US3986966A - Cosulfurized products of high iodine valve triglyceride and nonwax ester of monoethenoid fatty acid as lubricant additives - Google Patents

Cosulfurized products of high iodine valve triglyceride and nonwax ester of monoethenoid fatty acid as lubricant additives Download PDF

Info

Publication number
US3986966A
US3986966A US05/559,096 US55909675A US3986966A US 3986966 A US3986966 A US 3986966A US 55909675 A US55909675 A US 55909675A US 3986966 A US3986966 A US 3986966A
Authority
US
United States
Prior art keywords
oil
triglyceride
cosulfurized
ester
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/559,096
Inventor
Jamil M. Wakim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell USA Inc
Original Assignee
Shell Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CA132,071A external-priority patent/CA1029363A/en
Priority to DE2260968A priority Critical patent/DE2260968A1/en
Priority to GB5747472A priority patent/GB1413670A/en
Priority to FR7244314A priority patent/FR2167527B1/fr
Application filed by Shell Oil Co filed Critical Shell Oil Co
Priority to US05/559,096 priority patent/US3986966A/en
Application granted granted Critical
Publication of US3986966A publication Critical patent/US3986966A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/02Sulfurised compounds
    • C10M135/06Esters, e.g. fats
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/108Residual fractions, e.g. bright stocks
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/024Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Definitions

