US3966847A - Contact lens from hydrophilic gel polymers of polyvinylpyrrolidone and hydroxyalkyl methacrylate - Google Patents

Contact lens from hydrophilic gel polymers of polyvinylpyrrolidone and hydroxyalkyl methacrylate Download PDF

Info

Publication number
US3966847A
US3966847A US05/430,653 US43065374A US3966847A US 3966847 A US3966847 A US 3966847A US 43065374 A US43065374 A US 43065374A US 3966847 A US3966847 A US 3966847A
Authority
US
United States
Prior art keywords
glycol dimethacrylate
polyvinylpyrrolidone
methacrylate
contact lens
crosslinking agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/430,653
Inventor
Maurice Seiderman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US05/430,653 priority Critical patent/US3966847A/en
Application granted granted Critical
Publication of US3966847A publication Critical patent/US3966847A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F26/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F26/06Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F271/00Macromolecular compounds obtained by polymerising monomers on to polymers of nitrogen-containing monomers as defined in group C08F26/00
    • C08F271/02Macromolecular compounds obtained by polymerising monomers on to polymers of nitrogen-containing monomers as defined in group C08F26/00 on to polymers of monomers containing heterocyclic nitrogen

Definitions

  • This invention relates to transparent, optically clear or translucent or opaque polymers suitable for manufacturing contact lenses or other uses, and particularly to such polymers that have been prepared with modifiers and crosslinking agents, and the method of preparation of the modified, crosslinked, optically clear polymers.
  • Polyvinylpyrrolidone is prepared by the Reppes process. 1,4-Butanediol obtained in the Reppe butadiene synthesis is dehydrogenated over copper at 200°C to form 2-butyrolactone which, when reacted with ammonia, gives pyrrolidone. Reacting pyrrolidone with acetylene gives the vinyl pyrrolidone monomer. The monomer is polymerized by heating it in the presence of hydrogen peroxide and ammonia, as represented by the following equation:
  • Polyvinylpyrrolidone is a faintly yellow solid resembling albumin and having a medium molecular weight of about 25,000. It is soluble in water giving a colloidal solution. It has been employed to increase blood volume in shock cases and as an additive to blood plasma.
  • Another object of the invention is to provide a method for preparing substantially water insoluble, optically clear, modified polyvinylpyrrolidone polymers or resins.
  • Another object of the invention is to provide a method for the preparation of substantially water-insoluble films and membranes with selectively structured pore sizes.
  • the objects of the invention are attained by reacting a mixture of a pyrrolidone such as polyvinylpyrrolidone or vinylpyrrolidone, a modifier such as an organic methacrylate, preferably a hydroxyalkyl methacrylate; and preferably a crosslinking agent such as an olefin, preferably an olefin hydroxyalkyl methacrylate; and preferably a catalyst such as an organic peroxide.
  • the reaction product preferably is treated or extracted with water to hydrate the product or to extract unreacted or water-soluble materials respectively.
  • the polyvinylpyrrolidone should be comminuted, for example, powdered to pass an eighty-mesh screen.
  • Another object of the invention is to provide a material which can be made into cast products for prostheses and other shapes such as intra-uterine devices.
  • Another object of the invention is to provide a substance which can be used for coating solids to provide a hydrophilic surface.
  • the resulting modified and crosslinked polyvinylpyrrolidone resins, or polymers are insoluble in water or aqueous body fluids. They are clear, transparent, or translucent or opaque and flexible or rubbery or stiff depending upon the amounts and types of modifiers and crosslinking agents used.
  • the physical properties of the resins or polymers of the invention are controlled by controlling the ratios of the modifier and the crosslinking agent to the amount of the total pyrrolidone used in the reaction mixture.
  • Completely crosslinked polymers or resins can be made in accordance with the invention, which are hard and infusible and can be machined and polished to an optical finish for such purposes as contact lenses, for example. Incompletely crosslinked polymers or resins of the invention are fusible and can be pressed into molds. Complete crosslinking can be accomplished by heating the molds under pressure.
  • the reaction mixture can contain from 0% to about 85% of polyvinylpyrrolidone, or it can contain from 0% to about 85% of vinylpyrrolidone, the balance of the ingredients depending upon the physical properties desired in the polymers or resins produced.
  • the proportion of vinylpyrrolidone in the total mixture should be in the range from 0% to about 85% of the total mixture.
  • the proportion of polyvinylpyrrolidone in the total mixture should be in the range from 0% to about 85% of the total mixture.
  • the combination of the selected pyrrolidone such as vinylpyrrolidone or polyvinylpyrrolidone can be made in all proportions, or vinylpyrrolidone can be used alone as can polyvinylpyrrolidone.
  • the ratio of monomeric modifiers to substituted pyrrolidone can vary from about 15:85 to about 99:1 and especially about 60:40. (The ratio is calculated by weight.)
  • the ratio of the amount of crosslinking agent can vary from 0 to about 25 parts, preferably from about 0.1 to about 7 parts, and especially from about 1 to about 5 parts by weight for each 100 parts of the selected substituted pyrrolidone or mixtures thereof.
  • hydroxyalkyl methacrylate modifiers that can be used in preparing the polyvinylpyrrolidone polymers, or resins, of the invention are: 2-hydroxyethyl methacrylate and 2-hydroxypropyl methacrylate.
  • Alkylamino alkylmethacrylates such as 2-dimethylaminoethyl methacrylate and 2-butylaminoethyl methacrylates can be used as modifiers.
  • methacrylates that can be used as modifiers are methacrylamide, cyclohexyl methacrylate, and tetrahydrofurfuryl methacrylate, as well as olefin glycol methacrylates such as triethylene glycol monomethacrylate, tetraethylene glycol monomethacrylate and propylene glycol monomethacrylate.
  • modifiers are dimethylamino ethyl methacrylate, piperidinoethyl methacrylate, morpholinoethyl methacrylate, etc.
  • Other examples of crosslinking agents are methacrylic acid, with N-methylol acrylamide.
  • Tetrahydrofurfuryl methacrylate - imparts strength
  • N-methylol acrylamide plasticizes and crosslinks
  • Methyl acrylamide - acts as an extender
  • Co-polymer of ethylene oxide and acrylic acid - gives strength.
  • Other suitable catalysts are azobisisobutyronitrile, tertiary butyl peroxide, tertiary butyl hydroperoxide, ammonia plus hydrogen peroxide, and others.
  • Catalysts that are harmless or non-injurious if left remaining in the products or resins, are preferred although the removal of these residues is done by extraction by hydration in large volumes of water or a continuous flow of water.
  • the amount of catalysts employed generally ranges from 0% to about 5% of the reaction mixture.
  • an accelerator such as N,N-dimethyl-p-toluidine or N,N-dimethyl-aniline and others.
  • reaction mixture is then raised to a temperature of from about 50°C to about 120°C or even higher, but preferably about 60°C to 70°C, and maintained within that temperature range until polymerization is completed, which in general requires from about 1/2 to about 24 hours depending upon the temperature, amount of catalyst, if any, and relative proportions of components. With accelerators, room temperature polymerization is possible.
  • a reaction mixture is prepared by mixing 100 grams polyvinylpyrrolidone, 75 milliliters vinylpyrrolidone, 50 milliliters hydroxyethyl methacrylate, 1% ethylene glycol dimethacrylate and 0.5 grams benzoyl peroxide.
  • the resulting mixture was poured into 5/8 inch diameter glass tubes coated with a fluorocarbon to prevent sticking of the product to the tube or breakage due to shrinkage or expansion during the polymerization reaction.
  • the tubes were capped and placed in a hot circulating oven kept at about 65°C for about 2 hours. The oven was shut off and the polymerization product was permitted to cool to room temperature.
  • the tubes were then broken away and the rods of polyvinylpyrrolidone resin product were obtained. A portion of each rod was cut off to a specified thickness and the weight noted. The cut off portion was placed in water and permitted to swell by water absorption or hydration. The amount of swelling was measured. The resultant polymer absorbed 87.2% water.
  • the polymer was crushed to powder. It was extracted of all water-soluble debris using continuous hot distilled water. It was sterilized by autoclaving and using a hypodermic needle, was injected into a muscle of an experimental animal. The animal was sacrificed after four months, and histological sections containing this polymer showed no capsule formation and no illicited response, but showed normal tissue in growth in a healthy, intimate contact with the polymer.
  • the powder can be used as a dessicator in vacuum systems or a means for removing water from gases.
  • a reaction mixture was prepared by mixing 50 grams polyvinylpyrrolidone, 5 milliliters vinylpyrrolidone, 50 milliliters hydroxyethyl methacrylate, 5 milliliters ethylene glycol dimethacrylate and 0.1 gram benzoyl peroxide.
  • the resulting reaction mixture was reacted in the same manner as described in Example 1.
  • the cut off portions of the product's rods absorbed only half as much water and swelled only half as much as the product rods reduced by Example 1.
  • Hydoxypropyl methacrylate was substituted for hydroxyethyl methacrylate in Example 1 and the reaction conditions of Example 1 were repeated.
  • the product thus produced was more transparent and tougher than the product obtained in Example 1 with much lower water content.
  • Example 2 Hydroxypropyl methacrylate was substituted for hydroxyethyl methacrylate in Example 2. Otherwise, the polymers were prepared as in the case of Example 2. Again the product polymer or resin rods were tougher and more transparent than those resulting in Example 2.
  • Example 6 The same proportions as in Example 6, but hydroxyethyl methacrylate was substituted by hydroxypropyl methacrylate.
  • the resulting polymer or resin rods were just as transparent and stronger, but the water content was reduced to about 40%.
  • hydrophilic polymers of the present invention are particularly adapted for the preparation of contact lenses.
  • Such lenses can be readily prepared by the general methods used for preparing contact lenses from hydrophilic polymers, which are well known to those skilled in the art and involve conventional cutting, machining, grinding, and polishing operations.
  • contact lenses using the herein described hydrophilic polymers can be prepared by the techniques described in U.S. Pat. No. 3,361,858, U.S. Pat. No. 3,408,429, U.S. Pat. No. 3,496,254, and U.S. Pat. No. 3,497,577.
  • Other general techniques well known to those skilled in the art are described in French patents Nos. 1,342,447 and 1,422,109 and British Patent No. 1,174,683.
  • a preferred method of making the contact lenses involves preparing polymerized rods as described in Example 1.
  • Polypropylene tubes are preferably used instead of the glass tubes in order to facilitate the removal of the rods from the tubes.
  • the cast rods are then cut to size.
  • the roughly cut blanks are approximately 19/64 inch (0.297 or 7.5 mm) thick and 9/16 inch (0.562 or 14.5 mm) in diameter.
  • each button ready for production undergoes an additional annealing operation by exposure for at least 2 hours at 78°C in a circulating air oven.
  • the blank After the blank is annealed, it is kept away from the open air as the material is highly hygroscopic.
  • the blank is then placed into a collet and the proper negative curve (base curve) is cut into the blank and the blank is reduced to the proper diameter.
  • the annealing is repeated for one hour, after which time the blanks are placed in a Mason jar or vacuum desiccator and sealed tightly to keep out all moisture from the air.
  • the blank is then polished with a conventional polish.
  • the polishing blocks and laps can be of any material. Stainless steel (303), "Lucite” or “Plexiglas” are preferred.
  • the best base curve polishing has been done by using a "Plexiglas" block with handkerchief-type cotton cloth tightly stretched and held in place wth a Neoprene "O" ring (preferably with a loop of stainless steel wire).
  • a low temperature wax is generally used for blocking. Over-heating the compound is avoided as this may affect the polished surface.
  • the arbor is warmed and any blocking compound sticking to the lens is removed with Reagent grade Petroleum Ether, wiping with a soft tissue.
  • the lenses are checked for dimensions and power while in the dry state, they are extracted in order to remove all debris resulting from manufacturing procedures.
  • the extraction is carried out with a buffered saline solution containing 0.9% sodium chloride and 0.004% sodium bicarbonate. This solution will have a pH of from about 7.0 to 7.2.
  • the saline solution is kept at about 68°C and the lenses are placed in the heated, circulated solution overnight.
  • a condenser is used to minimize solvent loss.
  • the clean and aseptic lenses are removed and each stored in about 10 cc. of sterile, buffered saline.
  • the lenses will change in size and power.
  • the thickness, the diameter and both curvatures will increase and the power of the lens will decrease.

