US4017432A - Polyepoxide compositions exhibiting improved physical properties - Google Patents

Polyepoxide compositions exhibiting improved physical properties Download PDF

Info

Publication number
US4017432A
US4017432A US05/722,848 US72284876A US4017432A US 4017432 A US4017432 A US 4017432A US 72284876 A US72284876 A US 72284876A US 4017432 A US4017432 A US 4017432A
Authority
US
United States
Prior art keywords
composition
acid
acids
carbon atoms
polyepoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/722,848
Inventor
James E. Carey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell USA Inc
Original Assignee
Shell Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Oil Co filed Critical Shell Oil Co
Priority to US05/722,848 priority Critical patent/US4017432A/en
Application granted granted Critical
Publication of US4017432A publication Critical patent/US4017432A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4215Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof cycloaliphatic

Definitions

  • Dimer and trimer acids are produced commercially by polymerization of unsaturated C 18 fatty acids and as supplied, they are essentially mixtures of dimer (C 36 dibasic) and trimer (C 54 tribasic) acids and residual monocarboxylic acids. Those with high trimer content are designated trimer acids and those with dimer content, dimer acids.
  • dicarboxylic acids such as the C 21 dicarboxylic acid were found to be compatible with epoxy resins at about 50°-60° C; however, when such diacids were used to cure epoxy resins the resulting cured resins are not flexible enough for many end uses.
  • mixtures of the polymeric acids and diacid are compatible with epoxy resins at 60° C to 125° C, especially at intermediate temperatures e.g., 60° to 90° C. It has also been found that the resulting cured compositions exhibit excellent improved tensile strength and elongation.
  • Epoxy compositions exhibiting tensile strengths of about 5000 psi and elongation of greater than 100% are prepared by reacting (1) a polyepoxide, preferably a glycidyl polyether of a polyhydric phenol, with (2) a curing amount of a blend or mixture of (a) a polymerized fatty acid and (b) an organic polycarboxylic acid.
  • a polyepoxide preferably a glycidyl polyether of a polyhydric phenol
  • the polyepoxide materials to be used in preparing the condensates of the present invention comprise those organic material which have more than one vic-epoxy group, i.e., more than one ##STR1## group, which group may be in a terminal position, i.e., a ##STR2## group, or in an internal position, i.e., a ##STR3##
  • the polyepoxides may be saturated or unsaturated, aliphatic, cycloaliphatic, aromatic or heterocyclic and may be substituted with substituents, such as chlorine, hydroxyl groups, ether radicals, and the like.
  • polyepoxides examples include, among others, 1,4-bis(2,3-epoxypropoxy)benzene, 1,3-bis(2,3-epoxypropyl)benzene, 4,4'bis(2,3-epoxypropoxy)diphenyl ether, 1,8-bis(2,3-epoxypropoxy)octane, 1,4-bis(2,3-epoxypropoxy)cyclohexane, 4,4'-bis(2-hydroxy-3,4'-epoxybutoxy) -diphenyl dimethylmethane, 1,3-bis(4,5-epoxypentoxy-5-chlorobenzene, 1,4-bis (3,4-epoxybutoxy)-2-cyclorocyclohexane, 1,3-bis(2-hydroxy-3,4-epoxybutoxy)benzene, 1,4-bis(2-hydroxy-4,5-epoxypentoxy)benzene.
  • polyhydric phenols obtained by reacting a polyhydric phenol with a halogen-containing epoxide or dihalohydrin in the presence of an alkaline medium.
  • Polyhydric phenols that can be used for this purpose include, among others, resorcinol, catechol, hydroquinone, methyl resorcinol, or polynuclear phenols, such as 2,2-bis(4-hydroxypenyl)propane (Bis-phenol A), 2,2-bis(4-hydroxyphenol)butane, 4,4'-dihydroxybenzophenone, bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl)pentane and 1,5-dihydroxynaphthalene.
  • resorcinol catechol
