US4710184A - Absorbing material containing an isothiazoline-one-3 derivative, application to personal hygiene and process for manufacturing this material - Google Patents

Absorbing material containing an isothiazoline-one-3 derivative, application to personal hygiene and process for manufacturing this material Download PDF

Info

Publication number
US4710184A
US4710184A US06/689,043 US68904384A US4710184A US 4710184 A US4710184 A US 4710184A US 68904384 A US68904384 A US 68904384A US 4710184 A US4710184 A US 4710184A
Authority
US
United States
Prior art keywords
derivative
isothiazoline
article
polyelectrolyte
hydrogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/689,043
Inventor
Philippe Ehret
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FRANCE FORT JAMES
Original Assignee
Beghin Say SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beghin Say SA filed Critical Beghin Say SA
Assigned to BEGHIN-SAY S.A. reassignment BEGHIN-SAY S.A. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: EHRET, PHILIPPE
Application granted granted Critical
Publication of US4710184A publication Critical patent/US4710184A/en
Assigned to KAYSERSBERG S.A., A CORP. OF FRANCE reassignment KAYSERSBERG S.A., A CORP. OF FRANCE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BEGHIN-SAY S.A.
Assigned to KAYSERSBERG reassignment KAYSERSBERG CHANGE OF COMPANY FORM FROM FRENCH LIMITED COMPANY TO FRENCH PARTNERSHIP COMPANY Assignors: KAYSERSBERG S.A.
Assigned to JAMES RIVER reassignment JAMES RIVER CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: KAYSERSBERG
Assigned to FRANCE, FORT JAMES reassignment FRANCE, FORT JAMES CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: JAMES RIVER
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/20Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing organic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/46Deodorants or malodour counteractants, e.g. to inhibit the formation of ammonia or bacteria

Definitions

  • R' is a hydrogen atom, a C 1 to C 4 alkyl group or a halogen.
  • the invention is characterized in that the absorbing material is used as an improved retention additive incorporated into absorbing pads for personal hygiene, in particular for diapers for babies or incontinent adults, or for menstrual protection.
  • R' is a hydrogen atom or a halogen or a methyl group.

Abstract

The invention relates to personal hygiene. Its object is an absorbing material consisting of a water-insoluble hydrocolloidal polyelectrolyte absorbing a liquid several times its own weight, and of an isothiazoline-one-3 derivative.
Preferably, this absorbing material also includes a transition-metal salt and the isothiazoline-one-3 derivative obeys the general formula: ##STR1## where: R is a hydrogen atom or a C1 to C4 alkyl group,
R' is a hydrogen atom or a C1 to C4 alkyl group or a halogen,
Y is a hydrogen atom or a C1 to C4 alkyl group.
The invention applies to using these absorbing materials in the manufacture of disposable personal-hygiene articles.