Abstract

A plastic or resin product is obtained by mixing polyvinylpyrrolidone, modifiers and additives such as organic methacrylates, and crosslinking agents, and optionally catalysts, and causing polymerization to take place. The inventive product is insoluble in water but is hydratable with water, depending upon the proportions of the above mentioned components, and may take up in its structure as little as 5% by weight of water to as high as 90% by weight of water. The inventive hydrated product is optionally transparent, translucent, or opaque, and produced in any shape or size, depending only on the mold in which it is cast. The transparent product is especially suitable for contact lenses. The translucent and opaque products may be fabricated into membranes with pore sizes that can be made selectively, or cast into useful shapes and for other uses.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This is a continuation, of application Ser. No. 218,598 filed Jan. 17, 1972 now abandoned, which is a continuation-in-part of application Ser. No. 161,269, filed July 9, 1971 and now abandoned, which is a divisional application of application Ser. No. 92,280, filed Nov. 23, 1970, now U.S. Pat. No. 3,721,657, which in turn is a continuation-in-part of application Ser. No. 845,499, filed July 28, 1969, now U.S. Pat. No. 3,639,524.
This invention relates to transparent, optically clear or translucent or opaque polymers suitable for manufacturing contact lenses or other uses, and particularly to such polymers that have been prepared with modifiers and crosslinking agents, and the method of preparation of the modified, crosslinked, optically clear polymers.
Polyvinylpyrrolidone is prepared by the Reppes process. 1,4-Butanediol obtained in the Reppe butadiene synthesis is dehydrogenated over copper at 200°C to form 2-butyrolactone which, when reacted with ammonia, gives pyrrolidone. Reacting pyrrolidone with acetylene gives the vinyl pyrrolidone monomer. The monomer is polymerized by heating it in the presence of hydrogen peroxide and ammonia, as represented by the following equation:
Polyvinylpyrrolidone is a faintly yellow solid resembling albumin and having a medium molecular weight of about 25,000. It is soluble in water giving a colloidal solution. It has been employed to increase blood volume in shock cases and as an additive to blood plasma.
It is an object of this invention to provide pyrrolidone polymers or resins which, unlike polyvinylpyrrolidone itself, are substantially insoluble in water and aqueous solutions or fluids of the type found in the animal body.
Another object of the invention is to provide a method for preparing substantially water insoluble, optically clear, modified polyvinylpyrrolidone polymers or resins.
Another object of the invention is to provide a method for the preparation of substantially water-insoluble films and membranes with selectively structured pore sizes.
Additional objects of the invention will become apparent from the following description, which is given primarily for purposes of illustration, and not limitation.
Stated in general terms, the objects of the invention are attained by reacting a mixture of a pyrrolidone such as polyvinylpyrrolidone or vinylpyrrolidone, a modifier such as an organic methacrylate, preferably a hydroxyalkyl methacrylate; and preferably a crosslinking agent such as an olefin, preferably an olefin hydroxyalkyl methacrylate; and preferably a catalyst such as an organic peroxide. The reaction product preferably is treated or extracted with water to hydrate the product or to extract unreacted or water-soluble materials respectively.
The polyvinylpyrrolidone should be comminuted, for example, powdered to pass an eighty-mesh screen.
Another object of the invention is to provide a material which can be made into cast products for prostheses and other shapes such as intra-uterine devices.
Another object of the invention is to provide a substance which can be used for coating solids to provide a hydrophilic surface.
The resulting modified and crosslinked polyvinylpyrrolidone resins, or polymers are insoluble in water or aqueous body fluids. They are clear, transparent, or translucent or opaque and flexible or rubbery or stiff depending upon the amounts and types of modifiers and crosslinking agents used. The physical properties of the resins or polymers of the invention are controlled by controlling the ratios of the modifier and the crosslinking agent to the amount of the total pyrrolidone used in the reaction mixture. Completely crosslinked polymers or resins can be made in accordance with the invention, which are hard and infusible and can be machined and polished to an optical finish for such purposes as contact lenses, for example. Incompletely crosslinked polymers or resins of the invention are fusible and can be pressed into molds. Complete crosslinking can be accomplished by heating the molds under pressure.
The reaction mixture can contain from 0% to about 85% of polyvinylpyrrolidone, or it can contain from 0% to about 85% of vinylpyrrolidone, the balance of the ingredients depending upon the physical properties desired in the polymers or resins produced. The proportion of vinylpyrrolidone in the total mixture should be in the range from 0% to about 85% of the total mixture. The proportion of polyvinylpyrrolidone in the total mixture should be in the range from 0% to about 85% of the total mixture. The combination of the selected pyrrolidone such as vinylpyrrolidone or polyvinylpyrrolidone can be made in all proportions, or vinylpyrrolidone can be used alone as can polyvinylpyrrolidone.
The ratio of monomeric modifiers to substituted pyrrolidone can vary from about 15:85 to about 99:1 and especially about 60:40. (The ratio is calculated by weight.)
Similarly, the ratio of the amount of crosslinking agent can vary from 0 to about 25 parts, preferably from about 0.1 to about 7 parts, and especially from about 1 to about 5 parts by weight for each 100 parts of the selected substituted pyrrolidone or mixtures thereof.
Among the hydroxyalkyl methacrylate modifiers that can be used in preparing the polyvinylpyrrolidone polymers, or resins, of the invention are: 2-hydroxyethyl methacrylate and 2-hydroxypropyl methacrylate. Alkylamino alkylmethacrylates such as 2-dimethylaminoethyl methacrylate and 2-butylaminoethyl methacrylates can be used as modifiers. Other examples of methacrylates that can be used as modifiers are methacrylamide, cyclohexyl methacrylate, and tetrahydrofurfuryl methacrylate, as well as olefin glycol methacrylates such as triethylene glycol monomethacrylate, tetraethylene glycol monomethacrylate and propylene glycol monomethacrylate. Other examples of modifiers are dimethylamino ethyl methacrylate, piperidinoethyl methacrylate, morpholinoethyl methacrylate, etc.
Among the crosslinking agents that can be used in accordance with the invention are olefin glycol dimethacrylates such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate, and 1,3-butylene glycol dimethacrylate. Other examples of crosslinking agents are methacrylic acid, with N-methylol acrylamide.
By way of amplifying the disclosure, a number of modifiers and crosslinking agents are given below, with notes as to the particular contribution made to physical properties of the final resin:
Ethylene Diacrylate (S) - makes product softer
Tetrahydrofurfuryl methacrylate - imparts strength
Butylene glycol dimethacrylate - imparts strength and crosslinks
Allyl methacrylate - stiffens and reduces water content
Ethylene glycol dimethacrylate - crosslinks
N-methylol acrylamide - plasticizes and crosslinks
Trimethylol propane trimethacrylate - crosslinks
Triethylene glycol dimethacrylate - crosslinks
Butyl methacrylate - toughens and reduces water content
Methyl acrylamide - acts as an extender
Polyethylene glycol dimethacrylate - crosslinks
Trimethylol propane triacrylate - softens, toughens and crosslinks
Methyl methacrylate - increases swelling
Lauryl methacrylate - toughens
Polymer of ethylene oxide - increases water content
Co-polymer of ethylene oxide and acrylic acid - gives strength.
All of these may be used alone, or combined as desired.
Among the catalysts that can be used in preparing the polymers or resins of the invention are organic peroxides such as benzoyl peroxide, lauryl peroxide, cumene hydroperoxide, dibutyl peroxide, etc. Other suitable catalysts are azobisisobutyronitrile, tertiary butyl peroxide, tertiary butyl hydroperoxide, ammonia plus hydrogen peroxide, and others. Catalysts that are harmless or non-injurious if left remaining in the products or resins, are preferred although the removal of these residues is done by extraction by hydration in large volumes of water or a continuous flow of water. The amount of catalysts employed generally ranges from 0% to about 5% of the reaction mixture. Certain compositions of the mixture require very little catalyst; others require a great deal more; and some give satisfactory resins with none. To speed up polymerization, an accelerator may be used, such as N,N-dimethyl-p-toluidine or N,N-dimethyl-aniline and others.
