US4848869A - Method of coating and optical fiber comprising polyimide-silicone block copolymer coating - Google Patents

Method of coating and optical fiber comprising polyimide-silicone block copolymer coating Download PDF

Info

Publication number
US4848869A
US4848869A US07/229,443 US22944388A US4848869A US 4848869 A US4848869 A US 4848869A US 22944388 A US22944388 A US 22944388A US 4848869 A US4848869 A US 4848869A
Authority
US
United States
Prior art keywords
silicone
coating
glass
optical fiber
block copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/229,443
Inventor
Eric H. Urruti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Corning Glass Works
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Assigned to CORNING GLASS WORKS, A CORP. OF NY reassignment CORNING GLASS WORKS, A CORP. OF NY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: URRUTI, ERIC H.
Priority to US07/229,443 priority Critical patent/US4848869A/en
Priority to EP88312030A priority patent/EP0354289A1/en
Priority to EP19920100253 priority patent/EP0481960A3/en
Priority to CN88108978A priority patent/CN1040187A/en
Priority to JP1064041A priority patent/JP2975606B2/en
Priority to KR1019890009816A priority patent/KR900003651A/en
Publication of US4848869A publication Critical patent/US4848869A/en
Application granted granted Critical
Priority to AU39414/89A priority patent/AU623668B2/en
Priority to AU85995/91A priority patent/AU639613B2/en
Priority to CA000616415A priority patent/CA1325316C/en
Priority to JP32965198A priority patent/JP3257626B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings

Definitions

  • the present invention relates to optical fibers provided with protective polymer coatings, and particularly to glass optical fibers which include a composite coating comprising an inner layer of a silicone polymer and an outer layer of a polyimide-silicone block copolymer.
  • Glass fibers as drawn exhibit very high tensile strength, but are substantially weakened by the development of surface flaws on the surface of the fiber.
  • a protective coating to the surface of the fiber before it comes into contact with any solid surface can largely preserve the inherent high strength thereof.
  • a number of different coating systems have been used commercially for the production of glass optical waveguide fibers for optical telecommunications. However only two coating systems are presently in widespread commercial use. The first of these systems employs coating materials which are rapidly curable by exposure to ultraviolet light. Examples of such coatings are the UV-curable urethane acrylates, representative compositions for these coatings being described in European Patent No. EP0204160.
  • Another commercially utilized coating system for glass optical fibers for telecommunications employs a primary or first-applied coating of a silicone polymer and a secondary coating or jacket of an extruded thermoplastic polymer such as nylon.
  • U.S. Pat. No. 4,114,981 describes an optical coating system of this type.
  • UV-curable acrylate coating systems provide acceptable service in applications over a relatively broad range of ambient temperatures, but are not sufficiently stable to withstand elevated temperatures for prolonged period of use. Silicone coatings are more commonly used in aggressive environments involving prolonged exposure to high temperatures, but these coatings have the disadvantage of high cost.
  • silicone-coated fibers are normally overcoated by extrusion with a thermoplastic jacketing material prior to final testing and shipment. This typically involves off-line extrusion processing, and the tough jacketing materials used require proof testing of the jacketed fiber at unusually high stresses to assure detection of breaks. Both of these procedures add significant cost to the fiber.
  • silicone-based coating formulations offer a clear advantage over acrylate-coated fibers. At least for these uses, a silicone coating system which could be applied rapidly and, most preferably without the need for offline jacketing and high-stress proof testing would have significant commercial importance.
  • a new silicone-based composite coating system which offers the advantages of silicones in terms of extended high temperature capability, but overcomes the various disadvantages of silicones from a cost and manufacturing standpoint.
  • the combination coating has a silicone polymer undercoating component or layer, yet can be applied entirely on-line, i.e., without any need for fiber rewinding or other reprocessing of the fiber, such as the off-line extrusion overcoating of the fiber practiced in the prior art. Further, the overcoating component or layer of the combination coating has excellent handling characteristics and compatibility with the underlying silicone layer.
