US4737723A - Drop-out detection circuit - Google Patents

Drop-out detection circuit Download PDF

Info

Publication number
US4737723A
US4737723A US06/866,329 US86632986A US4737723A US 4737723 A US4737723 A US 4737723A US 86632986 A US86632986 A US 86632986A US 4737723 A US4737723 A US 4737723A
Authority
US
United States
Prior art keywords
signal
flip
flop
drop
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/866,329
Inventor
Rikitaroh Mita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Assigned to CANON KABUSHIKI KAISHA reassignment CANON KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MITA, RIKITAROH
Application granted granted Critical
Publication of US4737723A publication Critical patent/US4737723A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/19Monitoring patterns of pulse trains

Definitions

  • This invention relates to a drop-out detection circuit, and more particularly, to a circuit highly suited for detecting drop-out of angle modulated signals.
  • FIG. 1 of the accompanying drawings shows an example of the conventional drop-out detection circuit adapted for detecting the drop-out of frequency modulated signals in particular.
  • an input terminal 31 receives, for example, a frequency modulated luminance signal S-31 which is as shown at a part S-31 in FIG. 2.
  • the signal S-31 is amplified by the amplifier 32 and then is changed into a signal of a given level by a limiter 33 as shown at a part S-32, in FIG. 2.
  • the signal S-32 which is produced from the limiter 33, is applied to a fall synchronizing type retriggerable monostable multivibrator (hereinafter referred to as monostable multivibrator) 34.
  • monostable multivibrator 34 With the time constant T of the monostable multivibrator 34 set at a given value by a resistor 34a and a capacitor 34b, the output level of the monostable multivibrator 34 becomes low in the event of a long drop-out exceeding the time constant T, as shown at a part S-33 in FIG. 2. Then, the output S-33 of the monostable multivibrator 34 is obtained from an output terminal 35 as a drop-out detection signal.
  • the operation of the device becomes extremely unstable. In that instance, the device often fails to perfectly follow the drop-out occurring for such a short period of time.
  • the device may be enabled to detect such a short drop-out by arranging the monostable multivibrator 34 to have an extremely small time constant T.
  • an unstable operation generally results from making the time constant of a monostable multivibrator extremely small and thus prevents the monostable multivibrator from accurately following a trigger signal.
  • a drop-out detection circuit embodying this invention comprises: means for binary coding the level of a signal to be detected; means for generating a clock signal of a given frequency; means for detecting that the binary coded signal comes-to assume a predetermined state within each period of the clock signal; and means for generating a drop-out detection signal on the basis of a signal produced from the detecting means.
  • a drop-out detection circuit embodying this invention comprises: an oscillator arranged to generate a clock signal of a predetermined frequency; a first flip-flop arranged to have the output signal thereof inverted by the clock signal and to be reset by a binary signal to be detected; and a second flip-flop arranged to sample and hold the output signal of the first flip-flop according to the clock signal.
  • FIG. 1 is a circuit diagram showing an example of the conventional drop-out detection circuit.
  • FIG. 2 is a timing chart showing the operation of the circuit shown in FIG. 1.
  • FIG. 3 is a circuit diagram showing the arrangement of a drop-out detection circuit embodying this invention.
  • FIG. 4 is a timing chart showing the operation of the circuit shown in FIG. 3.
  • FIG. 3 An embodiment of this invention is arranged as shown in FIG. 3 and operates as shown in FIG. 4.
  • FIG. 3 component elements of the drop-out detection circuit which are similar to those shown in FIG. 1 are indicated by the same reference numerals and the details of them are omitted from the following description:
  • the illustration includes a T type flip-flop 1 (hereinafter referred to as T-FF) which has a reset terminal; D type flip-flops (hereinafter referred to as D-FF's) 2 and 3; a D-FF 4 which has a reset input terminal; an inverter 5 arranged to receive a signal S-1 which is obtained with the waveform of a frequency modulated signal shaped through a limiter 33; a clock pulse generator 6 arranged to generate a clock signal S-2 which has a predetermined period; an output terminal 8; and a terminal 9 which is arranged to receive a power supply voltage Vcc.