The reaction mixture is then raised to a temperature of from about 50°C to about 120°C or even higher, but preferably about 60°C to 70°C, and maintained within that temperature range until polymerization is completed, which in general requires from about 1/2 to about 24 hours depending upon the temperature, amount of catalyst, if any, and relative proportions of components. With accelerators, room temperature polymerization is possible.
The following examples illustrate the invention:
EXAMPLE 1
A reaction mixture is prepared by mixing 100 grams polyvinylpyrrolidone, 75 milliliters vinylpyrrolidone, 50 milliliters hydroxyethyl methacrylate, 1% ethylene glycol dimethacrylate and 0.5 grams benzoyl peroxide. The resulting mixture was poured into 5/8 inch diameter glass tubes coated with a fluorocarbon to prevent sticking of the product to the tube or breakage due to shrinkage or expansion during the polymerization reaction. The tubes were capped and placed in a hot circulating oven kept at about 65°C for about 2 hours. The oven was shut off and the polymerization product was permitted to cool to room temperature. The tubes were then broken away and the rods of polyvinylpyrrolidone resin product were obtained. A portion of each rod was cut off to a specified thickness and the weight noted. The cut off portion was placed in water and permitted to swell by water absorption or hydration. The amount of swelling was measured. The resultant polymer absorbed 87.2% water.
The polymer was crushed to powder. It was extracted of all water-soluble debris using continuous hot distilled water. It was sterilized by autoclaving and using a hypodermic needle, was injected into a muscle of an experimental animal. The animal was sacrificed after four months, and histological sections containing this polymer showed no capsule formation and no illicited response, but showed normal tissue in growth in a healthy, intimate contact with the polymer. The powder can be used as a dessicator in vacuum systems or a means for removing water from gases.
EXAMPLE 2
A reaction mixture was prepared by mixing 50 grams polyvinylpyrrolidone, 5 milliliters vinylpyrrolidone, 50 milliliters hydroxyethyl methacrylate, 5 milliliters ethylene glycol dimethacrylate and 0.1 gram benzoyl peroxide. The resulting reaction mixture was reacted in the same manner as described in Example 1. The cut off portions of the product's rods absorbed only half as much water and swelled only half as much as the product rods reduced by Example 1.
EXAMPLE 3
Hydoxypropyl methacrylate was substituted for hydroxyethyl methacrylate in Example 1 and the reaction conditions of Example 1 were repeated. The product thus produced was more transparent and tougher than the product obtained in Example 1 with much lower water content.
EXAMPLE 4
Hydroxypropyl methacrylate was substituted for hydroxyethyl methacrylate in Example 2. Otherwise, the polymers were prepared as in the case of Example 2. Again the product polymer or resin rods were tougher and more transparent than those resulting in Example 2.
EXAMPLE 5
50 milliliters hydroxypropyl methacrylate was mixed with 50 milliliters of hydroxyethyl methacrylate. 25 grams of polyvinylpyrrolidone was dissolved in the mixture. 0.1 milliliter vinylpyrrolidone was added. No catalyst was used. Polymerization took 12 hours at 60°C. The product polymer or resin rods were optically transparent, very strong, resilient, and easily machinable and were made into contact lenses and worn after hydration without any difficulty. The water content was 30%.
EXAMPLE 6
70% of hydroxyethyl methacrylate was mixed with 30% of vinylpyrrolidone. No catalyst was used. The mixture was poured into fluorocarbon treated glass tubes, sealed, and polymerized for 12 hours at 70°C. The product polymer or resin rods were optically transparent, very strong, easily machinable, and were made into contact lenses which, after hydration, contained over 50% water.
EXAMPLE 7
The same proportions as in Example 6, but hydroxyethyl methacrylate was substituted by hydroxypropyl methacrylate. The resulting polymer or resin rods were just as transparent and stronger, but the water content was reduced to about 40%.
EXAMPLE 8
29 grams of polyvinylpyrrolidone was mixed with 70 milliliters hydroxyethyl methacrylate until the polyvinylpyrrolidone was completely dissolved. 1 milliliter tetrahydrofurfuryl methacrylate was then added. No vinylpyrrolidone was used. No catalyst was used. Polymerization took 12-1/2 hours at 65°C. The product polymer or resin rods were optically transparent, strong, and easily machinable, and of pale amber color. The water content of the polymer upon hydration was about 47%.
EXAMPLE 9
100 milliliters of hydroxyethyl methacrylate was mixed with 10 milliliters of vinylpyrrolidone and 8.5 grams of polyvinylpyrrolidone and 1 milliliter of N-methylacrylamide and 0.5 milliliters of tetraethylene glycol dimethacrylate. The entire mixture was catalyzed with 500 milligrams of benzoyl peroxide. Before pouring into molds, 10 microliters of N,N-dimethyl-p-toluidine were added and mixed for one minute. Molds were poured and polymerization was completed at room temperature for half an hour. The temperature of the mixture during polymerization went to 147°C.
As mentioned hereinabove the hydrophilic polymers of the present invention are particularly adapted for the preparation of contact lenses. Such lenses can be readily prepared by the general methods used for preparing contact lenses from hydrophilic polymers, which are well known to those skilled in the art and involve conventional cutting, machining, grinding, and polishing operations. Accordingly, contact lenses using the herein described hydrophilic polymers can be prepared by the techniques described in U.S. Pat. No. 3,361,858, U.S. Pat. No. 3,408,429, U.S. Pat. No. 3,496,254, and U.S. Pat. No. 3,497,577. Other general techniques well known to those skilled in the art are described in French patents Nos. 1,342,447 and 1,422,109 and British Patent No. 1,174,683.
A preferred method of making the contact lenses involves preparing polymerized rods as described in Example 1. Polypropylene tubes are preferably used instead of the glass tubes in order to facilitate the removal of the rods from the tubes.
The cast rods are then cut to size. The roughly cut blanks are approximately 19/64 inch (0.297 or 7.5 mm) thick and 9/16 inch (0.562 or 14.5 mm) in diameter.
Since cutting sets up internal stresses in the polymer, each button ready for production undergoes an additional annealing operation by exposure for at least 2 hours at 78°C in a circulating air oven.
After the blank is annealed, it is kept away from the open air as the material is highly hygroscopic.
The blank is then placed into a collet and the proper negative curve (base curve) is cut into the blank and the blank is reduced to the proper diameter.
After the blanks are cut to precise size, the annealing is repeated for one hour, after which time the blanks are placed in a Mason jar or vacuum desiccator and sealed tightly to keep out all moisture from the air.
All cutting is done with diamond tools, with the lathe revolving at a high speed and with a slow tool approach. Deep cuts are avoided since they may produce invisible fractures that could eventually cause breaking of the lens when in use.
When the base curve is cut and before the blank is removed from the lathe, it can be reduced to the proper diameter and the edges may be finished on the lathe.
The blank is then polished with a conventional polish. The polishing blocks and laps can be of any material. Stainless steel (303), "Lucite" or "Plexiglas" are preferred.
The best base curve polishing has been done by using a "Plexiglas" block with handkerchief-type cotton cloth tightly stretched and held in place wth a Neoprene "O" ring (preferably with a loop of stainless steel wire).
For blocking, a low temperature wax is generally used. Over-heating the compound is avoided as this may affect the polished surface. In removing the lens from the blocking compound, the arbor is warmed and any blocking compound sticking to the lens is removed with Reagent grade Petroleum Ether, wiping with a soft tissue.
After the lenses are checked for dimensions and power while in the dry state, they are extracted in order to remove all debris resulting from manufacturing procedures.
The extraction is carried out with a buffered saline solution containing 0.9% sodium chloride and 0.004% sodium bicarbonate. This solution will have a pH of from about 7.0 to 7.2. The saline solution is kept at about 68°C and the lenses are placed in the heated, circulated solution overnight. A condenser is used to minimize solvent loss.
The clean and aseptic lenses are removed and each stored in about 10 cc. of sterile, buffered saline.
During extraction, the lenses will change in size and power. The thickness, the diameter and both curvatures will increase and the power of the lens will decrease.
Obviously, many other modifications and variations of the modified and crosslinked polyvinylpyrrolidone polymers, or resins, and method of the invention are possible in the light of the teachings given hereinabove. It is, therefore, to be understood that, within the scope of the appended claims, the invention can be practiced otherwise than as specifically described.