  • a well-known and very effective extreme pressure additive for lubricating oil is sulfurized sperm oil.
  • the supplies of sperm oil are dwindling in view of whale protection laws.
  • Various materials are being proffered as sperm oil substitutes.
  • One such group of compositions as disclosed in U.S. Pat. No. 3,740,333 are blends of triglycerides and wax esters derived from predominantly C 18-22 unsaturated acids and C 10-16 saturated alcohols; the compositions are disclosed as useful per se and in the sulfurized form.
  • the triglycerides disclosed are those derived from plants and animals and have iodine values between about 50 and 120, with lard oil having an iodine value between about 65 and 80 being a preferred triglyceride.
  • Lard a material of low iodine value
  • oils having an iodine value greater than 80 for example, vegetable oils such as rapeseed oil or soya bean oil, in the unsulfurized state; however, upon sulfurization, it has been found that lard oil is not the equivalent of oils having an iodine value greater than 80, e.g., vegetable oils, in that lard oil can be sulfurized to a product having a low viscosity and high solubility in mineral oil. Sulfurization of oils having an iodine value greater than 80 produces a high viscosity, unworkable semi-solid which is only sparingly soluble in hydrocarbon lubricating oils.
  • compositions in contradistinction to physical mixtures, of cosulfurized products from the sulfurization of mixtures of triglyceride having an iodine value greater than 80 - for example, vegetable oils such as rapeseed oil or soya bean oil - and specific nonwax esters comprising methyl esters of predominantly monoethenoid fatty acid of 18 to 22 carbon atoms, in lubricant oil compositions not only have advantageous properties without harmful effect on flash point or load-carrying capacity but also in some uses unexpectedly perform better than similar compositions produced from wax esters, i.e., from esters of higher molecular weight alcohols.
  • the invention provides a particular lubricant composition
  • a particular lubricant composition comprising a lubricating oil and from about 0.1 to about 20% by weight of a cosulfurized mixture of (a) a triglyceride having an iodine value greater than 80 and (b) nonwax ester comprising the methyl ester of a fatty acid having from 18 to 22 carbon atoms or a mixture thereof, said fatty acid being predominantly monoethylenically unsaturated, wherein the sulfur content of the cosulfurized mixture of (a) and (b) is from about 1 to about 40% by weight and wherein the weight ratio of (a):(b) is in the range of from about 0.1:1 to about 10:1.
  • the triglyceride employed in the mixture, which is cosulfurized to produce the lubricant additive product of the invention, is critically a triglyceride having an iodine value greater than 80.
  • triglycerides are in general vegetable oils but are not necessarily so in that iodine value is a measure of degree of unsaturation and highly unsaturated fatty oils which are not vegetable oils are also useful.
  • the upper limit of iodine value is not critical, as is the lower limit (cf. hereinafter the disclosure in Example 4); the upper limit of iodine value may be any value depending on the unsaturation of the triglyceride, but as a practical matter will preferably be about 200, and most preferably about 180.
  • rapeseed oil soya been oil, peanut oil, herring oil, safflower oil, sunflowerseed oil, cottonseed oil, and the like.
  • Preferred triglycerides include rapeseed oil and soya been oil; a particularly preferred triglyceride is rapeseed oil.
  • the rapeseed oil may be a refined rapeseed oil, for example, by treating the degummed oil with aqueous NaOH to reduce the free acid content, e.g., to about 0.15%w, or by any other conventional refining technique.
  • unrefined rapeseed oil is suitably employed in the mixture.
  • the other component employed in the mixture, which is cosulfurized to produce the lubricant additive of the invention is nonwax ester comprising the methyl ester of a fatty acid having from 18 to 22 carbon atoms or a mixture thereof, said fatty acid being predominantly monoethylenically unsaturated.
  • Most effective for purposes of the suitable compositions of the invention are the methyl esters from fatty acids made up predominantly of 18 to 22 carbon atoms with only a minor portion of fatty acid of molecular weight above and below these ranges. In some instances predominantly a single fatty acid of particular number of carbon atoms, such as fatty acid of 18 carbon atoms, is very suitable.
  • the nonwax esters are easily obtainable by esterification of a suitable fatty acid or mixture of fatty acids with methanol.
  • suitable fatty acid or mixture of fatty acids For example, pure or commercial oleic acid may be esterified with methanol to produce suitable nonwax esters.
  • the nonwax esters are prepared by alcoholysis with methanol of a triglyceride, which may be the triglyceride employed in the mixture or a different one therefrom.
  • a particularly preferred nonwax ester suitable for use in the mixture to produce the ultimate product of the invention is prepared by alcoholysis of rapeseed oil with methanol.
  • a catalyst such as sodium alkoxide
  • the weight ratio of triglyceride having an iodine value greater than 80 to the nonwax ester in the mixture can vary between wide limits, suitably in the range from about 0.1:1 to about 10:1, and preferably from about 0.3:1 to about 3:1.
  • Cosulfurization of the said mixture of triglyceride and nonwax ester is carried out by conventional techniques well-known in the art, for example, by heating with sulfur.
  • the sulfurization is preferably carried out at a temperature in the range of from about 320° to about 390° F and most preferably at a temperature in the range of from about 345° to about 355° F.
  • the sulfur content of the cosulfurized product is suitably between about 1 and about 40% by weight, preferably between about 5 and about 30% and most preferably about 10% by weight. It is obvious to those skilled in the art that the sulfur can be active and/or inactive depending on the method of preparation and the amount of sulfur incorporated in the cosulfurized product. The sulfur content desirable is also dependent upon the use to which the lubricant containing the cosulfurized product is put. For example, in gear oils where staining of copper is objectionable, it is preferred to use cosulfurized products that contain about 10% sulfur, i.e., no active sulfur. As a further optional processing step to insure that even the 10% sulfur-containing product is not harmful to metal, the cosulfurized product is air blown. However, cosulfurized products with a high content of active sulfur which are employed in metal cutting fluids, or such applications, need not be air blown since the presence of active sulfur is not objectionable in those uses.
  • the amount of the cosulfurized product suitably employed in the lubricant composition of the invention may be between about 0.1 and about 20% by weight and preferably, between about 1 and about 10% by weight.
  • the base oil of the lubricant composition is, preferably, a mineral lubricating oil although synthetic hydrocarbon lubricating oils and other synthetic lubricating oils, such as ester lubricating oils as well as mixtures thereof, e.g., mixtures of mineral and synthetic lubricating oils, can also be used provided that the desired proportion of the cosulfurized product is soluble in the base oil in question.
  • the mineral oils include HVI (high viscosity index) oils, Bright Stock, Bright Stock extract as well as MVI and LVI oils, i.e., the viscosity index of these oils can vary from -150 to 150.
  • the 210° F viscosities of these oils can vary from 2 to 140 centistokes. Mixtures of these oils are also suitably employed.
  • additives may be present in the lubricant composition. Suitable other additives are anti-oxidants, anti-corrosive agents, anti-foam agents, pour point depressants, viscosity index improvers and additional anti-wear or load-carrying additives.
  • the present lubricant compositions may also be thickened to a gel or to a grease using, e.g., soap-, waterproofed clay- or organic thickeners.
  • esters thus prepared were mixed with rapeseed oil and subsequently cosulfurized by heating with sulfur.
  • Example 2 Same as in Example 1 except that the sodium compounds were not removed from the esters.
  • the esters were mixed with the rapeseed oil and the mixture was cosulfurized and filtered.
  • the anti-wear, extreme pressure and Cu-corrosion properties of the present additive mixtures were investigated and compared with sulfurized sperm oil containing 9.25% S.
  • the base oil was a mixture of 66%w HVI (high viscosity index) mineral vacuum distilled lubricating oil and 34%w HVI Bright Stock.
  • additives in particular additive A, have excellent load-carrying properties.
  • RBOT Rotating Bomb Oxidation Test and is performed in accordance with ASTM Standard Test Method D 2272-67.
  • a test oil, water and copper catalyst coil, contained in a covered glass container, are placed in a bomb equipped with a pressure gauge.
  • the bomb is charged with oxygen to a pressure of 90 psi, placed in a constant temperature bath set at 150° C, and rotated axially at 100 rpm at an angle of 30° from the horizontal.
  • the time for the test oil to react with a given volume of oxygen is measured: completion of the time is indicated by pressure drop of 25 psi.
  • the triglycerides of iodine value greater than 80 can be sulfurized to low viscosity, hydrocarbon lubricating oil-soluble materials only when cosulfurized as methyl ester/triglyceride mixture as shown by curves 4 and 5.
  • Curve 6 indicates that cosulfurized product of methyl esters of lard oil admixed with lard oil, i.e., triglyceride of low iodine value, is similar in viscosity and solubility to the mixtures based on triglyceride of iodine value greater than 80 (curves 4 and 5) but the product (6) based on triglyceride of low iodine value is not the equivalent in properties or performance as can be seen from the data in Example 5 following.
  • a cosulfurized product was prepared from a 1:1 by weight mixture of each fatty triglyceride indicated in Table IV and its methyl esters. Table IV also describes some physical properties of the cosulfurized products and their performance properties as additive at 5.0% by weight in HVI, SAE 90 grade base lubricating oil. Both products were 100% soluble in the mineral oil. However, the product based on triglyceride of iodine value greater than 80 (rapeseed oil) has superior low temperature properties, as indicated by pour point value, compared to the product based on triglyceride of low iodine value (lard oil).
  • the product based on triglyceride of iodine value greater than 80 demonstrates superior load-carrying capacity, as indicated by Load-Wear Index value and Timken OK Load value, compared to the product based on triglyceride of low iodine value.
  • a cosulfurized product was prepared from a mixture of the triglyceride, rapeseed oil, (of Example 1 (y)) and each of two alkyl esters.
  • the alkyl esters are alkyl oleates, produced from commercial oleic acid, which contains about 70% by weight of oleic acid, i.e., about 70% monoethylenically unsaturated C 18 fatty acid.
  • the alkyl oleates employed are methyl oleate from methanol and C 14-15 alkyl oleate from a mixed C 14-15 alcohol.
  • Table V describes some physical properties of the two cosulfurized products and their performance properties as additives at 5.0% by weight in HVI, SAE 90 grade base lubricating oil.
  • methyl ester product has complete solubility in mineral lubricating oil.
  • the higher alkyl ester product produces a slightly cloudy solution in lubricating oil; such haze usually results in a precipitation or sludge formation on standing or with use.
  • the above data indicate that the superior low temperature flow properties of the lubricant containing additive based on methyl ester, as compared to lubricant containing additive based on higher alkyl ester, accrued to grease produced therefrom. More particularly, the ventmeter data demonstrate that a lower force was required to push the same amount of grease based on methyl ester additive in the same time interval, thereby indicating a significant difference in pumpability of that grease compared to the corresponding grease based on the higher alkyl ester additive.

