US4626255A - Heart valve bioprothesis - Google Patents

Heart valve bioprothesis Download PDF

Info

Publication number
US4626255A
US4626255A US06/652,774 US65277484A US4626255A US 4626255 A US4626255 A US 4626255A US 65277484 A US65277484 A US 65277484A US 4626255 A US4626255 A US 4626255A
Authority
US
United States
Prior art keywords
supporting frame
posts
external diameter
annulus
heart valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US06/652,774
Inventor
Bruno Reichart
Christian Weinhold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PETER KENNEDY Pty Ltd
Original Assignee
Christian Weinhold
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Christian Weinhold filed Critical Christian Weinhold
Assigned to WEINHOLD CHRISTIAN reassignment WEINHOLD CHRISTIAN ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: REICHART, BRUNO, WEINHOLD, CHRISTIAN
Application granted granted Critical
Publication of US4626255A publication Critical patent/US4626255A/en
Assigned to PETER KENNEDY PTY. LTD. reassignment PETER KENNEDY PTY. LTD. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: WEINHOLD, CHRISTIAN
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/90Stent for heart valve

Definitions

  • the invention concerns a heart valve bioprosthesis with a fixed, integral aortic valve of animal origin which is positioned in an resiliently flexible, fabric-covered supporting frame having substantially the shape of a cylinder with a substantially circular cross-section.
  • the cylinder consists of an axially slightly undulatory annulus comprising three complete waves and of three rounded posts which are positioned at equidistant angles, and extend axially from the wave apices. These furthermore have number of perforations, the fabric being shaped as a suture ring near the end face opposite to the posts and the annulus, fibrosus from which the three aortic leaflets orrginate.
  • the latter is due to the rigid root of the right aortic leaflet which rests several millimeters on the muscular ventricular septum of the porcine heart. After removal and preparation of the valve the adhering remnants of muscular tissue become inelastic due to the process of fixation with glutaraldehyde, whereby the mobility of the right leaflet is impaired.
  • New methods have been developed in an attempt to solve this problem (reduction of the supporting cylinder height, modified fixing agents, low pressure fixation) and have lead to a modification of porcine bioprostheses.
  • the invention is based on the recognition of the fact that in previously used porcine xenografts the basis of the right leaflet--seen from its attachment to the annulus fibrosus--coalesces for several millimeters with the muscular bulge of the ventricular septum.
  • porcine xenografts the basis of the right leaflet--seen from its attachment to the annulus fibrosus--coalesces for several millimeters with the muscular bulge of the ventricular septum.
  • an attempt was made to remove any muscular tissue impairing the mobility of the right leaflet by preparation of the right leaflet starting from the annulus fibrosus. This was accomplished by mechanical means, i.e. scraping. Apart from expensive production procedures it is impossible to completely remove the impeding muscular tissue, so that during the following fixation process with 2% glutaraldehyde solution the remaining muscular fibres become rigid, thus impeding the mobility of the right leaflet near its root.
  • the object of the invention is to provide a heart valve bioprosthesis of the type mentioned above, in which the mobility, particularly of the right leaflet should resemble the mobility of a human valve as closely as possible whilst retaining the origination of the leaflet from an annulus fibrosus sutured to the lower rim of the fabric and without individual leaflets having to be assembled from different aortic valves.
  • the invention solves this problem by using an animal aortic valve in which the right leaflet as well as the other two leaflets protrude almost completely unobstructed from the annulus fibrosus into the aortic lumen, without being coalesced with muscular tissue of the ventricular septum.
  • a preferred embodiment of the invention is characterized in that the aortic valve has the shape, size and structure of a fixed aortic valve of an adult kangaroo, i.e. the aortic valve is preferably the fixed aortic valve of an adult kangaroo.
  • the invention is based on the recognition of the fact that it is important for an aortic valve, deadened by means of the process of fixation, to originate from the annulus fibrosus being attached to the dacron fabric in the area of the lower rim of the supporting frame, while not being coalesced at all with the muscular tissue of the ventricular septum, or only to such a minimal degree that mobility is hardly impaired.
  • This requirement is ideally met by the aortic valve of a preferably male red or grey giant kangaroo of the species Macropus giganteus or Macropus rufus.
  • the production of the aortic valves involves the removal of the aortic root along with the adjoining myocardium and an aortic stump of several centimeters from a prefixed heart.
  • the advantage of the use of fixed aortic valves of the kangaroo lies particularly in the fact that the aortic wall extends along the sinus valsalvae with its elastic fibres and the smooth muscles up to the protruding muscular torus. Only then a very small, flat annulus fibrosus originates from this point, and is anchored to the muscular tissue of the septum by small individual collagenous fibre fingers. The right leaflet does not rest on the muscular torus, and does originate almost completely unimpeded from the annulus fibrosus into the aortic lumen.
  • the invention comprises a heart valve prosthesis in which the origin of the right leaflet together with the much smaller annulus fibrosus is much shorter in relation, to the total diameter of the aortic ostium, than is the case with porcine xenografts.
  • porcine xenografts thereby the portion of the right leaflet which is immobile after the process of fixing is reduced, which results in a significantly wider valvular lumen during the opening cycle compared to porcine xenografts.
  • the valves according to the present invention are used as xenografts less significant pressure changes occur than in the case of porcine valves.
  • Aortic valves of the kangaroos can be produced in sizes between 17 mm and 31 mm. They can be used as replacement valves in any of the four positions of the heart, e.g. they can be employed as aortic or as mitral valves.
  • the supporting frame consists preferably of a thermally very stable plastic, for example an acetyl-copolymer resin (Delrin).
  • the fabric covering the frame is usually a double-knitted polyester product.
  • the frame is shaped according to one of the forns disclosed herein.
  • the width of the posts intended for the arrangement of the commissures is according to invention about 1/4 of the outer diameter of the carrier frame; furthermore according to invention the equidistant commissure posts are broad enough so as to allow a tolerance of 30° in the arrangement of the commissures.
  • kangaroo aortic valves show a variation in the arrangement of commissures of approximately 15°.
  • the supporting frame exhibits considerably shorter commissure posts compared to supporting frames used for porcine valves to date.
  • the total profile is also lower in the axial direction.
  • the entrance edge facing away from the posts has an undulation gentle enough to not only allow a flat mitral suture ring to be fitted on, but also a curved aortic suture ring.
  • the prosthesis can be especially advantageously integrated according to invention within a vascular prosthesis with a built in cardiac valve.
  • the supporting frame's numerous holes, slots, oblong perforations, borings which have been provided in every part of the frame and which not only serve to improve the elasticity of the frame considerably, but also offer plenty of possibilities for attachment of the tube-shaped dacron fabric which covers the frame from all sides.
  • the width of the annular area has been chosen in such a way that a maximum of space for free mobility of the leaflets is available.
  • FIG. 1 a side view of a heart valve prosthesis
  • FIG. 2 a view of the object in FIG. 1 as seen from below
  • FIG. 3 a side view of the supporting frame used in the artificial heart valve prosthesis depicted in FIGS. 1 and 2,
  • FIG. 3a the supporting frame according to FIG. 3 evolved into a plane
  • FIG. 4 a view of the supporting frame according to FIG. 3 from below.
  • the supporting frame 22 (FIGS. 3, 4) which is covered on both sides with a polyester or dacron fabric 23 and consists itself of an acetyl resin, Delrin for example, has an essentially circular, cylindrical shape.
  • the material 23 On the lower end face or lower edge 11 the material 23 has been folded to form a suture ring 14 in which an elastic supporting ring can be placed surrounding the lower edge 11 of the supporting frame 22.
  • the suture ring 14 is determined for suturing the heart valve prosthesis to human tissue, to the aorta for example.
  • the supporting frame consists of strip- or band-like material coiled up to a cylindrical shape, the thickness of which is about 1/40th of the external diameter of the carrier frame 22.
  • the band-like material has a gently waved annulus 13 with three complete undulations, each undulation consisting of a wave crest and a wave trough and a post 12 extending axially in the opening direction of the leaflets 15, 16, 17, (FIGS. 1, 2) from each crest.
  • Each post 12 has an axially directed oblong perforation in the shape of two semicircles mutually connected by straight lines.
  • the radius of the semicircles is 0.64 times the external diameter of the supporting frame 22.
  • the distance of both centres of the semicircles is about 1/10th of the external diameter of the supporting frame 22.
  • the posts 12 are rounded in correspondence to the upper semicircle of the oblong perforations 19 so that a width of material equalling 1/16th of the external diameter of the supporting frame 22 remains between the oblong perforations 19 and the upper end face or edge 24 of the posts 12.
  • the annulus 13 is bordered above by the upper edge 24 having the shape of a concave arc of a circle with the centre of curvature 27 situated in the middle of the connecting line 30 extending between the apices 28 of two adjacent posts 12.
  • the upper edge 24 is approximately semi-circular in shape and merges through a reversing point 33 into the upper region of the posts 12 including the apices 28.
  • a round hole 20 is provided in the annulus 13, the diameter of which is smaller than the external diameter of the supporting frame 22 by a factor of 0.093.
  • the hole 20 is positioned in the middle between the oblong perforation 19 and the lower edge 11 of the annulus 13.
  • the lower edge 11 of the supporting frame 22 has a concave circular curvature in the region where the posts 12 are positioned.
  • the centre of curvature 29 lies on the mid-axis 34 of the oblong perforation 19 in distinct distance from the connecting line 31 between adjacent apices 32 of the undulating lower edge 11, that is on the side of the connecting line 31 which faces away from the post 12.
  • the preferable distance between the centre of curvature 29 and the connecting line 31 should be about half of the external diameter of the supporting frame 22.
  • the radius of the circle around the centre of curvature 29 is about 50% larger than the radius of the circle around the upper centre of curvature 27, and is conveniently 0.6 times the external diameter of the supporting frame 22.
  • the centres of curvature 27 and 29 are displaced peripherally by an angle of 60°.
  • the apices 28 and 32 are also displaced peripherally by an angle of 60°.
  • the circularly curved portion of the lower edge 11 with the centre of curvature 29 merges through reversing points 37 into circular convex curved portions lying in the region of the apices 32 and having approximately the same radius of curvature as the region with the centre 29.
  • a longitudinal slot 26 is positioned to both sides of the boring 25 at a distance of approximately the diameter of the boring 25, the slot 26 being curved in correspondence to the circular concave part of the upper edge 24 and extending parallel to this part of the upper edge 14.
  • the slots 26 extend approximately to the origin of the posts 12 and terminate in a distance from the oblong perforations 19 and the holes 20, respectively which corresponds approximately to the width of the oblong perforations 19.
  • the edge 11 runs parallel to the upper edge 24 in the region of the apices 32.
  • the supporting frame is, after the attachment of dacron material 23, according to FIGS. 1 and 2, ideally suited for the attachment of a kangaroo aortic valve including the aortic stump 40.
  • the leaflets 15,16,17 (FIGS. 1, 2) can open perfectly and completely and also close without impedement.
  • the carrier frame according to the present invention Due to the construction of the carrier frame according to the present invention excellent elasticity is obtained which corresponds to a high degree to the elasticity of the aorta or that section of the heart into which the prosthesis is implanted. Thus the heart valve prosthesis does not affect the natural deformations of those parts of the human tissue it comes into contact with, to a harmful degree.
  • the numerous perforations in the plastic supporting frame 22 furnish highly satisfactory possibilities for fastening on the dacron fabric to the pulled over.
  • the dacron fabric is pulled over and sutured in the usual manner.
  • the aortic valve of a kangaroo including the aortic stump 40 which have been deadened and preserved by fixation is inserted into the supporting frame 22 which is covered with the fabric 23.
  • the aortic valve consists of the annulus fibrosus 18 as well as of the three leaflets 15,16,17 originating therefrom, namely the right leaflet 15, the a-coronary leaflet 16, and the left leaflet 17.
  • leaflets are called velums.
  • the annulus fibrosus 18 For mounting the annulus fibrosus 18 is positioned at the lower edge 11 of the supporting frame 22 and the aortic stump 40 extending from the annulus fibrosus 18 and being cut out according to the shape of the edge 24 (FIG. 3a) is arranged in the interior along the annulus 13 and the posts 12 and is sutured in the area of the upper edge 24 (FIGS. 3, 3a) with the fabric 23, whereby the suture 35 is formed.
  • the annulus fibrosus 18 is sutured to the fabric 23 at the suture ring 14, whereby the suture 36 (FIG. 1) is formed.
  • heart valve prosthesis works according to the invention in the following manner:
  • the leaflets 15,16,17 open upwards in a valve-like manner and lead, due to the design according to invention, to an opening cross-section of at least 70%, generally 75% and under circumstances to even 80% of the cross-section area of the aortic lumen.
  • the pressure gradient arising on both sides of the heart valve prosthesis during opening is kept at a desirable minimum.
  • the valves 15, 16, 17 return to their resting position as can be seen in FIGS. 1, 2, whereby they come into contact with each other and form a seal along the commissure lines 21 in FIG. 2 so that any leaking of blood is prevented.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

A heart valve prosthesis has a supporting frame (22) with a circular cross-section, which is covered with a dacron fabric (23). On one end face the dacron fabric (23) is arranged to form a suture ring (14). The fixed aortic valve (15,16,17) of a kangaroo is attached inside the frame and sutured to the dacron fabric (23).

