US4830926A - Poly-1-butene blend adhesives for laminar structure - Google Patents

Poly-1-butene blend adhesives for laminar structure Download PDF

Info

Publication number
US4830926A
US4830926A US07/239,092 US23909288A US4830926A US 4830926 A US4830926 A US 4830926A US 23909288 A US23909288 A US 23909288A US 4830926 A US4830926 A US 4830926A
Authority
US
United States
Prior art keywords
weight
butene
hot melt
laminar structure
phr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/239,092
Inventor
Simon Mostert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell USA Inc
Original Assignee
Shell Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/115,682 external-priority patent/US4824889A/en
Application filed by Shell Oil Co filed Critical Shell Oil Co
Priority to US07/239,092 priority Critical patent/US4830926A/en
Assigned to SHELL OIL COMPANY, A CORP. OF DE reassignment SHELL OIL COMPANY, A CORP. OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MOSTERT, SIMON
Application granted granted Critical
Publication of US4830926A publication Critical patent/US4830926A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C09J123/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • Y10T428/31797Next to addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31913Monoolefin polymer

Definitions

  • This invention relates to hot melt adhesives which exhibit good high temperature performance and adhesion.
  • this invention relates to hot melt butene-1 and ethylene copolymer adhesives.
  • the present invention is an improvement over U.S. Pat. No. 4,568,713.
  • Hot melt adhesives can be formulated to be pressure sensitive and have an infinite open time but these adhesives are usually soft, tacky and have limited strength and adhesion.
  • Conventional hot melts such as formulations of poly(ethylene/vinylacetate), polyethylenes, polyamides, or polyesters are rigid, from good strong bonds to certain substrates but have short open times usually less than 1 minute. Moreover, these adhesives usually have problems in adhering to cold metal substrates.
  • Solvent applied contact adhesives can be formulated to give good bond strengths and reasonable open times but since they require the use of solvents, which can cause toxicity, pollution, and fire hazards, solvent applied adhesives can have significant drawbacks.
  • the instant polybutylene hot melt adhesives are unique in that they require no solvents, have good T-peel, good SAFT, and show improved adhesion to cold metal substrates, such as aluminum substrates.
  • the poly-1-butene polymers are a unique group of olefinic polymers because they crystallize very slowly.
  • the very slow crystallization rate in contrast to the crystallization rates of other polyolefin crystalline polymers, such as EVAs, polyethylenes and polypropylenes, has been found to provide long open times as well as good adhesion and bonding to cold, heat-sink type substrates--metals such as stainless steel and anodized aluminum, for example.
  • U.S. Pat. No. 4,568,713 teaches polybutene-based hot melt adhesives containing either poly-1-butene copolymers or poly-1-butene homopolymers and tackifying resins. This broad patent, does not identify certain unexpected results relative to SAFT and T-peel values obtained by incorporating certain carefully selected proportions of poly-1-butene homopolymer with poly-1-butene copolymer in adhesive blends containing a tackifying resin.
  • Polybutylene polymers usable in the present invention are composed of linear chain molecules with a regular and spacially ordered arrangement of ethyl side groups, the pendant groups that result when one butene is polymerized across the 1,2 carbon double bond (along an ethylene chain backbone) (see U.S. Pat. No. 3,362,940).
  • the ethyl side groups When cooled from melt, the ethyl side groups initially align in a tetragonal spatial arrangement, developing a little over one half of the ultimate crystallinity (form II). With time, the tetragonal crystalline phase transforms into a stable hexagonal spatial arrangement with subsequent development of additional crystallinity (form I). This is a very slow process, the transformation being completed in the neat polymer over a period of several days.
  • Butene-1 can be copolymerized with a variety of alpha-olefins to provide useful copolymers such as those taught in U.S. Pat. No. 3,362,940.
  • Butene-1/ethylene copolymers, with ethylene monomer in the 5.5-20 mole percent range have been taught in U.S. Pat. No. 4,568,713, and U.S. Pat. No. 3,362,940 and it has now been discovered that copolymers of this type with low ethylene comonomer contents, (1-6w%) are of special interest in hot melt adhesives.
  • the slight amount of ethylene comonomer may produce the lower glass transition temperature (T g ) and lower the amount of amorphous phase in the polymer.
  • the slight amount of ethylene may further reduce the crystallization rate.
  • These polymers provide many advantages in the development of hot melt adhesives, such as a lower T g and a higher amorphous phase. These polymers offer wider formulating latitude in combination with compatible resins, waxes, oils, fillers and additives.
  • the shear adhesion failure temperature may be controlled to remain sufficiently high while obtaining high T-peel values when the adhesive is applied to a variety of substrates.
  • Product uses of the novel adhesive blend of the present invention include but are not limited to adhesives for: the assembly of products such as disposable products, small hand-held appliances, carpet manufacture, automotive adhesives and sealants.
  • FIG. 1 is a graph of the shear adhesion failure temperature and LAP shear (in psi) in relation to the weight percent of poly-1-butene homopolymer incorporated in a 50/50 hot melt adhesive of poly-1-butene homopolymer and poly-1-butene copolymer and tackifying resin disposed on a polybutene substrate, wherein the advantageous proportions of the blend of homopolymer to copolymer range from 12.5:37.5 to 25:25, respectively.
  • the preferred copolymer of the present invention is a polybutene-1 copolymer with from about 1 mole percent to about 20 mole percent ethylene comonomer.
  • Exemplary, polymers discussed hereinafter are identified as H-1-B (homopolymeric-1-butene) and 1B-CoE 6 (copolymeric 1-butene with 6 mole percent ethylene).