  • T-FF T type flip-flop 1
  • D-FF's D type flip-flops
  • D-FF 4 which has a reset input terminal
  • an inverter 5 arranged to receive a signal S-1 which is obtained with the waveform of a frequency modulated signal shaped through a limiter 33
  • a clock pulse generator 6 arranged to generate a clock signal S-2 which has a predetermined period
  • all the flip-flops 1, 2, 3 and 4 are of the type arranged to be triggered in synchronism with the fall of a clock pulse signal and to be reset when a low level input is applied to the reset input terminal thereof.
  • the inverter 5 receives the signal S-1 which remains at a low level during a drop-out period as shown in FIG. 4.
  • the drop-out detection device With the drop-out detection device arranged according to this invention as described above, it operates as follows: When a clock signal S-2 shown in FIG. 4 is supplied to a clock input terminal 1a of the T-FF 1 and a signal obtained by inverting an incoming signal S-1, which is as shown in FIG. 4, is supplied to a reset input terminal 1b of the T-FF 1, the T-FF 1 produces from its output terminal 1Q a signal S-3 as shown in FIG. 4. The output signal S-3 of the T-FF 1 is supplied to an input terminal 3D of the D-FF 3. The clock signal S-2 is supplied to a clock input terminal 3a of the D-FF 3. The D-FF 3 then produces from its output terminal 3Q, a signal S-4 as shown in FIG. 4.
  • the D-FF 2 is arranged to have the incoming signal S-1, which is inverted by the inverter 5, supplied to an input terminal 2D thereof and to have also the clock signal S-2 supplied to a clock input terminal 2a thereof.
  • the D-FF 2 produces from its output terminal 2Q, a signal S-5 as shown in FIG. 4.
  • the D-FF 4 which is provided with a reset terminal, has an input terminal 4D connected to the power supply terminal 9 (+Vcc).
  • the D-FF 4 is arranged to have the output signal S-4 of the D-FF 3 supplied to a clock input terminal 4a thereof and the output signal S-5 of the D-FF 2 to the reset input terminal 4b thereof. Upon receipt of these signals, the D-FF 4 produces from an output terminal 4Q, a signal S-6 a shown in FIG. 4.
  • the signal S-6 is a drop-out detection signal.
  • the level of the output signal S-1 of the limiter 33 without fail becomes a high level within each period of the clock signal S-2 if the frequency of the clock signal S-2, which is generated by the clock pulse generator 6, is lower than the lowest frequency of the incoming frequency modulated signal. Therefore, if no drop-out exists in the frequency modulated signal, the T-FF 1 is reset without fail within one period of the clock signal S-2.
  • the T-FF 1 changes the level of its output 1Q from a low level to a high level. In other words, a change of the output of the T-FF 1 from a high level to a low level due to the clock signal indicates the occurrence of drop-out. This is detected by the D-FF 3 and then the D-FF 4 produces a drop-out detection signal indicating the start of a drop-out period.
  • the input terminal 2D of the D-FF 2 Upon occurrence of drop-out, the input terminal 2D of the D-FF 2 receives a high level signal without fail. Then, at the end of the drop-out, the level of the output 2Q of the D-FF 2 changes to a low level to indicate the end of the drop-out. The end of the drop-out period is thus determined from the drop-out detection signal produced from the D-FF 4 according to the output 2Q of the D-FF 2.
  • each of the flip-flops are arranged to be of the fall synchronizing type and to be reset in a so-called "low-active" manner.
  • a similar effect is also attainable with minor modification by replacing them with flip-flops which are of a rise synchronizing type and arranged to be reset in a so-called "high-active" manner.
  • the output signal of the embodiment delays at least for one to two periods of the clock input signal from an actual drop-out period.
  • the original signal is generally arranged to be processed through some frequency demodulation circuit, some deemphasis circuit, etc. and is thus delayed to a certain extent before it reaches a drop-out compensation circuit. Therefore, the delay caused by the drop-out detection circuit can be virtually cancelled out by selecting the frequency of the external clock pulses at a suitable value. The delay, therefore, does not present any substantial problem.