Description

The invention concerns a heart valve bioprosthesis with a fixed, integral aortic valve of animal origin which is positioned in an resiliently flexible, fabric-covered supporting frame having substantially the shape of a cylinder with a substantially circular cross-section. The cylinder consists of an axially slightly undulatory annulus comprising three complete waves and of three rounded posts which are positioned at equidistant angles, and extend axially from the wave apices. These furthermore have number of perforations, the fabric being shaped as a suture ring near the end face opposite to the posts and the annulus, fibrosus from which the three aortic leaflets orrginate. In the area of which muscular tissue of the ventricular septum is to be found, extending along the end face of the supporting frame opposite to the posts and being sutured there to the fabric, and the aortic wall or stump, which is cut according to the shape of the supporting frame, being mounted within the annulus and said posts and being sutured to the fabric along the end face of the supporting frame on the side of the posts.
The implantation of heart valve bioprosthesis with biological tissue valves has become an acknowledged method all over the world due to the favourable results regarding postoperative morbidity, thrombo-embolism and general quality of life. Experience with porcine hearts goes back to 1970. The briefer lifespan of these prostheses compared to mechanical valves, premature calcification in young patients and higher transvalvular pressure gradients arising in the smaller valve sizes often lead to complications and the necessity for reoperation.
The latter is due to the rigid root of the right aortic leaflet which rests several millimeters on the muscular ventricular septum of the porcine heart. After removal and preparation of the valve the adhering remnants of muscular tissue become inelastic due to the process of fixation with glutaraldehyde, whereby the mobility of the right leaflet is impaired.
New methods have been developed in an attempt to solve this problem (reduction of the supporting cylinder height, modified fixing agents, low pressure fixation) and have lead to a modification of porcine bioprostheses.
These modifications entail a considerable increase in technical and manufacturing expenditure involved in the production of artificial valves and result in rising costs.
The invention is based on the recognition of the fact that in previously used porcine xenografts the basis of the right leaflet--seen from its attachment to the annulus fibrosus--coalesces for several millimeters with the muscular bulge of the ventricular septum. In order to eliminate this difficulty an attempt was made to remove any muscular tissue impairing the mobility of the right leaflet by preparation of the right leaflet starting from the annulus fibrosus. This was accomplished by mechanical means, i.e. scraping. Apart from expensive production procedures it is impossible to completely remove the impeding muscular tissue, so that during the following fixation process with 2% glutaraldehyde solution the remaining muscular fibres become rigid, thus impeding the mobility of the right leaflet near its root.
This is the reason why a heart prosthesis of this kind does not open wide enough during the opening cycle, thus leading to an undesirably high hemodynamic pressure gradient.
Attempts have been made to use larger porcine aortic valves in order to have enough material to be able to take the tissue of the right leaflet being coalesced with the muscular tissue out of the aortic lumen and to place it around the lower end face of the supporting frame. With this type of artificial valve the tissue of the right leaflet is pulled outwards over the frame whereby long term strain often leads to tears in the tissue with blood inflow and subsequent calcification of the sensitive line of fold.
Finally attempts have been made to assemble heart valve prostheses from individual leaflets. However apart from the considerable manufacturing expenditures involved, shorter endurance is to be expected as the numerous sutures have a weakening effect.
The object of the invention is to provide a heart valve bioprosthesis of the type mentioned above, in which the mobility, particularly of the right leaflet should resemble the mobility of a human valve as closely as possible whilst retaining the origination of the leaflet from an annulus fibrosus sutured to the lower rim of the fabric and without individual leaflets having to be assembled from different aortic valves.
The invention solves this problem by using an animal aortic valve in which the right leaflet as well as the other two leaflets protrude almost completely unobstructed from the annulus fibrosus into the aortic lumen, without being coalesced with muscular tissue of the ventricular septum.
A preferred embodiment of the invention is characterized in that the aortic valve has the shape, size and structure of a fixed aortic valve of an adult kangaroo, i.e. the aortic valve is preferably the fixed aortic valve of an adult kangaroo.
The invention is based on the recognition of the fact that it is important for an aortic valve, deadened by means of the process of fixation, to originate from the annulus fibrosus being attached to the dacron fabric in the area of the lower rim of the supporting frame, while not being coalesced at all with the muscular tissue of the ventricular septum, or only to such a minimal degree that mobility is hardly impaired. This requirement is ideally met by the aortic valve of a preferably male red or grey giant kangaroo of the species Macropus giganteus or Macropus rufus.
The production of the aortic valves involves the removal of the aortic root along with the adjoining myocardium and an aortic stump of several centimeters from a prefixed heart.
The advantage of the use of fixed aortic valves of the kangaroo lies particularly in the fact that the aortic wall extends along the sinus valsalvae with its elastic fibres and the smooth muscles up to the protruding muscular torus. Only then a very small, flat annulus fibrosus originates from this point, and is anchored to the muscular tissue of the septum by small individual collagenous fibre fingers. The right leaflet does not rest on the muscular torus, and does originate almost completely unimpeded from the annulus fibrosus into the aortic lumen.
Thus the invention comprises a heart valve prosthesis in which the origin of the right leaflet together with the much smaller annulus fibrosus is much shorter in relation, to the total diameter of the aortic ostium, than is the case with porcine xenografts. Thereby the portion of the right leaflet which is immobile after the process of fixing is reduced, which results in a significantly wider valvular lumen during the opening cycle compared to porcine xenografts. When the valves according to the present invention are used as xenografts less significant pressure changes occur than in the case of porcine valves.
Thus a considerable improvement in function is to be obtained, especially with smaller valve sizes. Aortic valves of the kangaroos can be produced in sizes between 17 mm and 31 mm. They can be used as replacement valves in any of the four positions of the heart, e.g. they can be employed as aortic or as mitral valves.
The supporting frame consists preferably of a thermally very stable plastic, for example an acetyl-copolymer resin (Delrin). The fabric covering the frame is usually a double-knitted polyester product.
In order to make optimum use of the advantages of a fixed kangaroo aortic valve and particularly of the favourable opening ratio, the frame is shaped according to one of the forns disclosed herein.
The width of the posts intended for the arrangement of the commissures is according to invention about 1/4 of the outer diameter of the carrier frame; furthermore according to invention the equidistant commissure posts are broad enough so as to allow a tolerance of 30° in the arrangement of the commissures. In comparison, kangaroo aortic valves show a variation in the arrangement of commissures of approximately 15°.
In accordance to invention as well, is the fact that the supporting frame exhibits considerably shorter commissure posts compared to supporting frames used for porcine valves to date. The total profile is also lower in the axial direction.
Another important characteristic of the invention is that the entrance edge facing away from the posts has an undulation gentle enough to not only allow a flat mitral suture ring to be fitted on, but also a curved aortic suture ring. The prosthesis can be especially advantageously integrated according to invention within a vascular prosthesis with a built in cardiac valve.
Also of special importance are the supporting frame's numerous holes, slots, oblong perforations, borings, which have been provided in every part of the frame and which not only serve to improve the elasticity of the frame considerably, but also offer plenty of possibilities for attachment of the tube-shaped dacron fabric which covers the frame from all sides. The width of the annular area has been chosen in such a way that a maximum of space for free mobility of the leaflets is available.
The invention is subsequently described by examples referring to the drawings in which represent:
FIG. 1 a side view of a heart valve prosthesis,
FIG. 2 a view of the object in FIG. 1 as seen from below,
FIG. 3 a side view of the supporting frame used in the artificial heart valve prosthesis depicted in FIGS. 1 and 2,
FIG. 3a the supporting frame according to FIG. 3 evolved into a plane and
FIG. 4 a view of the supporting frame according to FIG. 3 from below.
According to FIGS. 1 and 2 the supporting frame 22 (FIGS. 3, 4) which is covered on both sides with a polyester or dacron fabric 23 and consists itself of an acetyl resin, Delrin for example, has an essentially circular, cylindrical shape. On the lower end face or lower edge 11 the material 23 has been folded to form a suture ring 14 in which an elastic supporting ring can be placed surrounding the lower edge 11 of the supporting frame 22. The suture ring 14 is determined for suturing the heart valve prosthesis to human tissue, to the aorta for example. According to FIGS. 3, 3a and 4 the supporting frame consists of strip- or band-like material coiled up to a cylindrical shape, the thickness of which is about 1/40th of the external diameter of the carrier frame 22.
As is especially apparent in FIG. 3 and from the planar evolution shown in FIG. 3a, the band-like material has a gently waved annulus 13 with three complete undulations, each undulation consisting of a wave crest and a wave trough and a post 12 extending axially in the opening direction of the leaflets 15, 16, 17, (FIGS. 1, 2) from each crest.
Each post 12 has an axially directed oblong perforation in the shape of two semicircles mutually connected by straight lines. The radius of the semicircles is 0.64 times the external diameter of the supporting frame 22. The distance of both centres of the semicircles is about 1/10th of the external diameter of the supporting frame 22.
In the region of the apices 28 the posts 12 are rounded in correspondence to the upper semicircle of the oblong perforations 19 so that a width of material equalling 1/16th of the external diameter of the supporting frame 22 remains between the oblong perforations 19 and the upper end face or edge 24 of the posts 12.
Between two adjacent posts 12 the annulus 13 is bordered above by the upper edge 24 having the shape of a concave arc of a circle with the centre of curvature 27 situated in the middle of the connecting line 30 extending between the apices 28 of two adjacent posts 12. In the evolved form of FIG. 3a the upper edge 24 is approximately semi-circular in shape and merges through a reversing point 33 into the upper region of the posts 12 including the apices 28.
At the side of the perforation 19 facing away from the apex 28 a round hole 20 is provided in the annulus 13, the diameter of which is smaller than the external diameter of the supporting frame 22 by a factor of 0.093. The hole 20 is positioned in the middle between the oblong perforation 19 and the lower edge 11 of the annulus 13.
The lower edge 11 of the supporting frame 22 has a concave circular curvature in the region where the posts 12 are positioned. The centre of curvature 29 lies on the mid-axis 34 of the oblong perforation 19 in distinct distance from the connecting line 31 between adjacent apices 32 of the undulating lower edge 11, that is on the side of the connecting line 31 which faces away from the post 12. The preferable distance between the centre of curvature 29 and the connecting line 31 should be about half of the external diameter of the supporting frame 22. The radius of the circle around the centre of curvature 29 is about 50% larger than the radius of the circle around the upper centre of curvature 27, and is conveniently 0.6 times the external diameter of the supporting frame 22. The centres of curvature 27 and 29 are displaced peripherally by an angle of 60°. The apices 28 and 32 are also displaced peripherally by an angle of 60°. The circularly curved portion of the lower edge 11 with the centre of curvature 29 merges through reversing points 37 into circular convex curved portions lying in the region of the apices 32 and having approximately the same radius of curvature as the region with the centre 29.
In the middle of the band-shaped annulus 13 there is a circular boring 25 at each of the peripheral points where the apices 32 are positioned, having a diameter which is smaller than the external diameter of the supporting frame 22 by a factor of 0.064.
A longitudinal slot 26 is positioned to both sides of the boring 25 at a distance of approximately the diameter of the boring 25, the slot 26 being curved in correspondence to the circular concave part of the upper edge 24 and extending parallel to this part of the upper edge 14. The slots 26 extend approximately to the origin of the posts 12 and terminate in a distance from the oblong perforations 19 and the holes 20, respectively which corresponds approximately to the width of the oblong perforations 19. The edge 11 runs parallel to the upper edge 24 in the region of the apices 32.
Due to the shape of the annulus 13 which according to invention undulates only slightly, and due to the posts 12 which according to invention have a relatively short axial length and due to the inventive distribution of perforations, holes, borings, and slots in the supporting frame 22, the supporting frame is, after the attachment of dacron material 23, according to FIGS. 1 and 2, ideally suited for the attachment of a kangaroo aortic valve including the aortic stump 40. Within this carrier frame 22 the leaflets 15,16,17 (FIGS. 1, 2) can open perfectly and completely and also close without impedement. Due to the construction of the carrier frame according to the present invention excellent elasticity is obtained which corresponds to a high degree to the elasticity of the aorta or that section of the heart into which the prosthesis is implanted. Thus the heart valve prosthesis does not affect the natural deformations of those parts of the human tissue it comes into contact with, to a harmful degree.
Furthermore, the numerous perforations in the plastic supporting frame 22 furnish highly satisfactory possibilities for fastening on the dacron fabric to the pulled over.
After completion of the supporting frame 22 as shown in FIG. 3 the dacron fabric is pulled over and sutured in the usual manner. According to FIGS. 1, 2 subsequently the aortic valve of a kangaroo including the aortic stump 40 which have been deadened and preserved by fixation, is inserted into the supporting frame 22 which is covered with the fabric 23. The aortic valve consists of the annulus fibrosus 18 as well as of the three leaflets 15,16,17 originating therefrom, namely the right leaflet 15, the a-coronary leaflet 16, and the left leaflet 17. Sometimes leaflets are called velums.
For mounting the annulus fibrosus 18 is positioned at the lower edge 11 of the supporting frame 22 and the aortic stump 40 extending from the annulus fibrosus 18 and being cut out according to the shape of the edge 24 (FIG. 3a) is arranged in the interior along the annulus 13 and the posts 12 and is sutured in the area of the upper edge 24 (FIGS. 3, 3a) with the fabric 23, whereby the suture 35 is formed. According to FIG. 2 the annulus fibrosus 18 is sutured to the fabric 23 at the suture ring 14, whereby the suture 36 (FIG. 1) is formed.
In the vicinity of the right leaflet small remnant of muscular tissue of the ventricular septum (not shown) adhering to the annulus fibrosus is present. Due to the use of a kangaroo aortic valve the size of this remnant of muscular tissue in the radial dimension is so small and its thickness so insignificant that the freedom of movement of the right leaflet is practically unimpeded when the aortic valve opens.
After implanation to the human body the heart valve prosthesis works according to the invention in the following manner:
When a pressure is developed on the lower or entrance side of the prosthesis where the left ventricle is situated, the leaflets 15,16,17 open upwards in a valve-like manner and lead, due to the design according to invention, to an opening cross-section of at least 70%, generally 75% and under circumstances to even 80% of the cross-section area of the aortic lumen. Thus the pressure gradient arising on both sides of the heart valve prosthesis during opening is kept at a desirable minimum. When the pressure conditions are reversed the valves 15, 16, 17 return to their resting position as can be seen in FIGS. 1, 2, whereby they come into contact with each other and form a seal along the commissure lines 21 in FIG. 2 so that any leaking of blood is prevented.