Description

The invention relates mainly to the field of personal hygiene.
Its object is an absorbing material consisting of a water-insoluble hydrocolloidal polyelectrolyte which absorbs an aqueous liquid several times its own weight.
Another object is the application of this material and a manufacturing process for it.
STATE OF THE ART
It is known that urine is originally sterile (except for urinary infection) but contaminated the moment it leaves the urethra by the perineal flora accommodating a large number of bacteria of which 80% consist of: proteus (50%), klebsiella, pseudomonas, coli. Furthermore, the urine represents an excellent growth substrate for these germs.
Again, menstrual blood, which contains proteins, various amines and lipids, also is a culture medium for the above-cited bacteria.
Thus, thanks to the ureases of certain bacteria, such as proteus and klebsiella, urea is transformed into ammonia in the reaction below: ##STR2## The amino acids constituting the proteins also undergo a degradation resulting in the formation of ammonia.
Other bodies, such as the blood lipids, also are transformed into other degradation products as shown below: ##STR3## Illustrative fatty acids formed are butyric acid, isobutyric, and isovaleric acids.
All these reactions resulting from bacterial activity are characterized by resulting into compounds of a highly unpleasant odor.
As regards individuals with urinary and/or fecal incontinence and menstruating women, this perineal flora is directly in contact with the body fluids absorbed by the absorbing pad whereby the bad odors are formed from the action of the bacteria on these fluids. While possibly just tolerable for a baby, this phenomenon is psychologically hard to bear for an adult.
To eliminate this drawback, it has already been suggested to make use of a bactericidal substance in the absorbing pads of menstrual napkins and diapers.
Thus, French Pat. No. 2,490,093 (Landstingens Inkopscentral Lic Ekonomisk Forening) describes the incorporation, preferably at the surface, of a water-soluble copper salt in an absorbing pad consisting of cellulose fibers. In its ionic form, copper is known for its bactericidal and fungicidal properties.
This procedure, however, entails certain drawbacks. The bactericide deposited on the pad attacks the user's skin; this may lead to certain roughness and breaks in the skin, and it may even weaken the natural defenses.
Furthermore, the industrial implementation of that process is beset by certain difficulties as it is necessary to treat the entire pad surface.
Moreover, the deposition procedures (powdering, subpowdering) amount to a more than trivial danger to the personnel.
The European patent application No. 0 019 371 (Unilever) suggests incorporating a transition-metal ion (such as of copper or zinc) into an improved retention additive (IRA) which, as denoted by its name, is a body incorporated into the absorbing pad in order to improve its absorption capacity. An ion bond is set up between the anion groups (in particular COO) and the transition-metal ion. This bond is sufficiently unstable to allow the transition-metal ion to migrate out of the IRA and into the pad, and to induce the large proteins to coagulate. However, in order to achieve this migration of ions out of the IRA, it is necessary to incorporate them in relatively large amounts as about 80% of the COOH are neutralized. This represents a drawback in that the rapidity of gelling of the IRA is limited and its absorption capacity is lowered.
It is known, furthermore, that transition metals such as copper or zinc are bactericidal, and hence toxic, and that toxicologically speaking they should preferably be present in very low doses.
The object of the invention is to offer superabsorbant with bacterial activity that can be transmitted to its environment consisting of the absorbing pad. One obtains thereby the advantage of eliminating the chance of skin irritation before the arrival of the nutrient liquid.
In present-day language, the expression "superabsorbent" is synonymous with improved retention additive or with material absorbing several times its own weight in liquids.
GENERAL DESCRIPTION OF THE INVENTION
The invention is characterized in that the absorbing material includes at least one isothiazoline-one-3 derivative of the general formula: ##STR4## where: Y is a hydrogen atom, a linear or branched C1 to C8 alkyl group, a C3 to C6 cycloalkyl group,
R is a hydrogen atom, a C1 to C4 alkyl group or a halogen,
R' is a hydrogen atom, a C1 to C4 alkyl group or a halogen.
As regards its application, the invention is characterized in that the absorbing material is used as an improved retention additive incorporated into absorbing pads for personal hygiene, in particular for diapers for babies or incontinent adults, or for menstrual protection.
As regards the manufacturing process of the material, the invention is characterized in that first at least one isothiazoline-one-3 derivative is added to a mixture of water and alcohol and then the hydrocolloidal polyelectrolyte, whereupon the mixture will be filtered.
Hydrocolloidal Polyelectrolytes
The water-insoluble hydrocolloidal polyelectrolytes absorbing several times their own weight of aqueous liquids can be divided into two large types, namely the natural polyelectrolytes on one hand and the synthetic polyelectrolytes on the other (in particular see U.S. Pat. No. 4,043,952).
(1) The natural polyelectrolytes advantageously are selected from the anionic derivatives of starch or cellulose or dextrane also called polysaccharides. Illustrative anionic groups are the phosphate, sulfate, sulfonate, or carboxyl groups. Preferred anionic groups are the carboxylalkyl groups, and in particular the carboxyethyl and carboxymethyl groups. Preferably, the anionic groups are neutralized employing an alkaline cation such as sodium or by a primary, secondary or tertiary amine in a proportion in excess of 40% with respect to the total number of ionic groups and preferably between 40 and 85%. As a result, and in a manner known per se, the absorption capacity of the polymers will be improved. These polyelectrolytes are crosslinked so as to render them water insoluble, but obviously without changing their absorption capacity. This crosslinking may result from forming covalent bonds by esterification or etherification implemented by diols, dihalides, epichlorhydrins as in European Patent No. 0 019 371 (Unilever NV). Again crosslinking may be achieved using transition metals of the following groups in the periodic table: III B, IV B, V B, VI B, VII B, VIII B, III A, IV A, V A, VI A. Included among them are aluminum, zirconium, chromium, titanium, zinc.