Abstract

The drop-out detection circuit includes basically an oscillator arranged to generate a clock signal of a predetermined frequency; a first flip-flop arranged to have the output signal thereof inverted by the clock signal and to be reset by a binary signal to be detected; and a second flip-flop arranged to sample and hold the output signal of the first flip-flop according to the clock signal.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a drop-out detection circuit, and more particularly, to a circuit highly suited for detecting drop-out of angle modulated signals.
2. Description of the Related Art
In reproducing from a recording medium such signals as video signals with a reproducing apparatus, some parts of the signals often drop out due to various causes. The apparatus of this kind is, therefore, generally provided with some arrangement to compensate for such signal drop-out.
To have signal drop-out adequately compensated for, it is necessary to accurately detect the drop-out. There have been proposed various drop-out detecting methods. FIG. 1 of the accompanying drawings shows an example of the conventional drop-out detection circuit adapted for detecting the drop-out of frequency modulated signals in particular. Referring to FIG. 1, an input terminal 31 receives, for example, a frequency modulated luminance signal S-31 which is as shown at a part S-31 in FIG. 2. The signal S-31 is amplified by the amplifier 32 and then is changed into a signal of a given level by a limiter 33 as shown at a part S-32, in FIG. 2. The signal S-32 which is produced from the limiter 33, is applied to a fall synchronizing type retriggerable monostable multivibrator (hereinafter referred to as monostable multivibrator) 34. With the time constant T of the monostable multivibrator 34 set at a given value by a resistor 34a and a capacitor 34b, the output level of the monostable multivibrator 34 becomes low in the event of a long drop-out exceeding the time constant T, as shown at a part S-33 in FIG. 2. Then, the output S-33 of the monostable multivibrator 34 is obtained from an output terminal 35 as a drop-out detection signal.
However, in cases where a signal of a broad band is to be processed with the conventional device of the above-stated kind, by arranging to make the device capable of detecting also a very short drop-out such as 1 to 2 μs, for example, the operation of the device becomes extremely unstable. In that instance, the device often fails to perfectly follow the drop-out occurring for such a short period of time. In the case of the device arranged in the manner as mentioned above, the device may be enabled to detect such a short drop-out by arranging the monostable multivibrator 34 to have an extremely small time constant T. However, an unstable operation generally results from making the time constant of a monostable multivibrator extremely small and thus prevents the monostable multivibrator from accurately following a trigger signal.
Further, in the case of such a short period of time, it is also difficult to select and accurately adjust the time constant set by a capacitor and a resistor. Besides, since the device is provided with a capacitor, its operation tends to become unstable due to changes in temperature. It has been another problem that the conventional device does not readily permit use of an IC.
SUMMARY OF THE INVENTION
In view of the problems of the prior art mentioned above, it is a general object of this invention to provide a drop-out detection circuit which is capable of accurately operating.
It is a more specific object of this invention to provide a drop-out detection circuit which is capable of accurately carrying out drop-out detection even in the event of detecting a drop-out occurring only for a very short period of time.
Under this object, a drop-out detection circuit embodying this invention comprises: means for binary coding the level of a signal to be detected; means for generating a clock signal of a given frequency; means for detecting that the binary coded signal comes-to assume a predetermined state within each period of the clock signal; and means for generating a drop-out detection signal on the basis of a signal produced from the detecting means.
It is another specific object of this invention to provide a drop-out detection circuit which is suited for use of an IC.
Under that object, a drop-out detection circuit embodying this invention comprises: an oscillator arranged to generate a clock signal of a predetermined frequency; a first flip-flop arranged to have the output signal thereof inverted by the clock signal and to be reset by a binary signal to be detected; and a second flip-flop arranged to sample and hold the output signal of the first flip-flop according to the clock signal.
These and further objects and features of this invention will become apparent from the following detailed description of the preferred embodiment thereof taken in connection with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a circuit diagram showing an example of the conventional drop-out detection circuit.
FIG. 2 is a timing chart showing the operation of the circuit shown in FIG. 1.
FIG. 3 is a circuit diagram showing the arrangement of a drop-out detection circuit embodying this invention.