  • hydroquinone methyl resorcinol
  • polynuclear phenols such as 2,2-bis(4-hydroxypenyl)propane (Bis-phenol A), 2,2-bis(4-hydroxyphenol)
  • halogen-containing epoxides may be further exemplified by 3-chloro-1,2epoxybutane, 3-bromo-1,2-epoxyhexane, 3-chloro-1,2-epoxyoctane, and the like.
  • a preferred group of the above-described epoxy polyethers of polyhydric phenols are glycidyl polyethers of the dihydric phenols. These may be prepared by reacting the required proportions of the dihydric phenol and epichlorohydrin in an alkaline medium. The desired alkalinity is obtained by adding basic substances such as sodium or potassium hydroxide, preferably in stoichiometric excess to the epichlorohydrin. The reaction is preferably accomplished at temperatures within the range of 50° C to 150° C. The heating is continued for several hours to effect the reaction and the product is then washed free of salt and base.
  • the polymerized unsaturated long chain fatty acids suitable for use in the present invention are those obtained by polymerizing unsaturated long chain acids under known conditions such as heat, peroxides and the like.
  • the dimer acids comprise acids obtained by polymerizing unsaturated fatty acids, such as soya bean oil fatty acids and the like. Particularly preferred are the dimerized acids obtained from the ethylenically unsaturated fatty acids or mixtures thereof derived from semi-drying and drying oils, and particularly the conjugated fatty acids containing at least 12 and generally from about 12 to about 20 carbon atoms, such as 9,11-octadecadienoic acid and other acids within the generic formula
  • R is a --R 2 COOH radical
  • R 1 is either a --R 2 COOH group or an alkyl radical
  • R 2 is an alkyl radical.
  • dimer acids polymerize to form dimer acids of the general formula ##STR4##
  • Other suitable dimer acids include those obtained from linoleic acid, linolenic acid, eleosteric acid, and ricinoleic acid.
  • Still another group of dimers are those obtained from dibasic acids such as 8,12-eicosadiene-1,20-dioic acid, 8-vinyl-10-octadecene-1,18-dioic acid, 7,11-octadecadiene-1,18-dioic acid, and the like.
  • a suitable such acid includes Empol 1014a viscous aliphatic polybasic acid produced by the polymerization of unsaturated fatty acids at mid-molecule and containing 1% C 18 monobasic fatty acid, 95% C 36 dibasic fatty acid, and 4% C 54 tribasic fatty acid, acid value 188-193, saponification value 194-198 and neutralization equivalent 292-298.
  • Empol 1016 dimer acid of less than 1% monobasic acid; neutralization equivalent 284-295; acid value 190-198; and saponification value 194-200).
  • trimerized acids obtained from the ethylenically unsaturated fatty acids as derived from semi-drying and drying oils, and particularly, the conjugated fatty acids containing from 12 to 20 carbon atoms.
  • the generic structure of the resulting trimerized acids is believed to be that of the following: ##STR5##
  • R 1 , R 2 and R 3 constitute alkylene radicals having between 4 and 10 carbon atoms each
  • R 4 , R 5 and R 6 are alkyl radicals having between 4 and 10 carbon atoms each.
  • the products will have the generic formula as follows. ##STR6##
  • the organic polybasic acids useful in the present invention are the dicarboxylic fatty acids of the general formula: ##STR7## wherein R 1 is an alkyl group of up to about 10 carbon atoms and R 2 is an alkylene group of up to 12 carbon atoms.
  • a particularly useful acid is a liquid C 21 organic acid having the following type structure: ##STR8##
  • epoxy-carboxyl reaction does not require a catalyst, it is usually desirable to utilize one.
  • Preferred catalysts include the imidazoles, benzimidazoles and their salts; stannous salts of monocarboxylic acids; organic phosphines; and phosphonium halides; and tertiary amines.