(2) The homopolymers or copolymers of unsaturated carboxylic acids such as the methacrylic or polyacrylic acids (in particular see U.S. Pat. No. 4,043,952) or the homopolymers or copolymers containing sulfonic acids such as those obtained by polymerization of unsaturated sulfonic acids. These homopolymers or copolymers also are in anionic form, whether totally or partially, and are crosslinked by the same means as described in (1). The preferred polymers are those including the carboxyl groups and especially the polymethacrylic or polyacrylic acid.
All these polymers absorb between five-fold and several hundred-fold their own weight of aqueous liquid, whether it be water, urine, blood, including menstrual blood.
Illustratively, methods such as described in German Pat. No. 2,702,781 or French Pat. No. 2,305,452 may be used to determine the degree of absorption.
Another important parameter relating to these polymers is their gelling rate. A good polymer must offer the least possible gelling time, for instance by the Vortex test (G. Goldstein & M. Pierre, Marketing Technology Service Insight 81, Section IX-1-18, Publication Miller Freeman).
Isothiazoline-one-3 Derivative
The derivatives described by the general formula are known per se, and so are their bactericidal activity.
The patentability of the invention is not in this already known biocidal activity, but in the capability of these compounds to migrate outside the hydrocolloidal polyelectrolyte and to interfere with, if not prevent, the spread of the bacteria through the entire absorbing pad and thus to prevent formation of bad odors.
The following patents describe those derivatives and their preparation process:
French Pat. No. 2,139,421 which contains an exhaustive list of the isothiazoline-one-3 derivatives;
U.S. Pat. No. 3,517,022 which describes the preparation and the biocidal properties of the isothiazoline-one-3 derivatives;
and also U.S. Pat. Nos. 3,544,480; 3,761,488; French Pat. No. 2,398,505.
Among the derivatives of the general formula, those will be preferred where, within the formula:
Y is a hydrogen atom of a C1 to C4 alkyl group
R is a hydrogen atom of a C1 to C4 alkyl group
R' is the same as before
and, preferably too, those of a general formula wherein:
Y is a methyl group
R is a hydrogen atom
R' is a hydrogen atom or a halogen or a methyl group.
In particular, the halogen can be chlorine or bromine. In order to achieve improved bactericidal activity while keeping the migratory properties of such derivatives, preferably the absorbing material includes at least two derivatives, one (A) obeying the general formula wherein R' is a halogen, such as chlorine, and preferably of the following formula: ##STR5## R being a hydrogen atom or a C1 to C4 alkyl group, Y being a hydrogen atom or a C1 to C4 alkyl group,
Hal preferably being chlorine.
While the other (B) obeys the general formula wherein R' is a hydrogen atom, a C1 to C4 alkyl group, and preferably of the following formula: ##STR6## R' being a hydrogen atom or a C1 to C4 alkyl group, Y being a hydrogen atom or a C1 to C4 alkyl group,
R being a hydrogen atom or a C1 to C4 alkyl group.
Preferably the absorbing material includes the two following derivatives: ##STR7## which are known by the official designations below: A--chloro-5-methyl-2-isothiazoline-one-3
B--methyl-5-methyl-2-isothiazoline-one-3
The mixture of these products is sold by the American firm of Rohm & Haas under the brand name KATHON C.G.® which contains about 1.5% of the isothiazoline-one-3 derivatives (1.2% of A and 0.3% of B) and 98.5% of inert material by weight.
Preferably, as regards the absorbing materials containing the (A) and (B) derivatives, the molar ratio of these two compounds is between 0.5 and 8.
Even though it is possible to incorporate the isothiazoline-one-3 derivative over a wide range of proportion by weight with respect to the polyelectrolyte without thereby transcending the scope of the invention, preferably the absorbing material shall contain a proportion by weight of the isothiazoline-one-3 derivative with respect to the polyelectrolyte which is between 1.5 and 750 ppm and better yet between 7.5 and 450 ppm, and best between 10.5 and 150 ppm.
As already described above and as is significant in the invention, the isothiazoline-one-3 derivatives migrate outside the polyelectrolyte. It was found it is entirely feasible and even desirable that the material also includes a transition metal known for its coagulating and bactericidal properties, preferably copper or zinc.
These ions can be present as halides or as organic salts. A description and an exhaustive listing will be found in French Pat. No. 2,490,093.
Halides, however, are preferred.
Surprisingly, this allows reducing the amount of the isothiazoline-one-3 derivative which is required, a highly significant development with regard to toxicology; and, furthermore, whereas the isothiazoline-one-3 derivative migrates, the metal ion remains within the polymer whereby further improvement in bactericidal coverage is assured. Additionally, the gelling rate is increased.
Preferably, the ratio by weight of the isothiazoline-one-3 derivative to the salt of a transition metal shall be between 0.012 and 0.018.
When these absorbing materials of the invention are spread in the form of grains or powder in the absorbing pads in known proportions to achieve adequate absorption, they will eliminate the odors of which the origin was discussed in the preamble.
The absorbing material of the invention is prepared at room temperature preferably using a mixture of water/methanol or water/ethanol in proportions between 80/20 and 90/10.
When the absorbing material includes a salt of a metal ion, it will preferably be incorporated before the isothiazoline-one-3 derivative.
The absorbing material is inserted in known manner into the pad in several ways, among which:
continuous or discontinuous deposition between two plies of fluff (defibered cellulose). A particularly interesting variation of this procedure is illustrated in patent application PCT No. 79100120.
mixing with the fluff. This fluff then is sandwiched between sheets of cotton wool or non-woven material.
EXAMPLES
All tests were performed with the isothiazoline-one-3 compounds obtained by mixing the two derivatives below:
A--chloro-5-methyl-2-isothiazoline-one-3
B--methyl-5-methyl-2-isothiazoline-one-3
(KATHON C.G. by Rohm & Haas).
EXAMPLE 1 Generalized Process For Making Absorbing Material Containing KATHON C.G. and Copper in Ionic Form
The metal ion in the form of cupric chloride is added to a mixture (80/20) of methanol/water, next KATHON C.G., and lastly the polyelectrolyte are added.
The proportions by weight are as follows:
______________________________________                                    
polyelectrolyte 100                                                       
KATHON C.G.     1.5                                                       