FIG. 4 is a timing chart showing the operation of the circuit shown in FIG. 3.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
An embodiment of this invention is arranged as shown in FIG. 3 and operates as shown in FIG. 4. In FIG. 3, component elements of the drop-out detection circuit which are similar to those shown in FIG. 1 are indicated by the same reference numerals and the details of them are omitted from the following description:
Referring to FIG. 3, the illustration includes a T type flip-flop 1 (hereinafter referred to as T-FF) which has a reset terminal; D type flip-flops (hereinafter referred to as D-FF's) 2 and 3; a D-FF 4 which has a reset input terminal; an inverter 5 arranged to receive a signal S-1 which is obtained with the waveform of a frequency modulated signal shaped through a limiter 33; a clock pulse generator 6 arranged to generate a clock signal S-2 which has a predetermined period; an output terminal 8; and a terminal 9 which is arranged to receive a power supply voltage Vcc. In this specific embodiment, all the flip- flops 1, 2, 3 and 4 are of the type arranged to be triggered in synchronism with the fall of a clock pulse signal and to be reset when a low level input is applied to the reset input terminal thereof. The inverter 5 receives the signal S-1 which remains at a low level during a drop-out period as shown in FIG. 4.
With the drop-out detection device arranged according to this invention as described above, it operates as follows: When a clock signal S-2 shown in FIG. 4 is supplied to a clock input terminal 1a of the T-FF 1 and a signal obtained by inverting an incoming signal S-1, which is as shown in FIG. 4, is supplied to a reset input terminal 1b of the T-FF 1, the T-FF 1 produces from its output terminal 1Q a signal S-3 as shown in FIG. 4. The output signal S-3 of the T-FF 1 is supplied to an input terminal 3D of the D-FF 3. The clock signal S-2 is supplied to a clock input terminal 3a of the D-FF 3. The D-FF 3 then produces from its output terminal 3Q, a signal S-4 as shown in FIG. 4. The D-FF 2 is arranged to have the incoming signal S-1, which is inverted by the inverter 5, supplied to an input terminal 2D thereof and to have also the clock signal S-2 supplied to a clock input terminal 2a thereof. The D-FF 2 produces from its output terminal 2Q, a signal S-5 as shown in FIG. 4. The D-FF 4 which is provided with a reset terminal, has an input terminal 4D connected to the power supply terminal 9 (+Vcc). The D-FF 4 is arranged to have the output signal S-4 of the D-FF 3 supplied to a clock input terminal 4a thereof and the output signal S-5 of the D-FF 2 to the reset input terminal 4b thereof. Upon receipt of these signals, the D-FF 4 produces from an output terminal 4Q, a signal S-6 a shown in FIG. 4. The signal S-6 is a drop-out detection signal.
In the embodiment described, the level of the output signal S-1 of the limiter 33 without fail becomes a high level within each period of the clock signal S-2 if the frequency of the clock signal S-2, which is generated by the clock pulse generator 6, is lower than the lowest frequency of the incoming frequency modulated signal. Therefore, if no drop-out exists in the frequency modulated signal, the T-FF 1 is reset without fail within one period of the clock signal S-2. When triggered by the clock signal, the T-FF 1 changes the level of its output 1Q from a low level to a high level. In other words, a change of the output of the T-FF 1 from a high level to a low level due to the clock signal indicates the occurrence of drop-out. This is detected by the D-FF 3 and then the D-FF 4 produces a drop-out detection signal indicating the start of a drop-out period.
Upon occurrence of drop-out, the input terminal 2D of the D-FF 2 receives a high level signal without fail. Then, at the end of the drop-out, the level of the output 2Q of the D-FF 2 changes to a low level to indicate the end of the drop-out. The end of the drop-out period is thus determined from the drop-out detection signal produced from the D-FF 4 according to the output 2Q of the D-FF 2.
In the embodiment described, each of the flip-flops are arranged to be of the fall synchronizing type and to be reset in a so-called "low-active" manner. However, a similar effect is also attainable with minor modification by replacing them with flip-flops which are of a rise synchronizing type and arranged to be reset in a so-called "high-active" manner.
Further, the output signal of the embodiment delays at least for one to two periods of the clock input signal from an actual drop-out period. However, the original signal is generally arranged to be processed through some frequency demodulation circuit, some deemphasis circuit, etc. and is thus delayed to a certain extent before it reaches a drop-out compensation circuit. Therefore, the delay caused by the drop-out detection circuit can be virtually cancelled out by selecting the frequency of the external clock pulses at a suitable value. The delay, therefore, does not present any substantial problem.
Further, although the invented system requires use of a clock signal of a fixed frequency. It requires no severe degree of precision nor much stability of the clock signal.