  • Suitable organic phospines are those having the general formula: ##STR9## wherein each R is a hydrogen, an organic radical, particularly an alkyl or aryl radical.
  • Useful phosphines include triphenyl phosphine and tributylphosphine among others.
  • the phosphine catalyst is generally used in the range of about 0.05 to 5% by weight of reactants.
  • Suitable phosphonium halides include those of the general formula: ##STR10## wherein X is a halogen and R 1 ,R 2 , R 3 and R 4 are the same or different hydrocarbon radicals containing from 1 to 18 carbon atoms.
  • the phosphonium halides are generally utilized in an amount from about 0.05to 10% based on the weight of reactants.
  • Suitable stannous salts are the stannous salts of monocarboxylic acids having at least 5 carbon atoms, preferably fatty acids containing from about 5 to about 20 carbon atoms and more preferably from about 6 to 12 carbon atoms.
  • Preferred stannous salts are stannous caproate, stannous octoate, stannous laurate, stannous palmitate, stannous stearate, stannous oleate, and stannous naphthenate.
  • the acid portion of the salt is selected from an acid, such as phosphoric, acetic, lactic, formic, propionic, and the like.
  • Especially preferred imidazoles are those wherein the substituent is hydrogen or a hydrocarbon radical and preferably an alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, alkaryl or arylalkyl radicals, and particularly those containing no more than 15 carbon atoms and wherein the acid is selected from monocarboxylic acids having from 1 to 8 carbon atoms, lactic, and phosphoric acids.
  • imidazole salts include, among others, the acetate, formate, lactate, and phosphate salts of imidazole, benzimidazole and substituted examples of suitable substituted imidazoles include: 2-methylimidazole: 2ethyl-4methylimidazole; 2-cyclohxyl-4-mthylimidazoles; 4-butyl-5ethylimidazole; 2-butoxy-4-allylimidazole; 2-carboethioxybutyl-4-methylimidazole; 2-octyl-4-hexylimidazole; 2-methyl-5-ethylimidazole; 2methyl-4-(2ethylamino-imidazole; 2-methyl-4-mercaptoethylimidazole; 2,5-chloro-4-ethylimidazole; and mixtures thereof.
  • alkyl-substituted imidazole acetates and lactates wherein the alkyl groups contain not more than 8 carbon atoms each, or mixtures thereof, and particularly preferred are 2-ethyl-4methyl-imidazole acetate, 2-ethyl-4methylimidazole lactate, 2-methylimidazole acetate, 2-methylimidazole lactate, imidazole acetate; imidazole lactate, and mixtures thereof.
  • Suitable tertiary amines may be either aliphatic or aromatic substituted derivatives such as trimethylamine, triethylamine, benzyldimethylamine, alpha-methylbenzyl dimethylamine, dimethyl amino methyl phenol (DMP-10), tridimethyl amino methyl phenol (DMP-30), and the like.
  • tertiary amine salts may be useful such as DMP30 triacetate, DMP-30 tribenzoate, and the tri-2-ethyl hexoate salt of DMP-30.
  • BDMA benzyldimethylamine
  • the ratios of the acid components can be varied within wide limits; however, the weight ratio of polymeric fatty acid to organic polybasic acid in the curing blend will generally be from about 1:10 to 10:1 and preferably from about 1:5 to 5:1 to achieve the highest tensile elongation together with maximum strength and compatibility.
  • the epoxy resin is reacted with the carboxylic acid blend at a temperature from about 60° to about 125° C, preferably from 60° to 90° C for about 0.5 to 2 hours.
  • EPON Resin 828 a diglycidyl polyether of Bisphenol A having an average molecular weight of about 380 and an epoxide equivalent weight of 180
  • EMPOL Dimer Acid 1016 a dimerized C 36 fatty acid having a neutralization equivalent of 284-295) and acid value of 190-198; a saponification value of 94-200; a Gardner 1963 color of 7 max; and containing less than 1% C 18 monobasic fatty acids