Claims (12)

What is claimed is:
1. A contact lens comprising a hydrophilic polymer consisting essentially of a polymerized mixture of polyvinylpyrrolidone and a hydroxyalkyl methacrylate in a weight ratio to the polyvinylpyrrolidone of from 60:40 to about 99:1, from 0.1 to about 25 parts by weight for each 100 parts of the polyvinylpyrrolidone of a crosslinking agent, and an amount of catalyst ranging from zero to about five grams thereof for each 100 grams of reaction mixture.
2. The contact lens of claim 1 wherein the crosslinking agent is selected from the group consisting of ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, and methacrylic acid with N-methylol acrylamide.
3. The contact lens of claim 1 wherein the catalyst is present and is selected from the group consisting of benzoyl peroxide, lauryl peroxide, cumene hydroperoxide, dibutyl peroxide, azobisisobutyronitrile, tertiary butyl peroxide, tertiary butyl hydroperoxide, and ammonia plus hydrogen peroxide.
4. The contact lense of claim 1 wherein the crosslinking agent is selected from the group consisting of ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, and methacrylic acid with N-methylol acrylamide and the catalyst is present and is selected from the group consisting of benzoyl peroxide, lauryl peroxide, cumene hydroperoxide, dibutyl peroxide, azobisisobuytronitrile, tertiary butyl peroxide, tertiary butyl hydroperoxide, and ammonia plus hydrogen peroxide.
5. The contact lens of claim 1 wherein the hydroxyalkyl methacrylate is hydroxyethyl methacrylate or hydroxypropyl methacrylate.
6. The contact lens of claim 2 wherein the hydroxyalkyl methacrylate is hydroxyethyl methacrylate or hydroxypropyl methacrylate.
7. The contact lens of claim 3 wherein the hydroxyalkyl methacrylate is hydroxyethyl methacrylate or hydroxypropyl methacrylate.
8. The contact lens of claim 4 wherein the hydroxyalkyl methacrylate is hydroxyethyl methacrylate or hydroxypropyl methacrylate.
9. The contact lens of claim 1 wherein the crosslinking agent is present in an amount ranging between 0.1 and 7 parts by weight per 100 parts of the polyvinylpyrrolidone.
10. The contact lens of claim 1 wherein the crosslinking agent is present in an amount ranging between 1 and 5 parts by weight per 100 parts of the polyvinylpyrrolidone.
11. A process of producing a substantially water insoluble resin which comprises the steps of mixing together polyvinylpyrrolidone and a hydroxyalkyl methacrylate in a weight ratio to the polyvinylpyrrolidone of from 60:40 to about 99:1; at least 0.1 part by weight for each 100 parts of the polyvinylpyrrolidone of a crosslinking agent selected from the group consisting of ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate 1,3-butylene glycol dimethacrylate, and methacrylic acid with N-methylolacrylamide; and an amount of catalyst ranging from 0 to about 5 grams thereof for each 100 grams of reaction mixture; and thereafter (a) heating the mixture thus formed to a temperature of at least about 50°C. and maintaining the reaction mixture at such temperature until polymerization is substantially completed, or (b) adding an accelerator to the reaction mixture and continuing the reaction until polymerization is substantially completed.
12. A hydrophilic, substantially water insoluble polymer comprising a polymerized admixture of polyvinylpyrrolidone, an hydroxyalkyl methacrylate and a crosslinking agent, the weight ratio of said hydroxyalkyl methacrylate to said polyvinylpyrrolidone being from 60:40 to about 99:1, and the said crosslinking agent being present in an amount of at least 0.1 part by weight per 100 parts of the said polyvinylpyrrolidone.
US05/430,653 1969-07-28 1974-01-04 Contact lens from hydrophilic gel polymers of polyvinylpyrrolidone and hydroxyalkyl methacrylate Expired - Lifetime US3966847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/430,653 US3966847A (en) 1969-07-28 1974-01-04 Contact lens from hydrophilic gel polymers of polyvinylpyrrolidone and hydroxyalkyl methacrylate