CuCl.sub.2      3                                                         
______________________________________                                    
Following filtration, the polymer powder associated with the other two compounds is recovered. The methanol is recycled.
EXAMPLE 2 Gelling Rate
The three polyelectrolytes below were tested:
A--polycarboxyl starch known as the SANWET brand of the Sanyo company.
B--an alkaline metal polyacrylate known as the AQUAKEEP brand of the Seiteettsu company.
C--carboxymethyl starch known as the AKUCELL brand of the Akzo company.
Carrying out the so-called Vortex test (see description of the polyelectrolytes), the following results are obtained concerning the gelling rates (in seconds):
______________________________________                                    
                 Urine Blood                                              
                 100 cc                                                   
                       100 cc                                             
______________________________________                                    
2 g of B           3"      26"                                            
with KATHON C.G. + 2.5"    19"                                            
Cu.sup.++                                                                 
4 g of C           19"     120"                                           
with KATHON C.G. + 16.5"   57"                                            
Cu.sup.++                                                                 
______________________________________                                    
This shows in very surprising manner that the presence of the two bactericidal compounds substantially improves the gelling rate.
EXAMPLE 3 Migration of the Bactericides
By Zone Inhibition
A certain amount of the product to be tested is deposited on paper disks which are placed on agar seeded with a specific microorganism (for instance, pseudomones oleoverans). The Petri dishes are refrigerated for 24 hours and then placed in the drying cabinet for 18 hours at 30° C. Following incubation, the total diameter of the inhibition zones that emerged is measured.
______________________________________                                    
                Inhibition                                                
Tested Products Zone     Corresponding                                    
Amounts Deposited Per Disk                                                
                Diameter Amount of KATHON                                 
______________________________________                                    
B           3.3   mg    18  mm   0                                        
B + Cu.sup.++                                                             
            3.3   mg    18  mm   0                                        
5% Cu Cl.sub.2                                                            
B +         5     mg    29  mm   0.37    g                                
KATHON C.G. 10    mg    34  mm   0.63    g                                
            15    mg    39  mm   0.96    g                                
            20    mg    42  mm   1.24    g                                
B +         5     mg    28  mm   0.33    g                                
KATHON C.G. +                                                             
            10    mg    34  mm   0.63    g                                
Cu.sup.++   15    mg    38  mm   0.88    g                                
5% CuCl.sub.2                                                             
            20    mg    40  mm   1.05    g                                
______________________________________                                    
EXAMPLE 4 Measuring Odor Strength
A sample of persons undergoes the three test series below:
determination of the concentration at the detection threshold (T.C.) of an odorous product (Steiger Chem. Tech., Vol 1, Apr. 1971),
establishment of the reference curve using various samples containing multiples of the threshold concentration,
determination of the activity of the bactericide by evaluating the odor strength stated in T.C. units.
The test of this example is carried out on a series of menstrual napkins containing the IRA A with 0.1 or 0.15% of KATHON C.G. and with 0.2% of CuCl2 by weight with respect to the napkin. A control test also was carried out.
7 ml of beef blood is deposited per napkin plus 1 ml of a bacterial suspension which was prepared by mixing:
1 ml of a 24-hour culture of pseudomonas aeruginosa
1 ml of a 24-hour culture of escherichia coli
0.8 ml of a 48-hour culture of klebsiella pneumonia
5 ml of a 48-hour culture of proteus mirabilis
Next, each napkin is placed in the polyethylene bottle, then made to incubate for 15 hours at 30° C. The measurement of the odor strength is made under the same conditions.
The following results are obtained:
______________________________________                                    
KATHON C.G. at 0.10%                                                      
                    4                                                     
KATHON C.G. at 0.15%                                                      
                    1                                                     
Control (no bactericides)                                                 
                    6                                                     
______________________________________                                    
EXAMPLE 5 Finished-Product Test
Diapers containing modified (5% of Cu++ and 2% of KATHON) IRA B (AQUAKEEP) were worn for 12 hours by the incontinent. A control lot without modified IRA was tested in parallel. After 12 hours, olfactory measurement and pH measurement of the urine of the diaper were performed.
______________________________________                                    
Results:         Untreated IRA                                            
                             Treated IRA                                  
______________________________________                                    
Number of tested diapers                                                  
                 43          56                                           
Number of odorous diapers                                                 
                 14          0                                            
Average pH       8.5         7.3                                          
______________________________________                                    
Accordingly, the presence of bactericides on the IRA substantially decreases the appearance of malodorous products and restricts the increase in urine pH so as to reduce the urine's irritation powers.