Abstract

Epoxy resins cured with a mixture of (1) a liquid dicarboxylic organic acid and (2) a polymeric fatty acid exhibit improved tensile strength and elongation.

Description

BACKGROUND OF THE INVENTION
This application is a continuation-in-part application of Ser. No. 623,521 field Oct. 17, 1975, now abandoned.
Dimer and trimer acids are produced commercially by polymerization of unsaturated C18 fatty acids and as supplied, they are essentially mixtures of dimer (C36 dibasic) and trimer (C54 tribasic) acids and residual monocarboxylic acids. Those with high trimer content are designated trimer acids and those with dimer content, dimer acids.
These viscous, liquid organic acids find a wide variety of applications, including reacting with epoxy resins to produce electrical potting and encapsulating compositions, adhesives and laminates. See, for example, U.S. Pat. Nos. 3,324,041 and 3,446,762, Unfortunately, the commercially obtainable dimer and trimer acids are not generally compatible with epoxy resins at temperatures below about 125° C.
Certain dicarboxylic acids such as the C21 dicarboxylic acid were found to be compatible with epoxy resins at about 50°-60° C; however, when such diacids were used to cure epoxy resins the resulting cured resins are not flexible enough for many end uses.
It has now been found, quite unexpectedly that mixtures of the polymeric acids and diacid are compatible with epoxy resins at 60° C to 125° C, especially at intermediate temperatures e.g., 60° to 90° C. It has also been found that the resulting cured compositions exhibit excellent improved tensile strength and elongation.
SUMMARY OF THE INVENTION
Epoxy compositions exhibiting tensile strengths of about 5000 psi and elongation of greater than 100% are prepared by reacting (1) a polyepoxide, preferably a glycidyl polyether of a polyhydric phenol, with (2) a curing amount of a blend or mixture of (a) a polymerized fatty acid and (b) an organic polycarboxylic acid.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Polyepoxides
The polyepoxide materials to be used in preparing the condensates of the present invention comprise those organic material which have more than one vic-epoxy group, i.e., more than one ##STR1## group, which group may be in a terminal position, i.e., a ##STR2## group, or in an internal position, i.e., a ##STR3## The polyepoxides may be saturated or unsaturated, aliphatic, cycloaliphatic, aromatic or heterocyclic and may be substituted with substituents, such as chlorine, hydroxyl groups, ether radicals, and the like.
Examples of such polyepoxides, include, among others, 1,4-bis(2,3-epoxypropoxy)benzene, 1,3-bis(2,3-epoxypropyl)benzene, 4,4'bis(2,3-epoxypropoxy)diphenyl ether, 1,8-bis(2,3-epoxypropoxy)octane, 1,4-bis(2,3-epoxypropoxy)cyclohexane, 4,4'-bis(2-hydroxy-3,4'-epoxybutoxy) -diphenyl dimethylmethane, 1,3-bis(4,5-epoxypentoxy-5-chlorobenzene, 1,4-bis (3,4-epoxybutoxy)-2-cyclorocyclohexane, 1,3-bis(2-hydroxy-3,4-epoxybutoxy)benzene, 1,4-bis(2-hydroxy-4,5-epoxypentoxy)benzene.
Other examples include the epoxy polyethers of polyhydric phenols obtained by reacting a polyhydric phenol with a halogen-containing epoxide or dihalohydrin in the presence of an alkaline medium. Polyhydric phenols that can be used for this purpose include, among others, resorcinol, catechol, hydroquinone, methyl resorcinol, or polynuclear phenols, such as 2,2-bis(4-hydroxypenyl)propane (Bis-phenol A), 2,2-bis(4-hydroxyphenol)butane, 4,4'-dihydroxybenzophenone, bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl)pentane and 1,5-dihydroxynaphthalene. The halogen-containing epoxides may be further exemplified by 3-chloro-1,2epoxybutane, 3-bromo-1,2-epoxyhexane, 3-chloro-1,2-epoxyoctane, and the like. By varying the ratios of the phenol and epichlorohydrin one obtains different molecular weight products as shown in U.S. Pat. No. 2,633,458.
A preferred group of the above-described epoxy polyethers of polyhydric phenols are glycidyl polyethers of the dihydric phenols. These may be prepared by reacting the required proportions of the dihydric phenol and epichlorohydrin in an alkaline medium. The desired alkalinity is obtained by adding basic substances such as sodium or potassium hydroxide, preferably in stoichiometric excess to the epichlorohydrin. The reaction is preferably accomplished at temperatures within the range of 50° C to 150° C. The heating is continued for several hours to effect the reaction and the product is then washed free of salt and base.
The preparation of suitable glycidyl polyethers of polyhydric phenols as well as examples of other suitable epoxy compounds are described in U.S. Pat. No. 3,219,602, and so much of that disclosure relevant to epoxy resins is incorporated herein by reference.
Polymeric Fatty Acids
The polymerized unsaturated long chain fatty acids suitable for use in the present invention are those obtained by polymerizing unsaturated long chain acids under known conditions such as heat, peroxides and the like.
The dimer acids comprise acids obtained by polymerizing unsaturated fatty acids, such as soya bean oil fatty acids and the like. Particularly preferred are the dimerized acids obtained from the ethylenically unsaturated fatty acids or mixtures thereof derived from semi-drying and drying oils, and particularly the conjugated fatty acids containing at least 12 and generally from about 12 to about 20 carbon atoms, such as 9,11-octadecadienoic acid and other acids within the generic formula
R--CH=CH--CH=CH--R.sub.1
wherein R is a --R2 COOH radical, R1 is either a --R2 COOH group or an alkyl radical and R2 is an alkyl radical. These acids polymerize to form dimer acids of the general formula ##STR4## Other suitable dimer acids include those obtained from linoleic acid, linolenic acid, eleosteric acid, and ricinoleic acid. Still another group of dimers are those obtained from dibasic acids such as 8,12-eicosadiene-1,20-dioic acid, 8-vinyl-10-octadecene-1,18-dioic acid, 7,11-octadecadiene-1,18-dioic acid, and the like. As noted hereinbefore dimer and trimer acids are available commercially sold under various trade names. A suitable such acid includes Empol 1014a viscous aliphatic polybasic acid produced by the polymerization of unsaturated fatty acids at mid-molecule and containing 1% C18 monobasic fatty acid, 95% C36 dibasic fatty acid, and 4% C54 tribasic fatty acid, acid value 188-193, saponification value 194-198 and neutralization equivalent 292-298. Another very suitable dimer acid is marketed as Empol 1016 (dimer acid of less than 1% monobasic acid; neutralization equivalent 284-295; acid value 190-198; and saponification value 194-200).