  • the combination coating system offering the described advantages is a system comprising a silicone polymer underlayer covered with an overcoated layer of a polyimide-silicone block copolymer.
  • Polyimide-silicone block copolymers offer excellent adhesion to silicone undercoating compositions, perhaps due to the presence of silicone blocks in the block copolymer. This good adhesion and the absence of tackiness in the overcoating insure ease of handling in manufacture.
  • the elastic properties of the combination coating are such that proof testing of the fiber does not have to be conducted at artificially high stress levels. Thus proof test stresses are governed by fiber rather than coating characteristics.
  • the composite coating offers the described advantages without compromising the desirable high-temperature operating characteristics of the fiber.
  • the high-temperature capabilities of the block copolymer component equal or exceed those of the silicone component of the coating system.
  • the invention comprises a glass optical fiber having at least two protective polymer coatings disposed on the outer surface thereof, those coatings including at least one silicone-polyimide block copolymer layer and one silicone polymer layer.
  • the silicone layer forms an underlayer for the silicone-polyimide block copolymer, being positioned interiorly of the copolymer and in contact therewith.
  • the silicone polyimide layer forms an outer layer or overcoat on the silicone polymer underlayer.
  • the invention comprises an improvement in a silicone-coated optical fiber which, conventionally, comprises an optical fiber composed of a glass and one or more polymer coatings on the optical fiber, with least one of the coatings consisting of a silicone polymer.
  • a composite coating consisting essentially of a silicone polymer underlayer and a silicone-polyimide block copolymer covering layer. It is the combination of these layers which provides the unique characteristics and advantages of the composite coatings and optical fibers of the invention.
  • the invention includes a method for treating silicone-coated optical fibers to improve the handling and optical transmission characteristics thereof.
  • the silicone-coated optical fiber is provided with an overcoat layer consisting essentially of a silicone-polyimide block copolymer layer, this latter layer being directly adjacent the silicone layer and in contact therewith.
  • the overcoat layer is applied immediately after the application of the silicone coating and prior to contact of the silicone-coated fiber with any solid or liquid material other than the block copolymer overcoat material.
  • the thus-coated optical fiber can conveniently be wound, proof-tested, cabled, or otherwise handled without the need to take special precautions to avoid the various problems associated with the undesirable handling characteristics of silicone-coated fibers.
  • FIG. 1 is a schematic cross-sectional illustration, not in true proportion or to scale, of a glass optical fiber provided with a combination coating in accordance with the invention.
  • FIG. 2 is a schematic diagram of apparatus useful for applying silicone coatings to optical fibers in accordance with the invention.
  • the glass optical fiber to be provided with the combination coating in accordance with the invention may be of any conventional type.
  • glass optical fibers with glass claddings and relatively large glass cores typically referred to as multimode optical fibers, or similar glass fibers with small cores, conventionally designated single mode fibers, may be used.
  • the use of the combination coating of the invention to coat unclad fused silica fibers for fiber optic use may also be advantageous.
  • These are fibers comprising a thin outer layer of a high index glass which optically isolates the fiber from the coating. This feature permits even low-refractive-index silicone polymers to be directly applied to the fiber without risk of degrading optical performance.
  • FIG. 1 of the drawing schematically illustrates a cross-sectional view of a preferred optical fiber provided in accordance with the invention.
  • coated optical fiber 4 includes glass core 5 and glass cladding 6, the cladding comprising outer glass layer 6a of high refractive index glass which optically isolates the fiber from the fiber coating.
  • outer glass layer 6a Disposed on the outer glass layer 6a is the composite coating consisting of silicone underlayer 7 and silicone-polyimide block copolymer covering layer 8. In combination, these polymer layers impart good physical protection and excellent resistance to high temperature deterioration.
  • optical fiber may, prior to the application of the silicone coating thereto, be provided with one or more other primary coatings of plastic or inorganic materials if desired.
  • an inorganic hermetic coating may be first applied to the fiber to protect the fiber from the effects of moisture or other potentially harmful vapor materials.
