US4680332A - Ink jet compositions and process for preparation thereof - Google Patents

Ink jet compositions and process for preparation thereof Download PDF

Info

Publication number
US4680332A
US4680332A US06/822,173 US82217386A US4680332A US 4680332 A US4680332 A US 4680332A US 82217386 A US82217386 A US 82217386A US 4680332 A US4680332 A US 4680332A
Authority
US
United States
Prior art keywords
percent
poly
accordance
water
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/822,173
Inventor
Michael L. Hair
Kar P. Lok
Christopher K. Ober
Melvin D. Croucher
Raymond W. Wong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Assigned to XEROX CORPORATION, FAIRFIELD, CT., A CORP. OF NEW YORK reassignment XEROX CORPORATION, FAIRFIELD, CT., A CORP. OF NEW YORK ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CROUCHER, MELVIN D., HAIR, MICHAEL L., OBER, CHRISTOPHER K., WONG, RAYMOND W.
Assigned to XEROX CORPORATION, FAIRFIELD, CT., A CORP. OF NEW YORK reassignment XEROX CORPORATION, FAIRFIELD, CT., A CORP. OF NEW YORK ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: LOK, KAR P.
Priority to US06/822,173 priority Critical patent/US4680332A/en
Application filed by Xerox Corp filed Critical Xerox Corp
Priority to JP62007976A priority patent/JPS62172076A/en
Priority to EP87300501A priority patent/EP0232066B1/en
Priority to DE8787300501T priority patent/DE3783782T2/en
Publication of US4680332A publication Critical patent/US4680332A/en
Application granted granted Critical
Assigned to BANK ONE, NA, AS ADMINISTRATIVE AGENT reassignment BANK ONE, NA, AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: XEROX CORPORATION
Assigned to JPMORGAN CHASE BANK, AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: XEROX CORPORATION
Anticipated expiration legal-status Critical
Assigned to XEROX CORPORATION reassignment XEROX CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A. AS SUCCESSOR-IN-INTEREST ADMINISTRATIVE AGENT AND COLLATERAL AGENT TO JPMORGAN CHASE BANK
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S260/00Chemistry of carbon compounds
    • Y10S260/38Ink