Particularly preferred are the trimerized acids obtained from the ethylenically unsaturated fatty acids as derived from semi-drying and drying oils, and particularly, the conjugated fatty acids containing from 12 to 20 carbon atoms. The generic structure of the resulting trimerized acids is believed to be that of the following: ##STR5## In the above formula, R1, R2 and R3 constitute alkylene radicals having between 4 and 10 carbon atoms each, while R4, R5 and R6 are alkyl radicals having between 4 and 10 carbon atoms each. Normally, the products will have the generic formula as follows. ##STR6##
Particularly preferred are the C36 dimerized fatty acids.
Organic Polybasic Acids
The organic polybasic acids useful in the present invention are the dicarboxylic fatty acids of the general formula: ##STR7## wherein R1 is an alkyl group of up to about 10 carbon atoms and R2 is an alkylene group of up to 12 carbon atoms.
A particularly useful acid is a liquid C21 organic acid having the following type structure: ##STR8##
Catalysts
Although the epoxy-carboxyl reaction does not require a catalyst, it is usually desirable to utilize one.
Preferred catalysts include the imidazoles, benzimidazoles and their salts; stannous salts of monocarboxylic acids; organic phosphines; and phosphonium halides; and tertiary amines.
Suitable organic phospines are those having the general formula: ##STR9## wherein each R is a hydrogen, an organic radical, particularly an alkyl or aryl radical. Useful phosphines include triphenyl phosphine and tributylphosphine among others. The phosphine catalyst is generally used in the range of about 0.05 to 5% by weight of reactants.
Suitable phosphonium halides include those of the general formula: ##STR10## wherein X is a halogen and R1,R2, R3 and R4 are the same or different hydrocarbon radicals containing from 1 to 18 carbon atoms. The phosphonium halides are generally utilized in an amount from about 0.05to 10% based on the weight of reactants.
Other suitable phosphines and phosphonium halides are disclosed in U.S. Pat. No. 3,738,862.
Suitable stannous salts are the stannous salts of monocarboxylic acids having at least 5 carbon atoms, preferably fatty acids containing from about 5 to about 20 carbon atoms and more preferably from about 6 to 12 carbon atoms. Preferred stannous salts are stannous caproate, stannous octoate, stannous laurate, stannous palmitate, stannous stearate, stannous oleate, and stannous naphthenate.
Suitable heterocyclic compounds possessing in the heterocyclic ring (1) a substituted C=N--C group and (2) a secondary amino group, i.e., an =N--H group, including the imidazoles, such as the substituted imidazoles and benzimidazoles having the structural formulae: ##STR11## respectively, wherein R is selected from hydrogen atoms, halogen atoms, or an organic radical, such as a hydrocarbon radical or a substituted hydrocarbon radical, for example, the ester, ether, amide, imide, amino, halogen, or mercapto substituted hydrocarbon radicals. The acid portion of the salt is selected from an acid, such as phosphoric, acetic, lactic, formic, propionic, and the like. Especially preferred imidazoles are those wherein the substituent is hydrogen or a hydrocarbon radical and preferably an alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, alkaryl or arylalkyl radicals, and particularly those containing no more than 15 carbon atoms and wherein the acid is selected from monocarboxylic acids having from 1 to 8 carbon atoms, lactic, and phosphoric acids.
A more detailed description of the chemistry of the imidazoles and benzimidazoles including their properties and structural formulas is found in the book by Klaus Hofmann entitled "Imidazole and Its Derivatives"published by Interscience Publishers, Inc., New York (1953). Examples of imidazole salts include, among others, the acetate, formate, lactate, and phosphate salts of imidazole, benzimidazole and substituted examples of suitable substituted imidazoles include: 2-methylimidazole: 2ethyl-4methylimidazole; 2-cyclohxyl-4-mthylimidazoles; 4-butyl-5ethylimidazole; 2-butoxy-4-allylimidazole; 2-carboethioxybutyl-4-methylimidazole; 2-octyl-4-hexylimidazole; 2-methyl-5-ethylimidazole; 2methyl-4-(2ethylamino-imidazole; 2-methyl-4-mercaptoethylimidazole; 2,5-chloro-4-ethylimidazole; and mixtures thereof. Especially preferred are the alkyl-substituted imidazole acetates and lactates wherein the alkyl groups contain not more than 8 carbon atoms each, or mixtures thereof, and particularly preferred are 2-ethyl-4methyl-imidazole acetate, 2-ethyl-4methylimidazole lactate, 2-methylimidazole acetate, 2-methylimidazole lactate, imidazole acetate; imidazole lactate, and mixtures thereof.
Suitable tertiary amines may be either aliphatic or aromatic substituted derivatives such as trimethylamine, triethylamine, benzyldimethylamine, alpha-methylbenzyl dimethylamine, dimethyl amino methyl phenol (DMP-10), tridimethyl amino methyl phenol (DMP-30), and the like. In some instances, tertiary amine salts may be useful such as DMP30 triacetate, DMP-30 tribenzoate, and the tri-2-ethyl hexoate salt of DMP-30.
An especially preferred tertiary amine is benzyldimethylamine (BDMA).
Since both the polymerized fatty acids and the organic polybasic acids employed in the curing blend are effective curing agents for epoxy resins, it is believed that the ratios of the acid components can be varied within wide limits; however, the weight ratio of polymeric fatty acid to organic polybasic acid in the curing blend will generally be from about 1:10 to 10:1 and preferably from about 1:5 to 5:1 to achieve the highest tensile elongation together with maximum strength and compatibility.
The epoxy resin is reacted with the carboxylic acid blend at a temperature from about 60° to about 125° C, preferably from 60° to 90° C for about 0.5 to 2 hours.
In general, stoichiometric amounts of the carboxyl-containing blend component and epoxy component are utilized, although from about 0.75 to 1.25 equivalents of polyepoxide are reacted with the carboxyl-containing blend.