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US845499A US3639524A (en) 1969-07-28 1969-07-28 Hydrophilic gel polymer insoluble in water from polyvinylpyrrolidone with n-vinyl-2-pyrrolidone and methacrylic modifier
US00092280A US3721657A (en) 1969-07-28 1970-11-23 Hydrophilic gel polymers of vinylpyrrolidine and hydroxyalkyl methacrylate
US16126971A 1971-07-09 1971-07-09
US21859872A 1972-01-17 1972-01-17
US05/430,653 US3966847A (en) 1969-07-28 1974-01-04 Contact lens from hydrophilic gel polymers of polyvinylpyrrolidone and hydroxyalkyl methacrylate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US21859872A Continuation 1969-07-28 1972-01-17

Publications (1)

Publication Number Publication Date
US3966847A true US3966847A (en) 1976-06-29

Family

ID=26913072

Family Applications (5)

Application Number Title Priority Date Filing Date
US845499A Expired - Lifetime US3639524A (en) 1969-07-28 1969-07-28 Hydrophilic gel polymer insoluble in water from polyvinylpyrrolidone with n-vinyl-2-pyrrolidone and methacrylic modifier
US00092280A Expired - Lifetime US3721657A (en) 1969-07-28 1970-11-23 Hydrophilic gel polymers of vinylpyrrolidine and hydroxyalkyl methacrylate
US00210191A Expired - Lifetime US3767731A (en) 1969-07-28 1971-12-20 Contact lenses from hydrophilic gel polymers of polyvinylpyrrolidone monomeric vinylpyrrolidone and methacrylic modifier
US00214418A Expired - Lifetime US3792028A (en) 1969-07-28 1971-12-30 Hydrophilic gel polymers of vinyl pyrrolidone and hydroxyl alkyl methacrylate
US05/430,653 Expired - Lifetime US3966847A (en) 1969-07-28 1974-01-04 Contact lens from hydrophilic gel polymers of polyvinylpyrrolidone and hydroxyalkyl methacrylate

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US845499A Expired - Lifetime US3639524A (en) 1969-07-28 1969-07-28 Hydrophilic gel polymer insoluble in water from polyvinylpyrrolidone with n-vinyl-2-pyrrolidone and methacrylic modifier
US00092280A Expired - Lifetime US3721657A (en) 1969-07-28 1970-11-23 Hydrophilic gel polymers of vinylpyrrolidine and hydroxyalkyl methacrylate
US00210191A Expired - Lifetime US3767731A (en) 1969-07-28 1971-12-20 Contact lenses from hydrophilic gel polymers of polyvinylpyrrolidone monomeric vinylpyrrolidone and methacrylic modifier
US00214418A Expired - Lifetime US3792028A (en) 1969-07-28 1971-12-30 Hydrophilic gel polymers of vinyl pyrrolidone and hydroxyl alkyl methacrylate

Country Status (5)

Country Link
US (5) US3639524A (en)
CA (1) CA1086898A (en)
DE (1) DE2059409C3 (en)
GB (2) GB1339726A (en)
NL (1) NL150370B (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011388A (en) * 1974-07-02 1977-03-08 E. I. Du Pont De Nemours And Company Process for preparing emulsions by polymerization of aqueous monomer-polymer dispersions
DE2751215A1 (en) * 1976-11-26 1978-06-01 American Optical Corp CONTACT LENSES FROM A HYDROGEL
DE2751453A1 (en) * 1976-11-26 1978-06-01 American Optical Corp CONTACT LENSES FROM A HYDROGEL
US4109074A (en) * 1976-12-13 1978-08-22 Alden Optical Laboratories, Inc. Process for preparing a hydrophilic water insoluble polymer and the resulting polymer and polymer articles
US4127638A (en) * 1976-09-13 1978-11-28 American Optical Corporation Process for casting polymer rods
US4158030A (en) * 1977-06-24 1979-06-12 Nick Stoyan Method for making lenses from a modified polymerization product of methyl methacrylate
DE3512256A1 (en) * 1984-04-06 1985-10-17 Československá akademie věd, Prag/Praha THREE-DIMENSIONAL HYDROPHILIC POLYMER, METHOD FOR THE PRODUCTION THEREOF AND MOLDED BODY MADE THEREOF
US4680336A (en) * 1984-11-21 1987-07-14 Vistakon, Inc. Method of forming shaped hydrogel articles
US4794152A (en) * 1983-06-10 1988-12-27 Japan Exlan Company Limited Bead-like polymer and production thereof
US4820038A (en) * 1986-08-14 1989-04-11 Coopervision, Inc. Hydrogel contact lens
US4958999A (en) * 1988-12-19 1990-09-25 Dow Corning Corporation Apparatus for producing polymerized plugs
US5532289A (en) * 1995-04-14 1996-07-02 Benz Research And Development Corp. Contact lens having improved dimensional stability
US6011081A (en) * 1995-04-14 2000-01-04 Benz Research And Development Corp. Contact lens having improved dimensional stability
US20030125498A1 (en) * 2001-09-10 2003-07-03 Mccabe Kevin P. Biomedical devices containing internal wetting agents
US20030162862A1 (en) * 2001-09-10 2003-08-28 Mccabe Kevin P. Biomedical devices containing internal wetting agents
US20050148682A1 (en) * 1998-07-08 2005-07-07 Hopin Hu Interpenetrating polymer network hydrophilic hydrogels for contact lens
US20050179862A1 (en) * 2001-09-10 2005-08-18 Robert Steffen Soft contact lenses displaying superior on-eye comfort
US20070010595A1 (en) * 2005-02-14 2007-01-11 Mccabe Kevin P Comfortable ophthalmic device and methods of its production
US20070043140A1 (en) * 1998-03-02 2007-02-22 Lorenz Kathrine O Method for the mitigation of symptoms of contact lens related dry eye
US20070138692A1 (en) * 2002-09-06 2007-06-21 Ford James D Process for forming clear, wettable silicone hydrogel articles
US9052529B2 (en) 2006-02-10 2015-06-09 Johnson & Johnson Vision Care, Inc. Comfortable ophthalmic device and methods of its production