  • the silicone coating to be applied to the optical fiber to be coated in accordance with the invention may be selected from among any of the silicone polymer materials known in the art and useful for this purpose. Most typically, these are two-package polymer systems wherein curing is by silica hydride addition to an alkene, (commonly referred to as silica hydride addition polymers), and are substantially free of inert liquid solvents or diluents (100% solids systems). Examples of such polymer systems are the RTV (room temperature vulcanizing) silicones, e.g., those commercially available from the General Electric Company as RTV-615 and RTV-655 silicone polymers and from the Dow Corning Corporation as SylgardTM 184 and SylgardTM 182 silicone polymers.
  • RTV room temperature vulcanizing
  • silicone-polyimide block copolymer compositions of commercially available type may be used to provide the overcoating for the silicone polymer layer.
  • These known materials described for example in U.S. Pat. No. 4,690,997, have been used in the prior art as flame retardant wire-coating compositions.
  • a commercially available material of this type is SiltemTM Copolymer 87-73, obtainable from the General Electric Company, Waterford, N.Y.
  • Conventional fiber coating dies may be used to sequentially apply these coating materials to the optical fiber.
  • the presently preferred die is a pressure coating die such as described in U.S. Pat. No. 4,531,959, which can apply liquids to glass optical fibers at high speeds and at controlled thickness.
  • Silicone polymers useful for the coating of optical fibers are, as noted, chemically curing resin systems, and therefore curing of the silicone underlayer is achieved by passing the silicone coated fiber through an oven wherein it can be rapidly heated to curing temperature. Since these are most frequently solvent-free formulations, solvent volatilization and bubbling of the coating do not present problems.
  • silicone-polyimide block copolymers are applied as one-part systems, conveniently by diluting the neat resin to coating viscosity with a liquid solvent, and then curing the coating on the fiber by evaporating the solvent therefrom. Again, the coated fiber is passed through an oven to achieve the desired cure, with heating being at a rate sufficient to remove the solvent without bubbling the coating.
  • the appropriate oven temperature and temperature profile to achieve this result can readily be determined for any selected coating formulation by routine experimentation.
  • silicone-polyimide block copolymer could of course be applied in solvent-free form by hot melt coating or melt extrusion techniques. This approach would normally be preferred where relatively thick polyimide coatings are required.
  • the two-package silicone polymer to be supplied to the coater for application to the fiber may if desired be premixed and used in a batch mode in accordance with conventional practice. This normally involves thoroughly mixing the two coating components, degasing the mixture, and applying the mixture to the fiber as drawn while keeping it cold to delay gelation or cure.
  • an alternative and preferred method is an on-line two-package coating process.
  • This process forms no part of the present invention, but is described and claimed in a copending, commonly assigned U.S. patent application, Ser. No. 229,444, filed by M. B. Cain et al. concurrently herewith.
  • the process encompasses the continuous on-line mixing and supply, directly to the fiber coater, of the two-part silicone polymer to be used.
  • the rate of continuous mixing and supply is directly controlled by the rate of application of the polymer to the fiber.
  • FIG. 2 of the drawing Apparatus for the two-package on-line coating of optical fibers in accordance with this latter process is schematically illustrated in FIG. 2 of the drawing.
  • liquid Part A of a selected two-package silicone polymer system is drawn from reservoir 10 through supply line 12 int precision positive displacement metering pump 14 and via pump 14 through conduit 16 to input 30 for static mixer 32.
  • liquid Part B of the selected polymer system is drawn from reservoir 20 through supply line 22 into precision positive displacement metering pump 24 and via pump 24 through conduit 26 to input 30 for the static mixer 32.
  • Static mixer 32 operates to thoroughly mix Parts A and B of the silicone polymer system to form a reactive liquid mixture which is continuously supplied through mixer output conduit 34 to coater 40 (a liquid coating die). The liquid mixture is then applied to optical fiber 2 as drawn from glass preform 1 to produce liquid-coated optical fiber 3. Thereafter, liquid-coated optical fiber 3 passes through oven 70 where the liquid coating is thermally cured to produce silicone-polymer-coated fiber 4.