To illustrate the manner in which the invention may be carried out, the following illustrative examples are given and the invention is not to be regarded as limited to any specific conditions or reactants recited therein. Unless otherwise indicated, parts are parts by weight.
EXAMPLES
One hundred parts by weight of EPON Resin 828 (a diglycidyl polyether of Bisphenol A having an average molecular weight of about 380 and an epoxide equivalent weight of 180) were mixed and reacted with various blends of (1) EMPOL Dimer Acid 1016 (a dimerized C36 fatty acid having a neutralization equivalent of 284-295) and acid value of 190-198; a saponification value of 94-200; a Gardner 1963 color of 7 max; and containing less than 1% C18 monobasic fatty acids) and (2a liquid organic C21 diacid of the general structure: ##STR12##
In Experiments 1,2 and 3 an imidazole propylene oxide adduct was used as a curing catalyst and in Experiments 4, 5 and 6 methyltetrahydrophthalic anhydride (MTHPA) was employed in combination with triphenylphosphine as a co-curing agent/catalyst combination.
All systems were compatible in the EPON Resin 828°at 90° C. Castings prepared from the above formulations were allowed to gel at 90° C. for two hours and then post cured for two hours at 150° C.
The resulting data is tabulated in Table I.
                                  TABLE I                                 
__________________________________________________________________________
PROPERTIES OF DIMER - DIACID FORMULATIONS                                 
__________________________________________________________________________
Composition (Parts by Weight)                                             
__________________________________________________________________________
      EPON             Imidazole-                                         
      Resin                                                               
          Dimer                                                           
              C.sub.21 Propylene Oxide                                    
Experiment                                                                
      828 1016                                                            
              Diacid                                                      
                  MTHPA                                                   
                       Adduct    BDMA                                     
                                     TPP                                  
__________________________________________________________________________
1     100 53.5                                                            
              25.5                                                        
                  --   0.9           --                                   
2     100 50  50  --   1.5           --                                   
3     100 27  27  --   0.5           --                                   
4     100 60  37.5                                                        
                  22.5 --            2                                    
5     100 89.9                                                            
              18.5                                                        
                  22.5 --            2                                    
6     100 29.9                                                            
              56.2                                                        
                  22.5 --            2                                    
7     100 40  40  --   1.5           --                                   
8     100 43  11  --   1.5           --                                   
9     100 11  43  --   1.5           --                                   
10    110 37.2                                                            
              37.2                                                        
                  --   1.0           --                                   
11    110 37.2                                                            
              37.2                                                        
                  --   --        1.5 --                                   
__________________________________________________________________________
Physical Properties                                                       
__________________________________________________________________________
                      R. T. Tensile                                       
__________________________________________________________________________
          Izod                                                            
Hardness  Impact                                                          
Shore     ft-lb/in                                                        
                 HDT  PSI       Elong. %                                  
Exp.                                                                      
    D     Unnotched                                                       
                 ° C                                               
                      Max  Ult  Max  Ult                                  
__________________________________________________________________________
1   67    15.9   26   4537 --   100  --                                   
2   55    12.7   --    960  960 205  205                                  
3   66    17.3   --   4333 --    87                                       
4   65                3850 3800 220  220                                  
5   50                4300 4300 270  270                                  
6   65                5300 3600  85  --                                   
7   --    21.4        2575 2575 100  100                                  
8   60           50   5850 5850 --   177                                  
9   73           54   --   10000                                          
                                --   4.4                                  
10  80    12.1   --   --   4100       43                                  
11  75    21.1        3500 3500      110                                  
__________________________________________________________________________