  • hot melt adhesives prepared from 50% by weight based on the entire formulation of a blend of H-1-B and 1B-CoE 6 and 50% by weight of a tackifying resin showed unexpected results when 10-90% H-1-B and 90-10% of 1B-CoE 6 were blended with tackifier resin and tested on a polypropylene substrate.
  • high SAFT was obtained simultaneously with high T-peel on aluminum substrates.
  • Table 2 shows SAFT and T-peel on aluminum and polypropylene substrates for the inventive adhesive formulations comprising various proportions of blended H-1-B with 1B-CoE 6 and Escorez tackifying resin. Control examples are also provided.
  • FIG. 1 depicts the advantageous aspects of the present invention in graph form.
  • the novel adhesives can be prepared using from about 10% to about 90% by weight of a blend of polybutylene with differing melt flows and viscosities.
  • These polybutylenes can be produced by mixing from zero to 1000 ppm of Lupersol 101 peroxide, available from Pennwalt, with polybutylene pellets and extruding the mixture through a Brabender extruder at 200° C. with an average residence time of 2 minutes.
  • the adhesives can more preferably be prepared with 45-55% by weight of the polybutylene blend.
  • the butene-1 ethylene copolymer and butene-1 homopolymer blend is added to a substantially non-polar aliphatic tackifier resin.
  • 10-90% by weight of the tackifying resin can be used to prepare the novel adhesive depending on the amount of polybutylene blend used. It is preferred to use 45-55% by weight of the tackifying resin.
  • substantially non-polar aliphatic tackifier resins include the polyterpene resins.
  • partially hydrogenated C 9 based hydrocarbon resins, as well as C 5 stream resins, and polyterpenes can be used in amounts of from about 20% by weight to about 60% by weight and preferably about 30% to about 50% by weight. Resins with 85° C.
  • the waxes of the present invention are microcrystalline waxes.
  • the waxes are optional and may be added in amounts up to 30 phr of the overall formulation and preferably 5-15 phr based on the weight of the entire adhesive composition.
  • Shellwax® 500 can be used. A sufficient amount of the wax can be used to effect a lower viscosity without a substantial decrease in service temperature of the adhesive.
  • Atactic polypropylene can be advantageously added to the novel adhesives, up to 30 phr of the novel composition. 5-20 phr atactic polypropylene may be used within the scope of this invention.
  • nucleating agent may be added advantageously to the novel adhesives, in amounts up to 50 phr and preferably from about 5 to about 25 phr based on the entire adhesive formulation.
  • Stearamide, substituted stearamide, such as N,N,ethylene-di-stearamide, para-amino benzoic acid, and polymers such as high density polyethylene and polyproylene can be added to the novel adhesive as the nucleating agent.
  • Antioxidants can be added to the adhesive formulation, in amounts from about 0.1 phr to about 0.5 phr based on the entire formulation.
  • Hindered phenolic antioxidants have been used in the adhesive blend with good results. Tetrakis methylene (3,5-di-tert-butyl-4-hydroxyhydrocinnamate) methane (Irganox® 1010 from Ciba-Geigy) can be added to the blend at a level of about 0.3 phr. Other antioxidants which may be used in similar amounts of Goodrite 3114, Ethanox 330 and Irganox 1076.
  • Adhesives as described above and identified in Tables 1 and 2 can be prepared using either a small Brabender compound head (approximately 50 cc capacity) or a one quart sigma blade mixer.
  • the test formulations are easily blended using preheated equipment (170°-180° C.) by introducing the two polybutylene polymers, mixing the polymers until a soft, homogeneous mass is formed, and then gradually introducing the remaining ingredients, preferably with the tackifying resin first, followed by the remaining ingredients. Mixing times should be 20 minutes.
  • Thin adhesive films (125 to 200 microns) can be prepared from the adhesive formulation by casting the blended adhesive onto release coated polyester film (i.e., onto the release coated side) using a pair of heated nip rolls that are adjusted to produce the desired gap, with resulting adhesive thickness.
  • Preheated adhesive (preheated at about 130° C.) can be poured onto a polyester film and hand drawn through the heated nip rolls.
  • adhesive films with dimensions, a meter in length by 15 centimeters in width can be produced with a small quantity ( ⁇ 60 gms) of adhesive, so that very small quantities of adhesive can be evaluated.
  • test specimens are prepared by placing a square of film of adhesive between the substrate, and then joining the film and substrate under moderate contact pressure with a heat sealer, such as sentinel heat sealer, to form lap shear or SAFT bonded substrate specimens.
  • a heat sealer such as sentinel heat sealer
  • SAFT Shear Adhesion Failure Temperature--The upper service temperature limit of the adhesive was estimated by the SAFT test. A 25 ⁇ 25 mm lap shear specimen was formed with the substrate of interest and the adhesive as the interlayer between the substrate surfaces. The specimen was suspended in a temperature programmed oven, and the free end of the specimen was loaded at 500 or 1000 gm. The temperature was programmed to rise at a rate of 22° C./hour. The SAFT was taken at the temperature at which the bond failed and the weightload fell.
  • Lap Shear Strength--A 25 ⁇ 25 mm specimen was formed with the substrate of interest and the adhesive as the interlayer between the substrate surfaces. Specimens were drawn apart at a rate of 1.27 mm/min. in an Instron tester, until the maximum force required to break the bond was obtained. 3 mm (125 mils) anodized aluminum was used as a substrate in these tests.
  • T-Peel--A 25 mm ⁇ 150 mm laminate test specimen was formed with the substrate of interest and the adhesive as the interlayer between the substrate surfaces.
  • the laminate surfaces were placed in an Instron tester, one surface in the lower jaw. The jaws were separated at a rate of 25 cm/min. The time required to peel the surfaces was recorded continuously. The maximum and minimum values were noted, as well as failure mode, i.e., adhesive, cohesive, or a combination. The test approximated a peel angle of about 180° C.
  • T-peel tests were carried out on both aluminum and polypropylene substrates.