Claims (12)

I claim:
1. An absorbent article comprising a continuous material and a second material incorporated in said continuous material, said second material including a water-insoluble, hydrocolloidal polyelectrolyte capable of absorbing an aqueous liquid several times its own weight, said polyelectrolyte having an isothiazoline-one-3 derivative of the general formula: ##STR8## wherein Y is a hydrogen atom, a C1 to C8 linear or branched alkyl group, or a C3 to C6 cycloalkyl group,
R is a hydrogen atom, a C1 to C4 alkyl group or a halogen, and
R' is a hydrogen atom, a C1 to C4 alkyl group or a halogen,
in contact therewith, said absorbent article being constructed and arranged for application to a human's anatomy for purposes of personal hygiene.
2. The article of claim 1 wherein said isothiazoline-one-3 derivative is a mixture of at least derivatives A and B and wherein in derivative A, R' is a halogen and in derivative B, R' is a hydrogen atom or a C1 to C4 alkyl group.
3. The article of claim 2 wherein said derivatives A and B have the structures - ##STR9##
4. The article of claims 2 and 3 wherein the molar proportion of A/B is between 0.5 and 8.
5. The article of claim 1 wherein the isothiazoline-one-3 derivative is present in a proportion by weight of between about 1.5 and 750 ppm with respect to said polyelectrolyte.
6. The article of claim 5 wherein the isothiazoline-one-3 derivative is present in a proportion by weight of between about 7.5 and 450 ppm with respect to said polyelectrolyte.
7. The article of claim 1 wherein the isothiazoline-one-3 derivative is associated with the salt of a transition metal.
8. The article of claim 7 wherein the transition metal is selected from copper and zinc.
9. The article of claim 7 or claim 8 wherein the ratio by weight of the isothiazoline-one-3 derivative to the salt of a transition metal is between 0.012 and 0.018.
10. The article of claim 1 wherein the article is a diaper for babies or incontinent adults, or a menstrual napkin.
11. A process for forming said second material of claim 1 wherein said isothiazoline-one-3 derivative is added to a mixture of water/alcohol with proportions between 80/20 and 90/10, then the hydrocolloidal polyelectrolyte is added, followed by filitration.
12. The process of claim 11 wherein a salt of a transition metal is added before the hydrocolloidal polyelectrolyte is added.
US06/689,043 1983-03-23 1984-03-20 Absorbing material containing an isothiazoline-one-3 derivative, application to personal hygiene and process for manufacturing this material Expired - Lifetime US4710184A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8304785 1983-03-23
FR8304785A FR2543001B1 (en) 1983-03-23 1983-03-23 ABSORBENT MATERIAL COMPRISING AN ISOTHIAZOLINE-ONE-3 DERIVATIVE, APPLICATION TO BODY HYGIENE AND PROCESS FOR OBTAINING THE SAME

Publications (1)

Publication Number Publication Date
US4710184A true US4710184A (en) 1987-12-01

Family

ID=9287151

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/689,043 Expired - Lifetime US4710184A (en) 1983-03-23 1984-03-20 Absorbing material containing an isothiazoline-one-3 derivative, application to personal hygiene and process for manufacturing this material