Claims (15)

We claim as our invention:
1. A compatilizable, curable composition comprising ( 1) a polyepoxide having at least one vicinal epoxy group and (2) a curing amount of a blend of (a) a polymerized fatty acid derived from unsaturated fatty acids having at least 12 carbon atoms in the molecule and (b) a liquid organic polycarboxylic acid of the general formula: ##STR13##wherein R1 is an alkyl radical and R2 is an alkylene radical, the weight ratio of (a) to (b) being from about 1:10 to about 10;1.
2. The composition of claim 1 wherein the weight ratio of (a) to (b) from about 1:5 to about 5:1.
3. The composition of claim 1 wherein the polymerized fatty acid is a dimer acid comprising acids derived from fatty acids of the general formula R--CH=CH--CH=CH--R1 wherein R is --R2 COOH, R1 is selected from R and R2 and R2 is an alkyl group, said acid having from 12 to 20 carbon atoms.
4. The composition of claim 3 wherein the polymerized fatty acid is a C36 dimer fatty acid.
5. The composition of claim 1 wherein the polyepoxide is a diglycidyl polyether of 2,2-bis(4-hydroxyphenyl)propane.
6. The composition of claim 5 wherein the polyepoxide is a liquid.
7. The composition of claim 1 wherein R1 is an alkyl radical of 6 carbon atoms and R2 is an alkylene radical of 7 carbon atoms.
8. The composition of claim 1 wherein an acid anhydride is added as a co-curing agent.
9. The composition of claim 1 wherein a curing accelerator is additionally employed.
10. The composition of claim 9 wherein the curing accelerator is an organic phospine.
11. The composition of claim 9 wherein the curing accelerator is an imidazole compound.
12. The composition of claim 9 wherein the curing accelerator is a tertiary amine.
13. The composition of claim 12 wherein the tertiary amine is benzyldimethylamine.
14. The composition of claim 1 cured at about 60°to 125° C.
15. The composition of claim 14 cured at about 60°to 90° C for about 0.5 to 2 hours.
US05/722,848 1975-10-17 1976-09-13 Polyepoxide compositions exhibiting improved physical properties Expired - Lifetime US4017432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/722,848 US4017432A (en) 1975-10-17 1976-09-13 Polyepoxide compositions exhibiting improved physical properties

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US62352175A 1975-10-17 1975-10-17
US05/722,848 US4017432A (en) 1975-10-17 1976-09-13 Polyepoxide compositions exhibiting improved physical properties

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US62352175A Continuation-In-Part 1975-10-17 1975-10-17

Publications (1)

Publication Number Publication Date
US4017432A true US4017432A (en) 1977-04-12

Family

ID=27089465

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/722,848 Expired - Lifetime US4017432A (en) 1975-10-17 1976-09-13 Polyepoxide compositions exhibiting improved physical properties

Country Status (1)

Country Link
US (1) US4017432A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4119595A (en) * 1977-03-16 1978-10-10 Shell Oil Company Low-temperature epoxy baking compositions
US4134867A (en) * 1976-05-20 1979-01-16 Ciba-Geigy Corporation Finishing of leather with reaction products of epoxides and fatty acids
US4357456A (en) * 1981-08-28 1982-11-02 Shell Oil Company Low viscosity vinyl ester resins
US5350815A (en) * 1991-04-10 1994-09-27 General Electric Company Copper bonding epoxy resin compositions, resin coated copper articles and method
US5391652A (en) * 1992-09-30 1995-02-21 The Dow Chemical Company High molecular weight epoxy ester resin composition, process therefor and coating composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2848433A (en) * 1953-12-30 1958-08-19 Aries Lab Inc Copolymerized and cross-linked epoxide resins
US2970231A (en) * 1958-10-08 1961-01-31 Westinghouse Electric Corp Packing composition for turbine generator exciter rotors
US3018259A (en) * 1960-03-31 1962-01-23 Union Carbide Corp Diepoxy sulfone compositions
US3446762A (en) * 1965-09-24 1969-05-27 Shell Oil Co Epoxy resin traffic paint compositions
US3449274A (en) * 1967-04-04 1969-06-10 Union Carbide Corp Curable,thixotropic compositions based on cycloaliphatic diepoxides and dimers of unsaturated fatty acids
US3487027A (en) * 1966-10-07 1969-12-30 Leslie C Case Acidic curing agents for organic polyepoxides
US3694407A (en) * 1970-08-11 1972-09-26 Shell Oil Co Epoxy-containing condensates,their preparation and use
US3725341A (en) * 1971-06-23 1973-04-03 Dow Chemical Co Process for the preparation of high molecular weight polyepoxides from polyepoxides and polyhydroxyl-containing compounds