Abstract

A laminar structure comprising a substrate and a hot melt adhesive, wherein said hot melt adhesive comprises:
(A) a butene-1 polymer blend of from 10% by weight of 90% by weight of an at least partially crystalline copolymer of butene-1 and ethylene, wherein the ethylene content is from about 1 mole % to about 20 mole % of said copolymer, and from 10% by weight to 90% by weight of a butene-1 homopolymer;
(B) from about 20% by weight to about 60% by weight of a substantially non-polar tackifying resin selected from the group consisting of polyterpene and aliphatic resins from C5 -C9 hydrocarbon streams or hydrogenated resins thereof with softening points in the range of 70° C. to 130° C.; and
(C) from about 0.1 phr to about 0.5 phr of an antioxidizing agent.

Description

This application is a Continuation-in-part of U.S. Ser. No. 115,682, filed Oct. 30, 1987.
BACKGROUND OF THE INVENTION
This invention relates to hot melt adhesives which exhibit good high temperature performance and adhesion. In particular, this invention relates to hot melt butene-1 and ethylene copolymer adhesives. The present invention is an improvement over U.S. Pat. No. 4,568,713.
Hot melt adhesives can be formulated to be pressure sensitive and have an infinite open time but these adhesives are usually soft, tacky and have limited strength and adhesion. Conventional hot melts such as formulations of poly(ethylene/vinylacetate), polyethylenes, polyamides, or polyesters are rigid, from good strong bonds to certain substrates but have short open times usually less than 1 minute. Moreover, these adhesives usually have problems in adhering to cold metal substrates.
Solvent applied contact adhesives can be formulated to give good bond strengths and reasonable open times but since they require the use of solvents, which can cause toxicity, pollution, and fire hazards, solvent applied adhesives can have significant drawbacks. The instant polybutylene hot melt adhesives are unique in that they require no solvents, have good T-peel, good SAFT, and show improved adhesion to cold metal substrates, such as aluminum substrates.
The poly-1-butene polymers are a unique group of olefinic polymers because they crystallize very slowly. The very slow crystallization rate, in contrast to the crystallization rates of other polyolefin crystalline polymers, such as EVAs, polyethylenes and polypropylenes, has been found to provide long open times as well as good adhesion and bonding to cold, heat-sink type substrates--metals such as stainless steel and anodized aluminum, for example.
U.S. Pat. No. 4,568,713 teaches polybutene-based hot melt adhesives containing either poly-1-butene copolymers or poly-1-butene homopolymers and tackifying resins. This broad patent, does not identify certain unexpected results relative to SAFT and T-peel values obtained by incorporating certain carefully selected proportions of poly-1-butene homopolymer with poly-1-butene copolymer in adhesive blends containing a tackifying resin.
Polybutylene polymers usable in the present invention are composed of linear chain molecules with a regular and spacially ordered arrangement of ethyl side groups, the pendant groups that result when one butene is polymerized across the 1,2 carbon double bond (along an ethylene chain backbone) (see U.S. Pat. No. 3,362,940). When cooled from melt, the ethyl side groups initially align in a tetragonal spatial arrangement, developing a little over one half of the ultimate crystallinity (form II). With time, the tetragonal crystalline phase transforms into a stable hexagonal spatial arrangement with subsequent development of additional crystallinity (form I). This is a very slow process, the transformation being completed in the neat polymer over a period of several days.
Butene-1 can be copolymerized with a variety of alpha-olefins to provide useful copolymers such as those taught in U.S. Pat. No. 3,362,940. Butene-1/ethylene copolymers, with ethylene monomer in the 5.5-20 mole percent range have been taught in U.S. Pat. No. 4,568,713, and U.S. Pat. No. 3,362,940 and it has now been discovered that copolymers of this type with low ethylene comonomer contents, (1-6w%) are of special interest in hot melt adhesives. The slight amount of ethylene comonomer may produce the lower glass transition temperature (Tg) and lower the amount of amorphous phase in the polymer. The slight amount of ethylene may further reduce the crystallization rate. These polymers provide many advantages in the development of hot melt adhesives, such as a lower Tg and a higher amorphous phase. These polymers offer wider formulating latitude in combination with compatible resins, waxes, oils, fillers and additives.
SUMMARY OF THE INVENTION
It has been surprisingly found that certain blends of (1) poly-1-butene/ethylene copolymers, where the ethylene content of the copolymers ranges from about 1% by weight to about 20% by weight, and (2) poly-1-butene homopolymer with tackifying resin, an antioxidant and optionally, an amount of a microcrystalline wax and/or an amount of atactic polypropylene, provide adhesive formulations which exhibit unexpected SAFT and T-peel results when compared with adhesives comprising only poly-1-butene homopolymer and tackifying resin and only poly-1-butene copolymer and tackifying resin.
More specifically, it has been surprisingly found that for the adhesive, the shear adhesion failure temperature (SAFT) may be controlled to remain sufficiently high while obtaining high T-peel values when the adhesive is applied to a variety of substrates.
Product uses of the novel adhesive blend of the present invention include but are not limited to adhesives for: the assembly of products such as disposable products, small hand-held appliances, carpet manufacture, automotive adhesives and sealants.
DRAWINGS