Definitions

  • the present invention is generally directed to compositions particularly useful as marking materials in various imaging systems, and more specifically the present invention is directed to heterophase ink compositions useful in ink jet printing systems, and to processes for the preparation of these compositions.
  • heterophase ink compositions comprised of polymeric substances with specific stabilizers, especially nonionic stabilizers, and oil soluble dyes.
  • the aforementioned inks possess improved waterfastness characteristics, excellent dot and edge definition, and permit decreased ink spreading.
  • the heterophase ink compositions of the present invention enable the print quality of the images generated to be of high resolution, thus allowing these inks to be selected for plain paper making technologies.
  • compositions useful in ink jet printing systems generally contain therein water soluble dyes.
  • an ink jet composition comprised of an aqueous solution of a water-soluble dye and a humectant material formed of a mixture of a lower alkoxy triglycol, and at least one other compound selected from the group consisting of a polyethylene glycol, a lower alkyl ether of diethylene glycol, and glycerol.
  • the printing inks viscosity is subjected to little variation with use as water is lost by evaporation during recirculation of the ink composition through the jet printer.
  • the basic imaging technique in jet printing involves the use of one or more ink jet assemblies connected to a pressurized source of ink.
  • Each individual ink jet includes a very small orifice usually of a diameter of 10 to 200 microns which is energized by magneto restrictive piezo-electric means for the purpose of emitting a continuous stream of uniform droplets of ink at a rate of 33 to 75 kilohertz.
  • This stream of uniform droplets is desirably directed onto the surface of a moving web of, for example, paper; and is controlled to form printed characters in response to video signals derived from an electronic character generator and in response to an electrostatic deflection system; or drop on demand ink propulsion system.
  • Ink compositions for jet printing can be prepared by a number of known methods. Generally, these methods involve dissolving the various dyes, humectants, viscosity control agents, paper fixing additives, surface tension control additives, biocides and anti-oxidants in a known volume of water, followed by adjusting the pH and concentration of the solution to desirable levels. In those situations wherein the colorants selected are not water soluble, such as those containing pigments, the inks are prepared by standard known milling processes. However, these pigment dispersions are generally not sufficiently stable, accordingly when incorporated into a printing machine, the ink particles tend to agglomerate resulting in the clogging of the small nozzles present in the ink jet devices.
  • One of the important objectives of the present invention resides in the preparation of discrete particles uniformly sized and specifically stabilized sterically, enabling the elimination of the undesirable agglomeration of these particles which are prepared by in situ polymerization techniques.
  • the nonionic stabilizer selected is not absorbed as is the situation with known emulsion or suspension polymerization processes; accordingly, coagulation of the ink particles is substantially prevented.
  • U.S. Pat. No. 3,346,494 there is described a process for preparing stable microemulsions by the addition of a dispersable phase to a continuous phase to which has been added a selected combination of microemulsifiers.
  • the continuous phase include liquid hydrocarbons such as benzene, while the dispersable phase contains a material which is insoluble in the hydrocarbon.
  • the microemulsifier used in the process of the '494 patent is apparently comprised of three ingredients; namely, a fatty acid, an amino alcohol, and an alkyl phenol, reference the disclosure in column 1, beginning at line 64.
  • polymer particles can be prepared by known suspension polymerization or emulsion polymerization processes. Both of these techniques are heterogeneous reactions in which a monomer droplet is stabilized in an aqueous dispersion medium and the particle is formed by a free radical polymerization mechanism.
  • suspension polymerization there is selected a monomer soluble free radical initiator situated in the monomer droplets which are of large size, approaching 40 to 300 microns in diameter, with stabilization of the suspension being accomplished with a dispersant or suspending agent which is not considered a surfactant.
  • water soluble initiators located in the dispersion medium are employed and typically ionic surfactants are used for the purpose of stabilizing the resulting dispersions.
  • the reaction mixture is initially homogeneous.
  • the polymer chain grows to a particular chain length at which point it phase separates to yield nuclei which are then stabilized against flocculation by the presence of a steric stabilizer at the particle-fluid interface.
  • the process of the present invention permits colored polymer particles that, although of a similar particle size, are substantially insensitive colloidally to both pH, precipation or flocculation of the ink particles, and the concentration of electrolyte.
  • an ink composition comprised of polymers having dissolved therein oil soluble dyes; and containing surfactants, which composition is dispersed in an aqueous medium.
  • an ink composition useful for jet printing processes comprised of a water insoluble polymer dispersed in an aqueous solution, the polymer containing therein an oil soluble dye in an amount of from about 5 percent by weight to about 25 percent by weight; and surfactant particles in an amount of from about 1 percent by weight to about 10 percent by weight.
  • a process for the preparation of particles for ink jet printing which comprises (1) providing a monomer having dissolved therein oil soluble dye, (2) dissolving polymerization initiator into the monomer, (3) mixing the resulting solution with water containing a surface active agent therein, (4) subjecting the resulting mixture to ultrasound vibrations, while simultaneously or subsequently heating the mixture to affect polymerization, thereby resulting in polymer particles containing the oil soluble dye and surface active agent, which particles are essentially monodispersed and are of a diameter of from about 0.03 microns to about 2 microns.
  • particle sizes are dependent upon the reaction conditions selected which determines the number of particle nuclei produced from the homogeneous phase and therefore the final particle size.
  • Stabilizers used in the two processes are also different, therefore, with the inks of the copending application, the droplets are stabilized with low molecular weight ionic or nonionic surfactants, while with the process of the present application the steric stabilizers are low, medium or high molecular weight, nonionic materials.
  • the inks of the present invention a larger variety of dyes can be selected because they need not withstand the oxidative environment present in the polymerizing droplets of the copending application since with the process of the present invention the dye is not introduced during the polymerization.
  • compositions are suitable for their intended purposes, there continues to be a need for new inks for jet printing, and processes for preparing these compositions. Additionally, there continues to be a need for ink jet compositions which when in use result in superior optical print densities, and have excellent waterfastness characteristics. Moreover, there continues to be a need for inks that contain oil soluble dyes therein, and wherein the inks are of desired particle diameter sizes. Further, there is a need for ink compositions, preferably of a diameter of 0.5 microns or less which contain an oil soluble dye therein, and are waterfast, have an excellent affinity for paper substrates and superior drying times.
  • ink jet compositions with oil soluble dyes wherein the colorant can be localized therein.
  • new polymerization processes particularly processes applicable to the preparation of ink jet compositions of a suitable particle size, which processes are simple and economical in their approach.
  • inks desirably containing therein dyes situated, for example, in the interior of the ink particles thus enabling the dye to be chemically protected, and further preventing such materials from affecting the surface tension of the particles involved.
  • these compositions impinge the paper substrate during jet printing, there is precipitated immediately on the fibers the ink particles, primarily in view of the colloidal characteristics of these particles.
  • a solvent vehicle such as water, ethylene glycol, and dimethyl sulfoxide
  • a molecularly dissolved dye such as water, ethylene glycol, and dimethyl sulfoxide
  • the dyes selected for these inks must be of a sufficient polarity to enable their dissolution in the solvents selected. Accordingly, images obtained with these ink compositions usually have poor waterfastness characteristics. Additionally, extensive dye and solvent diffusion into the paper substrate causes undesirable ink spreading, thereby resulting in low image resolution and inferior edge acuity.
  • the two phase ink compositions of the present invention resolve these problems.
  • ink compositions containing oil soluble dyes therein which compositions are useful in jet printing systems.
  • a further object of the present invention resides in the provision of ink compositions with acceptable dot and edge definition.
  • a still further object of the present invention resides in the provision of ink compositions with reduced ink spreading properties.
  • Another important object of the present invention is the provision of heterophase ink compositions with nonionic stabilizers therein.
  • An additional object of the present invention resides in the provision of colored ink compositions of desired sizes containing, in addition to oil soluble dyes, optional difunctional monomers like divinyl benzene.
  • a further object of the present invention is the provision of heterophase ink compositions wherein the print quality of the images developed are independent of the ink paper interactions, thereby permitting these inks to be selected for plain paper processes.
  • ink jet compositions wherein the sterically stabilized lattices are insensitive to pH and electrolyte concentration, thus biocides and other additives may be introduced without coagulating the particles.
  • novel ink compositions for jet printing comprised of polymers, certain stabilizers, and oil soluble dyes; and to processes for preparing these compositions. More specifically, in one embodiment, the present invention is directed to heterophase ink compositions dispersed in an aqueous medium comprised of polymeric compositions, nonionic stabilizers, and dissolved therein oil soluble dyes.
  • a heterophase ink composition useful for jet printing processes comprised of a water insoluble polymer, dispersed in water optionally dispersed in an aqueous solution of aliphatic alcohol and water, or dispersed in a nonaqueous solution, the polymer containing therein an oil soluble dye in an amount of, for example, from about 5 percent by weight to about 25 percent by weight; and attached to the polymer particles a nonionic stabilizer in an amount of from about, for example, 1 percent by weight to about 10 percent by weight.
  • a process for the preparation of particles for ink jet printing which comprises (1) dissolving in a reaction medium, preferably comprised of an aliphatic alcohol solvent present in an amount of from about 0.5 percent to about 50 percent, a nonionic stabilizer; (2) adding a monomer with polymerization initiator dissolved therein to the solution; (3) affecting polymerization wherein the nonionic stabilizer is permanently attached thereto; and (4) introducing into the aforementioned polymerization product a dye solution having incorporated therein various dyes inclusive of red, blue, yellow, cyan, magenta, black, or mixtures thereof, followed by subsequently removing any residual solvent.
  • Another preferred embodiment of the present invention is directed to a process for the preparation of heterogeneous ink compositions which comprises (1) dissolving in an aqueous ethanol solvent mixture, where ethanol is preferably present in an amount of from about 10 to about 30 percent by weight, a nonionic stabilizer selected from poly(vinyl alcohol), hydroxypropyl cellulose, poly(vinyl pyrrolidone) and Pluronic F68; (2) adding a styrene and n-butylmethacrylate comonomer mixture (60/40) in an amount of from about 5 to about 50 percent by weight with from about 0.5 percent to about 20 percent by weight monomer of an initiator such as benzoyl peroxide, azobisisobutyronitrile (AIBN) or benzoyl peroxide, and (3) heating the resulting mixture at from about 50Ā° C.
  • an initiator such as benzoyl peroxide, azobisisobutyronitrile (AIBN) or benzoyl peroxide
  • a polymer particles are then stirred for from about 0.5 hours to about 5 hours with a solution of from about 5 to about 50 percent by weight of a dye, such as Pylachrome Pink LX1900, Sudan Black B, Neozapon 807, or Sudan Yellow 146, and the like.
  • a dye such as Pylachrome Pink LX1900, Sudan Black B, Neozapon 807, or Sudan Yellow 146, and the like.
  • Monomers that may be selected for the process of the present invention include various known materials such as vinyl monomeric substances including styrene, parachlorostyrene, and vinyl naphthalene; vinyl halides such as vinylchloride, vinylbromide, vinylfluoride, vinylacetate, vinylbenzoate, and vinylbutyrate; vinyl esters such as esters of monocarboxylic acids, including methylacrylate, ethylacrylate, n-butylacrylate, isobutylacrylate, dodecylacrylate, n-octylacrylate, 2-chloroethylacrylate, phenylacrylate, methylmethacrylate, ethylmethacrylate, butylmethacrylate, and the like; acrylonitrile; and mixtures thereof.
  • vinyl monomeric substances including styrene, parachlorostyrene, and vinyl naphthalene
  • vinyl halides such as vinylchloride, vinylbromide
  • monomers may be suitable for use in the process of the present invention providing they are capable of free radical polymerization, and allow the objectives of the present invention to be affected.
  • Particularly preferred monomers polymerized in accordance with the present invention, and present as a component in the final ink composition include styrene, butylmethacrylates, lauryl methacrylates, ethylhexyl acrylates, and other similar acrylates wherein the carbon chain length is from about 1 to about 18 carbon atoms.
  • One important characteristic of the monomer selected, such as styrene is that these monomers are not soluble to any significant extent in water, that is, the solubility in water of these monomers is less than about 1 percent.