Abstract

A cosulfurized product of a mixture of (a) a triglyceride having an iodine value greater than 80, preferably rapeseed oil, and (b) nonwax ester comprising the methyl ester of a fatty acid having from 18 to 22 carbon atoms or a mixture thereof, said fatty acid being predominantly monoethylenically unsaturated, has excellent extreme pressure and low temperature properties and is an effective substitute for sulfurized sperm oil.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This is a continuation-in-part of applicant's copending application Ser. No. 321,614, filed Jan. 8, 1973, now abandoned.
BACKGROUND OF THE INVENTION
A well-known and very effective extreme pressure additive for lubricating oil is sulfurized sperm oil. The supplies of sperm oil, however, are dwindling in view of whale protection laws. Various materials are being proffered as sperm oil substitutes. One such group of compositions as disclosed in U.S. Pat. No. 3,740,333 are blends of triglycerides and wax esters derived from predominantly C18-22 unsaturated acids and C10-16 saturated alcohols; the compositions are disclosed as useful per se and in the sulfurized form. The triglycerides disclosed are those derived from plants and animals and have iodine values between about 50 and 120, with lard oil having an iodine value between about 65 and 80 being a preferred triglyceride.
Lard, a material of low iodine value, may be the equivalent of oils having an iodine value greater than 80, for example, vegetable oils such as rapeseed oil or soya bean oil, in the unsulfurized state; however, upon sulfurization, it has been found that lard oil is not the equivalent of oils having an iodine value greater than 80, e.g., vegetable oils, in that lard oil can be sulfurized to a product having a low viscosity and high solubility in mineral oil. Sulfurization of oils having an iodine value greater than 80 produces a high viscosity, unworkable semi-solid which is only sparingly soluble in hydrocarbon lubricating oils.
The above-mentioned U.S. Pat. No. 3,740,333 discloses that, in the blends of triglyceride and wax ester, alcohols employed to obtain the wax esters are saturated primary alcohols of about 6 to 20 carbon atoms, with best results obtained when the alcohol contains about 10 to 16 carbon atoms. If too low a molecular weight alcohol is used, the resulting blends have high flash points and low viscosities and are less desirable.
SUMMARY OF THE INVENTION
It has now been found that particular compositions, in contradistinction to physical mixtures, of cosulfurized products from the sulfurization of mixtures of triglyceride having an iodine value greater than 80 - for example, vegetable oils such as rapeseed oil or soya bean oil - and specific nonwax esters comprising methyl esters of predominantly monoethenoid fatty acid of 18 to 22 carbon atoms, in lubricant oil compositions not only have advantageous properties without harmful effect on flash point or load-carrying capacity but also in some uses unexpectedly perform better than similar compositions produced from wax esters, i.e., from esters of higher molecular weight alcohols.
Accordingly, the invention provides a particular lubricant composition comprising a lubricating oil and from about 0.1 to about 20% by weight of a cosulfurized mixture of (a) a triglyceride having an iodine value greater than 80 and (b) nonwax ester comprising the methyl ester of a fatty acid having from 18 to 22 carbon atoms or a mixture thereof, said fatty acid being predominantly monoethylenically unsaturated, wherein the sulfur content of the cosulfurized mixture of (a) and (b) is from about 1 to about 40% by weight and wherein the weight ratio of (a):(b) is in the range of from about 0.1:1 to about 10:1.
For purposes of this specification and claims the term predominantly is used to mean over 50% by weight.
DESCRIPTION OF PREFERRED EMBODIMENTS
The triglyceride employed in the mixture, which is cosulfurized to produce the lubricant additive product of the invention, is critically a triglyceride having an iodine value greater than 80. Such triglycerides are in general vegetable oils but are not necessarily so in that iodine value is a measure of degree of unsaturation and highly unsaturated fatty oils which are not vegetable oils are also useful. Thus, the upper limit of iodine value is not critical, as is the lower limit (cf. hereinafter the disclosure in Example 4); the upper limit of iodine value may be any value depending on the unsaturation of the triglyceride, but as a practical matter will preferably be about 200, and most preferably about 180. Illustrative of the triglycerides suitably employed are rapeseed oil, soya been oil, peanut oil, herring oil, safflower oil, sunflowerseed oil, cottonseed oil, and the like. Preferred triglycerides include rapeseed oil and soya been oil; a particularly preferred triglyceride is rapeseed oil. Optionally the rapeseed oil may be a refined rapeseed oil, for example, by treating the degummed oil with aqueous NaOH to reduce the free acid content, e.g., to about 0.15%w, or by any other conventional refining technique. However, unrefined rapeseed oil is suitably employed in the mixture.
The other component employed in the mixture, which is cosulfurized to produce the lubricant additive of the invention, is nonwax ester comprising the methyl ester of a fatty acid having from 18 to 22 carbon atoms or a mixture thereof, said fatty acid being predominantly monoethylenically unsaturated. Most effective for purposes of the suitable compositions of the invention are the methyl esters from fatty acids made up predominantly of 18 to 22 carbon atoms with only a minor portion of fatty acid of molecular weight above and below these ranges. In some instances predominantly a single fatty acid of particular number of carbon atoms, such as fatty acid of 18 carbon atoms, is very suitable. The nonwax esters are easily obtainable by esterification of a suitable fatty acid or mixture of fatty acids with methanol. For example, pure or commercial oleic acid may be esterified with methanol to produce suitable nonwax esters. Preferably, the nonwax esters are prepared by alcoholysis with methanol of a triglyceride, which may be the triglyceride employed in the mixture or a different one therefrom. A particularly preferred nonwax ester suitable for use in the mixture to produce the ultimate product of the invention is prepared by alcoholysis of rapeseed oil with methanol. This can be accomplished by heating and stirring rapeseed oil with excess methanol in the presence of a catalyst, such as sodium alkoxide, under anhydrous conditions. Glycerol is then allowed to settle after which the layers are separated. The upper layer contains the methyl esters which can be separated from the excess methanol by distillation of the latter.
The weight ratio of triglyceride having an iodine value greater than 80 to the nonwax ester in the mixture can vary between wide limits, suitably in the range from about 0.1:1 to about 10:1, and preferably from about 0.3:1 to about 3:1.
Cosulfurization of the said mixture of triglyceride and nonwax ester is carried out by conventional techniques well-known in the art, for example, by heating with sulfur. The sulfurization is preferably carried out at a temperature in the range of from about 320° to about 390° F and most preferably at a temperature in the range of from about 345° to about 355° F.
The sulfur content of the cosulfurized product is suitably between about 1 and about 40% by weight, preferably between about 5 and about 30% and most preferably about 10% by weight. It is obvious to those skilled in the art that the sulfur can be active and/or inactive depending on the method of preparation and the amount of sulfur incorporated in the cosulfurized product. The sulfur content desirable is also dependent upon the use to which the lubricant containing the cosulfurized product is put. For example, in gear oils where staining of copper is objectionable, it is preferred to use cosulfurized products that contain about 10% sulfur, i.e., no active sulfur. As a further optional processing step to insure that even the 10% sulfur-containing product is not harmful to metal, the cosulfurized product is air blown. However, cosulfurized products with a high content of active sulfur which are employed in metal cutting fluids, or such applications, need not be air blown since the presence of active sulfur is not objectionable in those uses.
The amount of the cosulfurized product suitably employed in the lubricant composition of the invention may be between about 0.1 and about 20% by weight and preferably, between about 1 and about 10% by weight.
The base oil of the lubricant composition is, preferably, a mineral lubricating oil although synthetic hydrocarbon lubricating oils and other synthetic lubricating oils, such as ester lubricating oils as well as mixtures thereof, e.g., mixtures of mineral and synthetic lubricating oils, can also be used provided that the desired proportion of the cosulfurized product is soluble in the base oil in question.
The mineral oils include HVI (high viscosity index) oils, Bright Stock, Bright Stock extract as well as MVI and LVI oils, i.e., the viscosity index of these oils can vary from -150 to 150. The 210° F viscosities of these oils can vary from 2 to 140 centistokes. Mixtures of these oils are also suitably employed.
Other additives may be present in the lubricant composition. Suitable other additives are anti-oxidants, anti-corrosive agents, anti-foam agents, pour point depressants, viscosity index improvers and additional anti-wear or load-carrying additives.
In fully formulated tableway lubricants the cosulfurized product additives of the invention showed effective anti-slick-slip properties. They also showed a good compatability with other additives in these lubricants as well as in gear oils.
The present lubricant compositions may also be thickened to a gel or to a grease using, e.g., soap-, waterproofed clay- or organic thickeners.
EXAMPLE 1
(x) One mole of rapeseed oil (933 g) was heated with stirring to about 30° C and 4.8 moles methanol (154 g) containing less than 0.1%w water to which had been added 0.05 mole sodium (1.23 g), were added gradually. The mixture was heated with stirring to 75° ± 5° C and kept at this temperature for one hour. Glycerol was then allowed to settle and the layers formed were separated. The upper layer contained the methyl esters, excess methanol and the sodium compounds, the lower layer contained glycerol.