Claims (11)

What we claim is:
1. Heart valve prosthesis with a fixed, integral aortic valve of an adult kangaroo which is positioned in a resiliently flexible, fabric-covered supporting frame having substantially the shape of a cylinder with a substantially circular cross-section and consisting of an axially slightly undulatory annulus comprising three complete waves and of three rounded posts which are positioned at equidistant angles and extend axially from the wave apices and furthermore having a number of perforations, the fabric being shaped as a suture ring near the end face opposite to the posts, the annulus fibrosus, from which the three aortic leaflets originate and in the area of which muscular tissue of the ventricular septum is to be found, extending along the end face of the supporting frame opposite to the posts and being sutured there to the fabric, and the aortic wall or stump, which is cut according to the shape of the supporting frame, being mounted within the annulus and said posts and being sutured to the fabric along the end face of the supporting frame on the side of the posts, in which each of the three leaflets protrude substantially unimpeded from the annulus fibrosus into the aortic lumen, without being coalesced with muscular tissue of the vertricular septum.
2. Heart valve prosthesis according to claim 1 in which the posts of the supporting frame comprise oblong perforations with an axially oriented longitudinal axis which extend into the annulus, the ratio of the length of the oblong perforations to the external diameter of the supporting frame being perferably 0.2 to 0.3.
3. Heart valve prosthesis according to claim 3, in which the shape of the oblong perforations is that of two semicircles connected by straight lines, their radius being 1/14th to 1/17th of the external diameter of the supporting frame.
4. Heart valve prosthesis according to claim 1 in which the annulus has circular holes at the position where the posts are provided, the diameter of the holes being 1/10th to 1/13th of the external diameter of the supporting frame.
5. Heart valve prosthesis according to claim 1 in which the annulus has a central boring in the middle between two posts, the diameter of which is 1/14th to 1/17th of the external diameter of the supporting frame.
6. Heart valve prosthesis according to claim 1 in which the end face of the supporting frame on the side of the posts is shaped in a concave circular manner between the posts, the radius being 1/2 to 1/3 the external diameter of the supporting frame, and the center of curvature being positioned in the middle of the connecting line between the apices of two neighboring posts.
7. Heart valve prosthesis according to claim 1 in which the middle of the annulus between each post and the midline between two posts has a longitudinal slot following the curvature of the annulus with a width equalling 1/14th to 1/17th of the external diameter of the supporting frame, each slot having a peripheral distance from the middle of the posts of about 1/7th to 1/9th of the external diameter of the supporting frame, and each slot having, if necessary, a peripheral distance from the circular boring of 1/14th to 1/17th of the external diameter of the supporting frame, and the width of the annulus beside the circular boring and the slots, respectively, being 1/14th to 1/17th of the external diameter of the supporting frame.
8. Heart valve prosthesis according to claim 1 in which the annulus beyond the posts has a width 1/6th to 1/4th of the external diameter of the supporting frame.
9. Heart valve prosthesis according to claim 1 in which the edge on the side facing away from the posts is shaped in a concave circular manner in the region of the posts, the radius being 0.5 to 0.7 times the external diameter of the supporting frame and the center of curvature conveniently lying in the midaxis of the posts and the distance of each center of curvature from the connecting line between the apices facing away from the posts being 0.4 to 0.5 times the external diameter of the supporting frame.
10. Heart prosthesis according to claim 1 in which the axial length of the supporting frame is 0.58 to 0.62 times its external diameter.
11. Heart valve prosthesis according to claim 1 in which the material thickness of the supporting frame is 1/35th to 1/48th of the external diameter of the supporting frame.
US06/652,774 1983-09-23 1984-09-19 Heart valve bioprothesis Expired - Fee Related US4626255A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3334512 1983-09-23
DE3334512 1983-09-23

Publications (1)

Publication Number Publication Date
US4626255A true US4626255A (en) 1986-12-02

Family

ID=6209904

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/652,774 Expired - Fee Related US4626255A (en) 1983-09-23 1984-09-19 Heart valve bioprothesis

Country Status (1)

Country Link
US (1) US4626255A (en)