  • the resulting ink compositions contain from about 5 percent by weight to about 50 percent by weight, and preferably from about 10 percent by weight to about 25 percent by weight of polymer subsequent to polymerization of the monomer component.
  • nonionic compositions including ethylene oxide propylene oxide block copolymers, with a molecular weight of about 8,000 available as Pluronic F68, poly(ethylene oxide) tertiary octylphenol, poly(vinyl alcohol), hydroxypropyl cellulose, poly(vinyl pyrrolidone), poly(ethylene oxide), poly(ethylene imine), and poly(ethylene oxide) monomethyl ether. From about 0.1 percent to about 20 percent by weight, and preferably from about 10 percent by weight of stabilizer are selected for the polymerization.
  • These nonionic stabilizers are essential in that they permit particle formation processes to occur in a nonaqueous solvent such as an alcohol or aqueous solvent mixtures while also permitting dispersion of the resulting particles in a water phase.
  • this medium is comprised of an aliphatic alcohol in an amount of from about 10 percent by volume to about 100 percent by volume, and water in an amount of from 0 percent by volume to 90 percent by volume. In this manner, there can be obtained ink composition particles of a diameter of from about 0.1 to about 0.5 microns.
  • Suitable known polymer initiator substances can be selected including peroxides, such as benzoyl peroxide, lauroyl peroxide, azo-type initiators such as azobisisobutyronitrile, Vazo 52 commercially available from E. I. duPont, and the like.
  • the initiator which allows the polymerization reaction to proceed, is incorporated into the monomer solution mixture in an amount of from about 0.5 percent by weight to about 15 percent by weight, and preferably in an amount of from about 2 percent by weight to about 3 percent by weight. This initiator is consumed during the polymerization reaction.
  • oil soluble dyes that is, dyes that will remain substantially dissolved in the polymer
  • azo dyes such as Sudan Black commercially available from Fisher, Inc.; Sudan I, and nigrosine commercially available from Aldrich Chemical; Sudan II, commercially available from Aldrich Chemical; and other classes of dyes such as Yellow Dyes commercially available from Pylam, Inc.; Neozapan Red GE, available from BASF Chemical Company; Oil Blue A dyes, commerciallly available from E. I.
  • a dye solution comprised of the dyes illustrated herein and an organic solvent is diffused into the polymerized product by a dye imbibition process.
  • the dye solution may be added to the particle mixture either in the form of an aqueous emulsion or directly in the form of a solution depending on the selected dyeing procedure.
  • surfactants that may be selected are ionic and nonionic surfactants, which are not chemically attached to the polymer, as is the situation with the stabilizers of the present invention such as sodium laurate, sodium lauryl sulfate, sodium oleate, potassium oleate, polyoxyethylene tertiary octyl phenol, polyoxyethylene sorbitol monolaurate, sucrose palmitate, potassium stearate, ammonium naphthenate, morpholine laurate, sulfated propyloleate sodium salts, sulfonated castor oil, sodium diaryl sulfosuccinate, sodium lignosulfonate, N-polyethoxystearylamine, dodecyltrimethylammonium chloride, methyl dodecylbenzyl trimethyl ammonium chloride, lauryl pyridinium chloride, and the like.
  • ionic and nonionic surfactants which are not chemically attached to the
  • This surfactant is dissolved in an aqueous solution in an amount of from about 0.1 percent by weight to about 10 percent by weight, and preferably in an amount of from about 0.2 to about 2 percent by weight. Accordingly, water such as deionized water is present in this mixture in an amount of from about 90 percent by weight to about 99.9 percent by weight, and preferably in an amount of from about 98 percent by weight to about 99.8 percent by weight.
  • This surfactant solution is then used to prepare an emulsion of the dye organic solvent solution which can be used in the dyeing procedures.
  • organic solvents there can be selected halogenated aliphatic compositions including methylene chloride, toluene, cyclohexane, butylacetate, and the like. Generally, from about 1 milliliter to about 50 milliliters of solvent are selected for each gram of dye to be dissolved. Dissolving of the dye is accomplished by a simple stirring of the polymerized mixture, solvent, and dye. Subsequent to the evaporation of the solvent from the reaction mixture, the dye is retained in the polymer particles.
  • the dye solution can be added to the polymerized particles in various suitable amounts providing the objectives of the present invention are achieved, however, the dye solution is added in an amount of from about 10 percent to about 50 percent by weight of the polymer particles.
  • an entropic dilution effect due to the initial absence of dye in the particles and the high polymer concentration causes the dye to diffuse through the solvent medium and into the polymer particles.
  • the effectiveness and completion of this diffusion process is dependent on a number of factors including the concentration of the dye, solvent, and polymer particles; the specific types of dyes used; the nature of the particles being treated; and the temperature at which the process is accomplished.
  • the particle sizes of the materials prepared subsequent to polymerization can be determined by various known techniques, however, in accordance with the process of the present invention these sizes were obtained with a Coulter Nanosizer light scattering apparatus and also measured with electron microscopy.
  • Other properties associated with the ink compositions of the present invention include a pH of from about 4 to about 10, a surface tension of from about 45 dynes/cm to about 65 dynes/cm, and a viscosity of from about 1 to about 10 centipoises.
  • the ink compositions of the present invention have excellent waterfastness, that is, they adhere to the substrate surface in view of the presence of oil soluble dyes.
  • the colored ink particles also have self binding properties toward paper which means that once they are laid down they resist removal from the paper.
  • the ink particles, in view of their diameters, were found to be very useful in ink jet printing systems since, for example, the ink jet nozzles directing the ink remained essentially open and unclogged.
  • the size of the resulting particles specified hereinbefore enabled them to penetrate the spaces between the fibers contained on the paper substrate, allowing a desirable matte finish despite the apparent high loading of polymer composition.
  • difunctional monomers such as divinyl benzene, vinyl methacrylate, 2-butene-1,4-diacrylate, 2-butene-1,4-dimethacrylate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, divinyl succinate, and other similar crosslinking compounds in amounts of from about 0.1 percent to about 1.0 percent by weight of monomer mixture, for the purpose of reducing further the diameters of the ink particles to, for example, 0.2 micron from 0.5 micron.
  • difunctional monomers such as divinyl benzene, vinyl methacrylate, 2-butene-1,4-diacrylate, 2-butene-1,4-dimethacrylate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, divinyl succinate, and other similar crosslinking compounds in amounts of from about 0.1 percent to about
  • the presence of the difunctional monomer acts to increase the average molecular weight of the polymer being produced and thereby further reduces its already limited solubility in the reaction medium. This causes the formation of more particle nuclei during the polymerization, and thereby leads to particles of a smaller diameter on completion of the reaction.
  • copolymer particles There were prepared copolymer particles by dissolving 5 grams of the stabilizer Pluronic F68 in 200 milliliters of ethanol and 100 milliliters of water at a temperature of 68Ā° C. with stirring under a nitrogen atmosphere. Subsequent to dissolution of the stabilizer, there was added a solution composed of 24 milliliters of styrene, 16 milliliters of n-butylmethacrylate, and 1.5 grams of benzoyl peroxide. Within 2 minutes the reaction mixture became cloudy indicating the initiation of the polymerization, and after 24 hours there resulted prior to coloring a product consisting of copolymer particles with an average diameter of 500 nanometers.
  • the product copolymer particles with Pluronic F68 stabilizer anchored thereto were removed from the solvent medium by centrifugation and dispersed in 100 milliliters of 0.25 percent aqueous sodium dodecyl sulfate solution containing 5 to 30 percent by weight of acetone.
  • a dye solution consisting of 20 percent by weight of Passaic Oil Red 2144 dissolved in 50 milliliters of methylene chloride was then added to 100 milliliters of a 0.25 percent aqueous sodium dodecyl sulfate solution, and this mixture was sonified for 5 minutes resulting in a homogeneous emulsion.
  • the resulting emulsion was then added to the above copolymer particle dispersion, and after stirring for 3 hours the acetone and methylene chloride was to evaporated by blowing air over the dispersion. Thereafter, to remove excess surfactant, the colored particles were centrifuged down and then redispersed in 200 milliliters of a water solution containing 1 percent Pluronic F68 by weight. There was obtained a red ink.
  • the above prepared red ink jet ink having a composition of 17 percent by weight copolymer, 2 percent by weight dye, 1 percent by weight Pluronic F68 and 80 percent by weight water was then incorporated into a Diablo C-150 ink jet printer and jetted.
  • the resulting prints on 4024 paper had good edge acuity, that is, the spots on the paper as determined by microscopic examination, showed little observable feathering, possessed good waterfastness, greater than 90 percent, and had an optical density of greater than 0.5. Spot size was typically 20 percent smaller than the commercial inks supplied with the Diablo C-150.
  • Polymer particles consisting of poly(vinyl stearate) were prepared by first dissolving 5 grams of the stabilizer poly(ethylene oxide), molecular weight, about 10,000 in 200 milliliters of ethanol and 100 milliliters of water at a temperature of 75Ā° C. with stirring under a nitrogen atomosphere. Subsequent to dissolution of the stabilizer there was added a solution consisting of 50 milliliters of vinyl stearate and 1.0 gram of azobisisobutyronitrile (AIBN). Within 5 minutes the reaction mixture became cloudy indicating the polymerization had started, and after 24 hours there resulted prior to coloring a product consisting of polymer particles with an average diameter of 250 nanometers.
  • AIBN azobisisobutyronitrile
  • the resulting poly(vinyl stearate) particles with poly(ethylene oxide) stabilizer anchored thereto and dispersed in the reaction medium was added a solution consisting of 10 grams of Pylachrome Pink LX1900 dye dissolved in 50 milliliters of methylene chloride. After stirring for 5 hours, the methylene chloride was permitted to evaporate.
  • the resulting magenta ink consisted of 16 percent by weight poly(vinyl stearate), 2 percent by weight of dye, 2 percent by weight poly(ethylene oxide), 40 percent by weight ethanol and 40 percent by weight water; and after filtering through a Whatman #1 filter, paper could be jetted with a Diablo C-150 ink jet printer to yield magenta colored images.
  • polystyrene particles by dissolving 6 grams of the stabilizer Pluronic F68 in 380 milliliters of ethanol and 120 milliliters of water at a temperature of 70Ā° C. with stirring under a nitrogen atmosphere for one half hour. Subsequent to dissolution of the stabilizer there was added a solution composed of 50 milliliters of styrene, and 0.5 grams of azobisisobutyronitrile. Within 2 minutes the reaction mixture became cloudy indicating the initiation of the polymerization, and after 24 hours there resulted prior to coloring a product consisting of polymer particles with an average diameter of 295 nanometers.
  • the product copolymer particles with Pluronic F68 stabilizer anchored thereto were removed from the solvent medium by centrifugation, and dispersed in 100 milliliters of 0.25 percent aqueous sodium dodecyl sulfate solution containing 5 to 30 percent by weight of acetone.
  • the above prepared ink jet ink having a composition of 17 percent by weight polystyrene with stabilizer attached thereto, 2 percent by weight dye, 1 percent by weight poly(vinyl pyrrolidone), and 80 percent by weight water was then incorporated into a Diablo C-150 ink jet printer and jetted.
  • the resulting blue prints on 4024 paper had good edge acuity, showed little feathering, possessed a waterfastness of greater than 90 percent, and had an optical density of greater than 0.5.
  • the spot size was 30 percent smaller than the commercial inks supplied with the Diablo C-150.
  • Polymer particles consisting of crosslinked poly(methylmethacrylate) were prepared by first dissolving 5 grams of the stabilizer poly(vinylpyrrolidone), molecular weight about 15,000, in 200 milliliters of ethanol, and 150 milliliters of water at a temperature of 70Ā° C. with stirring under a nitrogen atmosphere. Subsequent to dissolution of the stabilizer, there was added a solution consisting of 50 milliliters of methylmethacrylate, 0.25 milliliters of ethylene glycol dimethacrylate, and 1.0 gram of lauroyl peroxide (LPO). Within 5 minutes the reaction mixture became cloudy indicating the polymerization had started, and after 30 hours there resulted prior to coloring a product consisting of polymer particles with an average diameter of 350 nanometers.
  • the stabilizer poly(vinylpyrrolidone) molecular weight about 15,000
  • the resulting cyan ink consisted of 16 percent by weight poly(methylmethacrylate), 2 percent by weight dye, 1 percent by weight poly(vinylpyrrolidone), 20 percent by weight ethanol and 61 percent by weight water; and after filtering through a Whatman #1 filter paper, the ink was jetted with a Diablo C-150 ink jet printer to yield cyan colored images with an optical density greater than 0.5.
  • Polymer particles consisting of poly(laurylmethacrylate) were prepared by first dissolving 5 grams of the stabilizer polyoxyethylene tert-octylphenol (40 moles of ethylene oxide) in 200 milliliters of ethanol and 25 milliliters of water at a temperature of 75Ā° C. with stirring under a nitrogen atmosphere. Subsequent to dissolution of the stabilizer, there was added a solution consisting of 30 milliliters of 2-ethylhexylmethacrylate and 1.5 grams of benzoyl peroxide. Within 10 minutes the reaction mixture became cloudy indicating the polymerization had started, and after 24 hours there resulted prior to coloring a product consisting of polymer particles with an average diameter of 400 nanometers.