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3639524A (en) * 1969-07-28 1972-02-01 Maurice Seiderman Hydrophilic gel polymer insoluble in water from polyvinylpyrrolidone with n-vinyl-2-pyrrolidone and methacrylic modifier
US3998910A (en) * 1970-05-14 1976-12-21 Ceskoslovenska Akademie Ved Process for the polymerization and copolymerization of vinyl and diene compounds
US4032599A (en) * 1971-04-20 1977-06-28 Contact Lenses (Manufacturing) Limited Hydrophilic copolymers
US4093361A (en) * 1971-11-15 1978-06-06 Precision Cosmet Co., Inc. Composite prosthetic polymeric devices
GB1439132A (en) * 1972-03-13 1976-06-09 Special Polymers Ltd Method for the production of a hydrophilic polymer product
US4189364A (en) * 1972-05-12 1980-02-19 Hydroplastics, Inc. Method for preparing hydrophilic polymers and polymer grafts including irradiation
US3948841A (en) * 1972-05-22 1976-04-06 Karel Dusek Process for producing transparent gels with improved mechanical and sorption properties from copolymers of 2-hydroxyethyl methacrylate and amides of acrylic or methacrylic acid
US4042552A (en) * 1972-09-19 1977-08-16 Warner-Lambert Company Composition for hydrophilic lens blank and method of casting
US3876581A (en) * 1972-10-10 1975-04-08 Erickson Polymer Corp Hydrophilic polymer composition for prosthetic devices
DE2364675C2 (en) * 1972-12-29 1983-06-23 Kuraray Co., Ltd., Kurashiki, Okayama Copolymer consisting of a polymer main chain and polymer side chains and its use for the manufacture of articles for biomedical purposes
CA1043039A (en) * 1973-01-29 1978-11-21 Robert D. Lundberg Multiphase block and graft copolymers comprising a hydrophilic continuous phase and hydrophobic domains
US3839304A (en) * 1973-02-12 1974-10-01 American Optical Corp Soft contact lens and method of production thereof
US4073577A (en) * 1973-02-19 1978-02-14 Titmus Eurocon Kontaktlinsen Kg Contact lenses of hydrophilic polymers made by photopolymerization
US3894129A (en) * 1973-03-15 1975-07-08 American Optical Corp Method of manufacture of strain free contact lenses
US4067839A (en) * 1973-04-04 1978-01-10 Itek Corporation Hydrophilic copolymer of N,N-(C1 -C2 alkyl) acrylamide
US3937680A (en) * 1973-05-29 1976-02-10 Global Vision, Inc. Hydrophilic gel terpolymers from hydrophilic n-vinyl monomers, hydroxyalkyl acrylates or methacrylates and polymerizable unsaturated carboxylic acids
US3878175A (en) * 1973-07-27 1975-04-15 Plastik Devices Inc Highly absorbent spongy polymer materials
US3959102A (en) * 1973-08-06 1976-05-25 Essilor International (Compagnie Generale D'optique S.A.) Method for preparing a crosslinked graft copolymer of silicone and polyvinylpyrrolidone for use as a contact lens, and a contact lens produced thereby
JPS5510050B2 (en) * 1973-08-13 1980-03-13
US3980084A (en) * 1974-01-09 1976-09-14 Hydro Optics, Inc. Ostomy gasket
AR208398A1 (en) * 1974-03-29 1976-12-27 Smith & Nephew Res A LIGHTLY INTERLACED HYDROGEL COPOLYMER
US3939049A (en) * 1974-04-10 1976-02-17 The United States Of America As Represented By The United States Energy Research And Development Administration Process for radiation grafting hydrogels onto organic polymeric substrates
AR207867A1 (en) * 1974-07-04 1976-11-08 Smith & Nephew Res A LIGHTLY INTERLACED HYDROGEL COPOLYMER
US3978164A (en) * 1974-11-21 1976-08-31 Warner-Lambert Company Pyrrolidone-methacrylate graft copolymers from 3-stage polymerization process
US4054624A (en) * 1974-11-21 1977-10-18 Warner-Lambert Company Preparing a hydrated contact lens
US4018853A (en) * 1974-11-21 1977-04-19 Warner-Lambert Company Crosslinked, hydrophilic rods of pyrrolidone-methacrylate graft copolymers
US4036788A (en) * 1975-02-11 1977-07-19 Plastomedical Sciences, Inc. Anionic hydrogels based on heterocyclic N-vinyl monomers
US4058491A (en) * 1975-02-11 1977-11-15 Plastomedical Sciences, Inc. Cationic hydrogels based on heterocyclic N-vinyl monomers
US3979891A (en) * 1975-03-07 1976-09-14 Patton Orvil D Pneumatic fruit harvester
US4116549A (en) * 1976-01-12 1978-09-26 Harris James E Contact lens
US4243789A (en) * 1977-09-01 1981-01-06 The B. F. Goodrich Company Hydroxyl-containing liquid polymers and pressure-sensitive adhesives prepared therefrom
USRE31422E (en) * 1977-12-27 1983-10-18 Schering Corporation Hydrophilic polymers and contact lenses of high water content
US4182802A (en) * 1977-12-27 1980-01-08 Samuel Loshaek Hydrophilic polymers and contact lenses of high water content
FR2463795B1 (en) * 1979-08-23 1985-10-25 Fibar Immobiliere POLYMERIZABLE COMPOSITION FOR THE MANUFACTURE OF HYDROPHILIC MATERIALS, ESPECIALLY USEFUL FOR THE MANUFACTURE OF CONTACT LENSES AND POLYMERIZATION METHOD
GB2087408B (en) * 1980-11-04 1984-05-23 Patel Pravin Gordhanbhai Da Co Cross-linked hydrophilic polymers
US4369229A (en) * 1981-01-29 1983-01-18 The Kendall Company Composite hydrogel-forming article and method of making same
US4425094A (en) 1981-05-08 1984-01-10 Dentsply Research & Development Corporation Method of root canal therapy
US4436887A (en) * 1981-11-12 1984-03-13 Bausch & Lomb Incorporated N-Vinyl lactam based biomedical devices
US4440919A (en) * 1981-11-12 1984-04-03 Bausch & Lomb Incorporated Low N-vinyl lactam content based biomedical devices
DE3203655A1 (en) * 1982-02-03 1983-08-11 Polymer Technology Corp., 01887 Wilmington, Mass. Process for the preparation of dimensionally stable contact lens materials
CS250939B1 (en) * 1985-01-28 1987-05-14 Slavko Hudecek Terpolymeres with hydrogel character
US4575539A (en) * 1985-06-03 1986-03-11 E. R. Squibb & Sons, Inc. Drug delivery systems including novel interpenetrating polymer networks and method
GB8601949D0 (en) * 1986-01-28 1986-03-05 Smith & Nephew Ass Hydrogel polymers
US4729892A (en) * 1986-03-21 1988-03-08 Ciba-Geigy Corporation Use of cross-linked hydrogel materials as image contrast agents in proton nuclear magnetic resonance tomography and tissue phantom kits containing such materials
US4791175A (en) * 1986-08-04 1988-12-13 Ciba-Geigy Corporation Particulate hydroperoxidized poly-n-vinyl lactam, its preparation and use thereof
US4678838A (en) * 1986-08-04 1987-07-07 Ciba-Geigy Corporation Particulate hydroperoxidized poly-N-vinyl lactam, its preparation and use thereof
US4833196A (en) * 1986-08-04 1989-05-23 Ciba-Geigy Corporation Particulate hydroperoxidized poly-N-vinyl lactam, its preparation and use thereof
US4948245A (en) * 1986-08-14 1990-08-14 Coopervision, Inc. Hydrogel contact lens
US4978713A (en) * 1987-12-16 1990-12-18 Ciba-Geigy Corporation Polyvinyl alcohol derivatives containing pendant vinylic monomer reaction product units bound through ether groups and hydrogel contact lenses made therefrom
US4929692A (en) * 1989-01-11 1990-05-29 Ciba-Geigy Corporation Crosslinked copolymers and ophthalmic devices made from vinylic macromers containing perfluoropolyalkyl ether and polyalkyl ether segments and minor amounts of vinylic comonomers
US4933408A (en) * 1989-01-11 1990-06-12 Ciba-Geigy Corporation Vinylic macromers containing perfluoropolyalkyl ether and polyalkyl ether segments, polymers and opthalmic devices made therefrom
US5075106A (en) * 1989-01-11 1991-12-24 Ciba-Geigy Corporation Vinylic macromers containing perfluoropolyalkylether and polyalkylether segments, polymers and ophthalmic devices made therefrom
US5020898A (en) * 1990-01-29 1991-06-04 Schering Corporation Contact lens for correction of astigmatism
US5210111A (en) * 1991-08-22 1993-05-11 Ciba-Geigy Corporation Crosslinked hydrogels derived from hydrophilic polymer backbones
US6228115B1 (en) 1998-11-05 2001-05-08 Bausch & Lomb Surgical, Inc. Intraocular lenses with improved axial stability
US6200344B1 (en) 1999-04-29 2001-03-13 Bausch & Lomb Surgical, Inc. Inraocular lenses
US6190410B1 (en) 1999-04-29 2001-02-20 Bausch & Lomb Surgical, Inc. Intraocular lenses
US6461384B1 (en) 1999-06-17 2002-10-08 Bausch & Lomb Incorporated Intraocular lenses
WO2001046745A1 (en) * 1999-12-21 2001-06-28 Carter James T Macroporous hyperhydroxy polymer and articles made therefrom
US6398809B1 (en) 2000-04-12 2002-06-04 Bausch & Lomb Incorporated Intraocular lens
USRE44145E1 (en) 2000-07-07 2013-04-09 A.V. Topchiev Institute Of Petrochemical Synthesis Preparation of hydrophilic pressure sensitive adhesives having optimized adhesive properties
US20050113510A1 (en) 2001-05-01 2005-05-26 Feldstein Mikhail M. Method of preparing polymeric adhesive compositions utilizing the mechanism of interaction between the polymer components
JP4116447B2 (en) * 2001-05-01 2008-07-09 エイ.ブイ.トップチーブ インスティテュート オブ ペトロケミカル シンセシス Hydrogel composition
US8206738B2 (en) 2001-05-01 2012-06-26 Corium International, Inc. Hydrogel compositions with an erodible backing member
US8541021B2 (en) 2001-05-01 2013-09-24 A.V. Topchiev Institute Of Petrochemical Synthesis Hydrogel compositions demonstrating phase separation on contact with aqueous media
US20050215727A1 (en) 2001-05-01 2005-09-29 Corium Water-absorbent adhesive compositions and associated methods of manufacture and use
ES2587187T3 (en) * 2001-05-01 2016-10-21 A. V. Topchiev Institute Of Petrochemical Synthesis Biphasic water absorbent bioadhesive composition
US8840918B2 (en) * 2001-05-01 2014-09-23 A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences Hydrogel compositions for tooth whitening
US20040242770A1 (en) * 2003-04-16 2004-12-02 Feldstein Mikhail M. Covalent and non-covalent crosslinking of hydrophilic polymers and adhesive compositions prepared therewith
US8658201B2 (en) 2004-01-30 2014-02-25 Corium International, Inc. Rapidly dissolving film for delivery of an active agent
ES2526700T3 (en) * 2004-08-05 2015-01-14 Corium International, Inc. Adhesive composition
US7808904B2 (en) * 2004-11-18 2010-10-05 Fortinet, Inc. Method and apparatus for managing subscriber profiles
US20080113002A1 (en) * 2006-11-14 2008-05-15 Saul Yedgar Contact lens compositions
CA2705785A1 (en) * 2006-11-14 2008-05-22 Saul Yedgar Use of lipid conjugates in the treatment of diseases or disorders of the eye
ES2383110T3 (en) * 2007-07-19 2012-06-18 Novartis Ag Materials and lenses of high metabolite and ion flow
EP2225293B1 (en) 2007-12-11 2012-02-08 Carl Zeiss Meditec AG Copolymer and ophthalmological composition
DE102007059470B3 (en) * 2007-12-11 2009-05-20 *Acri.Tec Gmbh Ophthalmic composition and its use
US8784879B2 (en) * 2009-01-14 2014-07-22 Corium International, Inc. Transdermal administration of tamsulosin
EP2429532A4 (en) * 2009-05-11 2015-05-27 Yissum Res Dev Co Lipid-polymer conjugates, their preparation and uses thereof
WO2011071790A1 (en) * 2009-12-07 2011-06-16 Novartis Ag Methods for increasing the ion permeability of contact lenses
EP3195858B1 (en) 2010-04-03 2019-08-07 Praful Doshi Medical devices including medicaments and methods of making and using same
CN102344523B (en) * 2011-07-05 2013-12-25 金陵科技学院 Preparation method of hydrogel for drug-loaded contact lens
DE102014006907A1 (en) * 2013-12-04 2015-06-11 Liebherr-Hausgeräte Ochsenhausen GmbH Process for the preparation of a coating
CN109503780B (en) * 2018-10-26 2021-06-18 大连医诺生物股份有限公司 Antibacterial hydrogel material and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3520949A (en) * 1966-07-26 1970-07-21 Nat Patent Dev Corp Hydrophilic polymers,articles and methods of making same
US3621079A (en) * 1968-10-21 1971-11-16 Patent Structures Inc Graft of hydroxyalkyl methacrylate onto polyvinylpyrrolidone
US3639524A (en) * 1969-07-28 1972-02-01 Maurice Seiderman Hydrophilic gel polymer insoluble in water from polyvinylpyrrolidone with n-vinyl-2-pyrrolidone and methacrylic modifier
US3647736A (en) * 1970-05-25 1972-03-07 Kontur Kontact Lens Co Inc Hydrophilic contact lens material
US3700761A (en) * 1969-11-28 1972-10-24 Griffin Lab Inc Fabrication of soft plastic contact lens blank
US3822196A (en) * 1969-11-28 1974-07-02 Warner Lambert Co Fabrication of soft plastic contact lens blank and composition therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3520949A (en) * 1966-07-26 1970-07-21 Nat Patent Dev Corp Hydrophilic polymers,articles and methods of making same
US3621079A (en) * 1968-10-21 1971-11-16 Patent Structures Inc Graft of hydroxyalkyl methacrylate onto polyvinylpyrrolidone
US3639524A (en) * 1969-07-28 1972-02-01 Maurice Seiderman Hydrophilic gel polymer insoluble in water from polyvinylpyrrolidone with n-vinyl-2-pyrrolidone and methacrylic modifier
US3721657A (en) * 1969-07-28 1973-03-20 M Seiderman Hydrophilic gel polymers of vinylpyrrolidine and hydroxyalkyl methacrylate
US3700761A (en) * 1969-11-28 1972-10-24 Griffin Lab Inc Fabrication of soft plastic contact lens blank
US3822196A (en) * 1969-11-28 1974-07-02 Warner Lambert Co Fabrication of soft plastic contact lens blank and composition therefor
US3647736A (en) * 1970-05-25 1972-03-07 Kontur Kontact Lens Co Inc Hydrophilic contact lens material