Country Status (11)

Country Link
US (1) US4710184A (en)
EP (1) EP0137839B1 (en)
JP (1) JPS60500752A (en)
CA (1) CA1206873A (en)
DE (1) DE3468982D1 (en)
DK (1) DK160189C (en)
FR (1) FR2543001B1 (en)
GR (1) GR81886B (en)
IE (1) IE56982B1 (en)
IT (1) IT1178903B (en)
WO (1) WO1984003631A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030198945A1 (en) * 2002-04-18 2003-10-23 The Cupron Corporation Method and device for inactivating viruses
US20030199018A1 (en) * 2002-04-18 2003-10-23 The Cupron Corporation Method and device for inactivating HIV
US6747186B2 (en) * 2000-06-28 2004-06-08 Uni-Charm Corporation Water-decomposable absorbent article
US20040133176A1 (en) * 2000-10-25 2004-07-08 Synergistic Ventures, Inc. Irrigation, erosion control, root growth control and clean-up techniques
US20040167485A1 (en) * 2003-02-21 2004-08-26 The Cupron Corporation Disposable diaper for combating diaper rash
US20040197386A1 (en) * 2003-04-01 2004-10-07 The Cupron Corporation Disposable paper-based hospital and operating theater products
US20040224005A1 (en) * 2000-04-05 2004-11-11 The Cupron Corporation Antimicrobial and antiviral polymeric materials
US20040247653A1 (en) * 2000-04-05 2004-12-09 The Cupron Corporation Antimicrobial and antiviral polymeric materials and a process for preparing the same
US20050049370A1 (en) * 2003-08-28 2005-03-03 The Cupron Corporation Anti-virus hydrophilic polymeric material
US20050048131A1 (en) * 2003-08-28 2005-03-03 The Cupron Corporation Anti-virus hydrophilic polymeric material
US20050123589A1 (en) * 2002-04-18 2005-06-09 The Cupron Corporation Method and device for inactivating viruses
US20050150514A1 (en) * 2000-04-05 2005-07-14 The Cupron Corporation Device for cleaning tooth and gum surfaces
US20100014705A1 (en) * 2003-11-19 2010-01-21 Gustafson Ammon E Optimized Digital Watermarking Functions for Streaming Data
US9403041B2 (en) 2004-11-09 2016-08-02 Cupron Inc. Methods and materials for skin care

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4556560A (en) * 1983-01-24 1985-12-03 The Procter & Gamble Company Methods for the treatment and prophylaxis of diaper rash and diaper dermatitis
FR2590761B1 (en) * 1985-11-29 1989-01-06 Beghin Say Sa ABOVE GROUND CULTURE MEDIUM COMPRISING SUPERABSORBENT PARTICLES AND USE OF THIS MEDIUM FOR ABOVE GROUND CULTURE
BR9612826A (en) * 1996-11-14 2000-06-06 Procter & Gamble Antimicrobial hydrogel-forming absorbent polymer, process for forming the same, and disposable absorbent article and disposable diaper comprising the same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB722629A (en) * 1952-07-22 1955-01-26 Edward Charles Edmund Hemsted Improvements in and relating to tampons, wads or the like, and materials therefor
US3562283A (en) * 1968-07-01 1971-02-09 Rohm & Haas 1-oxo and 1,1-dioxo-3-isothiazolones
US4062859A (en) * 1975-08-21 1977-12-13 Rohm And Haas Company Halogenated 3-isothiazolidinone 1-oxide and 1,1-dioxides
US4169949A (en) * 1973-02-28 1979-10-02 Rohm And Haas Company Isothiazolidin-3-ones
US4243703A (en) * 1976-04-01 1981-01-06 Montedison S.P.A. Pesticide-containing plastic coverings for agricultural cultivations, and process for obtaining said coverings and for protecting the cultivations from infestant pests
US4281136A (en) * 1977-11-25 1981-07-28 Givaudan Corporation 2-Alkyl-3-haloisothiazolium salts and their derivatives
US4302240A (en) * 1975-11-26 1981-11-24 Rohm And Haas Company Alkyl (mono-, di, tri- and tetra-thio)phosphorylated isothiazolidin-3-one 1-oxides and 1,1-dioxides
US4325201A (en) * 1967-03-09 1982-04-20 Rohm And Haas Company Seed treatment with 3-isothiazolones
US4328347A (en) * 1978-10-16 1982-05-04 Givaudan Corporation 3-Dicyanomethylene-4-isothiazolines
US4460642A (en) * 1981-06-26 1984-07-17 Minnesota Mining And Manufacturing Company Water-swellable composite sheet of microfibers of PTFE and hydrophilic absorptive particles
US4508908A (en) * 1978-10-16 1985-04-02 Givaudan Corporation 2-Alkyl-3-haloisothiazolium salts and their derivatives
US4542169A (en) * 1983-12-12 1985-09-17 Rohm And Haas Company Biomedical devices containing isothiazolones to control bacteria growth
US4552752A (en) * 1983-01-31 1985-11-12 Rohm And Haas Company Microbiocidal article for aqueous systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248685A (en) * 1972-07-10 1981-02-03 Johnson & Johnson Method for making hydrophilic random interpolymer compositions
SE432194B (en) * 1980-09-17 1984-03-26 Landstingens Inkopscentral MOISTURIZING AND BACTERIODIC ABSORPTION BODY FOR URINE AND FAECES, WHICH INCLUDE A WATER-SOLUBLE COPPER SALT