Abstract

Disclosed is a heterophase ink composition comprised of a water insoluble polymer dispersed in a liquid medium, the polymer containing therein an oil soluble dye, and a nonionic stabilizer permanently attached thereto.

Description

BACKGROUND OF THE INVENTION
The present invention is generally directed to compositions particularly useful as marking materials in various imaging systems, and more specifically the present invention is directed to heterophase ink compositions useful in ink jet printing systems, and to processes for the preparation of these compositions. Accordingly, in one embodiment of the present invention, there are provided heterophase ink compositions comprised of polymeric substances with specific stabilizers, especially nonionic stabilizers, and oil soluble dyes. The aforementioned inks possess improved waterfastness characteristics, excellent dot and edge definition, and permit decreased ink spreading. Also, the heterophase ink compositions of the present invention enable the print quality of the images generated to be of high resolution, thus allowing these inks to be selected for plain paper making technologies.
Compositions useful in ink jet printing systems generally contain therein water soluble dyes. Thus, there is disclosed, for example, in U.S. Pat. No. 3,846,141 an ink jet composition comprised of an aqueous solution of a water-soluble dye and a humectant material formed of a mixture of a lower alkoxy triglycol, and at least one other compound selected from the group consisting of a polyethylene glycol, a lower alkyl ether of diethylene glycol, and glycerol. According to the disclosure of this patent, the printing inks viscosity is subjected to little variation with use as water is lost by evaporation during recirculation of the ink composition through the jet printer. Moreover, apparently the humectant system disclosed in this patent substantially prevents or minimizes tip drying of the printing ink in the orifice or nozzle during down time of the printer, such as when the printer is rendered inoperative. As further disclosed in this patent, the basic imaging technique in jet printing involves the use of one or more ink jet assemblies connected to a pressurized source of ink. Each individual ink jet includes a very small orifice usually of a diameter of 10 to 200 microns which is energized by magneto restrictive piezo-electric means for the purpose of emitting a continuous stream of uniform droplets of ink at a rate of 33 to 75 kilohertz. This stream of uniform droplets is desirably directed onto the surface of a moving web of, for example, paper; and is controlled to form printed characters in response to video signals derived from an electronic character generator and in response to an electrostatic deflection system; or drop on demand ink propulsion system.
Also, there is disclosed in U.S. Pat. No. 4,279,653, ink jet compositions with water soluble wetting agents, a water soluble dye and an oxygen absorber. Similarly, U.S. Pat. No. 4,196,007 describes an ink jet printing composition containing an aqueous solution of a water soluble dye and a humectant consisting of at least one water soluble unsaturated compound. Other prior art disclosing aqueous inks for ink jet printing include U.S. Pat. Nos. 4,101,329; 4,290,072 and 4,299,630.
Ink compositions for jet printing can be prepared by a number of known methods. Generally, these methods involve dissolving the various dyes, humectants, viscosity control agents, paper fixing additives, surface tension control additives, biocides and anti-oxidants in a known volume of water, followed by adjusting the pH and concentration of the solution to desirable levels. In those situations wherein the colorants selected are not water soluble, such as those containing pigments, the inks are prepared by standard known milling processes. However, these pigment dispersions are generally not sufficiently stable, accordingly when incorporated into a printing machine, the ink particles tend to agglomerate resulting in the clogging of the small nozzles present in the ink jet devices. One of the important objectives of the present invention resides in the preparation of discrete particles uniformly sized and specifically stabilized sterically, enabling the elimination of the undesirable agglomeration of these particles which are prepared by in situ polymerization techniques. Thus, for example, with the inks of the present invention the nonionic stabilizer selected is not absorbed as is the situation with known emulsion or suspension polymerization processes; accordingly, coagulation of the ink particles is substantially prevented.
Further, in U.S. Pat. No. 3,346,494 there is described a process for preparing stable microemulsions by the addition of a dispersable phase to a continuous phase to which has been added a selected combination of microemulsifiers. Examples of the continuous phase include liquid hydrocarbons such as benzene, while the dispersable phase contains a material which is insoluble in the hydrocarbon. The microemulsifier used in the process of the '494 patent is apparently comprised of three ingredients; namely, a fatty acid, an amino alcohol, and an alkyl phenol, reference the disclosure in column 1, beginning at line 64.
Additionally, polymer particles can be prepared by known suspension polymerization or emulsion polymerization processes. Both of these techniques are heterogeneous reactions in which a monomer droplet is stabilized in an aqueous dispersion medium and the particle is formed by a free radical polymerization mechanism. In suspension polymerization, there is selected a monomer soluble free radical initiator situated in the monomer droplets which are of large size, approaching 40 to 300 microns in diameter, with stabilization of the suspension being accomplished with a dispersant or suspending agent which is not considered a surfactant. With emulsion polymerization, water soluble initiators located in the dispersion medium are employed and typically ionic surfactants are used for the purpose of stabilizing the resulting dispersions. In contrast with the dispersion polymerization of the process of the present invention, the reaction mixture is initially homogeneous. Also, with the process of the present invention after initiation of the polymerization, the polymer chain grows to a particular chain length at which point it phase separates to yield nuclei which are then stabilized against flocculation by the presence of a steric stabilizer at the particle-fluid interface. One primay advantage of the aforementioned dispersion polymerization process is that it can be affected in both aqueous and nonaqueous media.
There is also disclosed in U.S. Pat. No. 4,246,154 a process for permitting the formulation of ink jet compositions from vinyl polymer lattices by a dye imbibition technique. The aforementioned anionically stabilized lattices which are obtained by emulsion polymerization are colored with a dye imbibition process. Coloring processes as illustrated in Konishiroku EP Publication No. 0.068,9003 and DE No. 3,233,555 are similar to the '154 patent ink jet procedures with the exception that there is used in the latter a preformed polyurethane latex. In contrast to these colored emulsions, which are usually stable over a narrow pH range and are extremely sensitive to the concentration of electrolyte, the process of the present invention permits colored polymer particles that, although of a similar particle size, are substantially insensitive colloidally to both pH, precipation or flocculation of the ink particles, and the concentration of electrolyte.
Further, disclosed in copending application U.S. Ser. No. 553,598, entitled Ink Jet Compositions and Processes for Preparation, the disclosure of which is totally incorporated herein by reference, is an ink composition comprised of polymers having dissolved therein oil soluble dyes; and containing surfactants, which composition is dispersed in an aqueous medium. Specifically disclosed in this copending application is an ink composition useful for jet printing processes comprised of a water insoluble polymer dispersed in an aqueous solution, the polymer containing therein an oil soluble dye in an amount of from about 5 percent by weight to about 25 percent by weight; and surfactant particles in an amount of from about 1 percent by weight to about 10 percent by weight. Additionally, disclosed in the aforementioned copending application is a process for the preparation of particles for ink jet printing which comprises (1) providing a monomer having dissolved therein oil soluble dye, (2) dissolving polymerization initiator into the monomer, (3) mixing the resulting solution with water containing a surface active agent therein, (4) subjecting the resulting mixture to ultrasound vibrations, while simultaneously or subsequently heating the mixture to affect polymerization, thereby resulting in polymer particles containing the oil soluble dye and surface active agent, which particles are essentially monodispersed and are of a diameter of from about 0.03 microns to about 2 microns.
Whereas the size of the particles produced in the process of the aforementioned copending application are determined by the mechanical homogenization process, in the present process particle sizes are dependent upon the reaction conditions selected which determines the number of particle nuclei produced from the homogeneous phase and therefore the final particle size. Stabilizers used in the two processes are also different, therefore, with the inks of the copending application, the droplets are stabilized with low molecular weight ionic or nonionic surfactants, while with the process of the present application the steric stabilizers are low, medium or high molecular weight, nonionic materials. Therefore, for example, with the inks of the present invention a larger variety of dyes can be selected because they need not withstand the oxidative environment present in the polymerizing droplets of the copending application since with the process of the present invention the dye is not introduced during the polymerization.
Although the above compositions are suitable for their intended purposes, there continues to be a need for new inks for jet printing, and processes for preparing these compositions. Additionally, there continues to be a need for ink jet compositions which when in use result in superior optical print densities, and have excellent waterfastness characteristics. Moreover, there continues to be a need for inks that contain oil soluble dyes therein, and wherein the inks are of desired particle diameter sizes. Further, there is a need for ink compositions, preferably of a diameter of 0.5 microns or less which contain an oil soluble dye therein, and are waterfast, have an excellent affinity for paper substrates and superior drying times. There is also a need for ink jet compositions with oil soluble dyes wherein the colorant can be localized therein. Furthermore, there continues to be a need for new polymerization processes, particularly processes applicable to the preparation of ink jet compositions of a suitable particle size, which processes are simple and economical in their approach. Also, in accordance with the present invention, there is provided inks desirably containing therein dyes situated, for example, in the interior of the ink particles thus enabling the dye to be chemically protected, and further preventing such materials from affecting the surface tension of the particles involved. Additionally, when these compositions impinge the paper substrate during jet printing, there is precipitated immediately on the fibers the ink particles, primarily in view of the colloidal characteristics of these particles. Accordingly, such particles separate from the colorless suspending fluid rather than undesirably penetrating into the paper. With penetration there occurs the known problem of show-through, feathering, or chromatographic separation of the dye components. In this regard, it is difficult to prepare waterfast images from water soluble dyes since the ink jet compositions are complex in that in addition to the dyes incorporated therein they contain additives to prevent oxidation thereof, additives for fixing and for controlling viscosity of the liquid ink particles, as well as additives for controlling the evaporation rate and biological activities thereof.
Also, several of the prior art ink compositions described herein are homogeneous solutions comprised of, for example, a solvent vehicle, such as water, ethylene glycol, and dimethyl sulfoxide, and a molecularly dissolved dye. The dyes selected for these inks must be of a sufficient polarity to enable their dissolution in the solvents selected. Accordingly, images obtained with these ink compositions usually have poor waterfastness characteristics. Additionally, extensive dye and solvent diffusion into the paper substrate causes undesirable ink spreading, thereby resulting in low image resolution and inferior edge acuity. The two phase ink compositions of the present invention resolve these problems.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide ink compositions, which overcome many of the above-noted disadvantages.
In another object of the present invention there are provided ink compositions containing oil soluble dyes therein, which compositions are useful in jet printing systems.
Further, in still another object of the present invention there are provided ink compositions with excellent waterfastness characteristics.
A further object of the present invention resides in the provision of ink compositions with acceptable dot and edge definition.
A still further object of the present invention resides in the provision of ink compositions with reduced ink spreading properties.
Another important object of the present invention is the provision of heterophase ink compositions with nonionic stabilizers therein.
In still another important object of the present invention there are provided colored ink compositions with diameters of 0.5 microns or less thereby enabling their use, for example, in ink jet printing processes without nozzle clogging.
In a further object of the present invention there are provided processes for the preparation of ink jet compositions containing oil soluble dyes, and nonionic stabilizers.
An additional object of the present invention resides in the provision of colored ink compositions of desired sizes containing, in addition to oil soluble dyes, optional difunctional monomers like divinyl benzene.
A further object of the present invention is the provision of heterophase ink compositions wherein the print quality of the images developed are independent of the ink paper interactions, thereby permitting these inks to be selected for plain paper processes.
Moreover, in a further object of the present invention there are provided ink jet compositions, wherein the sterically stabilized lattices are insensitive to pH and electrolyte concentration, thus biocides and other additives may be introduced without coagulating the particles.
These and other objects of the present invention are accomplished by the provision of novel ink compositions for jet printing comprised of polymers, certain stabilizers, and oil soluble dyes; and to processes for preparing these compositions. More specifically, in one embodiment, the present invention is directed to heterophase ink compositions dispersed in an aqueous medium comprised of polymeric compositions, nonionic stabilizers, and dissolved therein oil soluble dyes. There is thus provided in one embodiment of the present invention a heterophase ink composition useful for jet printing processes comprised of a water insoluble polymer, dispersed in water optionally dispersed in an aqueous solution of aliphatic alcohol and water, or dispersed in a nonaqueous solution, the polymer containing therein an oil soluble dye in an amount of, for example, from about 5 percent by weight to about 25 percent by weight; and attached to the polymer particles a nonionic stabilizer in an amount of from about, for example, 1 percent by weight to about 10 percent by weight.
In another embodiment of the present invention, there is provided a process for the preparation of particles for ink jet printing which comprises (1) dissolving in a reaction medium, preferably comprised of an aliphatic alcohol solvent present in an amount of from about 0.5 percent to about 50 percent, a nonionic stabilizer; (2) adding a monomer with polymerization initiator dissolved therein to the solution; (3) affecting polymerization wherein the nonionic stabilizer is permanently attached thereto; and (4) introducing into the aforementioned polymerization product a dye solution having incorporated therein various dyes inclusive of red, blue, yellow, cyan, magenta, black, or mixtures thereof, followed by subsequently removing any residual solvent.
Another preferred embodiment of the present invention is directed to a process for the preparation of heterogeneous ink compositions which comprises (1) dissolving in an aqueous ethanol solvent mixture, where ethanol is preferably present in an amount of from about 10 to about 30 percent by weight, a nonionic stabilizer selected from poly(vinyl alcohol), hydroxypropyl cellulose, poly(vinyl pyrrolidone) and Pluronic F68; (2) adding a styrene and n-butylmethacrylate comonomer mixture (60/40) in an amount of from about 5 to about 50 percent by weight with from about 0.5 percent to about 20 percent by weight monomer of an initiator such as benzoyl peroxide, azobisisobutyronitrile (AIBN) or benzoyl peroxide, and (3) heating the resulting mixture at from about 50Ā° C. to about 100Ā° C. to affect polymerization over a time of from about 5 hours to about 24 hours. The resulting polymer particles are then stirred for from about 0.5 hours to about 5 hours with a solution of from about 5 to about 50 percent by weight of a dye, such as Pylachrome Pink LX1900, Sudan Black B, Neozapon 807, or Sudan Yellow 146, and the like.
Monomers that may be selected for the process of the present invention include various known materials such as vinyl monomeric substances including styrene, parachlorostyrene, and vinyl naphthalene; vinyl halides such as vinylchloride, vinylbromide, vinylfluoride, vinylacetate, vinylbenzoate, and vinylbutyrate; vinyl esters such as esters of monocarboxylic acids, including methylacrylate, ethylacrylate, n-butylacrylate, isobutylacrylate, dodecylacrylate, n-octylacrylate, 2-chloroethylacrylate, phenylacrylate, methylmethacrylate, ethylmethacrylate, butylmethacrylate, and the like; acrylonitrile; and mixtures thereof. Other monomers may be suitable for use in the process of the present invention providing they are capable of free radical polymerization, and allow the objectives of the present invention to be affected. Particularly preferred monomers polymerized in accordance with the present invention, and present as a component in the final ink composition, include styrene, butylmethacrylates, lauryl methacrylates, ethylhexyl acrylates, and other similar acrylates wherein the carbon chain length is from about 1 to about 18 carbon atoms. One important characteristic of the monomer selected, such as styrene, is that these monomers are not soluble to any significant extent in water, that is, the solubility in water of these monomers is less than about 1 percent.