  • the rate of mixing and supply of the reactive liquid mixture to the coater 40 is controlled by feedback from a pressure transducer 42 attached to coater 40.
  • a pressure transducer 42 attached to coater 40.
  • the pressure drop in coater 40 is sensed by transducer 42 and a feedback signal is transmitted via signal line 44 to a flow controller 50, which may be, for example, a PID controller.
  • controller 50 Also input to controller 50 via signal line 46 is a fluid flow rate signal from metering pump 14.
  • flow controller 50 Based on the feedback control signals on lines 44 and 46, flow controller 50 outputs a control signal via control line 52 to metering pump 14 to control the motor drive (not shown) on the pump, thus controlling the flow of Part A liquid through the pump to static mixer 32. In this way, a selected fluid pressure in coater 40 in response to input from pressure transducer 42 is maintained.
  • the flow of liquid Part B to the mixer is also controlled by feedback signals, those signals being input to flow controller 60 for the control of metering pump 24.
  • the preferred feedback signal in this case is a control signal transmitted to controller 60 via signal line 54 from controller 50 for the Part A liquid component.
  • the flow rate for the Part B component is most conveniently controlled by the flow rate of the Part A component.
  • the coater pressure feedback signal on control line 44 could be directly used by controller 60.
  • controller 60 In addition to the feedback signal on line 54 from controller 50, controller 60 also receives a feedback signal on line 56 from metering pump 24 which is proportional to the flow rate of the Part B liquid through metering pump 24. In response to these signals, output signal 62 from controller 60 controls the motor drive (not shown) on metering pump 24, thereby controlling the flow of Part B liquid to the mixer.
  • static mixer 32 is jacketed so that the temperature of the mixer and liquid therein may be controlled.
  • a temperature control fluid such as water may be passed through the jacket via fluid input and output conduits 36 and 38, respectively.
  • the temperature of the liquid mixture in coater 40 may be controlled by jacketing or by means of conduits (not shown) provided directly in the body of the coating die, such being useful for conducting a temperature control fluid therethrough.
  • purge gas inlet and outlet ports 72 and 74 may be useful. These provide a convenient means for flushing oven 70 and/or maintaining a controlled curing atmosphere therein.
  • Helium is an example of a controlled atmosphere which aids in the conduction of heat to the silicone coating to accelerate cure.
  • the curing process for the block copolymer overcoating is simply by solvent evaporation.
  • This evaporation is most conveniently carried out in a forced gas curing furnace.
  • a proper balance between gas flow and furnace temperature aids in achieving a cosmetically suitable coating.
  • low heat and high gas flow are preferred.
  • the high gas flow helps to physically remove the solvent molecules in the gas phase from the coating interface. This effectively maintains the non-equilibrium condition which drives the evaporation process.
  • a thermally curable two-package silicone elastomer is selected for application as a primary coating to an optical fiber.
  • the silicone selected is a silica-hydride-cured alkene, commercially available as SylgardTM 184 silicone elastomer system from the Dow Corning Corporation of Midland, Mich.
  • the optical fiber to be coated is a glass optical fiber comprising a high-refractive-index glass core, a glass cladding somewhat lower in refractive index than the core, and a thin outer glass layer on the cladding having a relatively high refractive index to optically isolate the fiber cladding from the silicone coating to be applied thereto.
  • the optical fiber has an outer diameter of approximately 125 microns. All of the glasses making up the optical fiber are of fused silica or doped fused silica composition, the thin outer glass layer being formed of a TiO 2 -doped fused silica glass.
  • coolant liquids are fed through the jacketing of static mixer 32 and through conduits in the body of coater 40 to maintain the temperature of the mixture of the Part A and Part B components at a temperature of approximately 25° C.
  • the pumping rates on metering pumps 14 and 24 are adjusted to provide a flow rate through static mixer 32 and coater 40 sufficient to provide a liquid coating slightly in excess of 50 microns in thickness on the surface of the fiber, thus to achieve an outer diameter of approximately 230 microns for the fiber with cured silicone coating.