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2848433A (en) * 1953-12-30 1958-08-19 Aries Lab Inc Copolymerized and cross-linked epoxide resins
US2970231A (en) * 1958-10-08 1961-01-31 Westinghouse Electric Corp Packing composition for turbine generator exciter rotors
US3018259A (en) * 1960-03-31 1962-01-23 Union Carbide Corp Diepoxy sulfone compositions
US3446762A (en) * 1965-09-24 1969-05-27 Shell Oil Co Epoxy resin traffic paint compositions
US3487027A (en) * 1966-10-07 1969-12-30 Leslie C Case Acidic curing agents for organic polyepoxides
US3449274A (en) * 1967-04-04 1969-06-10 Union Carbide Corp Curable,thixotropic compositions based on cycloaliphatic diepoxides and dimers of unsaturated fatty acids
US3694407A (en) * 1970-08-11 1972-09-26 Shell Oil Co Epoxy-containing condensates,their preparation and use
US3725341A (en) * 1971-06-23 1973-04-03 Dow Chemical Co Process for the preparation of high molecular weight polyepoxides from polyepoxides and polyhydroxyl-containing compounds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
B465375 U.S. Published Patent Application, McPherson, 4/13/76. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134867A (en) * 1976-05-20 1979-01-16 Ciba-Geigy Corporation Finishing of leather with reaction products of epoxides and fatty acids
US4119595A (en) * 1977-03-16 1978-10-10 Shell Oil Company Low-temperature epoxy baking compositions
US4357456A (en) * 1981-08-28 1982-11-02 Shell Oil Company Low viscosity vinyl ester resins
US5350815A (en) * 1991-04-10 1994-09-27 General Electric Company Copper bonding epoxy resin compositions, resin coated copper articles and method
US5391652A (en) * 1992-09-30 1995-02-21 The Dow Chemical Company High molecular weight epoxy ester resin composition, process therefor and coating composition

Similar Documents

Publication Publication Date Title
US3547885A (en) Process for curing polyepoxides with anhydrides and phosphonium halide catalysts therefor
US3201360A (en) Curable mixtures comprising epoxide compositions and divalent tin salts
US4203878A (en) Epoxy resin traffic paint compositions
US3677978A (en) Metal salt complexes of imidazoles as curing agents for one-part epoxy resins
US3408422A (en) Stabilization of unsaturated polyesters and resulting products
US4132706A (en) Latent catalysts for promoting reaction of epoxides with phenols and/or carboxylic acids
US2970983A (en) Epoxy-containing condensates of polyepoxides and acidic materials, their preparation and polymers
US3956241A (en) Latent catalysts for epoxy resins
US3694407A (en) Epoxy-containing condensates,their preparation and use
US3329652A (en) Process for curing polyepoxides with anhydrides and activators therefor
US3356645A (en) Process for curing epoxy resins with a salt of an imidazole and compositions thereof
US4284753A (en) Heat curable polyepoxide-unsaturated aromatic monomer resin compositions
US4487914A (en) Curing agents for epoxy resins
US3773856A (en) Process for the preparation of unsaturated epoxy ester compositions
US4767832A (en) Phenolic curing agents for epoxy resins
US3412046A (en) Catalyzed polyepoxide-anhydride resin systems
US2928809A (en) Epoxide resin-quaternary ammonium salt compositions
US20190292308A1 (en) Anhydride epoxy curing agents having imidazole salt additives for epoxy resin systems
US4069203A (en) Rapid curing polyepoxide compositions
US2940986A (en) Epoxy esters of long chain acids
US3424699A (en) Hardenable compositions of 1,2-polyepoxides and metal chelate compounds
US2934516A (en) Carboxy-copolymer epoxide compositions and their preparation
US4017432A (en) Polyepoxide compositions exhibiting improved physical properties
KR910015613A (en) Precatalized catalyst composition, preparation method of epoxy resin, curable composition and product prepared by curing the same
US3427255A (en) Fluid compositions from maleic anhydride and carboxyl-terminated compositions