Claims (18)

What is claimed is:
1. A drop-out detection circuit for a signal to be detected of varying frequency comprising:
(a) means responsive to said signal to be detected for binary coding of said signal to be detected;
(b) means for generating a clock signal of a predetermined frequency lower than said signal to be detected frequency;
(c) means for detecting that the binary coded signal has assumed a predetermined state within each period of said clock signal, said detecting means including a first flip-flop connected so that an output signal thereof is inverted by said clock signal and reset by said binary coded signal; and
(d) means for generating a drop-out detection signal on the basis of a signal produced from said detecting means.
2. A circuit according to claim 1, wherein said signal to be detected is a frequency modulated signal; and said binary coding means includes a limiter.
3. A circuit according to claim 1, wherein said detecting means further includes a second flip-flop connected to said first flip-flop to sample and hold the output signal of said first flip-flop according to said clock signal.
4. A circuit according to claim 3, wherein a start timing of a drop-out period indicated by said drop-out detection signal coincides with an inverting timing of an output signal of said second flip-flop.
5. A circuit according to claim 4, wherein said drop-out detection signal generating means includes a third flip-flop which is arranged to sample and hold said binary coded signal according to said clock signal.
6. A circuit according to claim 5, wherein an ending timing of said drop-out period indicated by said drop-out detection signal coincides with a timing at which an output signal of said third flip-flop is first inverted after said start timing.
7. A circuit according to claim 7, wherein said drop-out detection signal generating means includes a fourth flip-flop which is arranged to be triggered by the output signal of said second flip-flop and to be reset by the output signal of said third flip-flop.
8. A drop-out detection circuit for a binary signal to be detected of varying frequency comprising:
(a) an oscillator generating a clock signal of a predetermined frequency lower than said signal to be detected frequency;
(b) a first flip-flop connected to said oscillator and responsive to said binary signal to be detected having the output signal thereof inverted by said clock signal and reset by said binary signal to be detected; and
(c) a second flip-flop connected to said first flip-flop to sample and hold the output signal of said first flip-flop according to said clock signal.
9. A circuit according to claim 8, further comprising a third flip-flop connected to said oscillator and responsive to said biary signal to be detected to sample and hold said binary signal to be detected, the sampling operation of said third flip-flop being performed according to said clock signal.
10. A circuit according to claim 9, further comprising a fourth flip-flop connected to said second and third flip-flops to be triggered by an output signal of said second flip-flop and to be reset by an output signal of said third flip-flop.
11. A drop-out detection apparatus for a signal to be detected comprising:
(a) first detection means for generating a first detection signal in response to said signal to be detected for part of a period during which a drop-out of a signal to be detected is present;
(b) second detection means for producing a second detection signal in response to said signal to be detected for part of a period during which the drop-out of the signal to be detected is not present; and
(c) means connected to said first and second detection means for determining a drop-out period from the first detection signal produced from said first detection means and the second detection signal produced from said second detection means.
12. An apparatus according to claim 11, further comprising:
(a) means responsive to said signal to be detected for binary coding the signal to be detected.
13. An apparatus according to claim 12, wherein said first detection means includes:
(a) first sample holding means for sample holding a binary coded signal of said binary coding means with a predetermined clock signal.
14. An apparatus according to claim 13, wherein said second detection means includes:
(a) a flip-flop which is reset by the binary coded output of said binary coding means and whose output is inverted by said predetermined clock signal.
15. An apparatus according to claim 14, wherein said second detection means further includes:
(b) second sample holding means for sample holding an output of said flip-flop in accordance with said predetermined clock signal.
16. An apparatus according to claim 15, wherein said determination means includes:
a flip-flop which is triggered by an output signal of said second sample holding means and is reset by an output of said first sample holding means.
17. An apparatus according to claim 13, wherein said first sample holding means is a D type flip-flop.
18. An apparatus according to claim 15, wherein said second sample holding means is a D type flip-flop.
US06/866,329 1985-05-27 1986-05-22 Drop-out detection circuit Expired - Lifetime US4737723A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60112230A JPH0634296B2 (en) 1985-05-27 1985-05-27 Dropout detection device
JP60-112230 1985-05-27