From about 5 percent by weight to about 50 percent by weight, and preferably from about 10 percent by weight to about 25 percent by weight of monomer was selected for the process of the present invention. Accordingly, the resulting ink compositions contain from about 5 percent by weight to about 50 percent by weight, and preferably from about 10 percent by weight to about 25 percent by weight of polymer subsequent to polymerization of the monomer component.
As stabilizers there are selected only nonionic compositions, including ethylene oxide propylene oxide block copolymers, with a molecular weight of about 8,000 available as Pluronic F68, poly(ethylene oxide) tertiary octylphenol, poly(vinyl alcohol), hydroxypropyl cellulose, poly(vinyl pyrrolidone), poly(ethylene oxide), poly(ethylene imine), and poly(ethylene oxide) monomethyl ether. From about 0.1 percent to about 20 percent by weight, and preferably from about 10 percent by weight of stabilizer are selected for the polymerization. These nonionic stabilizers are essential in that they permit particle formation processes to occur in a nonaqueous solvent such as an alcohol or aqueous solvent mixtures while also permitting dispersion of the resulting particles in a water phase.
Also of importance with respect to the ink compositions of the present invention are the components of the reaction medium. Generally, this medium is comprised of an aliphatic alcohol in an amount of from about 10 percent by volume to about 100 percent by volume, and water in an amount of from 0 percent by volume to 90 percent by volume. In this manner, there can be obtained ink composition particles of a diameter of from about 0.1 to about 0.5 microns.
Various suitable known polymer initiator substances can be selected including peroxides, such as benzoyl peroxide, lauroyl peroxide, azo-type initiators such as azobisisobutyronitrile, Vazo 52 commercially available from E. I. duPont, and the like. The initiator, which allows the polymerization reaction to proceed, is incorporated into the monomer solution mixture in an amount of from about 0.5 percent by weight to about 15 percent by weight, and preferably in an amount of from about 2 percent by weight to about 3 percent by weight. This initiator is consumed during the polymerization reaction.
Illustrative examples of oil soluble dyes, that is, dyes that will remain substantially dissolved in the polymer include azo dyes, such as Sudan Black commercially available from Fisher, Inc.; Sudan I, and nigrosine commercially available from Aldrich Chemical; Sudan II, commercially available from Aldrich Chemical; and other classes of dyes such as Yellow Dyes commercially available from Pylam, Inc.; Neozapan Red GE, available from BASF Chemical Company; Oil Blue A dyes, commerciallly available from E. I. duPont; Methyl Violet 1 B, commercially available from Aldrich Chemical; Sudan Red BB, commercially available from BASF Chemical Company; Sudan Red 7B, Sudan Black B, Sudan Yellow 146, Neozapon Blue, Oracet Yellow GN, available from Ciba-Geigy; BASF Sudan Yellow 150, BASF Sudan Red 7B, Oil Yellow, Bayer Ceres Red 3R, Orient Chemical Ind., Ltd.; Oil Pink 312, Pylam Pylakrome Pink LX 1900, Bayer Ceres Blue R, BASF Neozapon 807, BASF Sudan Deep Black, Bayer Ceres Black BN; and the like. These dyes impart the desired color to the ink particles, thus for example, the Oil Pink 312 results in particles with a magenta color, and Neozapan 807 provides cyan ink particles.
A dye solution comprised of the dyes illustrated herein and an organic solvent is diffused into the polymerized product by a dye imbibition process. The dye solution may be added to the particle mixture either in the form of an aqueous emulsion or directly in the form of a solution depending on the selected dyeing procedure. With the emulsion approach, illustrative examples of surfactants that may be selected are ionic and nonionic surfactants, which are not chemically attached to the polymer, as is the situation with the stabilizers of the present invention such as sodium laurate, sodium lauryl sulfate, sodium oleate, potassium oleate, polyoxyethylene tertiary octyl phenol, polyoxyethylene sorbitol monolaurate, sucrose palmitate, potassium stearate, ammonium naphthenate, morpholine laurate, sulfated propyloleate sodium salts, sulfonated castor oil, sodium diaryl sulfosuccinate, sodium lignosulfonate, N-polyethoxystearylamine, dodecyltrimethylammonium chloride, methyl dodecylbenzyl trimethyl ammonium chloride, lauryl pyridinium chloride, and the like. This surfactant is dissolved in an aqueous solution in an amount of from about 0.1 percent by weight to about 10 percent by weight, and preferably in an amount of from about 0.2 to about 2 percent by weight. Accordingly, water such as deionized water is present in this mixture in an amount of from about 90 percent by weight to about 99.9 percent by weight, and preferably in an amount of from about 98 percent by weight to about 99.8 percent by weight. This surfactant solution is then used to prepare an emulsion of the dye organic solvent solution which can be used in the dyeing procedures.
As organic solvents there can be selected halogenated aliphatic compositions including methylene chloride, toluene, cyclohexane, butylacetate, and the like. Generally, from about 1 milliliter to about 50 milliliters of solvent are selected for each gram of dye to be dissolved. Dissolving of the dye is accomplished by a simple stirring of the polymerized mixture, solvent, and dye. Subsequent to the evaporation of the solvent from the reaction mixture, the dye is retained in the polymer particles.
Also, the dye solution can be added to the polymerized particles in various suitable amounts providing the objectives of the present invention are achieved, however, the dye solution is added in an amount of from about 10 percent to about 50 percent by weight of the polymer particles. Upon the addition of the dye solution to the polymerized mixture, an entropic dilution effect due to the initial absence of dye in the particles and the high polymer concentration causes the dye to diffuse through the solvent medium and into the polymer particles. The effectiveness and completion of this diffusion process is dependent on a number of factors including the concentration of the dye, solvent, and polymer particles; the specific types of dyes used; the nature of the particles being treated; and the temperature at which the process is accomplished.
The particle sizes of the materials prepared subsequent to polymerization can be determined by various known techniques, however, in accordance with the process of the present invention these sizes were obtained with a Coulter Nanosizer light scattering apparatus and also measured with electron microscopy. Other properties associated with the ink compositions of the present invention include a pH of from about 4 to about 10, a surface tension of from about 45 dynes/cm to about 65 dynes/cm, and a viscosity of from about 1 to about 10 centipoises.
Furthermore, the ink compositions of the present invention have excellent waterfastness, that is, they adhere to the substrate surface in view of the presence of oil soluble dyes. The colored ink particles also have self binding properties toward paper which means that once they are laid down they resist removal from the paper. Moreover, the ink particles, in view of their diameters, were found to be very useful in ink jet printing systems since, for example, the ink jet nozzles directing the ink remained essentially open and unclogged. Also, the size of the resulting particles specified hereinbefore enabled them to penetrate the spaces between the fibers contained on the paper substrate, allowing a desirable matte finish despite the apparent high loading of polymer composition.
Optionally, there can be included in the ink compositions of the present invention difunctional monomers such as divinyl benzene, vinyl methacrylate, 2-butene-1,4-diacrylate, 2-butene-1,4-dimethacrylate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, divinyl succinate, and other similar crosslinking compounds in amounts of from about 0.1 percent to about 1.0 percent by weight of monomer mixture, for the purpose of reducing further the diameters of the ink particles to, for example, 0.2 micron from 0.5 micron. Although it is not desired to be limited by theory, it is believed that the presence of the difunctional monomer acts to increase the average molecular weight of the polymer being produced and thereby further reduces its already limited solubility in the reaction medium. This causes the formation of more particle nuclei during the polymerization, and thereby leads to particles of a smaller diameter on completion of the reaction.
The following examples are being supplied to further define various species of the present invention, it being noted that these examples are not intended to limit the scope of the present invention; parts and percentages are by weight unless otherwise indicated.
EXAMPLE I
There were prepared copolymer particles by dissolving 5 grams of the stabilizer Pluronic F68 in 200 milliliters of ethanol and 100 milliliters of water at a temperature of 68Ā° C. with stirring under a nitrogen atmosphere. Subsequent to dissolution of the stabilizer, there was added a solution composed of 24 milliliters of styrene, 16 milliliters of n-butylmethacrylate, and 1.5 grams of benzoyl peroxide. Within 2 minutes the reaction mixture became cloudy indicating the initiation of the polymerization, and after 24 hours there resulted prior to coloring a product consisting of copolymer particles with an average diameter of 500 nanometers.
The product copolymer particles with Pluronic F68 stabilizer anchored thereto were removed from the solvent medium by centrifugation and dispersed in 100 milliliters of 0.25 percent aqueous sodium dodecyl sulfate solution containing 5 to 30 percent by weight of acetone.
A dye solution consisting of 20 percent by weight of Passaic Oil Red 2144 dissolved in 50 milliliters of methylene chloride was then added to 100 milliliters of a 0.25 percent aqueous sodium dodecyl sulfate solution, and this mixture was sonified for 5 minutes resulting in a homogeneous emulsion. The resulting emulsion was then added to the above copolymer particle dispersion, and after stirring for 3 hours the acetone and methylene chloride was to evaporated by blowing air over the dispersion. Thereafter, to remove excess surfactant, the colored particles were centrifuged down and then redispersed in 200 milliliters of a water solution containing 1 percent Pluronic F68 by weight. There was obtained a red ink.
The above prepared red ink jet ink having a composition of 17 percent by weight copolymer, 2 percent by weight dye, 1 percent by weight Pluronic F68 and 80 percent by weight water was then incorporated into a Diablo C-150 ink jet printer and jetted. The resulting prints on 4024 paper had good edge acuity, that is, the spots on the paper as determined by microscopic examination, showed little observable feathering, possessed good waterfastness, greater than 90 percent, and had an optical density of greater than 0.5. Spot size was typically 20 percent smaller than the commercial inks supplied with the Diablo C-150.
EXAMPLE II
Polymer particles consisting of poly(vinyl stearate) were prepared by first dissolving 5 grams of the stabilizer poly(ethylene oxide), molecular weight, about 10,000 in 200 milliliters of ethanol and 100 milliliters of water at a temperature of 75Ā° C. with stirring under a nitrogen atomosphere. Subsequent to dissolution of the stabilizer there was added a solution consisting of 50 milliliters of vinyl stearate and 1.0 gram of azobisisobutyronitrile (AIBN). Within 5 minutes the reaction mixture became cloudy indicating the polymerization had started, and after 24 hours there resulted prior to coloring a product consisting of polymer particles with an average diameter of 250 nanometers.
To the resulting poly(vinyl stearate) particles with poly(ethylene oxide) stabilizer anchored thereto and dispersed in the reaction medium was added a solution consisting of 10 grams of Pylachrome Pink LX1900 dye dissolved in 50 milliliters of methylene chloride. After stirring for 5 hours, the methylene chloride was permitted to evaporate. The resulting magenta ink consisted of 16 percent by weight poly(vinyl stearate), 2 percent by weight of dye, 2 percent by weight poly(ethylene oxide), 40 percent by weight ethanol and 40 percent by weight water; and after filtering through a Whatman #1 filter, paper could be jetted with a Diablo C-150 ink jet printer to yield magenta colored images.
EXAMPLE III
There were prepared polystyrene particles by dissolving 6 grams of the stabilizer Pluronic F68 in 380 milliliters of ethanol and 120 milliliters of water at a temperature of 70Ā° C. with stirring under a nitrogen atmosphere for one half hour. Subsequent to dissolution of the stabilizer there was added a solution composed of 50 milliliters of styrene, and 0.5 grams of azobisisobutyronitrile. Within 2 minutes the reaction mixture became cloudy indicating the initiation of the polymerization, and after 24 hours there resulted prior to coloring a product consisting of polymer particles with an average diameter of 295 nanometers. The product copolymer particles with Pluronic F68 stabilizer anchored thereto were removed from the solvent medium by centrifugation, and dispersed in 100 milliliters of 0.25 percent aqueous sodium dodecyl sulfate solution containing 5 to 30 percent by weight of acetone.
A dye solution consisting of 20 percent by weight of Oil Blue A dissolved in 50 milliliters of toluene was then added to 100 milliliters of a 0.25 percent aqueous sodium dodecyl sulfate solution, and this mixture was sonified for 5 minutes resulting in a homogeneous emulsion. The emulsion was then added to the above polymer particle dispersion, and after stirring for 3 hours the acetone and toluene were removed by rotary evaporation. Thereafter, to remove excess surfactant, the colored particles were centrifuged down and then redispersed in 200 milliliters of a water solution containing 1 percent poly(vinyl pyrrolidone) by weight. There resulted a blue ink.
The above prepared ink jet ink having a composition of 17 percent by weight polystyrene with stabilizer attached thereto, 2 percent by weight dye, 1 percent by weight poly(vinyl pyrrolidone), and 80 percent by weight water was then incorporated into a Diablo C-150 ink jet printer and jetted. The resulting blue prints on 4024 paper had good edge acuity, showed little feathering, possessed a waterfastness of greater than 90 percent, and had an optical density of greater than 0.5. The spot size was 30 percent smaller than the commercial inks supplied with the Diablo C-150.
EXAMPLE IV
Polymer particles consisting of crosslinked poly(methylmethacrylate) were prepared by first dissolving 5 grams of the stabilizer poly(vinylpyrrolidone), molecular weight about 15,000, in 200 milliliters of ethanol, and 150 milliliters of water at a temperature of 70Ā° C. with stirring under a nitrogen atmosphere. Subsequent to dissolution of the stabilizer, there was added a solution consisting of 50 milliliters of methylmethacrylate, 0.25 milliliters of ethylene glycol dimethacrylate, and 1.0 gram of lauroyl peroxide (LPO). Within 5 minutes the reaction mixture became cloudy indicating the polymerization had started, and after 30 hours there resulted prior to coloring a product consisting of polymer particles with an average diameter of 350 nanometers.
To the resulting crosslinked poly(methylmethacrylate) particles with poly(vinylpyrrolidone) stabilizer anchored thereto, and still dispersed in the reaction medium was added a solution consisting of 10 grams of Neozapon 807 dye dissolved in 50 milliliters of methylene chloride. After stirring for 5 hours, the methylene chloride was permitted to evaporate. The resulting cyan ink consisted of 16 percent by weight poly(methylmethacrylate), 2 percent by weight dye, 1 percent by weight poly(vinylpyrrolidone), 20 percent by weight ethanol and 61 percent by weight water; and after filtering through a Whatman #1 filter paper, the ink was jetted with a Diablo C-150 ink jet printer to yield cyan colored images with an optical density greater than 0.5.
EXAMPLE V
Polymer particles consisting of poly(laurylmethacrylate) were prepared by first dissolving 5 grams of the stabilizer polyoxyethylene tert-octylphenol (40 moles of ethylene oxide) in 200 milliliters of ethanol and 25 milliliters of water at a temperature of 75Ā° C. with stirring under a nitrogen atmosphere. Subsequent to dissolution of the stabilizer, there was added a solution consisting of 30 milliliters of 2-ethylhexylmethacrylate and 1.5 grams of benzoyl peroxide. Within 10 minutes the reaction mixture became cloudy indicating the polymerization had started, and after 24 hours there resulted prior to coloring a product consisting of polymer particles with an average diameter of 400 nanometers.
To the resulting poly(laurylmethacrylate) particles with polyoxyethylene tert-octylphenol stabilizer anchored thereto and dispersed in the reaction medium was added a solution consisting of 5 grams of Sudan Black B dye dissolved in 50 milliliters of methylene chloride. After stirring for 5 hours, the methylene chloride was permitted to evaporate. The resulting black ink consisted of 25 percent by weight poly(laurylmethacrylate), 3 percent by weight dye, 2 percent by weight polyoxyethylene tert-octylphenol, 30 percent by weight ethanol and 40 percent by weight water; and after filtering through a Whatman #1 filter paper, were jetted with a Diablo C-150 ink jet printer to yield black images with an optical density greater than 0.5.
EXAMPLE VI
There were prepared crosslinked styrene-n-butylmethacrylate copolymer particles by dissolving 5 grams of the stabilizer Pluronic F68 in 200 milliliters of ethanol and 100 milliliters of water at a temperature of 68Ā° C. with stirring under a nitrogen atmosphere. Subsequent to dissolution of the stabilizer, there was added a solution composed of 24 milliliters of styrene, 16 milliliters of n-butylmethacrylate, 0.2 milliliters of divinyl benzene and 1.5 grams of benzoyl peroxide. Within 1 minute the reaction mixture became cloudy indicating the initiation of the polymerization, and after 24 hours there resulted prior to coloring a product consisting of polymer particles with an average diameter of 200 nanometers.
To the resulting copolymer particles with Pluronic F68 stabilizer anchored thereto and dispersed in the reaction medium was added a solution consisting of 10 grams of Oil Yellow dissolved in 50 milliliters of methylene chloride. After stirring for 5 hours, the methylene chloride was permitted to evaporate, the colored particles were centrifuged down and redispersed in a 2 percent by weight aqueous solution of Pluronic F68. The resulting yellow ink consisted of 20 percent by weight copolymer, 2 percent by weight dye, 1 percent by weight Pluronic F68, and 77 percent by weight water; and after filtering through a Whatman #1 filter paper, were jetted with a Diablo C-150 ink jet printer to yield yellow colored images with an optical density greater than 0.5.
Other modifications of the present invention may occur to those skilled in the art as a result of a review of the present application, and these modifications are intended to be included within the scope of the present invention.