FIG. 1 is a graph of the shear adhesion failure temperature and LAP shear (in psi) in relation to the weight percent of poly-1-butene homopolymer incorporated in a 50/50 hot melt adhesive of poly-1-butene homopolymer and poly-1-butene copolymer and tackifying resin disposed on a polybutene substrate, wherein the advantageous proportions of the blend of homopolymer to copolymer range from 12.5:37.5 to 25:25, respectively.
DETAILED DESCRIPTION OF THE INVENTION
The preferred copolymer of the present invention is a polybutene-1 copolymer with from about 1 mole percent to about 20 mole percent ethylene comonomer. Exemplary, polymers discussed hereinafter are identified as H-1-B (homopolymeric-1-butene) and 1B-CoE 6 (copolymeric 1-butene with 6 mole percent ethylene).
It has been found that hot melt adhesives prepared from 50% by weight based on the entire formulation of a blend of H-1-B and 1B-CoE 6 and 50% by weight of a tackifying resin showed unexpected results when 10-90% H-1-B and 90-10% of 1B-CoE 6 were blended with tackifier resin and tested on a polypropylene substrate. When 20-80% H-1-B and 80-20% 1B-CoE 6 of the polymer blend were incorporated in an adhesive formulation, high SAFT was obtained simultaneously with high T-peel on aluminum substrates.
Lap shear and SAFT properties of comparative control adhesives prepared with only homopolymer of butene-1 (H-1-B) or only butene-1 copolymer (1B-CoE 6) on polybutene substrates are shown in Table 1.
Table 2 shows SAFT and T-peel on aluminum and polypropylene substrates for the inventive adhesive formulations comprising various proportions of blended H-1-B with 1B-CoE 6 and Escorez tackifying resin. Control examples are also provided.
FIG. 1 depicts the advantageous aspects of the present invention in graph form.
                                  TABLE 1                                 
__________________________________________________________________________
        1B-CoE 6                                                          
        Butene-1-ethylene                                                 
H-1-B   Copolymer with 6%                                                 
                   Polymer Composition                                    
                                Tackifying Resin                          
                                         Properties                       
Homopolymer                                                               
        Ethylene Comonomer                                                
                   Homopolymer:Copolymer                                  
                                ARKON P-85                                
                                         SAFT, F                          
                                              LAP SHEAR,                  
__________________________________________________________________________
                                              psi                         
0       50         0:100%       50       157  237                         
50      0          100:0%       50       191   45                         
12.5    37.5       20:80%       50       193  154                         
25      25         50:50%       50       202  165                         
37.5    12.5       80:20%       50       200   87                         
__________________________________________________________________________
                                  TABLE 2                                 
__________________________________________________________________________
        1B-CoE 6                                                          
        Butene-1-ethylene       Tackifying                                
                                          Properties                      
H-1-B   Copolymer with 6%                                                 
                   Polymer Composition                                    
                                Resin          LAP T-Peel                 
                                                         T-Peel PP        
Homopolymer                                                               
        Ethylene Comonomer                                                
                   Homopolymer:Copolymer                                  
                                ESCOREZ 5380                              
                                          SAFT, F                         
                                               Shear                      
                                                   pli   pli              
__________________________________________________________________________
 0      50         0:100%       50        154  --  2.67  1.87             
10      40         20:80%       50        168  --  1.52  1.47             
20      30         40:60%       50        183  --  1.22  2.2              
30      20         60:40%       50        190  --  1     3.13             
40      10         80:20%       50        192  --  0.37  1.66             
50       0         100:0%       50        197  --  0.67  0.85             
__________________________________________________________________________
The novel adhesives can be prepared using from about 10% to about 90% by weight of a blend of polybutylene with differing melt flows and viscosities. These polybutylenes can be produced by mixing from zero to 1000 ppm of Lupersol 101 peroxide, available from Pennwalt, with polybutylene pellets and extruding the mixture through a Brabender extruder at 200° C. with an average residence time of 2 minutes. The adhesives can more preferably be prepared with 45-55% by weight of the polybutylene blend.
