraviolet light
WO1981000683A1 (en) * 1979-09-10 1981-03-19 Fusion Systems Corp Method and apparatus for providing low gloss and gloss controlled radiation-cured coatings
US4313969A (en) * 1979-09-10 1982-02-02 Fusion Systems Corporation Method and apparatus for providing low gloss and gloss controlled radiation-cured coatings
US4329421A (en) * 1980-01-07 1982-05-11 Armstrong Cork Company Use of flashed radiant energy in producing relief images in resinous coating
US4421784A (en) * 1982-02-12 1983-12-20 Union Carbide Corporation Process for producing textured coatings
US4483759A (en) * 1982-07-02 1984-11-20 Thermedics, Inc. Actinic radiation cured polyurethane acrylic copolymer
US4631155A (en) * 1985-02-01 1986-12-23 American Hoechst Corporation Process for manufacture of surface-modified oriented polymeric film
US4810434A (en) * 1985-02-01 1989-03-07 American Hoechst Corporation Process for manufacture of surface-modified oriented polymeric film
US5877231A (en) * 1994-04-20 1999-03-02 Herberts Powder Coatings, Inc. Radiation curable powder coatings for heat sensitive substrates
US5935661A (en) * 1994-09-06 1999-08-10 Herberts Powder Coatings, Inc. Radiation curing of powder coatings on heat sensitive substrates: chemical compositions and processes for obtaining coated workpieces
US5789039A (en) * 1994-09-06 1998-08-04 Herberts Powder Coatings, Inc. Radiation curing of powder coatings on heat sensitive substrates: chemical compositions and processes for obtaining coated workpieces
US5932282A (en) * 1996-08-31 1999-08-03 Herberts Gesellschaft Mit Beschrankter Haftung Process for producing a repair coating
US6008264A (en) * 1997-04-30 1999-12-28 Laser Med, Inc. Method for curing polymeric materials, such as those used in dentistry, and for tailoring the post-cure properties of polymeric materials through the use of light source power modulation
US6282013B1 (en) 1997-04-30 2001-08-28 Lasermed, Inc. System for curing polymeric materials, such as those used in dentistry, and for tailoring the post-cure properties of polymeric materials through the use of light source power modulation
US6384099B1 (en) * 1997-04-30 2002-05-07 Laser Med. Inc. Method for curing polymeric materials, such as those used in dentistry, and for tailoring the post-cure properties of polymeric materials through the use of light source power modulation
US6602074B1 (en) 1997-10-29 2003-08-05 Bisco, Inc. Dental composite light curing system
US6116900A (en) * 1997-11-17 2000-09-12 Lumachem, Inc. Binary energizer and peroxide delivery system for dental bleaching
US9572643B2 (en) 1998-01-20 2017-02-21 Kerr Corporation Apparatus and method for curing materials with radiation
US9622839B2 (en) 1998-01-20 2017-04-18 Kerr Corporation Apparatus and method for curing materials with radiation
US6157661A (en) * 1999-05-12 2000-12-05 Laserphysics, Inc. System for producing a pulsed, varied and modulated laser output
US20040124370A1 (en) * 2002-12-13 2004-07-01 John Gerlock Process and system for curing clearcoats
US7837319B2 (en) 2003-10-23 2010-11-23 Hewlett-Packard Singapore (Private) Ltd. Digital ink jet printing method and apparatus and curing radiation application method
US8287118B2 (en) 2003-10-23 2012-10-16 Hewlett-Packard Development Company, L.P. Digital ink jet printing method and apparatus
US20070273739A1 (en) * 2003-10-23 2007-11-29 Gregory Rodin Digital Ink Jet Printing Method and Apparatus
WO2005039883A1 (en) 2003-10-23 2005-05-06 Nur Macroprinters Ltd. Digital ink jet printing method and apparatus
US20100254149A1 (en) * 2009-04-02 2010-10-07 Owen Gill Curing light device
US9066777B2 (en) 2009-04-02 2015-06-30 Kerr Corporation Curing light device
US9987110B2 (en) 2009-04-02 2018-06-05 Kerr Corporation Dental light device
US9730778B2 (en) 2009-04-02 2017-08-15 Kerr Corporation Curing light device
US9693846B2 (en) 2009-04-02 2017-07-04 Kerr Corporation Dental light device
EP2445722B1 (en) 2009-06-25 2015-10-28 Sericol Limited Printing method
US20120325965A1 (en) * 2009-12-22 2012-12-27 Tufts University Inflatable and rigidizable support element
US9561843B2 (en) 2009-12-22 2017-02-07 Tufts University Inflatable and rigidizable support element
US9216813B2 (en) * 2009-12-22 2015-12-22 Tufts University Inflatable and rigidizable support element
EP2844484A4 (en) * 2012-04-30 2015-10-07 Electronics For Imaging Inc Staggered ultra-violet curing systems, structures and processes for inkjet printing
US11384526B2 (en) 2016-07-14 2022-07-12 Helios Applied Science Inc. Photoinitiation-based deployable structures
US11833742B2 (en) 2020-06-26 2023-12-05 The Regents Of The University Of California High-fidelity 3D printing using flashing photopolymerization