  • the liquid-coated fiber thus provided is next drawn through a curing furnace being maintained at a temperature of approximately 500° C. and wherein a helium atmosphere is provided. These conditions are effective to assure complete cure of the silicone polymer coating at the point of exit of the fiber from the furnace.
  • the silicone-coated fiber is passed through a conventional optical fiber cooling tube (not shown in the drawing). This achieves a reduction in the surface temperature of the silicone-coated fiber to approximately the temperature of the silicone-polyimide liquid coating to be subsequently applied, in this case approximately 25° C.
  • the application of the silicone-polyimide block copolymer overcoating to the silicone-coated fiber is accomplished utilizing conventional liquid coating apparatus.
  • This apparatus is be positioned immediately below the cooling tube so that the second coating is applied over the silicone coating immediately after the silicone-coated fiber exits the cooling tube.
  • the block copolymer coater is again a coating die assembly of the type shown in U.S. Pat. No. 4,531,959.
  • the silicone-polyimide block copolymer used is SiltemTM Copolymer 87-73, commercially obtainable from the General Electric Company, Waterford, N.Y. This copolymer is sold in the form of an undiluted solid resin. For convenient application to the fiber, it is first dissolved in toluene to provide a resin solution consisting of about 10% resin and 90% toluene by weight. This solution is then applied to the fiber by the coater at a resin solution flow rate sufficient to provide a cured coating approximately 10 microns thick over the silicone base coating.
  • the optical fiber with applied liquid coating is next transported into a forced gas curing furnace to remove the solvent therefrom, thus to cure the coating.
  • the furnace comprises an upper zone which is maintained at a temperature of 150° C. and wherein a flow of helium gas at a rate of about 10 liters/minute is maintained to speed solvent volatilization.
  • the fiber After passage through the upper zone the fiber passes through a lower zone in the furnace wherein the temperature is maintained at about 600° C., again in an atmosphere of helium. This heating is sufficient to cure the block copolymer coating on the fiber.
  • the fiber After exit from the furnace the fiber is finally collected by winding onto a drum, and is thereafter tested for properties.
  • the fiber is found to exhibit excellent resistance to heat degradation while retaining all of the optical properties such as resistance to bending loss and resistance to light propagation by the cladding which are necessary for proper fiber operation in an optical communications system.
  • the combination coating is non-tacky and exhibits other physical and handling characteristics such that the coated fiber can easily be rewound for testing, cabling or any other post-manufacture processing of the kind to which coated optical fibers are customarily subjected.

Abstract

A silicone-based composite coating system for a glass optical fiber, the system comprising a silicone polymer undercoating component and a silicone-polyimide block copolymer overcoating component, is provided. The coating system can be applied entirely on-line, improves the handling characteristics of the fibers over conventional silicone-coated fibers, offers an excellent combination of optical and elastic properties, and does not compromise the high-temperature operating characteristics of silicone-based coating systems.

Description

BACKGROUND OF THE INVENTION
The present invention relates to optical fibers provided with protective polymer coatings, and particularly to glass optical fibers which include a composite coating comprising an inner layer of a silicone polymer and an outer layer of a polyimide-silicone block copolymer.
It is well known to coat glass optical fibers with protective organic coatings as the glass fibers are drawn from a glass melt or solid glass preform. Glass fibers as drawn exhibit very high tensile strength, but are substantially weakened by the development of surface flaws on the surface of the fiber. Thus the application of a protective coating to the surface of the fiber before it comes into contact with any solid surface can largely preserve the inherent high strength thereof.
A number of different coating systems have been used commercially for the production of glass optical waveguide fibers for optical telecommunications. However only two coating systems are presently in widespread commercial use. The first of these systems employs coating materials which are rapidly curable by exposure to ultraviolet light. Examples of such coatings are the UV-curable urethane acrylates, representative compositions for these coatings being described in European Patent No. EP0204160.