To formulate the novel adhesives the butene-1 ethylene copolymer and butene-1 homopolymer blend is added to a substantially non-polar aliphatic tackifier resin. 10-90% by weight of the tackifying resin can be used to prepare the novel adhesive depending on the amount of polybutylene blend used. It is preferred to use 45-55% by weight of the tackifying resin. Included in the definition of substantially non-polar aliphatic tackifier resins are the polyterpene resins. For themost part, partially hydrogenated C9 based hydrocarbon resins, as well as C5 stream resins, and polyterpenes can be used in amounts of from about 20% by weight to about 60% by weight and preferably about 30% to about 50% by weight. Resins with 85° C. softening points were used (Arkon P-85 and Escorez 5380) and 120° C. softening points (Arkon P-120) were used. The two 85° C. melting point resins showed crystalline melting points and Tgs above room temperature; Tm =85° C., Tg =35° C. for the Arkon P-85 and Tm=80° C., Tg =29° C. for the Escorez 5380 resin. Both resins formed clear melts and clear solids upon cooling in polybutylene polymers. The Arkon P-120 showed a crystalline melting point of 125° C. and Tg of 67° C. The resin formed a clear melt and a clear solid upon cooling in the polybutylene polymer.
The waxes of the present invention are microcrystalline waxes. The waxes are optional and may be added in amounts up to 30 phr of the overall formulation and preferably 5-15 phr based on the weight of the entire adhesive composition. Shellwax® 500 can be used. A sufficient amount of the wax can be used to effect a lower viscosity without a substantial decrease in service temperature of the adhesive.
Atactic polypropylene can be advantageously added to the novel adhesives, up to 30 phr of the novel composition. 5-20 phr atactic polypropylene may be used within the scope of this invention.
Small amounts of nucleating agent may be added advantageously to the novel adhesives, in amounts up to 50 phr and preferably from about 5 to about 25 phr based on the entire adhesive formulation. Stearamide, substituted stearamide, such as N,N,ethylene-di-stearamide, para-amino benzoic acid, and polymers such as high density polyethylene and polyproylene can be added to the novel adhesive as the nucleating agent.
Antioxidants can be added to the adhesive formulation, in amounts from about 0.1 phr to about 0.5 phr based on the entire formulation.
Hindered phenolic antioxidants have been used in the adhesive blend with good results. Tetrakis methylene (3,5-di-tert-butyl-4-hydroxyhydrocinnamate) methane (Irganox® 1010 from Ciba-Geigy) can be added to the blend at a level of about 0.3 phr. Other antioxidants which may be used in similar amounts of Goodrite 3114, Ethanox 330 and Irganox 1076.
The following illustrates the present invention and is not intended to limit the scope of the inventive concept.
Adhesive Preparation
Adhesives as described above and identified in Tables 1 and 2, can be prepared using either a small Brabender compound head (approximately 50 cc capacity) or a one quart sigma blade mixer. The test formulations are easily blended using preheated equipment (170°-180° C.) by introducing the two polybutylene polymers, mixing the polymers until a soft, homogeneous mass is formed, and then gradually introducing the remaining ingredients, preferably with the tackifying resin first, followed by the remaining ingredients. Mixing times should be 20 minutes.
Adhesive Film
Thin adhesive films (125 to 200 microns) can be prepared from the adhesive formulation by casting the blended adhesive onto release coated polyester film (i.e., onto the release coated side) using a pair of heated nip rolls that are adjusted to produce the desired gap, with resulting adhesive thickness. Preheated adhesive (preheated at about 130° C.) can be poured onto a polyester film and hand drawn through the heated nip rolls. Using this technique, adhesive films with dimensions, a meter in length by 15 centimeters in width, can be produced with a small quantity (<60 gms) of adhesive, so that very small quantities of adhesive can be evaluated.
TESTING METHODS
Once cooled and allowed to set, adhesives made by the above process were used to prepare test specimens. Polypropylene, aluminum and polyethylene can be used as substrates for the test specimens. Test specimens are prepared by placing a square of film of adhesive between the substrate, and then joining the film and substrate under moderate contact pressure with a heat sealer, such as sentinel heat sealer, to form lap shear or SAFT bonded substrate specimens.
1. SAFT: Shear Adhesion Failure Temperature--The upper service temperature limit of the adhesive was estimated by the SAFT test. A 25×25 mm lap shear specimen was formed with the substrate of interest and the adhesive as the interlayer between the substrate surfaces. The specimen was suspended in a temperature programmed oven, and the free end of the specimen was loaded at 500 or 1000 gm. The temperature was programmed to rise at a rate of 22° C./hour. The SAFT was taken at the temperature at which the bond failed and the weightload fell.
2. Lap Shear Strength--A 25×25 mm specimen was formed with the substrate of interest and the adhesive as the interlayer between the substrate surfaces. Specimens were drawn apart at a rate of 1.27 mm/min. in an Instron tester, until the maximum force required to break the bond was obtained. 3 mm (125 mils) anodized aluminum was used as a substrate in these tests.
3. T-Peel--A 25 mm×150 mm laminate test specimen was formed with the substrate of interest and the adhesive as the interlayer between the substrate surfaces. The laminate surfaces were placed in an Instron tester, one surface in the lower jaw. The jaws were separated at a rate of 25 cm/min. The time required to peel the surfaces was recorded continuously. The maximum and minimum values were noted, as well as failure mode, i.e., adhesive, cohesive, or a combination. The test approximated a peel angle of about 180° C. T-peel tests were carried out on both aluminum and polypropylene substrates.
It was found that the simultaneous high SAFT and low T-peel were functions of the proportions of poly-1-butene homopolymer to poly-1-butene copolymer in the blend.
Deviations in the above described materials and/or methods may be apparent to one of ordinary skill in the art.