The upper layer was neutralized with concentrated HC1. After vigorous stirring alumina was added to dry the mixture and netralize any excess HC1. The mixture was filtered and the excess methanol was distilled off. The yield of the remaining methyl esters was 96%. They were analyzed and the fatty acid moieties showed the following composition:
______________________________________                                    
Fatty acid            % by weight                                         
______________________________________                                    
C.sub.16              4.2                                                 
C.sub.18              36.9                                                
C.sub.20              12.0                                                
C.sub.22              44.4                                                
C.sub.24              0.8                                                 
Other acids           1.7                                                 
Total saturated       7.0                                                 
Total monoethylenic   71.0                                                
Total polyethylenic   22.0                                                
______________________________________                                    
The esters thus prepared were mixed with rapeseed oil and subsequently cosulfurized by heating with sulfur.
The following mixtures were prepared:
              TABLE I                                                     
______________________________________                                    
weight ratio rapeseed                                                     
oil/methyl esters         % w s                                           
______________________________________                                    
A        50/50     (1:1)          10.0                                    
B        40/60     (0.67:1)       9.1                                     
C        70/30     (2.33:1)       9.1                                     
D        35/65     (0.63:1)       9.1                                     
E         1/3*     (0.33:1)       10.0                                    
______________________________________                                    
 *mole ratio rapeseed oil/methyl oleate.?                                 
(y) Similarly, another natural rapeseed oil called Canbra rapeseed oil was treated with methanol as in (x) above yielding methyl esters of fatty acid moieties showing the following composition:
______________________________________                                    
Fatty acid            % by weight                                         
______________________________________                                    
Saturated                                                                 
 C.sub.16             5                                                   
 C.sub.18             2                                                   
Unsaturated                                                               
 C.sub.18, monoethylenic                                                  
                      63                                                  
 C.sub.18, diethylenic                                                    
                      20                                                  
 C.sub.18, triethylenic                                                   
                      9                                                   
 >C.sub.18            1                                                   
______________________________________                                    
EXAMPLE 2
Same as in Example 1 except that the sodium compounds were not removed from the esters. The esters were mixed with the rapeseed oil and the mixture was cosulfurized and filtered.
EXAMPLE 3
The anti-wear, extreme pressure and Cu-corrosion properties of the present additive mixtures were investigated and compared with sulfurized sperm oil containing 9.25% S. The base oil was a mixture of 66%w HVI (high viscosity index) mineral vacuum distilled lubricating oil and 34%w HVI Bright Stock.
The results are indicated in Table II (proportions are in %w):
                                  TABLE II                                
__________________________________________________________________________
         Sulfurized                                                       
         sperm oil     A         B   C   D   E                            
__________________________________________________________________________
Proportion                                                                
         5     8   10  5    10   5   5   5   2.5 5                        
Cu-corrosion (a)   la       lb                                            
Timken OK                                                                 
         18    22.5                                                       
                   27  25   25   27  20  22.5                             
                                             18  18                       
Load (kg) (b)                                                             
4 Ball weld                                                               
Load (kg) (c)                                                             
         <212          224                                                
__________________________________________________________________________
 (a) Cu-corrosion is performed as described in ASTM Standard Test Method D
 130-65. A polished copper strip is immersed in a sample of oil and heated
 at a temperature of 212° F (100° C) for a period of 3 hours
 At the end of this period the copper strip is removed, washed and compare
 with ASTM Copper Strip Corrosion standards.                              
 (b) Timken OK Load is determined according to ASTM Tentative Test Method 
 2509-66T. The Timken tester is operated with a steel test cup rotating   
 against a steel test block. The rotating speed is 405.88 ± 2.45 ft/min
 An oil is used instead of the grease mentioned in the test method. The   
 maximum load which can be applied without rupturing the lubricant film an
 causing abrasion between the rotating cup and the stationary block is the
 Timken OK Load.                                                          
 (c) 4-Ball Weld Load is determined in accordance with ASTM Tentative Test
 Method D 2596-67T. The tester is operated with one steel ball under load 
 rotating against three steel balls held stationary in the form of a      
 cradle. The rotating speed is 1770 ± 60 rpm. Lubricating oil is brough
 to 80 ± 15° F and then subjected to a series of tests of 10 sec
 duration at increasing loads until welding occurs.                       
From Table II it follows that the present additives, in particular additive A, have excellent load-carrying properties.
In Table III the anti-oxidant properties of additive A are indicated,
              TABLE III                                                   
______________________________________                                    
                  RBOT Life                                               
                  minutes                                                 
______________________________________                                    
Base oil (same as in                                                      
 Table II)           20                                                   
Base oil + 2% A     170                                                   
Base oil + 5% A     310                                                   
______________________________________                                    
RBOT stands for Rotating Bomb Oxidation Test and is performed in accordance with ASTM Standard Test Method D 2272-67. A test oil, water and copper catalyst coil, contained in a covered glass container, are placed in a bomb equipped with a pressure gauge. The bomb is charged with oxygen to a pressure of 90 psi, placed in a constant temperature bath set at 150° C, and rotated axially at 100 rpm at an angle of 30° from the horizontal. The time for the test oil to react with a given volume of oxygen is measured: completion of the time is indicated by pressure drop of 25 psi.
EXAMPLE 4
The following triglycerides and 1:1 by weight mixtures of triglycerides and methyl esters obtained from the alcoholysis of each triglyceride with methanol (by the procedure of Example 1 (x) above) were sulfurized by heating with 10% by weight of sulfur at a temperature of 350° F ± 5° over a time period indicated in the accompanying FIGURE:
______________________________________                                    
     Triglyceride or  Iodine Value of Representative                      
No.  Triglyceride-Ester Mixture                                           
                      Samples of Triglyceride                             
______________________________________                                    
1    Rapeseed Oil      81-140                                             
2    Soya Bean Oil    120-141                                             
3    Lard Oil         53-77                                               
4    1:1 Methyl ester/oil                                                 
     mixture of Rapeseed Oil                                              
                       81-140                                             
5    1:1 Methyl ester/oil                                                 
     mixture of Soya Bean Oil                                             
                      120-141                                             
6    1:1 Methyl ester/oil                                                 
     mixtures of Lard Oil                                                 
                      53-77                                               
______________________________________                                    
The viscosity of each of the above was determined over the time interval of sulfurization and plotted as shown in said FIGURE. It is apparent from curves numbered 1 and 2 that triglycerides illustrative of triglycerides of iodine value greater than 80, namely, rapeseed oil and soya bean oil, become polymerized to a rubber-like consistency and are only sparingly soluble in hydrocarbon lubricating oils. Curve number 3 shows that triglyceride of low iodine value, namely, lard oil, is sulfurized to a product of relatively low viscosity and high solubility in hydrocarbon lubricating oil. The triglycerides of iodine value greater than 80 can be sulfurized to low viscosity, hydrocarbon lubricating oil-soluble materials only when cosulfurized as methyl ester/triglyceride mixture as shown by curves 4 and 5. Curve 6 indicates that cosulfurized product of methyl esters of lard oil admixed with lard oil, i.e., triglyceride of low iodine value, is similar in viscosity and solubility to the mixtures based on triglyceride of iodine value greater than 80 (curves 4 and 5) but the product (6) based on triglyceride of low iodine value is not the equivalent in properties or performance as can be seen from the data in Example 5 following.