Another commercially utilized coating system for glass optical fibers for telecommunications employs a primary or first-applied coating of a silicone polymer and a secondary coating or jacket of an extruded thermoplastic polymer such as nylon. U.S. Pat. No. 4,114,981 describes an optical coating system of this type.
UV-curable acrylate coating systems provide acceptable service in applications over a relatively broad range of ambient temperatures, but are not sufficiently stable to withstand elevated temperatures for prolonged period of use. Silicone coatings are more commonly used in aggressive environments involving prolonged exposure to high temperatures, but these coatings have the disadvantage of high cost.
Fast-cure silicone resins of the kind used for optical fiber coating do not cure as rapidly as the commercial UV-curable resins, and are also somewhat more difficult to handle due to a tacky surface quality in the cured state. Thus silicone-coated fibers are generally coated at lower speeds, tend to pick up dust and dirt after coating, and often are difficult to unwind for cabling or other processing.
Because of these factors, silicone-coated fibers are normally overcoated by extrusion with a thermoplastic jacketing material prior to final testing and shipment. This typically involves off-line extrusion processing, and the tough jacketing materials used require proof testing of the jacketed fiber at unusually high stresses to assure detection of breaks. Both of these procedures add significant cost to the fiber.
Nevertheless, there are some applications for which fiber having high-temperature operating capability is needed, and for these applications, silicone-based coating formulations offer a clear advantage over acrylate-coated fibers. At least for these uses, a silicone coating system which could be applied rapidly and, most preferably without the need for offline jacketing and high-stress proof testing would have significant commercial importance.
SUMMARY OF THE INVENTION
In accordance with the present invention, a new silicone-based composite coating system is provided which offers the advantages of silicones in terms of extended high temperature capability, but overcomes the various disadvantages of silicones from a cost and manufacturing standpoint. The combination coating has a silicone polymer undercoating component or layer, yet can be applied entirely on-line, i.e., without any need for fiber rewinding or other reprocessing of the fiber, such as the off-line extrusion overcoating of the fiber practiced in the prior art. Further, the overcoating component or layer of the combination coating has excellent handling characteristics and compatibility with the underlying silicone layer.
The combination coating system offering the described advantages is a system comprising a silicone polymer underlayer covered with an overcoated layer of a polyimide-silicone block copolymer. Polyimide-silicone block copolymers offer excellent adhesion to silicone undercoating compositions, perhaps due to the presence of silicone blocks in the block copolymer. This good adhesion and the absence of tackiness in the overcoating insure ease of handling in manufacture.
Further, the elastic properties of the combination coating are such that proof testing of the fiber does not have to be conducted at artificially high stress levels. Thus proof test stresses are governed by fiber rather than coating characteristics.
And finally, the composite coating offers the described advantages without compromising the desirable high-temperature operating characteristics of the fiber. Thus the high-temperature capabilities of the block copolymer component equal or exceed those of the silicone component of the coating system.
In one aspect, then, the invention comprises a glass optical fiber having at least two protective polymer coatings disposed on the outer surface thereof, those coatings including at least one silicone-polyimide block copolymer layer and one silicone polymer layer. The silicone layer forms an underlayer for the silicone-polyimide block copolymer, being positioned interiorly of the copolymer and in contact therewith. The silicone polyimide layer forms an outer layer or overcoat on the silicone polymer underlayer.
In another aspect, the invention comprises an improvement in a silicone-coated optical fiber which, conventionally, comprises an optical fiber composed of a glass and one or more polymer coatings on the optical fiber, with least one of the coatings consisting of a silicone polymer. In accordance with the invention, there is provided on the optical fiber, in place of or in addition to the silicone coating, a composite coating consisting essentially of a silicone polymer underlayer and a silicone-polyimide block copolymer covering layer. It is the combination of these layers which provides the unique characteristics and advantages of the composite coatings and optical fibers of the invention.
In yet another aspect, the invention includes a method for treating silicone-coated optical fibers to improve the handling and optical transmission characteristics thereof. In accordance with that method, the silicone-coated optical fiber is provided with an overcoat layer consisting essentially of a silicone-polyimide block copolymer layer, this latter layer being directly adjacent the silicone layer and in contact therewith. Most preferably, the overcoat layer is applied immediately after the application of the silicone coating and prior to contact of the silicone-coated fiber with any solid or liquid material other than the block copolymer overcoat material.