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011388A (en) * 1974-07-02 1977-03-08 E. I. Du Pont De Nemours And Company Process for preparing emulsions by polymerization of aqueous monomer-polymer dispersions
US4127638A (en) * 1976-09-13 1978-11-28 American Optical Corporation Process for casting polymer rods
DE2751215A1 (en) * 1976-11-26 1978-06-01 American Optical Corp CONTACT LENSES FROM A HYDROGEL
DE2751453A1 (en) * 1976-11-26 1978-06-01 American Optical Corp CONTACT LENSES FROM A HYDROGEL
US4123408A (en) * 1976-11-26 1978-10-31 American Optical Corporation Hydrogel contact lens
US4109074A (en) * 1976-12-13 1978-08-22 Alden Optical Laboratories, Inc. Process for preparing a hydrophilic water insoluble polymer and the resulting polymer and polymer articles
US4158030A (en) * 1977-06-24 1979-06-12 Nick Stoyan Method for making lenses from a modified polymerization product of methyl methacrylate
US4794152A (en) * 1983-06-10 1988-12-27 Japan Exlan Company Limited Bead-like polymer and production thereof
DE3512256A1 (en) * 1984-04-06 1985-10-17 Československá akademie věd, Prag/Praha THREE-DIMENSIONAL HYDROPHILIC POLYMER, METHOD FOR THE PRODUCTION THEREOF AND MOLDED BODY MADE THEREOF
US4604440A (en) * 1984-04-06 1986-08-05 Ceskoslovenska Akademie Ved Hydrophilic three dimensional polymer and a method for production thereof
US4775731A (en) * 1984-04-06 1988-10-04 Ceskoslovenska Akademie Ved Hydrophilic three dimensional polymer and a method for production thereof
US4680336A (en) * 1984-11-21 1987-07-14 Vistakon, Inc. Method of forming shaped hydrogel articles
AU586203B2 (en) * 1984-11-21 1989-07-06 Vistakon, Inc. Shaped hydrogel articles
US4820038A (en) * 1986-08-14 1989-04-11 Coopervision, Inc. Hydrogel contact lens
US4958999A (en) * 1988-12-19 1990-09-25 Dow Corning Corporation Apparatus for producing polymerized plugs
US5532289A (en) * 1995-04-14 1996-07-02 Benz Research And Development Corp. Contact lens having improved dimensional stability
US6011081A (en) * 1995-04-14 2000-01-04 Benz Research And Development Corp. Contact lens having improved dimensional stability
US6265465B1 (en) 1995-04-14 2001-07-24 Benz Research & Development Corporation Contact lens having improved dimensional stability
US6555598B2 (en) 1995-04-14 2003-04-29 Benz Research And Development Corp. Contact lens having improved dimensional stability
US6566417B2 (en) 1995-04-14 2003-05-20 Benz Research And Development Corporation Contact lens having improved dimensional stability
US20070043140A1 (en) * 1998-03-02 2007-02-22 Lorenz Kathrine O Method for the mitigation of symptoms of contact lens related dry eye
US20050148682A1 (en) * 1998-07-08 2005-07-07 Hopin Hu Interpenetrating polymer network hydrophilic hydrogels for contact lens
US7279507B2 (en) 1998-07-08 2007-10-09 Coopervision International Holding Company, Lp Contact lenses
US20090059164A1 (en) * 1999-10-07 2009-03-05 Robert Steffen Soft contact lenses displaying superior on-eye comfort
US8450387B2 (en) 2001-09-10 2013-05-28 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
US8168720B2 (en) 2001-09-10 2012-05-01 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
US20050179862A1 (en) * 2001-09-10 2005-08-18 Robert Steffen Soft contact lenses displaying superior on-eye comfort
US20060007391A1 (en) * 2001-09-10 2006-01-12 Mccabe Kevin P Biomedical devices containing internal wetting agents
US7052131B2 (en) 2001-09-10 2006-05-30 J&J Vision Care, Inc. Biomedical devices containing internal wetting agents
US11360241B2 (en) 2001-09-10 2022-06-14 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
US6822016B2 (en) 2001-09-10 2004-11-23 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
US10935696B2 (en) 2001-09-10 2021-03-02 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
US20030162862A1 (en) * 2001-09-10 2003-08-28 Mccabe Kevin P. Biomedical devices containing internal wetting agents
US20080015282A1 (en) * 2001-09-10 2008-01-17 Mccabe Kevin P Biomedical devices containing internal wetting agents
US7461937B2 (en) 2001-09-10 2008-12-09 Johnson & Johnson Vision Care, Inc. Soft contact lenses displaying superior on-eye comfort
WO2003022322A3 (en) * 2001-09-10 2003-07-24 Johnson & Johnson Vision Care Biomedical devices containing internal wetting agents
US7649058B2 (en) 2001-09-10 2010-01-19 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
US7666921B2 (en) 2001-09-10 2010-02-23 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
US7691916B2 (en) 2001-09-10 2010-04-06 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
US10641926B2 (en) 2001-09-10 2020-05-05 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
EP2258411A1 (en) * 2001-09-10 2010-12-08 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
EP2258412A1 (en) * 2001-09-10 2010-12-08 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
US10254443B2 (en) 2001-09-10 2019-04-09 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
US20050154080A1 (en) * 2001-09-10 2005-07-14 Mccabe Kevin P. Biomedical devices containing internal wetting agents
US8431669B2 (en) 2001-09-10 2013-04-30 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
US20030125498A1 (en) * 2001-09-10 2003-07-03 Mccabe Kevin P. Biomedical devices containing internal wetting agents
US9958577B2 (en) 2001-09-10 2018-05-01 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
US8796353B2 (en) 2001-09-10 2014-08-05 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
US8895687B2 (en) 2001-09-10 2014-11-25 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
EP3053605A1 (en) * 2001-09-10 2016-08-10 Johnson & Johnson Vision Care Inc. Biomedical devices containing internal wetting agents
US9097914B2 (en) 2001-09-10 2015-08-04 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
US20070138692A1 (en) * 2002-09-06 2007-06-21 Ford James D Process for forming clear, wettable silicone hydrogel articles
US9395559B2 (en) 2005-02-14 2016-07-19 Johnson & Johnson Vision Care, Inc. Comfortable ophthalmic device and methods of its production
US8696115B2 (en) 2005-02-14 2014-04-15 Johnson & Johnson Vision Care, Inc. Comfortable ophthalmic device and methods of its production
US20110021656A1 (en) * 2005-02-14 2011-01-27 Mccabe Kevin P Comfortable ophthalmic device and methods of its production
US10267952B2 (en) 2005-02-14 2019-04-23 Johnson & Johnson Vision Care, Inc. Comfortable ophthalmic device and methods of its production
US7841716B2 (en) 2005-02-14 2010-11-30 Johnson & Johnson Vision Care, Inc. Comfortable ophthalmic device and methods of its production
US11150383B2 (en) 2005-02-14 2021-10-19 Johnson & Johnson Vision Care, Inc. Comfortable ophthalmic device and methods of its production
US20070010595A1 (en) * 2005-02-14 2007-01-11 Mccabe Kevin P Comfortable ophthalmic device and methods of its production
US11953651B2 (en) 2005-02-14 2024-04-09 Johnson & Johnson Vision Care, Inc. Comfortable ophthalmic device and methods of its production
US9052529B2 (en) 2006-02-10 2015-06-09 Johnson & Johnson Vision Care, Inc. Comfortable ophthalmic device and methods of its production