EXAMPLE 5
A cosulfurized product was prepared from a 1:1 by weight mixture of each fatty triglyceride indicated in Table IV and its methyl esters. Table IV also describes some physical properties of the cosulfurized products and their performance properties as additive at 5.0% by weight in HVI, SAE 90 grade base lubricating oil. Both products were 100% soluble in the mineral oil. However, the product based on triglyceride of iodine value greater than 80 (rapeseed oil) has superior low temperature properties, as indicated by pour point value, compared to the product based on triglyceride of low iodine value (lard oil). When used in mineral lubricating oil the product based on triglyceride of iodine value greater than 80 demonstrates superior load-carrying capacity, as indicated by Load-Wear Index value and Timken OK Load value, compared to the product based on triglyceride of low iodine value.
                                  TABLE IV                                
__________________________________________________________________________
COMPARISON OF SULFURIZED FATTY OILS --                                    
METHYL ESTER MIXTURES                                                     
                   Sulfurized Methyl Ester/Oil Mixture                    
                   Rapeseed Oil                                           
                             Lard Oil                                     
__________________________________________________________________________
Physical Properties                                                       
Iodine value       81-140    53-77                                        
Pour Point, ° F                                                    
                   0         40                                           
Sulfur, % wt       9.3.sup.a)                                             
                             6.8.sup.a)                                   
Performance at 5.0% wt in HVI, SAE 90 Base Oil                            
Solubility, % wt. of Additive                                             
                   100       100                                          
Timken OK Load, lbs.                                                      
                   40        20                                           
Load-Wear Index    47.7      37.0                                         
Rotary Bomb Oxidation Test, Min.                                          
                   250       150                                          
Copper Corrosion, ASTM D-130,                                             
 3 Hrs. at 212° F                                                  
                   1a        1a                                           
__________________________________________________________________________
 .sup.a) equivalent of 1 mol of sulfur per ethylenic double bond.         
EXAMPLE 6
A cosulfurized product was prepared from a mixture of the triglyceride, rapeseed oil, (of Example 1 (y)) and each of two alkyl esters. The alkyl esters are alkyl oleates, produced from commercial oleic acid, which contains about 70% by weight of oleic acid, i.e., about 70% monoethylenically unsaturated C18 fatty acid. The alkyl oleates employed are methyl oleate from methanol and C14-15 alkyl oleate from a mixed C14-15 alcohol. Table V describes some physical properties of the two cosulfurized products and their performance properties as additives at 5.0% by weight in HVI, SAE 90 grade base lubricating oil.
                                  TABLE V                                 
__________________________________________________________________________
COSULFURIZED PRODUCTS FROM MIXTURES OF                                    
ALKYL OLEATES AND RAPESEED OIL                                            
                   Methyl Oleate                                          
                            C.sub.14.sub.--15 Alkyl Oleate                
__________________________________________________________________________
Properties                                                                
Alcohol Chain Length                                                      
                    1       14-15                                         
Fatty Oil           Rapeseed                                              
                            Rapeseed                                      
Ester/Oil Ratio, Wt.                                                      
                    1.22:1  1.22:1                                        
Sulfur Content, % Wt.                                                     
                    9.5     9.5                                           
Viscosity at 100° F, SUS                                           
                    773     2075                                          
Performance at 5.0% wt in HVI, SAE 90 Grade Base Oil.sup.a)               
Viscosity at 210° F, Cs                                            
                    17.2    17.6                                          
Rotary Bomb Oxidation Test, Min.                                          
                    280     275                                           
C.O.C. Flash Point, ° F                                            
                    450     500                                           
Pour Point, ° F                                                    
                    0       30                                            
Copper Corrosion, ASTM D-130,                                             
 3 Hrs. at 212° F                                                  
                    1a      1b                                            
Load-Wear Index     49.8    48.8                                          
4-Ball Wear Scar, mm                                                      
                    0.52    0.55                                          
Solubility (Appearance of Sol'n.)                                         
                    Clear   Cloudy                                        
__________________________________________________________________________
 .sup.a) Pour Point of Base Oil = 0° F.                            
The above data demonstrate that, surprisingly, cosulfurized product made from a lower alkyl ester (methyl ester) and a triglyceride of iodine value greater than 80 (rapeseed oil) in comparison to a corresponding product based on a higher alkyl ester (C14-15 alkyl ester) exhibits superior low temperature performance (cf. pour point values) in a lubricant blend with no harmful effect on flash point or load-carrying capacity. As a matter of fact, the improved low temperature flowability in the lubricant blend has been achieved not only without any sacrifice in load-carrying ability but with some gain therein (cf. load-wear index and 4-ball wear scar values). Additional advantage found with the methyl ester product is its complete solubility in mineral lubricating oil. The higher alkyl ester product produces a slightly cloudy solution in lubricating oil; such haze usually results in a precipitation or sludge formation on standing or with use.
EXAMPLE 7
Mineral lubricating oil having incorporated therein 7% by weight of the cosulfurized product of Example 6 made from methyl ester was thickened to a grease consistency of Grade 1 having a penetration at room temperature of 325≅ by use of a lithium soap, namely, lithium 12-hydroxystearate soap; this composition is designated (a) in Table VI. A corresponding composition, designated (b) in Table VI, was produced containing 7% by weight by the cosulfurized product of Example 6 made from C14-15 alkyl ester. The two greases were subjected to temperatures of -30° F and -40° F and the following properties were obtained:
                                  TABLE VI                                
__________________________________________________________________________
LOW TEMPERATURE FLOW PROPERTIES OF MINERAL LUBRICATING                    
OIL CONTAINING SULFURIZED ALKYL ESTER/RAPESEED OIL                        
MIXTURE AND THICKENED TO GREASE consistency                               
__________________________________________________________________________
Temperature                                                               
-30° F        -40° F                                        
           Ventmeter        Ventmeter                                     
Penetration                                                               
           (lbs/in.sup.2)                                                 
                     Penetration                                          
                            (lbs/in.sup.2)                                
Grease                                                                    
    Undisturbed                                                           
           30 sec.                                                        
                 3 min                                                    
                     Undisturbed                                          
                            30 sec.                                       
                                  3 min                                   
__________________________________________________________________________
(a) 228    240   140 210     740  230                                     
(b) 187    640   210 182    1600  530                                     
__________________________________________________________________________
The above data indicate that the superior low temperature flow properties of the lubricant containing additive based on methyl ester, as compared to lubricant containing additive based on higher alkyl ester, accrued to grease produced therefrom. More particularly, the ventmeter data demonstrate that a lower force was required to push the same amount of grease based on methyl ester additive in the same time interval, thereby indicating a significant difference in pumpability of that grease compared to the corresponding grease based on the higher alkyl ester additive.