Similar Documents

Publication Publication Date Title
US3943046A (en) UV curing process employing flash photolysis
KR100293081B1 (en) Polymerization Method
US3558387A (en) Radiation-curable compositions
US4561951A (en) Method for polymerizing a bis(allyl carbonate)
US3551235A (en) Radiation-curable compositions
JP2505559B2 (en) Radiation curable compositions based on unsaturated polyesters and compounds having at least two vinyl ether groups
US4022674A (en) Photopolymerizable compounds and compositions comprising the product of the reaction of a monomeric ester and a polycarboxy-substituted benzophenone
Decker et al. Performance analysis of acylphosphine oxides in photoinitiated polymerization
US4004998A (en) Photopolymerizable compounds and compositions comprising the product of the reaction of a hydroxy-containing ester and a monocarboxy-substituted benzophenone
US4975300A (en) Method for curing an organic coating using condensation heating and radiation energy
US3850675A (en) Use of ultraviolet light to cure uncured surface layer resulting from air inhibition in preceding high energy ionizing radiation curing process
US4057657A (en) Curable pre-polymer compositions, method of making and method of coating articles therewith
JP2003515445A (en) Photocuring of radiation-curable compounds under protective gas
US3669716A (en) High energy curing of photopolymerizable nonair inhibited polyester resin coatings
US3875067A (en) Photopolymerization apparatus
WO2003037936A1 (en) Visible-light curable composition
US3827957A (en) Photopolymerizable pigmented vehicles containing chlorosulfonated or alpha-haloalkylated polynuclear ketone initiators
Decker Laser-induced polymerisation of multifunctional acrylate systems
US3970535A (en) Photopolymerization process utilizing a 2-methyl-substituted benzimidazole as a photosensitizer
US6808757B1 (en) Method of coating a substrate
US3907656A (en) Process for ultraviolet pigmented hardening of pigmented paint films
US3926640A (en) Photopolymerizable compositions comprising benzophenone reaction products
DE2404156A1 (en) POLYMERIZATION COINITIATORS, COMPOUNDS CURABLE BY RADIATION AND PROCESS FOR POLYMERIZATION OF ETHYLENIC UNSATURIZED COMPOUNDS
US3959100A (en) Photopolymerizable coating compositions containing activated halogenated azine photoinitiator and process for making same
US3827959A (en) Process for photopolymerization with carbonylated phenyl nuclear sulfonyl chloride sensitizer

Legal Events

Date Code Title Description
AS Assignment

Owner name: GLIDDEN COMPANY, THE, 925 EUCLID AVENUE, CLEVELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SCM CORPORATION;REEL/FRAME:004858/0717

Effective date: 19861028

Owner name: GLIDDEN COMPANY, THE, A CORP. OF DE., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCM CORPORATION;REEL/FRAME:004858/0717

Effective date: 19861028

AS Assignment

Owner name: LILLY INDUSTRIES, INC. A CORP. OF INDIANA, INDIAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GLIDDEN COMPANY, THE A CORP. OF DELAWARE;REEL/FRAME:006581/0214

Effective date: 19930506