Cited By (160)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4790844A (en) * 1987-01-30 1988-12-13 Yoel Ovil Replacement of cardiac valves in heart surgery
US4892541A (en) * 1982-11-29 1990-01-09 Tascon Medical Technology Corporation Heart valve prosthesis
US5258023A (en) * 1992-02-12 1993-11-02 Reger Medical Development, Inc. Prosthetic heart valve
US5366504A (en) * 1992-05-20 1994-11-22 Boston Scientific Corporation Tubular medical prosthesis
US5449385A (en) * 1991-05-08 1995-09-12 Nika Health Products Limited Support for a heart valve prosthesis
GB2295333A (en) * 1994-10-11 1996-05-29 Astec Environmental Sys Ltd Filter Mounting
WO1996040008A1 (en) * 1995-06-07 1996-12-19 St. Jude Medical, Inc. Bioprosthetic heart valve stent having integral supporting structure
US5814096A (en) * 1996-01-05 1998-09-29 Baxter International Inc. Sizing obturator for prosthetic aortic valves
US5824061A (en) * 1989-05-31 1998-10-20 Baxter International Inc. Vascular and venous valve implant prostheses
US5861028A (en) * 1996-09-09 1999-01-19 Shelhigh Inc Natural tissue heart valve and stent prosthesis and method for making the same
US5928281A (en) * 1997-03-27 1999-07-27 Baxter International Inc. Tissue heart valves
US5935163A (en) * 1998-03-31 1999-08-10 Shelhigh, Inc. Natural tissue heart valve prosthesis
WO1999066863A2 (en) * 1998-06-24 1999-12-29 Sulzer Carbomedics Inc. Altering heart valve leaflet attachment geometry to influence the location and magnitude of maximum loaded stress on the leaflet
US6019739A (en) * 1998-06-18 2000-02-01 Baxter International Inc. Minimally invasive valve annulus sizer
US6350281B1 (en) 1999-09-14 2002-02-26 Edwards Lifesciences Corp. Methods and apparatus for measuring valve annuluses during heart valve-replacement surgery
US6350282B1 (en) * 1994-04-22 2002-02-26 Medtronic, Inc. Stented bioprosthetic heart valve
US6461382B1 (en) 2000-09-22 2002-10-08 Edwards Lifesciences Corporation Flexible heart valve having moveable commissures
US6558418B2 (en) 1999-01-26 2003-05-06 Edwards Lifesciences Corporation Flexible heart valve
US20030125805A1 (en) * 2002-01-02 2003-07-03 Medtronic, Inc. Heart valve system
US20030195497A1 (en) * 1999-04-28 2003-10-16 St. Jude Medical, Inc. Aortic heart value prosthesis sizer and marker
US6635085B1 (en) * 2000-08-17 2003-10-21 Carbomedics Inc. Heart valve stent with alignment posts
US6673109B2 (en) 1993-11-01 2004-01-06 3F Therapeutics, Inc. Replacement atrioventricular heart valve
US6682559B2 (en) 2000-01-27 2004-01-27 3F Therapeutics, Inc. Prosthetic heart valve
US20040024451A1 (en) * 2002-01-02 2004-02-05 Medtronic, Inc. Prosthetic heart valve system
US6736845B2 (en) 1999-01-26 2004-05-18 Edwards Lifesciences Corporation Holder for flexible heart valve
US6755857B2 (en) 2001-12-12 2004-06-29 Sulzer Carbomedics Inc. Polymer heart valve with perforated stent and sewing cuff
US20040176839A1 (en) * 2000-06-01 2004-09-09 Huynh Van Le Low-profile heart valve sewing ring and method of use
US20040254636A1 (en) * 2003-05-28 2004-12-16 Flagle Jacob A. Prosthetic valve with vessel engaging member
US20050096738A1 (en) * 2003-10-06 2005-05-05 Cali Douglas S. Minimally invasive valve replacement system
US20050187618A1 (en) * 2004-02-19 2005-08-25 Shlomo Gabbay Low profile heart valve prosthesis
US20060229718A1 (en) * 2005-04-06 2006-10-12 Salvador Marquez Stress absorbing flexible heart valve frame
US20060276889A1 (en) * 2005-06-07 2006-12-07 Chambers Freeman G Systems and methods for assembling components of a fabric-covered prosthetic heart valve
WO2008065678A2 (en) * 2006-11-29 2008-06-05 Aparna Thirumalai Anandampilla An improved heart valve
US20090076599A1 (en) * 2007-09-17 2009-03-19 Medtronics, Inc. Heart valve holder assembly for use in valve implantation procedures
US20100161036A1 (en) * 2008-12-19 2010-06-24 Edwards Lifesciences Corporation Quick-connect prosthetic heart valve and methods
GR1007028B (en) * 2009-11-11 2010-10-22 Ευσταθιος-Ανδρεας Αγαθος SUPPORT OF BIO-ADDITIONAL VALVES WITH DIAGNOSTIC HEART SHAPE
US7819915B2 (en) 2000-07-27 2010-10-26 Edwards Lifesciences Corporation Heart valve holders and handling clips therefor
US20100331972A1 (en) * 2009-06-26 2010-12-30 Edwards Lifesciences Corporation Unitary Quick Connect Prosthetic Heart Valve and Deployment System and Methods
WO2011051574A1 (en) 2009-10-15 2011-05-05 Olivier Schussler Method for producing implantable medical bioprostheses having reduced calcification properties
US7951197B2 (en) 2005-04-08 2011-05-31 Medtronic, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
US7959674B2 (en) 2002-07-16 2011-06-14 Medtronic, Inc. Suture locking assembly and method of use
US7967857B2 (en) 2006-01-27 2011-06-28 Medtronic, Inc. Gasket with spring collar for prosthetic heart valves and methods for making and using them
US7972377B2 (en) 2001-12-27 2011-07-05 Medtronic, Inc. Bioprosthetic heart valve
US7981153B2 (en) 2002-12-20 2011-07-19 Medtronic, Inc. Biologically implantable prosthesis methods of using
US8021421B2 (en) 2003-08-22 2011-09-20 Medtronic, Inc. Prosthesis heart valve fixturing device
US8021161B2 (en) 2006-05-01 2011-09-20 Edwards Lifesciences Corporation Simulated heart valve root for training and testing
USRE42818E1 (en) 2000-01-27 2011-10-11 3F Therapeutics, Inc. Method of cutting material for use in implantable medical device
US8211169B2 (en) 2005-05-27 2012-07-03 Medtronic, Inc. Gasket with collar for prosthetic heart valves and methods for using them
US8449625B2 (en) 2009-10-27 2013-05-28 Edwards Lifesciences Corporation Methods of measuring heart valve annuluses for valve replacement
US8506625B2 (en) 2005-07-13 2013-08-13 Edwards Lifesciences Corporation Contoured sewing ring for a prosthetic mitral heart valve
US8574257B2 (en) 2005-02-10 2013-11-05 Edwards Lifesciences Corporation System, device, and method for providing access in a cardiovascular environment
US20130305800A1 (en) * 2009-04-21 2013-11-21 Medtronic, Inc. Stents For Prosthetic Heart Valves and Methods of Making Same
US8603161B2 (en) 2003-10-08 2013-12-10 Medtronic, Inc. Attachment device and methods of using the same
WO2014007631A1 (en) 2012-07-06 2014-01-09 Xeltis B.V. Implant
US8641757B2 (en) 2010-09-10 2014-02-04 Edwards Lifesciences Corporation Systems for rapidly deploying surgical heart valves
US8821569B2 (en) 2006-04-29 2014-09-02 Medtronic, Inc. Multiple component prosthetic heart valve assemblies and methods for delivering them
US8845720B2 (en) 2010-09-27 2014-09-30 Edwards Lifesciences Corporation Prosthetic heart valve frame with flexible commissures
US20140330373A1 (en) * 2013-05-03 2014-11-06 Robert G. Matheny Reinforced Prosthetic Tissue Valves
US8986374B2 (en) 2010-05-10 2015-03-24 Edwards Lifesciences Corporation Prosthetic heart valve
US9078747B2 (en) 2011-12-21 2015-07-14 Edwards Lifesciences Corporation Anchoring device for replacing or repairing a heart valve
US9078749B2 (en) 2007-09-13 2015-07-14 Georg Lutter Truncated cone heart valve stent
US9125741B2 (en) 2010-09-10 2015-09-08 Edwards Lifesciences Corporation Systems and methods for ensuring safe and rapid deployment of prosthetic heart valves
US9155617B2 (en) 2004-01-23 2015-10-13 Edwards Lifesciences Corporation Prosthetic mitral valve
US9248016B2 (en) 2009-03-31 2016-02-02 Edwards Lifesciences Corporation Prosthetic heart valve system
US9301837B2 (en) * 2014-05-09 2016-04-05 Foldax, Inc. Replacement heart valves and their methods of use and manufacture
US9314334B2 (en) 2008-11-25 2016-04-19 Edwards Lifesciences Corporation Conformal expansion of prosthetic devices to anatomical shapes
US9370418B2 (en) 2010-09-10 2016-06-21 Edwards Lifesciences Corporation Rapidly deployable surgical heart valves
US9468527B2 (en) 2013-06-12 2016-10-18 Edwards Lifesciences Corporation Cardiac implant with integrated suture fasteners
US9480559B2 (en) 2011-08-11 2016-11-01 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US9486306B2 (en) 2013-04-02 2016-11-08 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
US9504566B2 (en) 2014-06-20 2016-11-29 Edwards Lifesciences Corporation Surgical heart valves identifiable post-implant
US9526611B2 (en) 2013-10-29 2016-12-27 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US9549816B2 (en) 2014-04-03 2017-01-24 Edwards Lifesciences Corporation Method for manufacturing high durability heart valve
US9554901B2 (en) 2010-05-12 2017-01-31 Edwards Lifesciences Corporation Low gradient prosthetic heart valve
US9554903B2 (en) 2005-05-24 2017-01-31 Edwards Lifesciences Corporation Rapid deployment prosthetic heart valve
US9585752B2 (en) 2014-04-30 2017-03-07 Edwards Lifesciences Corporation Holder and deployment system for surgical heart valves
US9597181B2 (en) 2013-06-25 2017-03-21 Tendyne Holdings, Inc. Thrombus management and structural compliance features for prosthetic heart valves
US9610159B2 (en) 2013-05-30 2017-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
US9675454B2 (en) 2012-07-30 2017-06-13 Tendyne Holdings, Inc. Delivery systems and methods for transcatheter prosthetic valves
US9827094B2 (en) 2014-09-15 2017-11-28 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
US9827092B2 (en) 2011-12-16 2017-11-28 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
US9895221B2 (en) 2012-07-28 2018-02-20 Tendyne Holdings, Inc. Multi-component designs for heart valve retrieval device, sealing structures and stent assembly
US9919137B2 (en) 2013-08-28 2018-03-20 Edwards Lifesciences Corporation Integrated balloon catheter inflation system
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
US10058425B2 (en) 2013-03-15 2018-08-28 Edwards Lifesciences Corporation Methods of assembling a valved aortic conduit
US10080653B2 (en) 2015-09-10 2018-09-25 Edwards Lifesciences Corporation Limited expansion heart valve
US10201419B2 (en) 2014-02-05 2019-02-12 Tendyne Holdings, Inc. Apparatus and methods for transfemoral delivery of prosthetic mitral valve
US10231833B2 (en) 2016-10-28 2019-03-19 Foldax, Inc. Prosthetic heart valves with elastic support structures and related methods
USD846122S1 (en) 2016-12-16 2019-04-16 Edwards Lifesciences Corporation Heart valve sizer
US10314697B2 (en) 2014-08-18 2019-06-11 W. L. Gore & Associates, Inc. Frame with integral sewing cuff for prosthetic valves
US10327894B2 (en) 2015-09-18 2019-06-25 Tendyne Holdings, Inc. Methods for delivery of prosthetic mitral valves
US10368984B2 (en) 2013-12-06 2019-08-06 W. L. Gore & Associates, Inc. Asymmetric opening and closing prosthetic valve leaflet
US10441415B2 (en) 2013-09-20 2019-10-15 Edwards Lifesciences Corporation Heart valves with increased effective orifice area
US10456245B2 (en) 2016-05-16 2019-10-29 Edwards Lifesciences Corporation System and method for applying material to a stent
US10456246B2 (en) 2015-07-02 2019-10-29 Edwards Lifesciences Corporation Integrated hybrid heart valves
US10463489B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US10463485B2 (en) 2017-04-06 2019-11-05 Edwards Lifesciences Corporation Prosthetic valve holders with automatic deploying mechanisms
US10463494B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US10463478B2 (en) 2012-12-19 2019-11-05 W. L. Gore & Associates, Inc. Truncated leaflet for prosthetic heart valves
US10470877B2 (en) 2016-05-03 2019-11-12 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
USD867594S1 (en) 2015-06-19 2019-11-19 Edwards Lifesciences Corporation Prosthetic heart valve
US10478293B2 (en) 2013-04-04 2019-11-19 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
US10517728B2 (en) 2014-03-10 2019-12-31 Tendyne Holdings, Inc. Devices and methods for positioning and monitoring tether load for prosthetic mitral valve
US10543080B2 (en) 2011-05-20 2020-01-28 Edwards Lifesciences Corporation Methods of making encapsulated heart valves
US10555718B2 (en) 2013-10-17 2020-02-11 Tendyne Holdings, Inc. Apparatus and methods for alignment and deployment of intracardiac devices
US10610354B2 (en) 2013-08-01 2020-04-07 Tendyne Holdings, Inc. Epicardial anchor devices and methods
US10610358B2 (en) 2015-12-28 2020-04-07 Tendyne Holdings, Inc. Atrial pocket closures for prosthetic heart valves
US10610356B2 (en) 2015-02-05 2020-04-07 Tendyne Holdings, Inc. Expandable epicardial pads and devices and methods for delivery of same
US10639144B2 (en) 2012-12-19 2020-05-05 W. L. Gore & Associates, Inc. Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US10660745B2 (en) 2012-12-19 2020-05-26 W. L. Gore & Associates, Inc. Methods for improved prosthetic heart valve with leaflet shelving
US10667904B2 (en) 2016-03-08 2020-06-02 Edwards Lifesciences Corporation Valve implant with integrated sensor and transmitter
US10667905B2 (en) 2015-04-16 2020-06-02 Tendyne Holdings, Inc. Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves
US10695170B2 (en) 2015-07-02 2020-06-30 Edwards Lifesciences Corporation Hybrid heart valves adapted for post-implant expansion
US10722316B2 (en) 2013-11-06 2020-07-28 Edwards Lifesciences Corporation Bioprosthetic heart valves having adaptive seals to minimize paravalvular leakage
US10786351B2 (en) 2015-01-07 2020-09-29 Tendyne Holdings, Inc. Prosthetic mitral valves and apparatus and methods for delivery of same
US10799353B2 (en) 2017-04-28 2020-10-13 Edwards Lifesciences Corporation Prosthetic heart valve with collapsible holder
US10881507B2 (en) 2012-12-19 2021-01-05 W. L. Gore & Associates, Inc. Prosthetic valves, frames and leaflets and methods thereof
USD908874S1 (en) 2018-07-11 2021-01-26 Edwards Lifesciences Corporation Collapsible heart valve sizer
US10959842B2 (en) 2017-09-12 2021-03-30 W. L. Gore & Associates, Inc. Leaflet frame attachment for prosthetic valves
US10966820B2 (en) 2012-12-19 2021-04-06 W. L. Gore & Associates, Inc. Geometric control of bending character in prosthetic heart valve leaflets
US10987218B2 (en) 2017-10-31 2021-04-27 W. L. Gore & Associates, Inc. Transcatheter deployment systems and associated methods
US10993803B2 (en) 2011-04-01 2021-05-04 W. L. Gore & Associates, Inc. Elastomeric leaflet for prosthetic heart valves
US11000369B2 (en) 2017-12-11 2021-05-11 California Institute Of Technolgy Systems, devices, and methods relating to the manufacture of intravascularly implantable prosthetic valves
US11007058B2 (en) 2013-03-15 2021-05-18 Edwards Lifesciences Corporation Valved aortic conduits
US11020221B2 (en) 2017-09-27 2021-06-01 W. L. Gore & Associates, Inc. Prosthetic valve with expandable frame and associated systems and methods
US11039921B2 (en) 2016-06-13 2021-06-22 Tendyne Holdings, Inc. Sequential delivery of two-part prosthetic mitral valve
US11039917B2 (en) 2012-12-19 2021-06-22 W. L. Gore & Associates, Inc. Geometric prosthetic heart valves
US11065116B2 (en) 2016-07-12 2021-07-20 Tendyne Holdings, Inc. Apparatus and methods for trans-septal retrieval of prosthetic heart valves
USD926322S1 (en) 2018-11-07 2021-07-27 W. L. Gore & Associates, Inc. Heart valve cover
US11090157B2 (en) 2016-06-30 2021-08-17 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
US11090153B2 (en) 2017-10-13 2021-08-17 W. L. Gore & Associates, Inc. Telescoping prosthetic valve and delivery system
US11096782B2 (en) 2015-12-03 2021-08-24 Tendyne Holdings, Inc. Frame features for prosthetic mitral valves
US11109963B2 (en) 2017-09-27 2021-09-07 W. L. Gore & Associates, Inc. Prosthetic valves with mechanically coupled leaflets
US11123183B2 (en) 2017-10-31 2021-09-21 W. L. Gore & Associates, Inc. Prosthetic heart valve
US11129622B2 (en) 2015-05-14 2021-09-28 W. L. Gore & Associates, Inc. Devices and methods for occlusion of an atrial appendage
US11135057B2 (en) 2017-06-21 2021-10-05 Edwards Lifesciences Corporation Dual-wireform limited expansion heart valves
US11154397B2 (en) 2017-10-31 2021-10-26 W. L. Gore & Associates, Inc. Jacket for surgical heart valve
US11154399B2 (en) 2017-07-13 2021-10-26 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
US11166809B2 (en) 2012-07-25 2021-11-09 W. L. Gore & Associates, Inc. Everting transcatheter valve and methods
US11173023B2 (en) 2017-10-16 2021-11-16 W. L. Gore & Associates, Inc. Medical devices and anchors therefor
US11179236B2 (en) 2009-12-08 2021-11-23 Colorado State University Research Foundation Device and system for transcatheter mitral valve replacement
US11179237B2 (en) 2015-07-22 2021-11-23 Corcym S.R.L. Valvular sleeve for valvular prostheses and corresponding device
US11191639B2 (en) 2017-08-28 2021-12-07 Tendyne Holdings, Inc. Prosthetic heart valves with tether coupling features
US11224510B2 (en) 2013-04-02 2022-01-18 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US11306423B2 (en) 2018-08-22 2022-04-19 Edwards Lifesciences Corporation Automated heart valve manufacturing devices and methods
US11337805B2 (en) 2018-01-23 2022-05-24 Edwards Lifesciences Corporation Prosthetic valve holders, systems, and methods
US11382741B2 (en) * 2019-12-18 2022-07-12 St. Jude Medical, Cardiology Division, Inc. Devices and methods for surgical valve expansion
KR20220117089A (en) * 2021-02-16 2022-08-23 재단법인 아산사회복지재단 Blood vessel prosthesis composites
US11439502B2 (en) 2017-10-31 2022-09-13 W. L. Gore & Associates, Inc. Medical valve and leaflet promoting tissue ingrowth
US11457925B2 (en) 2011-09-16 2022-10-04 W. L. Gore & Associates, Inc. Occlusive devices
US11497601B2 (en) 2019-03-01 2022-11-15 W. L. Gore & Associates, Inc. Telescoping prosthetic valve with retention element
US11554012B2 (en) 2019-12-16 2023-01-17 Edwards Lifesciences Corporation Valve holder assembly with suture looping protection
US11648114B2 (en) 2019-12-20 2023-05-16 Tendyne Holdings, Inc. Distally loaded sheath and loading funnel
US11648110B2 (en) 2019-12-05 2023-05-16 Tendyne Holdings, Inc. Braided anchor for mitral valve
US11666325B2 (en) 2020-06-09 2023-06-06 Edwards Lifesciences Corporation Automated sewing and thread management
US11678980B2 (en) 2020-08-19 2023-06-20 Tendyne Holdings, Inc. Fully-transseptal apical pad with pulley for tensioning
US11690709B2 (en) 2015-09-02 2023-07-04 Edwards Lifesciences Corporation Methods for securing a transcatheter valve to a bioprosthetic cardiac structure
US11878133B2 (en) 2019-10-08 2024-01-23 Medtronic, Inc. Methods of preparing balloon expandable catheters for cardiac and vascular interventions
US11911258B2 (en) 2013-06-26 2024-02-27 W. L. Gore & Associates, Inc. Space filling devices
US11951002B2 (en) 2020-03-30 2024-04-09 Tendyne Holdings, Inc. Apparatus and methods for valve and tether fixation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US30912A (en) * 1860-12-18 Horse-collab
US3983581A (en) * 1975-01-20 1976-10-05 William W. Angell Heart valve stent
US4084268A (en) * 1976-04-22 1978-04-18 Shiley Laboratories, Incorporated Prosthetic tissue heart valve
FR2451189A1 (en) * 1979-03-16 1980-10-10 Liotta Domingo SUPPORT FOR CARDIAC VALVES OF ORGANIC TISSUES
US4466139A (en) * 1980-07-01 1984-08-21 Vettivetpillai Ketharanathan Vascular prostheses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US30912A (en) * 1860-12-18 Horse-collab
US3983581A (en) * 1975-01-20 1976-10-05 William W. Angell Heart valve stent
US4084268A (en) * 1976-04-22 1978-04-18 Shiley Laboratories, Incorporated Prosthetic tissue heart valve
FR2451189A1 (en) * 1979-03-16 1980-10-10 Liotta Domingo SUPPORT FOR CARDIAC VALVES OF ORGANIC TISSUES
US4466139A (en) * 1980-07-01 1984-08-21 Vettivetpillai Ketharanathan Vascular prostheses