Claims (10)

What is claimed is:
1. A lubricant composition comprising a lubricating oil and from about 0.1 to about 20% by weight on the composition of a cosulfurized mixture of (a) a triglyceride having an iodine value greater than 80 and (b) nonwax ester comprising the methyl ester of a fatty acid having from 18 to 22 carbon atoms or a mixture thereof, said fatty acid being predominantly monoethylenically unsaturated, wherein the sulfur content of the cosulfurized mixture of (a) and (b) is from about 1 to about 40% by weight and wherein the weight ratio of (a):(b) is in the range of from about 0.1:1 to about 10:1.
2. A composition according to claim 1 wherein said triglyceride has an iodine value no greater than about 200.
3. A composition according to claim 2 wherein said triglyceride has an iodine value no greater than about 180.
4. A composition according to claim 3 wherein said triglyceride is rapeseed oil.
5. A composition according to claim 4 wherein said nonwax ester is the methyl ester of rapeseed fatty acids.
6. A composition according to claim 4 wherein said nonwax ester is predominantly methyl oleate.
7. A composition according to claim 1 wherein the sulfur content of said cosulfurized mixture is from about 5 to about 30% by weight.
8. A composition according to claim 1 wherein said weight ratio of (a):(b) is in the range of from about 0.3:1 to about 3:1.
9. A composition according to claim 1 wherein said cosulfurized mixture is present in amount of from about 1 to about 10% by weight.
10. A composition according to claim 7 wherein the sulfur content of said cosulfurized mixture is about 10% by weight.
US05/559,096 1972-01-10 1975-03-17 Cosulfurized products of high iodine valve triglyceride and nonwax ester of monoethenoid fatty acid as lubricant additives Expired - Lifetime US3986966A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE2260968A DE2260968A1 (en) 1972-01-10 1972-12-13 LUBRICANT MIXTURE AND ADDITIVE MIXTURE FOR ITS PRODUCTION
GB5747472A GB1413670A (en) 1972-01-10 1972-12-13 Sulphurized mixtures of carboxylic acid esters and their use in extreme pressure lubricants
FR7244314A FR2167527B1 (en) 1972-01-10 1972-12-13
US05/559,096 US3986966A (en) 1972-01-10 1975-03-17 Cosulfurized products of high iodine valve triglyceride and nonwax ester of monoethenoid fatty acid as lubricant additives