Claims (18)

What is claimed is:
1. A heterophase ink jet composition comprised of a water insoluble polymer dispersed in a liquid medium selected from the group consisting of water, an alcohol, wherein the polymer contains therein an solvent soluble dye and a nonionic stabilizer permanently attached to the polymer, and mixtures of water and an alcohol; and wherein the resulting ink composition has a surface tension of from about 45 to about 65 dynes/cm.
2. An ink composition in accordance with claim 1 wherein the alcohol is an aliphatic alcohol.
3. An ink composition in accordance with claim 1 wherein the alcohol is methanol or ethanol.
4. An ink composition in accordance with claim 1 wherein the polymer is obtained by the polymerization of a vinyl monomer composition.
5. An ink composition in accordance with claim 1 wherein the polymer is selected from the group consisting of poly(styrene), poly(butylmethacrylate), poly(vinylstearate), poly(methylmethacrylate), poly(laurylmethacrylate). and copolymers thereof.
6. An ink composition in accordance with claim 1 wherein the solvent soluble dye is selected from the group consisting of a yellow dye, a green dye, a red dye, a black dye, a cyan dye, a magenta dye, a blue dye, and mixtures thereof.
7. An ink composition in accordance with claim 1 wherein the stabilizer is selected from the group consisting of an ethylene oxide propylene oxide block copolymer such as Pluronic F68, poly(ethylene oxide) tertiary octylphenol, poly(vinyl alcohol), poly(acrylic acid), hydroxypropyl cellulose, poly(vinyl pyrrolidone), poly(ethylene oxide), poly(ethylene imine), and poly(ethylene oxide)monomethyl ether.
8. An ink composition in accordance with claim 1 wherein the diameter of the resulting ink particles are from about 0.03 micron to about 5.0 microns.
9. An ink composition in accordance with claim 1 wherein the alcohol is selected from the group consisting of isopropanol, ethylene glycol, glycerol and diethylene glycol.
10. An ink composition in accordance with claim 1 wherein the water is present in an amount of from 50 to 100 percent by volume, and the alcohol is present in an amount of from 0 to 50 percent by volume.
11. An ink composition in accordance with claim 1 wherein there is present in the following amounts: from about 5 percent to about 50 percent by weight colored particles dispersed in a liquid medium, the particles containing therein from about 5 percent to about 25 percent by weight solvent soluble dye.
12. An ink composition in accordance with claim 1 wherein there is further incorporated into the ink composition humectants, biocides, and surface tension control agents.
13. An ink composition in accordance with claim 1 wherein the solvent soluble dye is present in an amount of from about 5 percent to about 25 percent by weight.
14. An ink jet composition in accordance with claim 1 wherein the liquid medium is comprised of water.
15. An ink jet composition in accordance with claim 1 wherein the liquid medium is comprised of a mixture of an alcohol and water.
16. An ink jet composition in accordance with claim 1 wherein the liquid medium is comprised of an aliphatic alcohol present in an amount of from about 10 percent by volume to about 100 percent by volume, and water present in an amount of from 0 percent by volume to 90 percent by volume.
17. A heterophase ink jet composition consisting essentially of a water insoluble polymer dispersed in a liquid medium selected from the group consisting of water, an alcohol, and mixtures of water and an alcohol; and wherein the resulting ink composition has a surface tension of from about 45 to about 65 dynes/cm.
18. A heterophase ink jet composition consisting essentially of a water insoluble polymer dispersed in a liquid medium selected from the group consisting of water, an alcohol, wherein the polymer contains therein an oil soluble dye and a nonionic stabilizer permanently attached to the polymer, and mixtures of water and an alcohol; and wherein the resulting ink composition has a surface tension of from about 45 to about 65 dynes/cm.
US06/822,173 1986-01-24 1986-01-24 Ink jet compositions and process for preparation thereof Expired - Lifetime US4680332A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US06/822,173 US4680332A (en) 1986-01-24 1986-01-24 Ink jet compositions and process for preparation thereof
JP62007976A JPS62172076A (en) 1986-01-24 1987-01-16 Ink jet composition and its production
EP87300501A EP0232066B1 (en) 1986-01-24 1987-01-21 Processes of preparation of ink compositions
DE8787300501T DE3783782T2 (en) 1986-01-24 1987-01-21 METHOD FOR PRODUCING INK COMPOSITIONS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/822,173 US4680332A (en) 1986-01-24 1986-01-24 Ink jet compositions and process for preparation thereof

Publications (1)

Publication Number Publication Date
US4680332A true US4680332A (en) 1987-07-14

Family

ID=25235364

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/822,173 Expired - Lifetime US4680332A (en) 1986-01-24 1986-01-24 Ink jet compositions and process for preparation thereof

Country Status (4)

Country Link
US (1) US4680332A (en)
EP (1) EP0232066B1 (en)
JP (1) JPS62172076A (en)
DE (1) DE3783782T2 (en)

Cited By (75)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US4912157A (en) * 1987-05-18 1990-03-27 Eastman Kodak Company Ink compositions and preparation
WO1990008321A1 (en) * 1989-01-20 1990-07-26 Diagnostica Stago Submicron particles, preparation and utilization in immunodiagnosis
US4975117A (en) * 1987-02-24 1990-12-04 Dainippon Ink And Chemicals Inc. Organic solvent-based ink for ink-jet printer
US5008322A (en) * 1988-12-23 1991-04-16 Vasta Joseph A Hydrophobic polymer products
US5010125A (en) * 1989-07-14 1991-04-23 Xaar Limited Room temperature plain paper ink
US5096781A (en) * 1988-12-19 1992-03-17 Ciba-Geigy Corporation Water-soluble compounds as light stabilizers
US5098475A (en) * 1991-01-28 1992-03-24 Xerox Corporation Inks with dendrimer colorants
US5120361A (en) * 1991-06-27 1992-06-09 Xerox Corporation Ink compositions
US5139574A (en) * 1991-01-28 1992-08-18 Xerox Corporation Ink compositions
EP0518489A1 (en) * 1991-05-16 1992-12-16 Xerox Corporation Ink for ink jet printing
US5207825A (en) * 1991-07-30 1993-05-04 Xerox Corporation Ink compositions for ink jet printing
US5219906A (en) * 1992-04-02 1993-06-15 Isp Investments Inc. Low boiling solubilizer for vinyl pyrrolidone/acrylic acid copolymers
US5242489A (en) * 1991-07-30 1993-09-07 Xerox Corporation Ink jet printing processes
US5254158A (en) * 1992-09-17 1993-10-19 Xerox Corporation Ink jet ink compositions
US5266106A (en) * 1992-10-22 1993-11-30 Xerox Corporation Ink compositions with dendrimer grafts
EP0618278A2 (en) * 1993-03-31 1994-10-05 Canon Kabushiki Kaisha Ink, and ink-jet recording method and apparatus employing the same
EP0704504A2 (en) 1994-09-29 1996-04-03 Canon Kabushiki Kaisha Water-based ink for ink-jet, and ink-jet recording method and instruments using the ink
US5594044A (en) * 1995-03-03 1997-01-14 Videojet Systems International, Inc. Ink jet ink which is rub resistant to alcohol
US5596027A (en) * 1995-07-13 1997-01-21 Videojet Systems International, Inc. Condensation and water resistant jet ink
US5652286A (en) * 1995-02-03 1997-07-29 Videojet Systems International, Inc. Wet surface marking jet ink
EP0769537A3 (en) * 1995-10-18 1997-12-29 Seiko Epson Corporation Ink composition having excellent waterfastness
EP0780451A3 (en) * 1995-12-18 1998-01-07 Eastman Kodak Company Ink jet inks containing block copolymer of polyethylene oxide and polypropylene oxide
US5854307A (en) * 1993-11-25 1998-12-29 Canon Kabushiki Kaisha Ink, and ink-jet recording method and instrument using the same
US5866638A (en) * 1995-12-01 1999-02-02 Canon Kabushiki Kaisha Ink for two-part liquid system recording, and ink set, ink container, recording unit, recording process and recording apparatus using the same
US5925701A (en) * 1997-12-22 1999-07-20 Eastman Kodak Company Stable aqueous polymeric dispersions containing hydrated metal salts of strong acids
WO1999040123A2 (en) * 1998-02-09 1999-08-12 Basf Aktiengesellschaft Method for producing aqueous polymer dispersions containing colorants
US5942560A (en) * 1996-09-02 1999-08-24 Mitsubishi Pencil Kabushiki Kaisha Colored resin fine particle water base dispersion liquid for water base ink
US5943080A (en) * 1995-07-07 1999-08-24 Canon Kabushiki Kaisha Ink-jet recording method
US5958999A (en) * 1996-04-05 1999-09-28 Cabot Corporation Ink compositions and method for generating images produced therefrom
US5958998A (en) * 1998-02-05 1999-09-28 Xerox Corporation Ink jet inks
US5969033A (en) * 1997-12-08 1999-10-19 E. I. Du Pont De Nemours And Company Polymer/dye reaction products for improved chroma in pigment-based ink jet inks
US5973026A (en) * 1998-02-02 1999-10-26 Xerox Corporation Ink jet inks
US6011098A (en) * 1993-04-26 2000-01-04 Canon Kabushiki Kaisha Water-based ink
US6051645A (en) * 1996-04-17 2000-04-18 Fuji Xerox Co., Ltd. Ink jet recording ink and ink jet recording method
US6133342A (en) * 1999-01-21 2000-10-17 Marconi Data Systems Inc. Coating composition
US6200371B1 (en) 1996-10-01 2001-03-13 Zeneca Limited Aqueous ink compositions
US6210472B1 (en) 1999-04-08 2001-04-03 Marconi Data Systems Inc. Transparent coating for laser marking
US6221933B1 (en) 1998-02-27 2001-04-24 Marconi Data Systems Inc. Fast drying jet ink composition
US6235096B1 (en) 1996-10-01 2001-05-22 Zeneca Limited Aqueous ink compositions
US6255383B1 (en) 1998-11-19 2001-07-03 Xerox Corporation Ink jet printing compositions
US6261348B1 (en) 1999-06-25 2001-07-17 Marconi Data Systems Inc. Laser markable coating
US6322183B1 (en) 1996-11-14 2001-11-27 Canon Kabushiki Kaisha Recording apparatus operated in split driving mode and method of driving recording apparatus
US6344497B1 (en) 1996-10-01 2002-02-05 Avecia Limited Aqueous ink compositions
US6364469B1 (en) * 2000-12-06 2002-04-02 Eastman Kodak Company Continuous ink jet printing process
US6372818B1 (en) 1995-08-31 2002-04-16 Canon Kabushiki Kaisha Water-based ink for ink-jet, and ink-jet recording method and instruments using the same
US6417249B1 (en) * 1997-10-31 2002-07-09 Hewlett-Packard Company Ink-jet printing ink compositions having superior smear-fastness
US6478861B1 (en) 1999-06-25 2002-11-12 Videojet Technologies Inc. Laser markable coating
US6541032B1 (en) 1999-10-13 2003-04-01 Basf Aktiengesellschaft Use of finely divided dye-containing polymers PD as color-imparting constituent in cosmetic compositions
US20030119984A1 (en) * 2001-12-14 2003-06-26 Eastman Kodak Company Polymer dye particles and process for making polymer dye particles
US6676736B2 (en) * 2000-05-23 2004-01-13 Kao Corporation Water-based ink composition
US20040068029A1 (en) * 2002-10-04 2004-04-08 Eastman Kodak Company Ink jet ink composition and printing method
US20040142102A1 (en) * 2003-01-21 2004-07-22 Bioarray Solutions, Ltd. Method for controlling solute loading of polymer microparticles
US20040186198A1 (en) * 2003-03-20 2004-09-23 Eastman Kodak Company Stable ink jet ink composition and printing method
US20050073564A1 (en) * 2003-10-02 2005-04-07 Sarma Deverakonda S. Process and compositions for printing
US20060089421A1 (en) * 2004-10-25 2006-04-27 Sundar Vasudevan Polymeric colorants having pigment and dye components and corresponding ink compositions
US20060199877A1 (en) * 2005-03-01 2006-09-07 Sivapackia Ganapathiappan Shear stable latex particles
US20090025601A1 (en) * 2007-07-27 2009-01-29 Sundar Vasudevan Polymerizable dye-monomer conjugates for encapsulating pigment particles
US7927416B2 (en) 2006-10-31 2011-04-19 Sensient Colors Inc. Modified pigments and methods for making and using the same
US7964033B2 (en) 2007-08-23 2011-06-21 Sensient Colors Llc Self-dispersed pigments and methods for making and using the same
WO2011073354A1 (en) 2009-12-18 2011-06-23 Construction Research & Technology Gmbh Method for qualitatively and quantitatively identifying bulk goods
US8153706B2 (en) 2004-10-25 2012-04-10 Hewlett-Packard Development Company, L.P. Polymeric colorants having pigment and dye components and corresponding ink compositions
US8486629B2 (en) 2005-06-01 2013-07-16 Bioarray Solutions, Ltd. Creation of functionalized microparticle libraries by oligonucleotide ligation or elongation
US8486720B2 (en) 2000-06-21 2013-07-16 Bioarray Solutions, Ltd. Arrays of magnetic particles
US8563247B2 (en) 2003-10-29 2013-10-22 Bioarray Solutions, Ltd. Kits for multiplexed nucleic acid analysis by capture of single-stranded DNA produced from double-stranded target fragments
US8615367B2 (en) 2003-09-18 2013-12-24 Bioarray Solutions, Ltd. Number coding for identification of subtypes of coded types of solid phase carriers
US8691754B2 (en) 2003-09-22 2014-04-08 Bioarray Solutions, Ltd. Microparticles with enhanced covalent binding capacity and their uses
US8691594B2 (en) 1996-04-25 2014-04-08 Bioarray Solutions, Ltd. Method of making a microbead array with attached biomolecules
US8712123B2 (en) 2002-11-15 2014-04-29 Bioarray Solutions, Ltd. Analysis, secure access to, and transmission of array images
US8795960B2 (en) 2003-10-28 2014-08-05 Bioarray Solutions, Ltd. Optimization of gene expression analysis using immobilized capture probes
US9090786B2 (en) 2012-08-31 2015-07-28 Eastman Kodak Company Inkjet printing fluid composition
US9147037B2 (en) 2004-08-02 2015-09-29 Bioarray Solutions, Ltd. Automated analysis of multiplexed probe-target interaction patterns: pattern matching and allele identification
US9221986B2 (en) 2009-04-07 2015-12-29 Sensient Colors Llc Self-dispersing particles and methods for making and using the same
US9436088B2 (en) 2001-06-21 2016-09-06 Bioarray Solutions, Ltd. Un-supported polymeric film with embedded microbeads
US9709559B2 (en) 2000-06-21 2017-07-18 Bioarray Solutions, Ltd. Multianalyte molecular analysis using application-specific random particle arrays
US10415081B2 (en) 2001-10-15 2019-09-17 Bioarray Solutions Ltd. Multiplexed analysis of polymorphic loci by concurrent interrogation and enzyme-mediated detection