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Experimental Studies of the Anatomical and Functional Characteristics of Kangaroo Aortic Valve Bioprostheses", Life Support Systems, 1984, 2,121-126, Weinhold et al.
Experimental Studies of the Anatomical and Functional Characteristics of Kangaroo Aortic Valve Bioprostheses , Life Support Systems, 1984, 2,121 126, Weinhold et al. *
Implants: Reconstructing the Human Body, Lynch, 1982, p. 63. *

Cited By (344)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892541A (en) * 1982-11-29 1990-01-09 Tascon Medical Technology Corporation Heart valve prosthesis
US4790844A (en) * 1987-01-30 1988-12-13 Yoel Ovil Replacement of cardiac valves in heart surgery
US5824061A (en) * 1989-05-31 1998-10-20 Baxter International Inc. Vascular and venous valve implant prostheses
US5449385A (en) * 1991-05-08 1995-09-12 Nika Health Products Limited Support for a heart valve prosthesis
US5258023A (en) * 1992-02-12 1993-11-02 Reger Medical Development, Inc. Prosthetic heart valve
US5469868A (en) * 1992-02-12 1995-11-28 Reger Medical Inc. Method of making an artificial heart valve stent
US5674276A (en) * 1992-05-20 1997-10-07 Boston Scientific Corporation Tubular medical prosthesis
US5366504A (en) * 1992-05-20 1994-11-22 Boston Scientific Corporation Tubular medical prosthesis
US6221099B1 (en) 1992-05-20 2001-04-24 Boston Scientific Corporation Tubular medical prosthesis
US6673109B2 (en) 1993-11-01 2004-01-06 3F Therapeutics, Inc. Replacement atrioventricular heart valve
US6719788B2 (en) 1993-11-01 2004-04-13 3F Therapeutics, Inc. Replacement atrioventricular heart valve
US6719787B2 (en) 1993-11-01 2004-04-13 3F Therapeutics, Inc. Replacement semilunar heart valve
US6719789B2 (en) 1993-11-01 2004-04-13 3F Therapeutics, Inc. Replacement heart valve
US6736846B2 (en) 1993-11-01 2004-05-18 3F Therapeutics, Inc. Replacement semilunar heart valve
US6350282B1 (en) * 1994-04-22 2002-02-26 Medtronic, Inc. Stented bioprosthetic heart valve
GB2295333A (en) * 1994-10-11 1996-05-29 Astec Environmental Sys Ltd Filter Mounting
WO1996040008A1 (en) * 1995-06-07 1996-12-19 St. Jude Medical, Inc. Bioprosthetic heart valve stent having integral supporting structure
US5984973A (en) * 1995-06-07 1999-11-16 St. Jude Medical, Inc. Integral supporting structure for bioprosthetic heart valve
US5716417A (en) * 1995-06-07 1998-02-10 St. Jude Medical, Inc. Integral supporting structure for bioprosthetic heart valve
US5814096A (en) * 1996-01-05 1998-09-29 Baxter International Inc. Sizing obturator for prosthetic aortic valves
US5861028A (en) * 1996-09-09 1999-01-19 Shelhigh Inc Natural tissue heart valve and stent prosthesis and method for making the same
US20060009842A1 (en) * 1997-03-27 2006-01-12 Huynh Van L Contoured heart valve suture rings
US6102944A (en) * 1997-03-27 2000-08-15 Edwards Lifesciences Corporation Methods of tissue heart valve assembly
US5928281A (en) * 1997-03-27 1999-07-27 Baxter International Inc. Tissue heart valves
US6585766B1 (en) 1997-03-27 2003-07-01 Edwards Lifesciences Corporation Cloth-covered stents for tissue heart valves
US8518108B2 (en) 1997-03-27 2013-08-27 Edwards Lifesciences Corporation Contoured heart valve suture rings
US5935163A (en) * 1998-03-31 1999-08-10 Shelhigh, Inc. Natural tissue heart valve prosthesis
US6019739A (en) * 1998-06-18 2000-02-01 Baxter International Inc. Minimally invasive valve annulus sizer
US6613086B1 (en) 1998-06-24 2003-09-02 Carbomedics Inc. Altering heart valve leaflet attachment geometry to influence the location and magnitude of maximum loaded stress on the leaflet
WO1999066863A2 (en) * 1998-06-24 1999-12-29 Sulzer Carbomedics Inc. Altering heart valve leaflet attachment geometry to influence the location and magnitude of maximum loaded stress on the leaflet
WO1999066863A3 (en) * 1998-06-24 2000-02-10 Sulzer Carbomedics Inc Altering heart valve leaflet attachment geometry to influence the location and magnitude of maximum loaded stress on the leaflet
US6736845B2 (en) 1999-01-26 2004-05-18 Edwards Lifesciences Corporation Holder for flexible heart valve
US6558418B2 (en) 1999-01-26 2003-05-06 Edwards Lifesciences Corporation Flexible heart valve
US7993393B2 (en) 1999-01-26 2011-08-09 Edwards Lifesciences Corporation Flexible heart valve and associated connecting band
US20040148018A1 (en) * 1999-01-26 2004-07-29 Carpentier Alain F. Flexible heart valve and associated connecting band
US7481838B2 (en) 1999-01-26 2009-01-27 Edwards Lifesciences Corporation Flexible heart valve and associated connecting band
US7338484B2 (en) * 1999-04-28 2008-03-04 St. Jude Medical, Inc. Aortic heart valve prosthesis sizer and marker
US20030195497A1 (en) * 1999-04-28 2003-10-16 St. Jude Medical, Inc. Aortic heart value prosthesis sizer and marker
US6350281B1 (en) 1999-09-14 2002-02-26 Edwards Lifesciences Corp. Methods and apparatus for measuring valve annuluses during heart valve-replacement surgery
US6682559B2 (en) 2000-01-27 2004-01-27 3F Therapeutics, Inc. Prosthetic heart valve
US8672999B2 (en) 2000-01-27 2014-03-18 Medtronic 3F Therapeutics, Inc. Prosthetic heart valve assemblies
USRE42857E1 (en) 2000-01-27 2011-10-18 3F Therapeutics, Inc. Method of laser cutting pericardial tissue for use with an implantable medical device
USRE42818E1 (en) 2000-01-27 2011-10-11 3F Therapeutics, Inc. Method of cutting material for use in implantable medical device
US20040176839A1 (en) * 2000-06-01 2004-09-09 Huynh Van Le Low-profile heart valve sewing ring and method of use
US9439762B2 (en) * 2000-06-01 2016-09-13 Edwards Lifesciences Corporation Methods of implant of a heart valve with a convertible sewing ring
US8366769B2 (en) 2000-06-01 2013-02-05 Edwards Lifesciences Corporation Low-profile, pivotable heart valve sewing ring
US10238486B2 (en) 2000-06-01 2019-03-26 Edwards Lifesciences Corporation Heart valve with integrated stent and sewing ring
US20130184814A1 (en) * 2000-06-01 2013-07-18 Edwards Lifesciences Corporation Methods of implant of a heart valve with a convertible sewing ring
US7819915B2 (en) 2000-07-27 2010-10-26 Edwards Lifesciences Corporation Heart valve holders and handling clips therefor
US6635085B1 (en) * 2000-08-17 2003-10-21 Carbomedics Inc. Heart valve stent with alignment posts
US20050096739A1 (en) * 2000-09-22 2005-05-05 Dongbu Cao Flexible heart valve
US6461382B1 (en) 2000-09-22 2002-10-08 Edwards Lifesciences Corporation Flexible heart valve having moveable commissures
US20030014105A1 (en) * 2000-09-22 2003-01-16 Dongbu Cao Flexible heart valve leaflets with concave free edges
US7179290B2 (en) 2000-09-22 2007-02-20 Edwards Lifesciences Flexible heart valve
US6755857B2 (en) 2001-12-12 2004-06-29 Sulzer Carbomedics Inc. Polymer heart valve with perforated stent and sewing cuff
US7972377B2 (en) 2001-12-27 2011-07-05 Medtronic, Inc. Bioprosthetic heart valve
US7189258B2 (en) 2002-01-02 2007-03-13 Medtronic, Inc. Heart valve system
US7033390B2 (en) 2002-01-02 2006-04-25 Medtronic, Inc. Prosthetic heart valve system
US20060195181A1 (en) * 2002-01-02 2006-08-31 Johnson Keith M Heart valve system
US7468073B2 (en) 2002-01-02 2008-12-23 Medtronic, Inc. Heart valve system
US20060235510A1 (en) * 2002-01-02 2006-10-19 Johnson Keith M Prosthetic heart valve system
US20030125805A1 (en) * 2002-01-02 2003-07-03 Medtronic, Inc. Heart valve system
US7503929B2 (en) 2002-01-02 2009-03-17 Medtronic, Inc. Prosthetic heart valve system
US20040024451A1 (en) * 2002-01-02 2004-02-05 Medtronic, Inc. Prosthetic heart valve system
US20090198323A1 (en) * 2002-01-02 2009-08-06 Johnson Keith M Prosthetic Heart Valve System
US8029564B2 (en) 2002-01-02 2011-10-04 Medtronic, Inc. Prosthetic heart valve system
US8349003B2 (en) 2002-07-16 2013-01-08 Medtronic, Inc. Suture locking assembly and method of use
US7959674B2 (en) 2002-07-16 2011-06-14 Medtronic, Inc. Suture locking assembly and method of use
US8460373B2 (en) 2002-12-20 2013-06-11 Medtronic, Inc. Method for implanting a heart valve within an annulus of a patient
US10595991B2 (en) 2002-12-20 2020-03-24 Medtronic, Inc. Heart valve assemblies
US9333078B2 (en) 2002-12-20 2016-05-10 Medtronic, Inc. Heart valve assemblies
US7981153B2 (en) 2002-12-20 2011-07-19 Medtronic, Inc. Biologically implantable prosthesis methods of using
US8551162B2 (en) 2002-12-20 2013-10-08 Medtronic, Inc. Biologically implantable prosthesis
US8025695B2 (en) 2002-12-20 2011-09-27 Medtronic, Inc. Biologically implantable heart valve system
US8623080B2 (en) 2002-12-20 2014-01-07 Medtronic, Inc. Biologically implantable prosthesis and methods of using the same
US20100057201A1 (en) * 2003-05-28 2010-03-04 Cook Incorporated Prosthetic valve with vessel engaging member
US20040254636A1 (en) * 2003-05-28 2004-12-16 Flagle Jacob A. Prosthetic valve with vessel engaging member
US7628804B2 (en) * 2003-05-28 2009-12-08 Cook Incorporated Prosthetic valve with vessel engaging member
US8021421B2 (en) 2003-08-22 2011-09-20 Medtronic, Inc. Prosthesis heart valve fixturing device
US8747463B2 (en) 2003-08-22 2014-06-10 Medtronic, Inc. Methods of using a prosthesis fixturing device
US20050096738A1 (en) * 2003-10-06 2005-05-05 Cali Douglas S. Minimally invasive valve replacement system
US8603161B2 (en) 2003-10-08 2013-12-10 Medtronic, Inc. Attachment device and methods of using the same
US10342661B2 (en) 2004-01-23 2019-07-09 Edwards Lifesciences Corporation Prosthetic mitral valve
US9155617B2 (en) 2004-01-23 2015-10-13 Edwards Lifesciences Corporation Prosthetic mitral valve
US9730794B2 (en) 2004-01-23 2017-08-15 Edwards Lifesciences Corporation Prosthetic mitral valve
US10085836B2 (en) 2004-01-23 2018-10-02 Edwards Lifesciences Corporation Prosthetic mitral valve
US20050187618A1 (en) * 2004-02-19 2005-08-25 Shlomo Gabbay Low profile heart valve prosthesis
US7247167B2 (en) * 2004-02-19 2007-07-24 Shlomo Gabbay Low profile heart valve prosthesis
US8574257B2 (en) 2005-02-10 2013-11-05 Edwards Lifesciences Corporation System, device, and method for providing access in a cardiovascular environment
US7473275B2 (en) 2005-04-06 2009-01-06 Edwards Lifesciences Corporation Stress absorbing flexible heart valve frame
US20060229719A1 (en) * 2005-04-06 2006-10-12 Salvador Marquez Highly flexible heart valve connecting band
US20060229718A1 (en) * 2005-04-06 2006-10-12 Salvador Marquez Stress absorbing flexible heart valve frame
US8062359B2 (en) 2005-04-06 2011-11-22 Edwards Lifesciences Corporation Highly flexible heart valve connecting band
US7951197B2 (en) 2005-04-08 2011-05-31 Medtronic, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
US8500802B2 (en) 2005-04-08 2013-08-06 Medtronic, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
US10130468B2 (en) 2005-05-24 2018-11-20 Edwards Lifesciences Corporation Replacement prosthetic heart valves
US9554903B2 (en) 2005-05-24 2017-01-31 Edwards Lifesciences Corporation Rapid deployment prosthetic heart valve
US11284998B2 (en) 2005-05-24 2022-03-29 Edwards Lifesciences Corporation Surgical methods of replacing prosthetic heart valves
US10456251B2 (en) 2005-05-24 2019-10-29 Edwards Lifesciences Corporation Surgical methods of replacing prosthetic heart valves
US8211169B2 (en) 2005-05-27 2012-07-03 Medtronic, Inc. Gasket with collar for prosthetic heart valves and methods for using them
US8276533B2 (en) 2005-06-07 2012-10-02 Edwards Lifesciences Corporations Methods for assembling components of a fabric-covered prosthetic heart valve
US7739971B2 (en) 2005-06-07 2010-06-22 Edwards Lifesciences Corporation Systems and methods for assembling components of a fabric-covered prosthetic heart valve
US20100257735A1 (en) * 2005-06-07 2010-10-14 Edwards Lifesciences Corporation Methods for assembling components of a fabric-covered prosthetic heart valve
US20060276889A1 (en) * 2005-06-07 2006-12-07 Chambers Freeman G Systems and methods for assembling components of a fabric-covered prosthetic heart valve
US8506625B2 (en) 2005-07-13 2013-08-13 Edwards Lifesciences Corporation Contoured sewing ring for a prosthetic mitral heart valve
US7967857B2 (en) 2006-01-27 2011-06-28 Medtronic, Inc. Gasket with spring collar for prosthetic heart valves and methods for making and using them
US8821569B2 (en) 2006-04-29 2014-09-02 Medtronic, Inc. Multiple component prosthetic heart valve assemblies and methods for delivering them
US8021161B2 (en) 2006-05-01 2011-09-20 Edwards Lifesciences Corporation Simulated heart valve root for training and testing
WO2008065678A2 (en) * 2006-11-29 2008-06-05 Aparna Thirumalai Anandampilla An improved heart valve
US20110060406A1 (en) * 2006-11-29 2011-03-10 Aparna Thirumalai Anandampillai Heart valve
WO2008065678A3 (en) * 2006-11-29 2008-12-18 Aparna Thirumalai Anandampilla An improved heart valve
US9095433B2 (en) 2007-09-13 2015-08-04 Georg Lutter Truncated cone heart valve stent
US9078749B2 (en) 2007-09-13 2015-07-14 Georg Lutter Truncated cone heart valve stent
US9730792B2 (en) 2007-09-13 2017-08-15 Georg Lutter Truncated cone heart valve stent
US11213387B2 (en) 2007-09-13 2022-01-04 Georg Lutter Truncated cone heart valve stent
US10456248B2 (en) 2007-09-13 2019-10-29 Georg Lutter Truncated cone heart valve stent
US9254192B2 (en) 2007-09-13 2016-02-09 Georg Lutter Truncated cone heart valve stent
US8273118B2 (en) 2007-09-17 2012-09-25 Medtronic, Inc. Heart valve holder assembly for use in valve implantation procedures