Claims (8)

What is claimed is:
1. A laminar structure comprising a substrate and a hot melt adhesive, wherein said hot melt adhesive comprises:
(A) a butene-1 polymer blend of from 10% by weight to 90% by weight of an at least partially crystalline copolymer of butene-1 and ethylene, wherein the ethylene content is from about 1 mole% to about 20 mole% of said copolymer, and from 10% by weight to 90% by weight of a butene-1 homopolymer;
(B) from about 20% by weight to about 60% by weight of a substantially non-polar tackifying resin selected from the group consisting of polyterpene and aliphatic resins from C5 -C9 hydrocarbon streams or hydrogenated resins thereof with softening points in the range of 70° C. to 130° C. and
(C) from about 0.1 phr to about 0.5 phr of an antioxidizing agent.
2. The laminar structure of claim 1, wherein said hot melt adhesive comprises:
from about 45% by weight to about 55% by weight of said butene-1 polymer blend;
from about 45% by weight to about 55% by weight of said tackifying resin; and
from about 0.1 phr to about 0.5 phr of said antioxidizing agent.
3. The laminar structure of claim 1, wherein said hot melt adhesive further comprises up to 30 phr of a microcrystalline wax.
4. The laminar structure of claim 1, wherein said hot melt adhesive further comprises up to 30 phr of atactic polypropylene.
5. The laminar structure of claim 1, werein said hot melt adhesive further comprises a nucleating agent.
6. The laminar structure of claim 5, wherein said nucleating agent is substituted stearamide, steramide, high density polyethylene, polypropylene, or para-amino-benzoic-acid.
7. The laminar structure of claim 1, wherein said hot melt adhesive comprises an antioxidizing agent which is tetrakis methylene (3,5-di-tert-butyl-4-hydroxy-hydrocinnamate)methane.
8. The laminar structure of claim 1, wherein said substrate is aluminum, polypropylene, polyester film, or polyethylene.
US07/239,092 1987-10-30 1988-08-31 Poly-1-butene blend adhesives for laminar structure Expired - Fee Related US4830926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/239,092 US4830926A (en) 1987-10-30 1988-08-31 Poly-1-butene blend adhesives for laminar structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/115,682 US4824889A (en) 1987-10-30 1987-10-30 Poly-1-butene blend adhesives
US07/239,092 US4830926A (en) 1987-10-30 1988-08-31 Poly-1-butene blend adhesives for laminar structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07/115,682 Continuation-In-Part US4824889A (en) 1987-10-30 1987-10-30 Poly-1-butene blend adhesives

Publications (1)

Publication Number Publication Date
US4830926A true US4830926A (en) 1989-05-16

Family

ID=26813453

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/239,092 Expired - Fee Related US4830926A (en) 1987-10-30 1988-08-31 Poly-1-butene blend adhesives for laminar structure

Country Status (1)

Country Link
US (1) US4830926A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5395471A (en) 1991-10-15 1995-03-07 The Dow Chemical Company High drawdown extrusion process with greater resistance to draw resonance
US5582923A (en) 1991-10-15 1996-12-10 The Dow Chemical Company Extrusion compositions having high drawdown and substantially reduced neck-in
US5674342A (en) 1991-10-15 1997-10-07 The Dow Chemical Company High drawdown extrusion composition and process
US5747594A (en) 1994-10-21 1998-05-05 The Dow Chemical Company Polyolefin compositions exhibiting heat resistivity, low hexane-extractives and controlled modulus
US5986028A (en) * 1991-10-15 1999-11-16 The Dow Chemical Company Elastic substantially linear ethlene polymers
US6025448A (en) 1989-08-31 2000-02-15 The Dow Chemical Company Gas phase polymerization of olefins
US6506867B1 (en) 1991-10-15 2003-01-14 The Dow Chemical Company Elastic substantially linear ethylene polymers
US6538080B1 (en) 1990-07-03 2003-03-25 Bp Chemicals Limited Gas phase polymerization of olefins
US6548611B2 (en) 1991-10-15 2003-04-15 Dow Global Technologies Inc. Elastic substantially linear olefin polymers
US20050031883A1 (en) * 2001-09-19 2005-02-10 Masanori Sera Wrapping film and shrink film each comprising butene polymer
US20050049342A1 (en) * 2003-09-03 2005-03-03 Albrecht Steven W. Composition and method relating to a hot melt adhesive
US20060027320A1 (en) * 2004-08-09 2006-02-09 Kueppers Michelle C Composition and method relating to a hot melt adhesive
US20100276057A1 (en) * 2009-04-30 2010-11-04 H.B. Fuller Company Ethylene-butene copolymer, adhesive composition including the same, and method of making and using the same
US8404079B1 (en) 2004-08-09 2013-03-26 H.N. Fuller Company Composition and method relating to a hot melt adhesive