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CA132071 1972-01-10
CA132,071A CA1029363A (en) 1972-01-10 1972-01-10 Non-marine mixtures of fatty acids and fatty esters and fatty glycerides and their sulfurized derivatives as lubricant additives
US32161473A 1973-01-08 1973-01-08
US05/559,096 US3986966A (en) 1972-01-10 1975-03-17 Cosulfurized products of high iodine valve triglyceride and nonwax ester of monoethenoid fatty acid as lubricant additives

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US32161473A Continuation-In-Part 1972-01-10 1973-01-08

Publications (1)

Publication Number Publication Date
US3986966A true US3986966A (en) 1976-10-19

Family

ID=27161689

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/559,096 Expired - Lifetime US3986966A (en) 1972-01-10 1975-03-17 Cosulfurized products of high iodine valve triglyceride and nonwax ester of monoethenoid fatty acid as lubricant additives

Country Status (4)

Country Link
US (1) US3986966A (en)
DE (1) DE2260968A1 (en)
FR (1) FR2167527B1 (en)
GB (1) GB1413670A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134845A (en) * 1976-12-14 1979-01-16 Shell Oil Company Sulphurized material and a lubricant composition
US4925581A (en) * 1988-07-19 1990-05-15 International Lubricants, Inc. Meadowfoam oil and meadowfoam oil derivatives as lubricant additives
US4959168A (en) * 1988-01-15 1990-09-25 The Lubrizol Corporation Sulfurized compositions, and additive concentrates and lubricating oils containing same
US4970010A (en) * 1988-07-19 1990-11-13 International Lubricants, Inc. Vegetable oil derivatives as lubricant additives
US5240625A (en) * 1989-03-23 1993-08-31 Bp Chemicals (Additives) Limited Lubricating oil additives
US5282989A (en) * 1988-07-19 1994-02-01 International Lubricants, Inc. Vegetable oil derivatives as lubricant additives
US5663128A (en) * 1993-09-20 1997-09-02 Ciba-Geigy Corporation Liquid antioxidants as stabilizers
US6054418A (en) * 1996-03-19 2000-04-25 Institut Francais Du Petrole Process for sulfurizing unsaturated fatty substances by elementary sulfur in the presence of amino compounds
US20050197390A1 (en) * 2004-02-17 2005-09-08 Chevron Phillips Chemical Company Lp Thiol ester compositions and processes for making and using same
US20060009365A1 (en) * 2004-07-08 2006-01-12 Erhan Sevim Z Poly(hydroxy thioether) vegetable oil derivatives useful as lubricant additives
US20060111520A1 (en) * 2004-02-17 2006-05-25 Chevron Phillips Chemical Company Lp Polythiorethane compositions and processes for making and using same
US20070055033A1 (en) * 2005-08-16 2007-03-08 Chevron Phillips Chemical Company, Lp Polymer compositions and processes for making and using same
US20070112100A1 (en) * 2005-08-16 2007-05-17 Chevron Phillips Chemical Company, Lp Mercaptan-hardened epoxy polymer compositions and processes for making and using same
US20080214774A1 (en) * 2007-03-01 2008-09-04 Chevron Phillips Chemical Company, Lp Thiourethane Compositions and Processes for Making and Using Same
US20090124762A1 (en) * 2007-11-08 2009-05-14 Brown Chad W Methods and systems for the selective formation of thiourethane bonds and compounds formed therefrom
US20090124784A1 (en) * 2007-11-08 2009-05-14 Brown Chad W Methods and compounds for curing polythiourethane compositions

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4201684A (en) * 1978-11-13 1980-05-06 Ethyl Corporation Lubricant composition of improved friction reducing properties
FR2757535A1 (en) * 1996-12-19 1998-06-26 Inst Francais Du Petrole Sulphuration of unsaturated fatty ester(s)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3740333A (en) * 1971-06-28 1973-06-19 Emery Industries Inc Compositions useful as sperm oil substitutes
US3850825A (en) * 1973-01-02 1974-11-26 Standard Oil Co Sulfurized fatty oils

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3740333A (en) * 1971-06-28 1973-06-19 Emery Industries Inc Compositions useful as sperm oil substitutes
US3850825A (en) * 1973-01-02 1974-11-26 Standard Oil Co Sulfurized fatty oils