Families Citing this family (3)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
DE69032754T3 (en) * 1989-08-09 2002-09-05 Seiko Epson Corp Recording ink composition and method of using the same
US5711024A (en) 1994-11-25 1998-01-20 Itt Automotive Europe Gmbh System for controlling yaw moment based on an estimated coefficient of friction
JP7086757B2 (en) * 2018-07-04 2022-06-20 ć‚¼ćƒćƒ©ćƒ«ę Ŗ式会ē¤¾ Inkjet ink

Citations (9)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US3903034A (en) * 1970-12-07 1975-09-02 Dick Co Ab Offset jet printing ink
US4032463A (en) * 1972-02-04 1977-06-28 Kabushiki Kaisha Ricoh Liquid developer for use in electrostatic photography and preparation of same
US4136076A (en) * 1977-10-25 1979-01-23 Dennison Manufacturing Co. Ink jet printing composition comprising a solvent, a dye stuff, a volatile base, a multi-valent metal and a polymer containing carboxyl groups
US4157974A (en) * 1973-06-29 1979-06-12 Hoechst Aktiengesellschaft Electrophotographic liquid developer and process for the manufacture thereof
US4165399A (en) * 1975-11-24 1979-08-21 American Can Company Binderless ink for jet printing
US4168254A (en) * 1978-05-25 1979-09-18 American Can Company Videojet ink composition
US4210566A (en) * 1978-12-26 1980-07-01 American Can Company Jet ink compositions
US4476210A (en) * 1983-05-27 1984-10-09 Xerox Corporation Dyed stabilized liquid developer and method for making
US4543102A (en) * 1982-06-04 1985-09-24 Ciba-Geigy Ag Aqueous printing inks for transfer printing containing polyvinyl alcohol and acrylate polymer

Family Cites Families (7)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042832B2 (en) * 1977-10-18 1985-09-25 åƌ士写ēœŸćƒ•ć‚¤ćƒ«ćƒ ę Ŗ式会ē¤¾ Ink composition for inkjet recording
US4365035A (en) * 1977-11-10 1982-12-21 A. B. Dick Company Pigmented jet printing ink
US4282304A (en) * 1979-10-22 1981-08-04 Xerox Corporation Method of forming magnetic toner particles having a concentration of magnetic particles greater than 45 percent by weight by dispersion polymerization techniques
DE3115532A1 (en) * 1980-04-17 1982-01-28 Canon K.K., Tokyo INK-JET RECORDING METHOD AND RECORDING INK FOR RECORDING ON AN IMAGE RECEIVER
JPS582366A (en) * 1981-06-30 1983-01-07 Konishiroku Photo Ind Co Ltd Ink composition for ink jet record
JPS5845272A (en) * 1981-09-11 1983-03-16 Konishiroku Photo Ind Co Ltd Ink composition for ink jet recording and ink jet recording method
JPS6042832A (en) * 1983-08-18 1985-03-07 Matsushita Electric Ind Co Ltd Ion beam device

Patent Citations (9)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US3903034A (en) * 1970-12-07 1975-09-02 Dick Co Ab Offset jet printing ink
US4032463A (en) * 1972-02-04 1977-06-28 Kabushiki Kaisha Ricoh Liquid developer for use in electrostatic photography and preparation of same
US4157974A (en) * 1973-06-29 1979-06-12 Hoechst Aktiengesellschaft Electrophotographic liquid developer and process for the manufacture thereof
US4165399A (en) * 1975-11-24 1979-08-21 American Can Company Binderless ink for jet printing
US4136076A (en) * 1977-10-25 1979-01-23 Dennison Manufacturing Co. Ink jet printing composition comprising a solvent, a dye stuff, a volatile base, a multi-valent metal and a polymer containing carboxyl groups
US4168254A (en) * 1978-05-25 1979-09-18 American Can Company Videojet ink composition
US4210566A (en) * 1978-12-26 1980-07-01 American Can Company Jet ink compositions
US4543102A (en) * 1982-06-04 1985-09-24 Ciba-Geigy Ag Aqueous printing inks for transfer printing containing polyvinyl alcohol and acrylate polymer
US4476210A (en) * 1983-05-27 1984-10-09 Xerox Corporation Dyed stabilized liquid developer and method for making

Non-Patent Citations (2)

* Cited by examiner, ā€  Cited by third party
Title
Color Index vol. 3 by Society of Dyers and Colourists pp. 3563, 3564. *
Color Index-vol. 3 by Society of Dyers and Colourists-pp. 3563, 3564.