Publications (1)

Publication Number Publication Date
US4737723A true US4737723A (en) 1988-04-12

Family

ID=14581502

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/866,329 Expired - Lifetime US4737723A (en) 1985-05-27 1986-05-22 Drop-out detection circuit

Country Status (2)

Country Link
US (1) US4737723A (en)
JP (1) JPH0634296B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0340479A2 (en) * 1988-05-06 1989-11-08 Heidelberger Druckmaschinen Aktiengesellschaft Arrangement for monitoring a time base signal
US4896227A (en) * 1987-08-11 1990-01-23 E. I. Dupont De Nemours & Co. Method of locating and inspecting dropouts on a magnetic disc
US5050002A (en) * 1987-06-08 1991-09-17 Sony Corporation Circuit for detecting a drop-out of a frequency modulated video signal
US5126853A (en) * 1988-10-26 1992-06-30 Teac Corporation Dropout detecting apparatus
US5291154A (en) * 1992-03-27 1994-03-01 Sconce Freddie O Synchronous single cycle sample and control amplitude modulator
US5473275A (en) * 1993-09-08 1995-12-05 U.S. Philips Corporation Switched-current bilinear integrator sampling input current on both phases of clock signal
US6147528A (en) * 1998-03-13 2000-11-14 Analog Devices, Inc. Method of invoking a power-down mode on an integrated circuit by monitoring a normally changing input signal
US6597204B2 (en) * 2000-11-10 2003-07-22 Nec Corporation Clock interruption detection circuit
US20040037398A1 (en) * 2002-05-08 2004-02-26 Geppert Nicholas Andre Method and system for the recognition of voice information
US20090237327A1 (en) * 2008-03-24 2009-09-24 Samsung Electronics Co., Ltd. Method for generating signal to display three-dimensional (3d) image and image display apparatus using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158855A (en) * 1977-11-29 1979-06-19 Rca Corporation Dropout compensator with proportional duration dropout detector
US4353091A (en) * 1979-12-19 1982-10-05 Robert Bosch Gmbh Circuit for detecting faults in horizontal sync pulse signals
US4467285A (en) * 1981-12-21 1984-08-21 Gte Automatic Electric Labs Inc. Pulse monitor circuit
US4477842A (en) * 1981-04-20 1984-10-16 Victor Company Of Japan, Ltd. Data reproducing circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158855A (en) * 1977-11-29 1979-06-19 Rca Corporation Dropout compensator with proportional duration dropout detector
US4353091A (en) * 1979-12-19 1982-10-05 Robert Bosch Gmbh Circuit for detecting faults in horizontal sync pulse signals
US4477842A (en) * 1981-04-20 1984-10-16 Victor Company Of Japan, Ltd. Data reproducing circuit
US4467285A (en) * 1981-12-21 1984-08-21 Gte Automatic Electric Labs Inc. Pulse monitor circuit