US20090076599A1 (en) * 2007-09-17 2009-03-19 Medtronics, Inc. Heart valve holder assembly for use in valve implantation procedures
US10667906B2 (en) 2008-11-25 2020-06-02 Edwards Lifesciences Corporation Methods of conformal expansion of prosthetic heart valves
US9314334B2 (en) 2008-11-25 2016-04-19 Edwards Lifesciences Corporation Conformal expansion of prosthetic devices to anatomical shapes
US9561100B2 (en) 2008-12-19 2017-02-07 Edwards Lifesciences Corporation Systems for quickly delivering a prosthetic heart valve
US9005278B2 (en) 2008-12-19 2015-04-14 Edwards Lifesciences Corporation Quick-connect prosthetic heart valve
US10799346B2 (en) 2008-12-19 2020-10-13 Edwards Lifesciences Corporation Methods for quickly implanting a prosthetic heart valve
US10182909B2 (en) 2008-12-19 2019-01-22 Edwards Lifesciences Corporation Methods for quickly implanting a prosthetic heart valve
US11504232B2 (en) 2008-12-19 2022-11-22 Edwards Lifesciences Corporation Rapid implant prosthetic heart valve system
US20100161036A1 (en) * 2008-12-19 2010-06-24 Edwards Lifesciences Corporation Quick-connect prosthetic heart valve and methods
US8308798B2 (en) 2008-12-19 2012-11-13 Edwards Lifesciences Corporation Quick-connect prosthetic heart valve and methods
US9248016B2 (en) 2009-03-31 2016-02-02 Edwards Lifesciences Corporation Prosthetic heart valve system
US10842623B2 (en) 2009-03-31 2020-11-24 Edwards Lifesciences Corporation Methods of implanting prosthetic heart valve using position markers
US9931207B2 (en) 2009-03-31 2018-04-03 Edwards Lifesciences Corporation Methods of implanting a heart valve at an aortic annulus
US9980818B2 (en) 2009-03-31 2018-05-29 Edwards Lifesciences Corporation Prosthetic heart valve system with positioning markers
US20130305800A1 (en) * 2009-04-21 2013-11-21 Medtronic, Inc. Stents For Prosthetic Heart Valves and Methods of Making Same
US9561119B2 (en) * 2009-04-21 2017-02-07 Medtronic, Inc. Stents for prosthetic heart valves and methods of making same
US11654022B2 (en) 2009-04-21 2023-05-23 Medtronic, Inc. Stents for prosthetic heart valves and methods of making same
US10729540B2 (en) 2009-04-21 2020-08-04 Medtronic, Inc. Stents for prosthetic heart valves and methods of making same
US8696742B2 (en) 2009-06-26 2014-04-15 Edwards Lifesciences Corporation Unitary quick-connect prosthetic heart valve deployment methods
US9005277B2 (en) 2009-06-26 2015-04-14 Edwards Lifesciences Corporation Unitary quick-connect prosthetic heart valve deployment system
US20100331972A1 (en) * 2009-06-26 2010-12-30 Edwards Lifesciences Corporation Unitary Quick Connect Prosthetic Heart Valve and Deployment System and Methods
US8348998B2 (en) 2009-06-26 2013-01-08 Edwards Lifesciences Corporation Unitary quick connect prosthetic heart valve and deployment system and methods
US10555810B2 (en) 2009-06-26 2020-02-11 Edwards Lifesciences Corporation Prosthetic heart valve deployment systems
WO2011051574A1 (en) 2009-10-15 2011-05-05 Olivier Schussler Method for producing implantable medical bioprostheses having reduced calcification properties
US8449625B2 (en) 2009-10-27 2013-05-28 Edwards Lifesciences Corporation Methods of measuring heart valve annuluses for valve replacement
US9603553B2 (en) 2009-10-27 2017-03-28 Edwards Lifesciences Corporation Methods of measuring heart valve annuluses for valve replacement
US10231646B2 (en) 2009-10-27 2019-03-19 Edwards Lifesciences Corporation Device for measuring an aortic valve annulus in an expanded condition
US11412954B2 (en) 2009-10-27 2022-08-16 Edwards Lifesciences Corporation Device for measuring an aortic valve annulus in an expanded condition
DE212010000177U1 (en) 2009-11-11 2012-07-16 Efstathios-Andreas AGATHOS Support system for bioprosthetic valves with commissure supports with heart-shaped openings
AU2010317679B2 (en) * 2009-11-11 2014-03-27 Efstathios-Andreas Agathos Support system for bioprosthetic valves with commisural posts with heart-shaped openings
GB2487034A (en) * 2009-11-11 2012-07-04 Efstathios-Andreas Agathos Support system for bioprosthetic valves with commisural posts with heart-shaped openings
GR1007028B (en) * 2009-11-11 2010-10-22 Ευσταθιος-Ανδρεας Αγαθος SUPPORT OF BIO-ADDITIONAL VALVES WITH DIAGNOSTIC HEART SHAPE
WO2011058385A1 (en) 2009-11-11 2011-05-19 Efstathios-Andreas Agathos Support system for bioprosthetic valves with commisural posts with heart-shaped openings
US11179236B2 (en) 2009-12-08 2021-11-23 Colorado State University Research Foundation Device and system for transcatheter mitral valve replacement
US10702383B2 (en) 2010-05-10 2020-07-07 Edwards Lifesciences Corporation Methods of delivering and implanting resilient prosthetic surgical heart valves
US8986374B2 (en) 2010-05-10 2015-03-24 Edwards Lifesciences Corporation Prosthetic heart valve
US11571299B2 (en) 2010-05-10 2023-02-07 Edwards Lifesciences Corporation Methods for manufacturing resilient prosthetic surgical heart valves
US11266497B2 (en) 2010-05-12 2022-03-08 Edwards Lifesciences Corporation Low gradient prosthetic heart valves
US9554901B2 (en) 2010-05-12 2017-01-31 Edwards Lifesciences Corporation Low gradient prosthetic heart valve
US10463480B2 (en) 2010-05-12 2019-11-05 Edwards Lifesciences Corporation Leaflet for low gradient prosthetic heart valve
US11471279B2 (en) 2010-09-10 2022-10-18 Edwards Lifesciences Corporation Systems for rapidly deployable surgical heart valves
US11197757B2 (en) 2010-09-10 2021-12-14 Edwards Lifesciences Corporation Methods of safely expanding prosthetic heart valves
US9125741B2 (en) 2010-09-10 2015-09-08 Edwards Lifesciences Corporation Systems and methods for ensuring safe and rapid deployment of prosthetic heart valves
US10722358B2 (en) 2010-09-10 2020-07-28 Edwards Lifesciences Corporation Systems for rapidly deployable surgical heart valves
US8641757B2 (en) 2010-09-10 2014-02-04 Edwards Lifesciences Corporation Systems for rapidly deploying surgical heart valves
US9968450B2 (en) 2010-09-10 2018-05-15 Edwards Lifesciences Corporation Methods for ensuring safe and rapid deployment of prosthetic heart valves
US10548728B2 (en) 2010-09-10 2020-02-04 Edwards Lifesciences Corporation Safety systems for expansion of prosthetic heart valves
US11775613B2 (en) 2010-09-10 2023-10-03 Edwards Lifesciences Corporation Methods of safely expanding prosthetic heart valves
US10039641B2 (en) 2010-09-10 2018-08-07 Edwards Lifesciences Corporation Methods of rapidly deployable surgical heart valves
US9370418B2 (en) 2010-09-10 2016-06-21 Edwards Lifesciences Corporation Rapidly deployable surgical heart valves
US9504563B2 (en) 2010-09-10 2016-11-29 Edwards Lifesciences Corporation Rapidly deployable surgical heart valves
US8845720B2 (en) 2010-09-27 2014-09-30 Edwards Lifesciences Corporation Prosthetic heart valve frame with flexible commissures
US11207178B2 (en) 2010-09-27 2021-12-28 Edwards Lifesciences Corporation Collapsible-expandable heart valves
US10736741B2 (en) 2010-09-27 2020-08-11 Edwards Lifesciences Corporation Methods of delivery of heart valves
US9861479B2 (en) 2010-09-27 2018-01-09 Edwards Lifesciences Corporation Methods of delivery of flexible heart valves
US10993803B2 (en) 2011-04-01 2021-05-04 W. L. Gore & Associates, Inc. Elastomeric leaflet for prosthetic heart valves
US10543080B2 (en) 2011-05-20 2020-01-28 Edwards Lifesciences Corporation Methods of making encapsulated heart valves
US11517426B2 (en) 2011-05-20 2022-12-06 Edwards Lifesciences Corporation Encapsulated heart valves
US11135055B2 (en) 2011-08-11 2021-10-05 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US10639145B2 (en) 2011-08-11 2020-05-05 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11382737B2 (en) 2011-08-11 2022-07-12 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11123180B2 (en) 2011-08-11 2021-09-21 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11123181B2 (en) 2011-08-11 2021-09-21 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11364116B2 (en) 2011-08-11 2022-06-21 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US9833315B2 (en) 2011-08-11 2017-12-05 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11484404B2 (en) 2011-08-11 2022-11-01 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US9480559B2 (en) 2011-08-11 2016-11-01 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US10617519B2 (en) 2011-08-11 2020-04-14 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11311374B2 (en) 2011-08-11 2022-04-26 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11457925B2 (en) 2011-09-16 2022-10-04 W. L. Gore & Associates, Inc. Occlusive devices
US9827092B2 (en) 2011-12-16 2017-11-28 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
US10952844B2 (en) 2011-12-16 2021-03-23 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
US11452602B2 (en) 2011-12-21 2022-09-27 Edwards Lifesciences Corporation Anchoring device for replacing or repairing a native heart valve annulus
US10238489B2 (en) 2011-12-21 2019-03-26 Edwards Lifesciences Corporation Anchoring device and method for replacing or repairing a heart valve
US9078747B2 (en) 2011-12-21 2015-07-14 Edwards Lifesciences Corporation Anchoring device for replacing or repairing a heart valve
US10849752B2 (en) 2011-12-21 2020-12-01 Edwards Lifesciences Corporation Methods for anchoring a device at a native heart valve annulus
US9877852B2 (en) 2012-07-06 2018-01-30 Xeltis, Bv Implant
WO2014007631A1 (en) 2012-07-06 2014-01-09 Xeltis B.V. Implant
US11166809B2 (en) 2012-07-25 2021-11-09 W. L. Gore & Associates, Inc. Everting transcatheter valve and methods
US11950999B2 (en) 2012-07-25 2024-04-09 Edwards Lifesciences Corporation Everting transcatheter valve and methods
US11759318B2 (en) 2012-07-28 2023-09-19 Tendyne Holdings, Inc. Multi-component designs for heart valve retrieval device, sealing structures and stent assembly
US9895221B2 (en) 2012-07-28 2018-02-20 Tendyne Holdings, Inc. Multi-component designs for heart valve retrieval device, sealing structures and stent assembly
US11090155B2 (en) 2012-07-30 2021-08-17 Tendyne Holdings, Inc. Delivery systems and methods for transcatheter prosthetic valves
US9675454B2 (en) 2012-07-30 2017-06-13 Tendyne Holdings, Inc. Delivery systems and methods for transcatheter prosthetic valves
US10219900B2 (en) 2012-07-30 2019-03-05 Tendyne Holdings, Inc. Delivery systems and methods for transcatheter prosthetic valves
US11826248B2 (en) 2012-12-19 2023-11-28 Edwards Lifesciences Corporation Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US11896481B2 (en) 2012-12-19 2024-02-13 Edwards Lifesciences Corporation Truncated leaflet for prosthetic heart valves
US10463478B2 (en) 2012-12-19 2019-11-05 W. L. Gore & Associates, Inc. Truncated leaflet for prosthetic heart valves
US11039917B2 (en) 2012-12-19 2021-06-22 W. L. Gore & Associates, Inc. Geometric prosthetic heart valves
US10966820B2 (en) 2012-12-19 2021-04-06 W. L. Gore & Associates, Inc. Geometric control of bending character in prosthetic heart valve leaflets
US11872122B2 (en) 2012-12-19 2024-01-16 Edwards Lifesciences Corporation Methods for improved prosthetic heart valve with leaflet shelving
US10881507B2 (en) 2012-12-19 2021-01-05 W. L. Gore & Associates, Inc. Prosthetic valves, frames and leaflets and methods thereof
US10660745B2 (en) 2012-12-19 2020-05-26 W. L. Gore & Associates, Inc. Methods for improved prosthetic heart valve with leaflet shelving
US10639144B2 (en) 2012-12-19 2020-05-05 W. L. Gore & Associates, Inc. Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US11007058B2 (en) 2013-03-15 2021-05-18 Edwards Lifesciences Corporation Valved aortic conduits
US10058425B2 (en) 2013-03-15 2018-08-28 Edwards Lifesciences Corporation Methods of assembling a valved aortic conduit
US11648116B2 (en) 2013-03-15 2023-05-16 Edwards Lifesciences Corporation Methods of assembling valved aortic conduits
US10463494B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US10463489B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US11311379B2 (en) 2013-04-02 2022-04-26 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US11224510B2 (en) 2013-04-02 2022-01-18 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US9486306B2 (en) 2013-04-02 2016-11-08 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
US10478293B2 (en) 2013-04-04 2019-11-19 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
US11364119B2 (en) 2013-04-04 2022-06-21 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
US20140330373A1 (en) * 2013-05-03 2014-11-06 Robert G. Matheny Reinforced Prosthetic Tissue Valves
US20150289974A1 (en) * 2013-05-03 2015-10-15 Cormatrix Cardiovascular, Inc. Reinforced Prosthetic Tissue Valves
US10405976B2 (en) 2013-05-30 2019-09-10 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
US11617645B2 (en) 2013-05-30 2023-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
US9610159B2 (en) 2013-05-30 2017-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
US11464633B2 (en) 2013-06-12 2022-10-11 Edwards Lifesciences Corporation Heart valve implants with side slits
US9468527B2 (en) 2013-06-12 2016-10-18 Edwards Lifesciences Corporation Cardiac implant with integrated suture fasteners
US10314706B2 (en) 2013-06-12 2019-06-11 Edwards Lifesciences Corporation Methods of implanting a cardiac implant with integrated suture fasteners
US9968451B2 (en) 2013-06-12 2018-05-15 Edwards Lifesciences Corporation Cardiac implant with integrated suture fasteners