Cited By (100)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US4975117A (en) * 1987-02-24 1990-12-04 Dainippon Ink And Chemicals Inc. Organic solvent-based ink for ink-jet printer
US4912157A (en) * 1987-05-18 1990-03-27 Eastman Kodak Company Ink compositions and preparation
US5096781A (en) * 1988-12-19 1992-03-17 Ciba-Geigy Corporation Water-soluble compounds as light stabilizers
US5008322A (en) * 1988-12-23 1991-04-16 Vasta Joseph A Hydrophobic polymer products
WO1990008321A1 (en) * 1989-01-20 1990-07-26 Diagnostica Stago Submicron particles, preparation and utilization in immunodiagnosis
US5010125A (en) * 1989-07-14 1991-04-23 Xaar Limited Room temperature plain paper ink
US5098475A (en) * 1991-01-28 1992-03-24 Xerox Corporation Inks with dendrimer colorants
US5139574A (en) * 1991-01-28 1992-08-18 Xerox Corporation Ink compositions
EP0518489A1 (en) * 1991-05-16 1992-12-16 Xerox Corporation Ink for ink jet printing
US5120361A (en) * 1991-06-27 1992-06-09 Xerox Corporation Ink compositions
US5242489A (en) * 1991-07-30 1993-09-07 Xerox Corporation Ink jet printing processes
US5207825A (en) * 1991-07-30 1993-05-04 Xerox Corporation Ink compositions for ink jet printing
US5219906A (en) * 1992-04-02 1993-06-15 Isp Investments Inc. Low boiling solubilizer for vinyl pyrrolidone/acrylic acid copolymers
US5254158A (en) * 1992-09-17 1993-10-19 Xerox Corporation Ink jet ink compositions
US5266106A (en) * 1992-10-22 1993-11-30 Xerox Corporation Ink compositions with dendrimer grafts
US6391947B1 (en) 1993-03-31 2002-05-21 Canon Kabushiki Kaisha Ink composition
EP0618278A2 (en) * 1993-03-31 1994-10-05 Canon Kabushiki Kaisha Ink, and ink-jet recording method and apparatus employing the same
EP0618278B1 (en) * 1993-03-31 1999-07-07 Canon Kabushiki Kaisha Ink, and ink-jet recording method and apparatus employing the same
US6011098A (en) * 1993-04-26 2000-01-04 Canon Kabushiki Kaisha Water-based ink
US5854307A (en) * 1993-11-25 1998-12-29 Canon Kabushiki Kaisha Ink, and ink-jet recording method and instrument using the same
EP0704504A2 (en) 1994-09-29 1996-04-03 Canon Kabushiki Kaisha Water-based ink for ink-jet, and ink-jet recording method and instruments using the ink
US5955515A (en) * 1994-09-29 1999-09-21 Canon Kabushiki Kaisha Water-based ink for ink-jet, and ink-jet recording method and instruments using the ink
US5652286A (en) * 1995-02-03 1997-07-29 Videojet Systems International, Inc. Wet surface marking jet ink
US5594044A (en) * 1995-03-03 1997-01-14 Videojet Systems International, Inc. Ink jet ink which is rub resistant to alcohol
US5943080A (en) * 1995-07-07 1999-08-24 Canon Kabushiki Kaisha Ink-jet recording method
US5596027A (en) * 1995-07-13 1997-01-21 Videojet Systems International, Inc. Condensation and water resistant jet ink
US6372818B1 (en) 1995-08-31 2002-04-16 Canon Kabushiki Kaisha Water-based ink for ink-jet, and ink-jet recording method and instruments using the same
US5932631A (en) * 1995-10-18 1999-08-03 Seiko Epson Corporation Ink composition having excellent waterfastness
EP0769537A3 (en) * 1995-10-18 1997-12-29 Seiko Epson Corporation Ink composition having excellent waterfastness
US5866638A (en) * 1995-12-01 1999-02-02 Canon Kabushiki Kaisha Ink for two-part liquid system recording, and ink set, ink container, recording unit, recording process and recording apparatus using the same
EP0780451A3 (en) * 1995-12-18 1998-01-07 Eastman Kodak Company Ink jet inks containing block copolymer of polyethylene oxide and polypropylene oxide
US5958999A (en) * 1996-04-05 1999-09-28 Cabot Corporation Ink compositions and method for generating images produced therefrom
US6051645A (en) * 1996-04-17 2000-04-18 Fuji Xerox Co., Ltd. Ink jet recording ink and ink jet recording method
US9400259B2 (en) 1996-04-25 2016-07-26 Bioarray Solutions, Ltd. Method of making a microbead array with attached biomolecules
US8691594B2 (en) 1996-04-25 2014-04-08 Bioarray Solutions, Ltd. Method of making a microbead array with attached biomolecules
US5942560A (en) * 1996-09-02 1999-08-24 Mitsubishi Pencil Kabushiki Kaisha Colored resin fine particle water base dispersion liquid for water base ink
US6235096B1 (en) 1996-10-01 2001-05-22 Zeneca Limited Aqueous ink compositions
US6344497B1 (en) 1996-10-01 2002-02-05 Avecia Limited Aqueous ink compositions
US6200371B1 (en) 1996-10-01 2001-03-13 Zeneca Limited Aqueous ink compositions
US6322183B1 (en) 1996-11-14 2001-11-27 Canon Kabushiki Kaisha Recording apparatus operated in split driving mode and method of driving recording apparatus
US6417249B1 (en) * 1997-10-31 2002-07-09 Hewlett-Packard Company Ink-jet printing ink compositions having superior smear-fastness
US5969033A (en) * 1997-12-08 1999-10-19 E. I. Du Pont De Nemours And Company Polymer/dye reaction products for improved chroma in pigment-based ink jet inks
US5925701A (en) * 1997-12-22 1999-07-20 Eastman Kodak Company Stable aqueous polymeric dispersions containing hydrated metal salts of strong acids
US5973026A (en) * 1998-02-02 1999-10-26 Xerox Corporation Ink jet inks
US5958998A (en) * 1998-02-05 1999-09-28 Xerox Corporation Ink jet inks
US20050075453A1 (en) * 1998-02-09 2005-04-07 Basf Aktiengesellschaf Method for producing aqueous polymer dispersions containing colorants
US7176255B2 (en) 1998-02-09 2007-02-13 Basf Aktiengesellschaft Method for producing aqueous polymer dispersions containing colorants
WO1999040123A2 (en) * 1998-02-09 1999-08-12 Basf Aktiengesellschaft Method for producing aqueous polymer dispersions containing colorants
WO1999040123A3 (en) * 1998-02-09 1999-10-28 Basf Ag Method for producing aqueous polymer dispersions containing colorants
US6221933B1 (en) 1998-02-27 2001-04-24 Marconi Data Systems Inc. Fast drying jet ink composition
US6288164B2 (en) 1998-11-19 2001-09-11 Xerox Corporation Ink jet printing compositions
US6255383B1 (en) 1998-11-19 2001-07-03 Xerox Corporation Ink jet printing compositions
US6372819B1 (en) 1999-01-21 2002-04-16 Marconi Data Systems Inc. Method of marking a substrate
US6133342A (en) * 1999-01-21 2000-10-17 Marconi Data Systems Inc. Coating composition
US6210472B1 (en) 1999-04-08 2001-04-03 Marconi Data Systems Inc. Transparent coating for laser marking
US6478861B1 (en) 1999-06-25 2002-11-12 Videojet Technologies Inc. Laser markable coating
US6261348B1 (en) 1999-06-25 2001-07-17 Marconi Data Systems Inc. Laser markable coating
US6541032B1 (en) 1999-10-13 2003-04-01 Basf Aktiengesellschaft Use of finely divided dye-containing polymers PD as color-imparting constituent in cosmetic compositions
US6676736B2 (en) * 2000-05-23 2004-01-13 Kao Corporation Water-based ink composition
US8486720B2 (en) 2000-06-21 2013-07-16 Bioarray Solutions, Ltd. Arrays of magnetic particles
US9709559B2 (en) 2000-06-21 2017-07-18 Bioarray Solutions, Ltd. Multianalyte molecular analysis using application-specific random particle arrays
US6364469B1 (en) * 2000-12-06 2002-04-02 Eastman Kodak Company Continuous ink jet printing process
US9436088B2 (en) 2001-06-21 2016-09-06 Bioarray Solutions, Ltd. Un-supported polymeric film with embedded microbeads
US10415081B2 (en) 2001-10-15 2019-09-17 Bioarray Solutions Ltd. Multiplexed analysis of polymorphic loci by concurrent interrogation and enzyme-mediated detection
US6867251B2 (en) 2001-12-14 2005-03-15 Eastman Kodak Company Polymer dye particles and process for making polymer dye particles
US20030119984A1 (en) * 2001-12-14 2003-06-26 Eastman Kodak Company Polymer dye particles and process for making polymer dye particles
US7317042B2 (en) * 2002-10-04 2008-01-08 Eastman Kodak Company Ink jet ink composition and printing method
US20040068029A1 (en) * 2002-10-04 2004-04-08 Eastman Kodak Company Ink jet ink composition and printing method
US9251583B2 (en) 2002-11-15 2016-02-02 Bioarray Solutions, Ltd. Analysis, secure access to, and transmission of array images
US8712123B2 (en) 2002-11-15 2014-04-29 Bioarray Solutions, Ltd. Analysis, secure access to, and transmission of array images
US7498054B2 (en) 2003-01-21 2009-03-03 Bioarray Solutions, Ltd. Method for controlling solute loading of polymer microparticles
US7255895B2 (en) * 2003-01-21 2007-08-14 Bioarray Solutions, Ltd. Method for controlling solute loading of polymer microparticles
US20050246844A1 (en) * 2003-01-21 2005-11-10 Bioarray Solutions, Ltd. Method for controlling solute loading of polymer microparticles
US20160152781A1 (en) * 2003-01-21 2016-06-02 Bioarray Solutions, Ltd. Method For Selecting Desired Level Of Dye Loading And Controlling Loading Of Polymer Microparticles
US20040142102A1 (en) * 2003-01-21 2004-07-22 Bioarray Solutions, Ltd. Method for controlling solute loading of polymer microparticles
US20080282483A1 (en) * 2003-01-21 2008-11-20 Sukanta Banerjee Method for Selecting Desired level of Dye Loading and Controlling Loading of Polymer Microparticles
US7160933B2 (en) * 2003-03-20 2007-01-09 Eastman Kodak Company Stable ink jet ink composition and printing method
US20040186198A1 (en) * 2003-03-20 2004-09-23 Eastman Kodak Company Stable ink jet ink composition and printing method
US8615367B2 (en) 2003-09-18 2013-12-24 Bioarray Solutions, Ltd. Number coding for identification of subtypes of coded types of solid phase carriers
US8691754B2 (en) 2003-09-22 2014-04-08 Bioarray Solutions, Ltd. Microparticles with enhanced covalent binding capacity and their uses
US20050073564A1 (en) * 2003-10-02 2005-04-07 Sarma Deverakonda S. Process and compositions for printing
US9637777B2 (en) 2003-10-28 2017-05-02 Bioarray Solutions, Ltd. Optimization of gene expression analysis using immobilized capture probes
US8795960B2 (en) 2003-10-28 2014-08-05 Bioarray Solutions, Ltd. Optimization of gene expression analysis using immobilized capture probes
US8563247B2 (en) 2003-10-29 2013-10-22 Bioarray Solutions, Ltd. Kits for multiplexed nucleic acid analysis by capture of single-stranded DNA produced from double-stranded target fragments
US9147037B2 (en) 2004-08-02 2015-09-29 Bioarray Solutions, Ltd. Automated analysis of multiplexed probe-target interaction patterns: pattern matching and allele identification
US8153706B2 (en) 2004-10-25 2012-04-10 Hewlett-Packard Development Company, L.P. Polymeric colorants having pigment and dye components and corresponding ink compositions
US20060089421A1 (en) * 2004-10-25 2006-04-27 Sundar Vasudevan Polymeric colorants having pigment and dye components and corresponding ink compositions
US20060199877A1 (en) * 2005-03-01 2006-09-07 Sivapackia Ganapathiappan Shear stable latex particles
US8486629B2 (en) 2005-06-01 2013-07-16 Bioarray Solutions, Ltd. Creation of functionalized microparticle libraries by oligonucleotide ligation or elongation
US7927416B2 (en) 2006-10-31 2011-04-19 Sensient Colors Inc. Modified pigments and methods for making and using the same
US8163075B2 (en) 2006-10-31 2012-04-24 Sensient Colors Llc Inks comprising modified pigments and methods for making and using the same
US8147608B2 (en) 2006-10-31 2012-04-03 Sensient Colors Llc Modified pigments and methods for making and using the same
US7868059B2 (en) 2007-07-27 2011-01-11 Hewlett-Packard Development Company, L.P. Polymerizable dye-monomer conjugates for encapsulating pigment particles
US20090025601A1 (en) * 2007-07-27 2009-01-29 Sundar Vasudevan Polymerizable dye-monomer conjugates for encapsulating pigment particles
US7964033B2 (en) 2007-08-23 2011-06-21 Sensient Colors Llc Self-dispersed pigments and methods for making and using the same
US8118924B2 (en) 2007-08-23 2012-02-21 Sensient Colors Llc Self-dispersed pigments and methods for making and using the same
US9221986B2 (en) 2009-04-07 2015-12-29 Sensient Colors Llc Self-dispersing particles and methods for making and using the same
WO2011073354A1 (en) 2009-12-18 2011-06-23 Construction Research & Technology Gmbh Method for qualitatively and quantitatively identifying bulk goods
US8575240B2 (en) 2009-12-18 2013-11-05 Construction Research & Technology Gmbh Method for qualitatively and quantitatively identifying bulk goods
US9090786B2 (en) 2012-08-31 2015-07-28 Eastman Kodak Company Inkjet printing fluid composition

Also Published As

Publication number Publication date
EP0232066A2 (en) 1987-08-12
JPS62172076A (en) 1987-07-29
DE3783782D1 (en) 1993-03-11
EP0232066B1 (en) 1993-01-27
DE3783782T2 (en) 1993-06-09
EP0232066A3 (en) 1989-01-18

Similar Documents

Publication Publication Date Title
US4680332A (en) Ink jet compositions and process for preparation thereof
US4692188A (en) Preparation of ink jet compositions
US4705567A (en) Ink jet compositions with insoluble dye complexes
JP2619677B2 (en) Non-colored ink composition
US4623689A (en) Aqueous colored polymer, process for preparing same and ink comprising same
KR100196372B1 (en) Ink jet recording liquid
US6858301B2 (en) Specific core-shell polymer additive for ink-jet inks to improve durability
JPH10506938A (en) Ink jet ink and method for producing the same
CA2186831A1 (en) Ink composition and method for preparing
US7374278B2 (en) Water-based ink containing colored microparticle dispersion
JPH10292143A (en) Aqueous jet ink of colored microcapsule dispersion type
JPH10279870A (en) Ink composition and ink jet recording process using the same
JPH1046075A (en) Water-based ink for ink jet printing
JP3897128B2 (en) Colored fine particle aqueous dispersion
JP3839894B2 (en) Inkjet recording fluid
JPH11140362A (en) Production of ink jet ink
JP3011107B2 (en) Recording liquid and image recording method
US6075085A (en) Recording liquid and image recording method
JP2006188604A (en) Ink composition for ink-jet printing and method for producing the same
JP2002067473A (en) Printing method
JP2001207007A (en) Colored resin emulsion composition, ink-jetting ink, and color filter
JPH1052925A (en) Method for forming color image
JPH03250069A (en) Ink for ink jet recording
JP2004067861A (en) Water-based ink set for inkjet
JP4324980B2 (en) Ink for inkjet recording

Legal Events

Date Code Title Description
AS Assignment

Owner name: XEROX CORPORATION, FAIRFIELD, CT., A CORP. OF NEW

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:HAIR, MICHAEL L.;OBER, CHRISTOPHER K.;CROUCHER, MELVIN D.;AND OTHERS;REEL/FRAME:004510/0793

Effective date: 19851212

Owner name: XEROX CORPORATION, FAIRFIELD, CT., A CORP. OF NEW

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:LOK, KAR P.;REEL/FRAME:004510/0792

Effective date: 19851210

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: BANK ONE, NA, AS ADMINISTRATIVE AGENT, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:013153/0001

Effective date: 20020621

AS Assignment

Owner name: JPMORGAN CHASE BANK, AS COLLATERAL AGENT, TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:015134/0476

Effective date: 20030625

Owner name: JPMORGAN CHASE BANK, AS COLLATERAL AGENT,TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:015134/0476

Effective date: 20030625

AS Assignment

Owner name: XEROX CORPORATION, CONNECTICUT

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A. AS SUCCESSOR-IN-INTEREST ADMINISTRATIVE AGENT AND COLLATERAL AGENT TO JPMORGAN CHASE BANK;REEL/FRAME:066728/0193

Effective date: 20220822