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB722629A (en) * 1952-07-22 1955-01-26 Edward Charles Edmund Hemsted Improvements in and relating to tampons, wads or the like, and materials therefor
US4325201A (en) * 1967-03-09 1982-04-20 Rohm And Haas Company Seed treatment with 3-isothiazolones
US3562283A (en) * 1968-07-01 1971-02-09 Rohm & Haas 1-oxo and 1,1-dioxo-3-isothiazolones
US4169949A (en) * 1973-02-28 1979-10-02 Rohm And Haas Company Isothiazolidin-3-ones
US4062859A (en) * 1975-08-21 1977-12-13 Rohm And Haas Company Halogenated 3-isothiazolidinone 1-oxide and 1,1-dioxides
US4302240A (en) * 1975-11-26 1981-11-24 Rohm And Haas Company Alkyl (mono-, di, tri- and tetra-thio)phosphorylated isothiazolidin-3-one 1-oxides and 1,1-dioxides
US4243703A (en) * 1976-04-01 1981-01-06 Montedison S.P.A. Pesticide-containing plastic coverings for agricultural cultivations, and process for obtaining said coverings and for protecting the cultivations from infestant pests
US4281136A (en) * 1977-11-25 1981-07-28 Givaudan Corporation 2-Alkyl-3-haloisothiazolium salts and their derivatives
US4328347A (en) * 1978-10-16 1982-05-04 Givaudan Corporation 3-Dicyanomethylene-4-isothiazolines
US4508908A (en) * 1978-10-16 1985-04-02 Givaudan Corporation 2-Alkyl-3-haloisothiazolium salts and their derivatives
US4460642A (en) * 1981-06-26 1984-07-17 Minnesota Mining And Manufacturing Company Water-swellable composite sheet of microfibers of PTFE and hydrophilic absorptive particles
US4552752A (en) * 1983-01-31 1985-11-12 Rohm And Haas Company Microbiocidal article for aqueous systems
US4542169A (en) * 1983-12-12 1985-09-17 Rohm And Haas Company Biomedical devices containing isothiazolones to control bacteria growth