US11471281B2 (en) 2013-06-25 2022-10-18 Tendyne Holdings, Inc. Thrombus management and structural compliance features for prosthetic heart valves
US9597181B2 (en) 2013-06-25 2017-03-21 Tendyne Holdings, Inc. Thrombus management and structural compliance features for prosthetic heart valves
US10595996B2 (en) 2013-06-25 2020-03-24 Tendyne Holdings, Inc. Thrombus management and structural compliance features for prosthetic heart valves
US11911258B2 (en) 2013-06-26 2024-02-27 W. L. Gore & Associates, Inc. Space filling devices
US10610354B2 (en) 2013-08-01 2020-04-07 Tendyne Holdings, Inc. Epicardial anchor devices and methods
US11612480B2 (en) 2013-08-01 2023-03-28 Tendyne Holdings, Inc. Epicardial anchor devices and methods
US9919137B2 (en) 2013-08-28 2018-03-20 Edwards Lifesciences Corporation Integrated balloon catheter inflation system
US10702680B2 (en) 2013-08-28 2020-07-07 Edwards Lifesciences Corporation Method of operating an integrated balloon catheter inflation system
US10441415B2 (en) 2013-09-20 2019-10-15 Edwards Lifesciences Corporation Heart valves with increased effective orifice area
US11266499B2 (en) 2013-09-20 2022-03-08 Edwards Lifesciences Corporation Heart valves with increased effective orifice area
US11246562B2 (en) 2013-10-17 2022-02-15 Tendyne Holdings, Inc. Apparatus and methods for alignment and deployment of intracardiac devices
US10555718B2 (en) 2013-10-17 2020-02-11 Tendyne Holdings, Inc. Apparatus and methods for alignment and deployment of intracardiac devices
US9526611B2 (en) 2013-10-29 2016-12-27 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US10363135B2 (en) 2013-10-29 2019-07-30 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US11096783B2 (en) 2013-10-29 2021-08-24 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US10722316B2 (en) 2013-11-06 2020-07-28 Edwards Lifesciences Corporation Bioprosthetic heart valves having adaptive seals to minimize paravalvular leakage
US10368984B2 (en) 2013-12-06 2019-08-06 W. L. Gore & Associates, Inc. Asymmetric opening and closing prosthetic valve leaflet
US10201419B2 (en) 2014-02-05 2019-02-12 Tendyne Holdings, Inc. Apparatus and methods for transfemoral delivery of prosthetic mitral valve
US11589985B2 (en) 2014-02-05 2023-02-28 Tendyne Holdings, Inc. Apparatus and methods for transfemoral delivery of prosthetic mitral valve
US11464628B2 (en) 2014-02-05 2022-10-11 Tendyne Holdings, Inc. Expandable epicardial pads and devices and methods for delivery of same
US11045183B2 (en) 2014-02-11 2021-06-29 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
US10517728B2 (en) 2014-03-10 2019-12-31 Tendyne Holdings, Inc. Devices and methods for positioning and monitoring tether load for prosthetic mitral valve
US11382753B2 (en) 2014-03-10 2022-07-12 Tendyne Holdings, Inc. Devices and methods for positioning and monitoring tether load for prosthetic mitral valve
US9549816B2 (en) 2014-04-03 2017-01-24 Edwards Lifesciences Corporation Method for manufacturing high durability heart valve
US10307249B2 (en) 2014-04-30 2019-06-04 Edwards Lifesciences Corporation Holder and deployment system for surgical heart valves
US11376122B2 (en) 2014-04-30 2022-07-05 Edwards Lifesciences Corporation Holder and deployment system for surgical heart valves
US9585752B2 (en) 2014-04-30 2017-03-07 Edwards Lifesciences Corporation Holder and deployment system for surgical heart valves
US10918477B2 (en) 2014-05-09 2021-02-16 Foldax, Inc. Replacement heart valves and their methods of use and manufacture
US9539089B2 (en) 2014-05-09 2017-01-10 Foldax, Inc. Replacement heart valves and their methods of use and manufacture
JP2017514664A (en) * 2014-05-09 2017-06-08 フォルダックス, インコーポレイテッド Replacement heart valves and methods for their use and manufacture
US9301837B2 (en) * 2014-05-09 2016-04-05 Foldax, Inc. Replacement heart valves and their methods of use and manufacture
US11654019B2 (en) 2014-05-09 2023-05-23 Foldax, Inc. Replacement heart valves and their methods of use and manufacture
US9504566B2 (en) 2014-06-20 2016-11-29 Edwards Lifesciences Corporation Surgical heart valves identifiable post-implant
US10130469B2 (en) 2014-06-20 2018-11-20 Edwards Lifesciences Corporation Expandable surgical heart valve indicators
US11154394B2 (en) 2014-06-20 2021-10-26 Edwards Lifesciences Corporation Methods of identifying and replacing implanted heart valves
US10314697B2 (en) 2014-08-18 2019-06-11 W. L. Gore & Associates, Inc. Frame with integral sewing cuff for prosthetic valves
US11065112B2 (en) 2014-08-18 2021-07-20 W. L. Gore & Associates, Inc. Frame with integral sewing cuff for prosthetic valves
US11471276B2 (en) 2014-09-15 2022-10-18 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
US9827094B2 (en) 2014-09-15 2017-11-28 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
US10342659B2 (en) 2014-09-15 2019-07-09 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
US10786351B2 (en) 2015-01-07 2020-09-29 Tendyne Holdings, Inc. Prosthetic mitral valves and apparatus and methods for delivery of same
US10610356B2 (en) 2015-02-05 2020-04-07 Tendyne Holdings, Inc. Expandable epicardial pads and devices and methods for delivery of same
US11523902B2 (en) 2015-04-16 2022-12-13 Tendyne Holdings, Inc. Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves
US10667905B2 (en) 2015-04-16 2020-06-02 Tendyne Holdings, Inc. Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves
US11129622B2 (en) 2015-05-14 2021-09-28 W. L. Gore & Associates, Inc. Devices and methods for occlusion of an atrial appendage
USD893031S1 (en) 2015-06-19 2020-08-11 Edwards Lifesciences Corporation Prosthetic heart valve
USD867594S1 (en) 2015-06-19 2019-11-19 Edwards Lifesciences Corporation Prosthetic heart valve
US11654020B2 (en) 2015-07-02 2023-05-23 Edwards Lifesciences Corporation Hybrid heart valves
US10695170B2 (en) 2015-07-02 2020-06-30 Edwards Lifesciences Corporation Hybrid heart valves adapted for post-implant expansion
US11690714B2 (en) 2015-07-02 2023-07-04 Edwards Lifesciences Corporation Hybrid heart valves adapted for post-implant expansion
US10456246B2 (en) 2015-07-02 2019-10-29 Edwards Lifesciences Corporation Integrated hybrid heart valves
US11179237B2 (en) 2015-07-22 2021-11-23 Corcym S.R.L. Valvular sleeve for valvular prostheses and corresponding device
US11690709B2 (en) 2015-09-02 2023-07-04 Edwards Lifesciences Corporation Methods for securing a transcatheter valve to a bioprosthetic cardiac structure
US10080653B2 (en) 2015-09-10 2018-09-25 Edwards Lifesciences Corporation Limited expansion heart valve
US11806232B2 (en) 2015-09-10 2023-11-07 Edwards Lifesciences Corporation Limited expansion valve-in-valve procedures
US10751174B2 (en) 2015-09-10 2020-08-25 Edwards Lifesciences Corporation Limited expansion heart valve
US10327894B2 (en) 2015-09-18 2019-06-25 Tendyne Holdings, Inc. Methods for delivery of prosthetic mitral valves
US11318012B2 (en) 2015-09-18 2022-05-03 Tendyne Holdings, Inc. Apparatus and methods for delivery of prosthetic mitral valve
US11096782B2 (en) 2015-12-03 2021-08-24 Tendyne Holdings, Inc. Frame features for prosthetic mitral valves
US11464629B2 (en) 2015-12-28 2022-10-11 Tendyne Holdings, Inc. Atrial pocket closures for prosthetic heart valves
US10610358B2 (en) 2015-12-28 2020-04-07 Tendyne Holdings, Inc. Atrial pocket closures for prosthetic heart valves
US10667904B2 (en) 2016-03-08 2020-06-02 Edwards Lifesciences Corporation Valve implant with integrated sensor and transmitter
US11471275B2 (en) 2016-03-08 2022-10-18 Edwards Lifesciences Corporation Valve implant with integrated sensor and transmitter
US10470877B2 (en) 2016-05-03 2019-11-12 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
US11253354B2 (en) 2016-05-03 2022-02-22 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
US10456245B2 (en) 2016-05-16 2019-10-29 Edwards Lifesciences Corporation System and method for applying material to a stent
US11039921B2 (en) 2016-06-13 2021-06-22 Tendyne Holdings, Inc. Sequential delivery of two-part prosthetic mitral valve
US11090157B2 (en) 2016-06-30 2021-08-17 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
US11701226B2 (en) 2016-06-30 2023-07-18 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
US11065116B2 (en) 2016-07-12 2021-07-20 Tendyne Holdings, Inc. Apparatus and methods for trans-septal retrieval of prosthetic heart valves
US10231833B2 (en) 2016-10-28 2019-03-19 Foldax, Inc. Prosthetic heart valves with elastic support structures and related methods
US11534293B2 (en) 2016-10-28 2022-12-27 Foldax, Inc. Prosthetic heart valves with elastic support structures and related methods
US11129712B2 (en) 2016-10-28 2021-09-28 Foldax, Inc. Prosthetic heart valves with elastic support structures and related methods
USD846122S1 (en) 2016-12-16 2019-04-16 Edwards Lifesciences Corporation Heart valve sizer
US11376125B2 (en) 2017-04-06 2022-07-05 Edwards Lifesciences Corporation Prosthetic valve holders with automatic deploying mechanisms
US10463485B2 (en) 2017-04-06 2019-11-05 Edwards Lifesciences Corporation Prosthetic valve holders with automatic deploying mechanisms
US11911273B2 (en) 2017-04-28 2024-02-27 Edwards Lifesciences Corporation Prosthetic heart valve with collapsible holder
US10799353B2 (en) 2017-04-28 2020-10-13 Edwards Lifesciences Corporation Prosthetic heart valve with collapsible holder
US11135057B2 (en) 2017-06-21 2021-10-05 Edwards Lifesciences Corporation Dual-wireform limited expansion heart valves
US11154399B2 (en) 2017-07-13 2021-10-26 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
US11191639B2 (en) 2017-08-28 2021-12-07 Tendyne Holdings, Inc. Prosthetic heart valves with tether coupling features
US10959842B2 (en) 2017-09-12 2021-03-30 W. L. Gore & Associates, Inc. Leaflet frame attachment for prosthetic valves
US11109963B2 (en) 2017-09-27 2021-09-07 W. L. Gore & Associates, Inc. Prosthetic valves with mechanically coupled leaflets
US11020221B2 (en) 2017-09-27 2021-06-01 W. L. Gore & Associates, Inc. Prosthetic valve with expandable frame and associated systems and methods
US11857412B2 (en) 2017-09-27 2024-01-02 Edwards Lifesciences Corporation Prosthetic valve with expandable frame and associated systems and methods
US11090153B2 (en) 2017-10-13 2021-08-17 W. L. Gore & Associates, Inc. Telescoping prosthetic valve and delivery system
US11173023B2 (en) 2017-10-16 2021-11-16 W. L. Gore & Associates, Inc. Medical devices and anchors therefor
US10987218B2 (en) 2017-10-31 2021-04-27 W. L. Gore & Associates, Inc. Transcatheter deployment systems and associated methods
US11439502B2 (en) 2017-10-31 2022-09-13 W. L. Gore & Associates, Inc. Medical valve and leaflet promoting tissue ingrowth
US11123183B2 (en) 2017-10-31 2021-09-21 W. L. Gore & Associates, Inc. Prosthetic heart valve
US11154397B2 (en) 2017-10-31 2021-10-26 W. L. Gore & Associates, Inc. Jacket for surgical heart valve
US11000369B2 (en) 2017-12-11 2021-05-11 California Institute Of Technolgy Systems, devices, and methods relating to the manufacture of intravascularly implantable prosthetic valves
US11337805B2 (en) 2018-01-23 2022-05-24 Edwards Lifesciences Corporation Prosthetic valve holders, systems, and methods
USD908874S1 (en) 2018-07-11 2021-01-26 Edwards Lifesciences Corporation Collapsible heart valve sizer
USD995774S1 (en) 2018-07-11 2023-08-15 Edwards Lifesciences Corporation Collapsible heart valve sizer
USD952143S1 (en) 2018-07-11 2022-05-17 Edwards Lifesciences Corporation Collapsible heart valve sizer
US11840785B2 (en) 2018-08-22 2023-12-12 Edwards Lifesciences Corporation Automated heart valve manufacturing
US11306423B2 (en) 2018-08-22 2022-04-19 Edwards Lifesciences Corporation Automated heart valve manufacturing devices and methods
US11613834B2 (en) 2018-08-22 2023-03-28 Edwards Lifesciences Corporation Automated heart valve manufacturing devices and methods
USD926322S1 (en) 2018-11-07 2021-07-27 W. L. Gore & Associates, Inc. Heart valve cover
US11497601B2 (en) 2019-03-01 2022-11-15 W. L. Gore & Associates, Inc. Telescoping prosthetic valve with retention element
US11878133B2 (en) 2019-10-08 2024-01-23 Medtronic, Inc. Methods of preparing balloon expandable catheters for cardiac and vascular interventions
US11648110B2 (en) 2019-12-05 2023-05-16 Tendyne Holdings, Inc. Braided anchor for mitral valve
US11554012B2 (en) 2019-12-16 2023-01-17 Edwards Lifesciences Corporation Valve holder assembly with suture looping protection
US11951006B2 (en) 2019-12-16 2024-04-09 Edwards Lifesciences Corporation Valve holder assembly with suture looping protection
US11382741B2 (en) * 2019-12-18 2022-07-12 St. Jude Medical, Cardiology Division, Inc. Devices and methods for surgical valve expansion
US11648114B2 (en) 2019-12-20 2023-05-16 Tendyne Holdings, Inc. Distally loaded sheath and loading funnel
US11951002B2 (en) 2020-03-30 2024-04-09 Tendyne Holdings, Inc. Apparatus and methods for valve and tether fixation
US11666325B2 (en) 2020-06-09 2023-06-06 Edwards Lifesciences Corporation Automated sewing and thread management
US11678980B2 (en) 2020-08-19 2023-06-20 Tendyne Holdings, Inc. Fully-transseptal apical pad with pulley for tensioning
KR20220117089A (en) * 2021-02-16 2022-08-23 재단법인 아산사회복지재단 Blood vessel prosthesis composites
WO2022177272A1 (en) * 2021-02-16 2022-08-25 재단법인 아산사회복지재단 Artificial blood vessel complex