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3251792A (en) * 1961-09-05 1966-05-17 Carlisle Chemical Works Polyolefins stabilized with mixtures comprising citric acid esters and sulfur-containing compounds
US3362940A (en) * 1965-05-06 1968-01-09 Mobil Oil Corp Stereoregular polymerization of 1-olefins in monomer solution
US3370036A (en) * 1962-07-02 1968-02-20 Phillips Petroleum Co Stabilization of polymers with uv stabilizers and antioxidants
US3573240A (en) * 1970-05-01 1971-03-30 Nat Starch Chem Corp Hot melt adhesive compositions for hard covered bookbinding
US3849520A (en) * 1973-01-17 1974-11-19 Mobil Oil Corp Resinous blend and oriented shrink film comprising polypropylene,polybutene and ethylene/butene copolymer
US3869416A (en) * 1973-03-22 1975-03-04 Du Pont Reinforced wax compositions having universal adhesion
US4031058A (en) * 1975-04-23 1977-06-21 E. I. Du Pont De Nemours And Company Hot melt sealants
US4164427A (en) * 1977-08-05 1979-08-14 Eastman Kodak Company Stabilized hydrocarbon tackifying compositions
US4279659A (en) * 1976-10-18 1981-07-21 Petrolite Corporation Laminating composition and uses
US4284541A (en) * 1978-11-14 1981-08-18 Mitsui Petrochemical Industries, Ltd. Hot-melt pressure sensitive adhesive compound
US4390677A (en) * 1978-03-31 1983-06-28 Karol Frederick J Article molded from ethylene hydrocarbon copolymer
US4410677A (en) * 1978-07-25 1983-10-18 General Electric Company Low modulus room temperature vulcanizable silicone rubber compositions
US4451633A (en) * 1982-08-19 1984-05-29 Shell Oil Company Olefin polymerization
US4454281A (en) * 1982-12-01 1984-06-12 Union Carbide Corporation Formulation for high clarity linear low density polyethylene film products
US4460364A (en) * 1982-08-26 1984-07-17 Personal Products Company Pressure sensitive hot melt adhesive for sanitary products
US4554321A (en) * 1982-08-12 1985-11-19 Shell Oil Company Film compositions of butene polymers
US4554304A (en) * 1984-05-31 1985-11-19 Shell Oil Company Hot melt butylene/ethylene adhesives
US4645792A (en) * 1983-08-24 1987-02-24 Shell Oil Company Nucleating agents for stereoregular elastomeric butene-1 polymer compositions

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3251792A (en) * 1961-09-05 1966-05-17 Carlisle Chemical Works Polyolefins stabilized with mixtures comprising citric acid esters and sulfur-containing compounds
US3370036A (en) * 1962-07-02 1968-02-20 Phillips Petroleum Co Stabilization of polymers with uv stabilizers and antioxidants
US3362940A (en) * 1965-05-06 1968-01-09 Mobil Oil Corp Stereoregular polymerization of 1-olefins in monomer solution
US3573240A (en) * 1970-05-01 1971-03-30 Nat Starch Chem Corp Hot melt adhesive compositions for hard covered bookbinding
US3849520A (en) * 1973-01-17 1974-11-19 Mobil Oil Corp Resinous blend and oriented shrink film comprising polypropylene,polybutene and ethylene/butene copolymer
US3869416A (en) * 1973-03-22 1975-03-04 Du Pont Reinforced wax compositions having universal adhesion
US4031058A (en) * 1975-04-23 1977-06-21 E. I. Du Pont De Nemours And Company Hot melt sealants
US4279659A (en) * 1976-10-18 1981-07-21 Petrolite Corporation Laminating composition and uses
US4164427A (en) * 1977-08-05 1979-08-14 Eastman Kodak Company Stabilized hydrocarbon tackifying compositions
US4390677A (en) * 1978-03-31 1983-06-28 Karol Frederick J Article molded from ethylene hydrocarbon copolymer
US4410677A (en) * 1978-07-25 1983-10-18 General Electric Company Low modulus room temperature vulcanizable silicone rubber compositions
US4284541A (en) * 1978-11-14 1981-08-18 Mitsui Petrochemical Industries, Ltd. Hot-melt pressure sensitive adhesive compound
US4554321A (en) * 1982-08-12 1985-11-19 Shell Oil Company Film compositions of butene polymers
US4451633A (en) * 1982-08-19 1984-05-29 Shell Oil Company Olefin polymerization
US4460364A (en) * 1982-08-26 1984-07-17 Personal Products Company Pressure sensitive hot melt adhesive for sanitary products
US4454281A (en) * 1982-12-01 1984-06-12 Union Carbide Corporation Formulation for high clarity linear low density polyethylene film products
US4645792A (en) * 1983-08-24 1987-02-24 Shell Oil Company Nucleating agents for stereoregular elastomeric butene-1 polymer compositions
US4554304A (en) * 1984-05-31 1985-11-19 Shell Oil Company Hot melt butylene/ethylene adhesives