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5050002A (en) * 1987-06-08 1991-09-17 Sony Corporation Circuit for detecting a drop-out of a frequency modulated video signal
US4896227A (en) * 1987-08-11 1990-01-23 E. I. Dupont De Nemours & Co. Method of locating and inspecting dropouts on a magnetic disc
EP0340479A2 (en) * 1988-05-06 1989-11-08 Heidelberger Druckmaschinen Aktiengesellschaft Arrangement for monitoring a time base signal
DE3815531A1 (en) * 1988-05-06 1989-11-23 Heidelberger Druckmasch Ag METHOD AND ARRANGEMENT FOR MONITORING A CLOCK SIGNAL
EP0340479A3 (en) * 1988-05-06 1990-11-07 Heidelberger Druckmaschinen Aktiengesellschaft Process and arrangement for monitoring a time base signal
US5028813A (en) * 1988-05-06 1991-07-02 Heidelberger Druckmaschinen A.G. Device for monitoring a clock signal
US5126853A (en) * 1988-10-26 1992-06-30 Teac Corporation Dropout detecting apparatus
US5291154A (en) * 1992-03-27 1994-03-01 Sconce Freddie O Synchronous single cycle sample and control amplitude modulator
US5473275A (en) * 1993-09-08 1995-12-05 U.S. Philips Corporation Switched-current bilinear integrator sampling input current on both phases of clock signal
US6147528A (en) * 1998-03-13 2000-11-14 Analog Devices, Inc. Method of invoking a power-down mode on an integrated circuit by monitoring a normally changing input signal
US6597204B2 (en) * 2000-11-10 2003-07-22 Nec Corporation Clock interruption detection circuit
CN1327615C (en) * 2000-11-10 2007-07-18 日本电气株式会社 Clock interruption detection circuit
US20040037398A1 (en) * 2002-05-08 2004-02-26 Geppert Nicholas Andre Method and system for the recognition of voice information
US20090237327A1 (en) * 2008-03-24 2009-09-24 Samsung Electronics Co., Ltd. Method for generating signal to display three-dimensional (3d) image and image display apparatus using the same
US8674902B2 (en) * 2008-03-24 2014-03-18 Samsung Electronics Co., Ltd. Method for generating signal to display three-dimensional (3D) image and image display apparatus using the same

Also Published As

Publication number Publication date
JPS61271666A (en) 1986-12-01
JPH0634296B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
US4380745A (en) Digitally controlled temperature compensated oscillator system
KR850001946B1 (en) Digital wave shaping circuit
US4737723A (en) Drop-out detection circuit
US5019722A (en) Threshold crossing detection with improved noise rejection
KR940009722B1 (en) Carrier reset fm modulator and fm signal modulating method
JPH0456488B2 (en)
US5526333A (en) Optical disk recording device
US3312780A (en) Phase detector for comparing a fixed frequency and a variable phase-frequency signal
JPS57142051A (en) Clock pickup circuit
US5357150A (en) Defect tolerant envelope follower
US4599736A (en) Wide band constant duty cycle pulse train processing circuit
EP0181784B1 (en) Digital signal processing system and method
GB2132430A (en) Phase locked loop circuit
US5001364A (en) Threshold crossing detector
US5461489A (en) Image signal processing device
US3325730A (en) Pulse time jitter measuring system
EP0357046B1 (en) Signal processing device for analogue to digital conversion
US4577158A (en) Demodulator with drop-out compensation and reciprocal amplifier
KR910020692A (en) Digital signal detector
JP2591184B2 (en) Dropout detection circuit
EP0398372A2 (en) Drop out compensation circuit
US5357545A (en) Synchronizing signal detecting circuit
GB1369517A (en) Television line time base arrangements
JP2936800B2 (en) Signal generator
KR910003210Y1 (en) Compensation pulse generating circuit for compensating video signal

Legal Events

Date Code Title Description
AS Assignment

Owner name: CANON KABUSHIKI KAISHA 3-30-2 SHIMOMARUKO, OHTA-KU

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MITA, RIKITAROH;REEL/FRAME:004557/0643

Effective date: 19860515

Owner name: CANON KABUSHIKI KAISHA,JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MITA, RIKITAROH;REEL/FRAME:004557/0643

Effective date: 19860515

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12