Similar Documents

Publication Publication Date Title
US4626255A (en) Heart valve bioprothesis
CA1228203A (en) Heart valve bioprosthesis
US6328763B1 (en) Optimized geometry of a tissue pattern for semilunar heart valve reconstruction
US5935163A (en) Natural tissue heart valve prosthesis
CA2532086C (en) Prosthetic valves for medical application
US6916338B2 (en) Synthetic leaflets for heart valve repair or replacement
CA2365358C (en) Aortic annuloplasty ring
US9339381B2 (en) Four-leaflet stented mitral heart valve
US4561129A (en) Low-profile biological bicuspid valve
US6143024A (en) Annuloplasty ring having flexible anterior portion
US5549665A (en) Bioprostethic valve
US6254636B1 (en) Single suture biological tissue aortic stentless valve
US5156621A (en) Stentless bioprosthetic cardiac valve
US4655773A (en) Bicuspid valve prosthesis for an auriculo-ventricular cardiac aperture
EP2091466A2 (en) Prosthetic heart valve structures and related methods
CN210019797U (en) Artificial blood vessel with valve
CN216168093U (en) Prosthetic heart valve prosthesis
CN116138928A (en) Interventional mitral valve capable of reducing left ventricular outflow port
CA1184703A (en) Low profile prosthetic xenograft heart valve

Legal Events

Date Code Title Description
AS Assignment

Owner name: WEINHOLD CHRISTIAN HATZFELDERWEG 13B 8000 MUCHEN 7

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:REICHART, BRUNO;WEINHOLD, CHRISTIAN;REEL/FRAME:004317/0008

Effective date: 19840903

Owner name: WEINHOLD CHRISTIAN,GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:REICHART, BRUNO;WEINHOLD, CHRISTIAN;REEL/FRAME:004317/0008

Effective date: 19840903

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: PETER KENNEDY PTY. LTD.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:WEINHOLD, CHRISTIAN;REEL/FRAME:005808/0518

Effective date: 19910722

FEPP Fee payment procedure

Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS - SMALL BUSINESS (ORIGINAL EVENT CODE: SM02); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19981202

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362