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134845A (en) * 1976-12-14 1979-01-16 Shell Oil Company Sulphurized material and a lubricant composition
US4959168A (en) * 1988-01-15 1990-09-25 The Lubrizol Corporation Sulfurized compositions, and additive concentrates and lubricating oils containing same
US4925581A (en) * 1988-07-19 1990-05-15 International Lubricants, Inc. Meadowfoam oil and meadowfoam oil derivatives as lubricant additives
US4970010A (en) * 1988-07-19 1990-11-13 International Lubricants, Inc. Vegetable oil derivatives as lubricant additives
US5282989A (en) * 1988-07-19 1994-02-01 International Lubricants, Inc. Vegetable oil derivatives as lubricant additives
US5240625A (en) * 1989-03-23 1993-08-31 Bp Chemicals (Additives) Limited Lubricating oil additives
US5663128A (en) * 1993-09-20 1997-09-02 Ciba-Geigy Corporation Liquid antioxidants as stabilizers
US6054418A (en) * 1996-03-19 2000-04-25 Institut Francais Du Petrole Process for sulfurizing unsaturated fatty substances by elementary sulfur in the presence of amino compounds
US20060111520A1 (en) * 2004-02-17 2006-05-25 Chevron Phillips Chemical Company Lp Polythiorethane compositions and processes for making and using same
US7713326B2 (en) 2004-02-17 2010-05-11 Agrium Inc. Controlled release fertilizer material and process for production thereof
US20060000252A1 (en) * 2004-02-17 2006-01-05 Carstens Leslie L Controlled release fertilizer material and process for production thereof
US20050197390A1 (en) * 2004-02-17 2005-09-08 Chevron Phillips Chemical Company Lp Thiol ester compositions and processes for making and using same
US20050197391A1 (en) * 2004-02-17 2005-09-08 Chevron Phillips Chemical Company Lp Thiol ester compositions and processes for making and using same
US8003748B2 (en) 2004-02-17 2011-08-23 Chevron Phillips Chemical Company, Lp Polythiourethane compositions and processes for making and using same
US7989655B2 (en) 2004-02-17 2011-08-02 Chevron Phillips Chemical Company Lp Thiol ester compositions and processes for making and using same
US7781484B2 (en) 2004-02-17 2010-08-24 Chevron Phillips Chemical Company Lp Thiol ester compositions and processes for making and using same
US20060009365A1 (en) * 2004-07-08 2006-01-12 Erhan Sevim Z Poly(hydroxy thioether) vegetable oil derivatives useful as lubricant additives
US7279448B2 (en) 2004-07-08 2007-10-09 The United States Of America, As Represented By The Secretary Of Agriculture Poly(hydroxy thioether) vegetable oil derivatives useful as lubricant additives
US20070055033A1 (en) * 2005-08-16 2007-03-08 Chevron Phillips Chemical Company, Lp Polymer compositions and processes for making and using same
US7585932B2 (en) * 2005-08-16 2009-09-08 Chevron Phillips Chemical Company Lp Polymer compositions and processes for making and using same
US7910666B2 (en) 2005-08-16 2011-03-22 Chevron Phillips Chemical Company Lp Mercaptan-hardened epoxy polymer compositions and processes for making and using same
US20070112100A1 (en) * 2005-08-16 2007-05-17 Chevron Phillips Chemical Company, Lp Mercaptan-hardened epoxy polymer compositions and processes for making and using same
US20080214774A1 (en) * 2007-03-01 2008-09-04 Chevron Phillips Chemical Company, Lp Thiourethane Compositions and Processes for Making and Using Same
US20090124784A1 (en) * 2007-11-08 2009-05-14 Brown Chad W Methods and compounds for curing polythiourethane compositions
US20090124762A1 (en) * 2007-11-08 2009-05-14 Brown Chad W Methods and systems for the selective formation of thiourethane bonds and compounds formed therefrom

Also Published As

Publication number Publication date
GB1413670A (en) 1975-11-12
FR2167527B1 (en) 1978-06-30
DE2260968A1 (en) 1973-07-19
FR2167527A1 (en) 1973-08-24

Similar Documents

Publication Publication Date Title
US3986966A (en) Cosulfurized products of high iodine valve triglyceride and nonwax ester of monoethenoid fatty acid as lubricant additives
US6051539A (en) Process for modifying unsaturated triacylglycerol oils resulting products and uses thereof
US4152278A (en) Wax esters of vegetable oil fatty acids useful as lubricants
US6291409B1 (en) Process for modifying unsaturated triacylglycerol oils; Resulting products and uses thereof
US4925581A (en) Meadowfoam oil and meadowfoam oil derivatives as lubricant additives
EP0353872B1 (en) Vegetable oil derivatives as lubricant additives
USRE34914E (en) Lubricant oil for refrigerators
CA1111017A (en) Compositions useful as sperm oil substitutes
US5023312A (en) Meadowfoam oil and meadowfoam oil derivatives as lubricant additives
US5282989A (en) Vegetable oil derivatives as lubricant additives
CN102292424A (en) Flame retardant hydraulic oil composition
US6028038A (en) Halogenated extreme pressure lubricant and metal conditioner
US2680094A (en) Rust preventive oil composition
US2672444A (en) Rust preventive compositions
US2179061A (en) Manufacture of lubricating compositions
US2307183A (en) Extreme pressure lubricant
US4134845A (en) Sulphurized material and a lubricant composition
US2450254A (en) Lithium base grease and method of preparing the same
US4166796A (en) Composition comprising a cosulfurized blend of lard oil and an olefin
US2999065A (en) Lubricant containing a calcium saltcalcium soaps mixture and process for forming same
EP1051465A4 (en) Biodegradable oleic estolide ester base stocks and lubricants
US4166797A (en) Oil containing a consulfurized olefin-triglyceride blend
US4487705A (en) Oil containing a cosulfurized olefin-triglyceride blend
US2179065A (en) Manufacture of sulphurized monoesters of fatty acids
US4456540A (en) Process of sulfurizing triglyceride and an olefin