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040224005A1 (en) * 2000-04-05 2004-11-11 The Cupron Corporation Antimicrobial and antiviral polymeric materials
US7169402B2 (en) 2000-04-05 2007-01-30 The Cupron Corporation Antimicrobial and antiviral polymeric materials
US20050150514A1 (en) * 2000-04-05 2005-07-14 The Cupron Corporation Device for cleaning tooth and gum surfaces
US9439437B2 (en) 2000-04-05 2016-09-13 Cupron Inc. Antimicrobial and antiviral polymeric materials
US20040247653A1 (en) * 2000-04-05 2004-12-09 The Cupron Corporation Antimicrobial and antiviral polymeric materials and a process for preparing the same
US6747186B2 (en) * 2000-06-28 2004-06-08 Uni-Charm Corporation Water-decomposable absorbent article
US20040133176A1 (en) * 2000-10-25 2004-07-08 Synergistic Ventures, Inc. Irrigation, erosion control, root growth control and clean-up techniques
US8007884B2 (en) * 2000-10-25 2011-08-30 Synergistic Ventures, Inc. Irrigation, erosion control, root growth control and clean-up techniques
US20030198945A1 (en) * 2002-04-18 2003-10-23 The Cupron Corporation Method and device for inactivating viruses
US20050123589A1 (en) * 2002-04-18 2005-06-09 The Cupron Corporation Method and device for inactivating viruses
US20030199018A1 (en) * 2002-04-18 2003-10-23 The Cupron Corporation Method and device for inactivating HIV
US7296690B2 (en) 2002-04-18 2007-11-20 The Cupron Corporation Method and device for inactivating viruses
US20040167484A1 (en) * 2003-02-21 2004-08-26 The Cupron Corporation Disposable feminine hygiene products
US20040167485A1 (en) * 2003-02-21 2004-08-26 The Cupron Corporation Disposable diaper for combating diaper rash
US20040197386A1 (en) * 2003-04-01 2004-10-07 The Cupron Corporation Disposable paper-based hospital and operating theater products
US20050048131A1 (en) * 2003-08-28 2005-03-03 The Cupron Corporation Anti-virus hydrophilic polymeric material
US7364756B2 (en) 2003-08-28 2008-04-29 The Cuprin Corporation Anti-virus hydrophilic polymeric material
US20050049370A1 (en) * 2003-08-28 2005-03-03 The Cupron Corporation Anti-virus hydrophilic polymeric material
US20100014705A1 (en) * 2003-11-19 2010-01-21 Gustafson Ammon E Optimized Digital Watermarking Functions for Streaming Data
US7957552B2 (en) 2003-11-19 2011-06-07 Digimarc Corporation Optimized digital watermarking functions for streaming data
US9403041B2 (en) 2004-11-09 2016-08-02 Cupron Inc. Methods and materials for skin care
US9931283B2 (en) 2004-11-09 2018-04-03 Cupron Inc. Methods and materials for skin care

Also Published As

Publication number Publication date
IT1178903B (en) 1987-09-16
DK160189C (en) 1991-07-15
IE840520L (en) 1984-09-23
FR2543001B1 (en) 1985-11-22
EP0137839B1 (en) 1988-01-27
JPS60500752A (en) 1985-05-23
JPS6348545B2 (en) 1988-09-29
DK160189B (en) 1991-02-11
DK553884A (en) 1984-11-22
IT8467275A1 (en) 1985-09-22
WO1984003631A1 (en) 1984-09-27
GR81886B (en) 1984-12-12
CA1206873A (en) 1986-07-02
DK553884D0 (en) 1984-11-22
IE56982B1 (en) 1992-02-26
DE3468982D1 (en) 1988-03-03
FR2543001A1 (en) 1984-09-28
EP0137839A1 (en) 1985-04-24
IT8467275A0 (en) 1984-03-22

Similar Documents

Publication Publication Date Title
US4710184A (en) Absorbing material containing an isothiazoline-one-3 derivative, application to personal hygiene and process for manufacturing this material
US4385632A (en) Germicidal absorbent body
KR0131462B1 (en) Disposable absorbent articles for incontiment individuals
KR940001376B1 (en) Disposable absorbent articles
EP1960006B1 (en) Absorbent articles comprising acidic superabsorber and an organic zinc salt
CA2294951C (en) Reduction of unwanted side-effects during use of absorbent articles by means of ph-control
RU2234947C2 (en) Absorbing structure in absorbing article containing partially neutralized superabsorbing material and absorbing article, which contains said absorbing structure
US20090306612A1 (en) Absorbent article
KR20030008048A (en) Disposable diaper comprising antibacterial and deodorizing agent

Legal Events

Date Code Title Description
AS Assignment

Owner name: BEGHIN-SAY S.A., 59239 THUMERIES, FRANCE A CORP OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:EHRET, PHILIPPE;REEL/FRAME:004363/0431

Effective date: 19841103

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: KAYSERSBERG S.A., A CORP. OF FRANCE, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BEGHIN-SAY S.A.;REEL/FRAME:005427/0501

Effective date: 19880823

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: KAYSERSBERG, FRANCE

Free format text: CHANGE OF COMPANY FORM FROM FRENCH LIMITED COMPANY TO FRENCH PARTNERSHIP COMPANY;ASSIGNOR:KAYSERSBERG S.A.;REEL/FRAME:009472/0500

Effective date: 19970115

Owner name: FRANCE, FORT JAMES, FRANCE

Free format text: CHANGE OF NAME;ASSIGNOR:JAMES RIVER;REEL/FRAME:009472/0349

Effective date: 19980101

Owner name: JAMES RIVER, FRANCE

Free format text: CHANGE OF NAME;ASSIGNOR:KAYSERSBERG;REEL/FRAME:009472/0461

Effective date: 19970301

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12