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025448A (en) 1989-08-31 2000-02-15 The Dow Chemical Company Gas phase polymerization of olefins
US6538080B1 (en) 1990-07-03 2003-03-25 Bp Chemicals Limited Gas phase polymerization of olefins
US6548611B2 (en) 1991-10-15 2003-04-15 Dow Global Technologies Inc. Elastic substantially linear olefin polymers
US5986028A (en) * 1991-10-15 1999-11-16 The Dow Chemical Company Elastic substantially linear ethlene polymers
US6737484B2 (en) 1991-10-15 2004-05-18 Dow Global Technologies Inc. Elastic substantially linear olefin polymers
US20050131170A1 (en) * 1991-10-15 2005-06-16 Shih-Yaw Lai Elastic substantially linear olefin polymers
US6780954B2 (en) 1991-10-15 2004-08-24 Dow Global Technologies, Inc. Elastic substantially linear ethylene polymers
US5674342A (en) 1991-10-15 1997-10-07 The Dow Chemical Company High drawdown extrusion composition and process
US6136937A (en) 1991-10-15 2000-10-24 The Dow Chemical Company Elastic substantially linear ethylene polymers
US6849704B2 (en) 1991-10-15 2005-02-01 Dow Global Technologies Inc. Elastic substantially linear olefin polymers
US6534612B1 (en) 1991-10-15 2003-03-18 The Dow Chemical Company Elastic substantially linear ethylene polymers
US5582923A (en) 1991-10-15 1996-12-10 The Dow Chemical Company Extrusion compositions having high drawdown and substantially reduced neck-in
US5395471A (en) 1991-10-15 1995-03-07 The Dow Chemical Company High drawdown extrusion process with greater resistance to draw resonance
US20040082741A1 (en) * 1991-10-15 2004-04-29 Shih-Yaw Lai Elastic Substantially linear olefin polymers
US6506867B1 (en) 1991-10-15 2003-01-14 The Dow Chemical Company Elastic substantially linear ethylene polymers
US5747594A (en) 1994-10-21 1998-05-05 The Dow Chemical Company Polyolefin compositions exhibiting heat resistivity, low hexane-extractives and controlled modulus
US5773106A (en) 1994-10-21 1998-06-30 The Dow Chemical Company Polyolefin compositions exhibiting heat resistivity, low hexane-extractives and controlled modulus
US5792534A (en) 1994-10-21 1998-08-11 The Dow Chemical Company Polyolefin film exhibiting heat resistivity, low hexane extractives and controlled modulus
US20050031883A1 (en) * 2001-09-19 2005-02-10 Masanori Sera Wrapping film and shrink film each comprising butene polymer
US20050049342A1 (en) * 2003-09-03 2005-03-03 Albrecht Steven W. Composition and method relating to a hot melt adhesive
US7173076B2 (en) 2003-09-03 2007-02-06 H.B. Fuller Licensing & Financing Inc Composition and method relating to a hot melt adhesive
US20070082973A1 (en) * 2003-09-03 2007-04-12 Albrecht Steven W Composition and method relating to a hot melt adhesive
US20060027320A1 (en) * 2004-08-09 2006-02-09 Kueppers Michelle C Composition and method relating to a hot melt adhesive
WO2006031315A1 (en) * 2004-08-09 2006-03-23 H.B. Fuller Licensing & Financing, Inc. Composition and method relating to a hot melt adhesive
US8404079B1 (en) 2004-08-09 2013-03-26 H.N. Fuller Company Composition and method relating to a hot melt adhesive
US8454792B2 (en) 2004-08-09 2013-06-04 H.B. Fuller Company Composition and method relating to a hot melt adhesive
US20100276057A1 (en) * 2009-04-30 2010-11-04 H.B. Fuller Company Ethylene-butene copolymer, adhesive composition including the same, and method of making and using the same

Similar Documents

Publication Publication Date Title
US4824889A (en) Poly-1-butene blend adhesives
AU612240B2 (en) Hot melt adhesive comprising a butene-1 polymer
US4568713A (en) Hot melt poly(butylene/ethylene) adhesives
EP0173416B1 (en) Hot melt butylene-ethylene copolymer adhesives
AU614784B2 (en) Hot melt adhesive containing butene-1 polymers
US4830926A (en) Poly-1-butene blend adhesives for laminar structure
US5512625A (en) Thermoplastic hotmelt adhesive
US5317070A (en) Syndiotactic hot melt adhesive
US4833192A (en) Compatible polymer blends useful as melt adhesives (II)
EP2666837B1 (en) Adhesive resin composition and hot-melt adhesive obtained therefrom
JP3037424B2 (en) Hot melt adhesive composition
JPH0128791B2 (en)
US5024888A (en) Modified polybutylene-base hot melt compositions
US4839422A (en) Ternary adhesive compositions
WO1995010575A1 (en) Adhesives from low molecular weight polypropylene
JPH03199282A (en) Hot-melt adhesive composition
EP3630906B1 (en) Hot-melt pressure sensitive adhesive composition having improved rheological properties
AU612386B2 (en) Hot melt adhesives
WO1996003470A1 (en) Hot melt adhesive based on eva and styrene block polymers
JPH058956B2 (en)
US4977206A (en) Modified polybutylene-based hot melt compositions
JP2636907B2 (en) Laminated structure manufactured using poly-1-butene compound adhesive
JPH01282280A (en) Hot-melt adhesive composition
JPS63199252A (en) Hot melt composition
JPH01266175A (en) Hot-melt adhesive composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHELL OIL COMPANY, A CORP. OF DE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MOSTERT, SIMON;REEL/FRAME:005030/0028

Effective date: 19880830

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19930516

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362