Also Published As

Publication number Publication date
NL150370B (en) 1976-08-16
NL7106489A (en) 1972-05-25
GB1339727A (en) 1973-12-05
DE2059409B2 (en) 1974-04-11
US3792028A (en) 1974-02-12
DE2059409A1 (en) 1972-06-22
DE2059409C3 (en) 1974-11-28
US3721657A (en) 1973-03-20
CA1086898A (en) 1980-09-30
GB1339726A (en) 1973-12-05
US3639524A (en) 1972-02-01
US3767731A (en) 1973-10-23

Similar Documents

Publication Publication Date Title
US3966847A (en) Contact lens from hydrophilic gel polymers of polyvinylpyrrolidone and hydroxyalkyl methacrylate
US3496254A (en) Method of manufacturing soft and flexible contact lenses
US3822089A (en) Contact lens blank or replica made from anhydrous, sparingly cross-linked hydrophilic copolymers
US3699089A (en) Anhydrous sparingly cross-linked hydrophilic copolymers
US3983083A (en) Soft contact lenses and process for preparation thereof
US4534916A (en) Method for the preparation of hydrophilic gels by monomer casting
US3503942A (en) Hydrophilic plastic contact lens
US4143017A (en) Process of producing soft contact lenses
US4495313A (en) Preparation of hydrogel for soft contact lens with water displaceable boric acid ester
US3700761A (en) Fabrication of soft plastic contact lens blank
US3220960A (en) Cross-linked hydrophilic polymers and articles made therefrom
EP1177227B1 (en) Water plasticized high refractive index polymer for ophthalmic applications
US4208362A (en) Shaped body of at least two polymerized materials and method to make same
USRE27401E (en) Cross-linked hydrophilic polymers and articles made therefrom
US3758448A (en) Copolymers and hydrogels of unsaturated esters
PL178192B1 (en) Method of making formpieces, formpiece made thereby, prepolymers suitable for use according to said method, network polymers, homo- or copolymers obtained from such prepolymers, method of obtaining said prepolymers and network polymers, homo- or copolymers obtained from them,l formpieces made of said homo- or copolymers and method of making said formpieces using homo- or copolymers
US4430458A (en) Hydrogel-forming polymeric materials
US3787380A (en) Polymers of n-vinyl or n-allyl hetero-cyclic compounds with monoethyl-enically unsaturated esters and gly-cidyl esters
US3947401A (en) Hydrogels of unsaturated ester copolymers
US3816571A (en) Fabrication of soft plastic lens
US4032599A (en) Hydrophilic copolymers
US3965063A (en) Hydrophilic contact lenses and lens polymer
US3772235A (en) Copolymers and hydrogels of unsaturated heterocyclic compounds
US3926892A (en) Hydrophilic contact lenses and lens polymer
US4035330A (en) Hydrophilic copolymer of N,N-di(C1 -C2 alkyl)acrylamide cross-linked with a glycidyl ester