Following the application of a silicone-polyimide block copolymer overcoating, the thus-coated optical fiber can conveniently be wound, proof-tested, cabled, or otherwise handled without the need to take special precautions to avoid the various problems associated with the undesirable handling characteristics of silicone-coated fibers.
DESCRIPTION OF THE DRAWING
The invention may be further understood by reference to the drawing wherein:
FIG. 1 is a schematic cross-sectional illustration, not in true proportion or to scale, of a glass optical fiber provided with a combination coating in accordance with the invention; and
FIG. 2 is a schematic diagram of apparatus useful for applying silicone coatings to optical fibers in accordance with the invention.
DETAILED DESCRIPTION
The glass optical fiber to be provided with the combination coating in accordance with the invention may be of any conventional type. Hence glass optical fibers with glass claddings and relatively large glass cores, typically referred to as multimode optical fibers, or similar glass fibers with small cores, conventionally designated single mode fibers, may be used. In some cases, the use of the combination coating of the invention to coat unclad fused silica fibers for fiber optic use may also be advantageous. Particularly preferred are optical fibers of the type described in the copending, commonly assigned U.S. patent application of G. Kar entitled "Coated Optical Waveguide Fiber," Ser. No. 103,032 filed Sept. 30, 1987 and commonly assigned herewith. These are fibers comprising a thin outer layer of a high index glass which optically isolates the fiber from the coating. This feature permits even low-refractive-index silicone polymers to be directly applied to the fiber without risk of degrading optical performance.
FIG. 1 of the drawing schematically illustrates a cross-sectional view of a preferred optical fiber provided in accordance with the invention. As shown in FIG. 1, coated optical fiber 4 includes glass core 5 and glass cladding 6, the cladding comprising outer glass layer 6a of high refractive index glass which optically isolates the fiber from the fiber coating. Disposed on the outer glass layer 6a is the composite coating consisting of silicone underlayer 7 and silicone-polyimide block copolymer covering layer 8. In combination, these polymer layers impart good physical protection and excellent resistance to high temperature deterioration.
Of course the optical fiber may, prior to the application of the silicone coating thereto, be provided with one or more other primary coatings of plastic or inorganic materials if desired. Thus, for example, an inorganic hermetic coating may be first applied to the fiber to protect the fiber from the effects of moisture or other potentially harmful vapor materials.
The silicone coating to be applied to the optical fiber to be coated in accordance with the invention may be selected from among any of the silicone polymer materials known in the art and useful for this purpose. Most typically, these are two-package polymer systems wherein curing is by silica hydride addition to an alkene, (commonly referred to as silica hydride addition polymers), and are substantially free of inert liquid solvents or diluents (100% solids systems). Examples of such polymer systems are the RTV (room temperature vulcanizing) silicones, e.g., those commercially available from the General Electric Company as RTV-615 and RTV-655 silicone polymers and from the Dow Corning Corporation as Sylgardâ„¢ 184 and Sylgardâ„¢ 182 silicone polymers.
Similarly, silicone-polyimide block copolymer compositions of commercially available type may be used to provide the overcoating for the silicone polymer layer. These known materials, described for example in U.S. Pat. No. 4,690,997, have been used in the prior art as flame retardant wire-coating compositions. A commercially available material of this type is Siltemâ„¢ Copolymer 87-73, obtainable from the General Electric Company, Waterford, N.Y.
Conventional fiber coating dies may be used to sequentially apply these coating materials to the optical fiber. The presently preferred die is a pressure coating die such as described in U.S. Pat. No. 4,531,959, which can apply liquids to glass optical fibers at high speeds and at controlled thickness.
Silicone polymers useful for the coating of optical fibers are, as noted, chemically curing resin systems, and therefore curing of the silicone underlayer is achieved by passing the silicone coated fiber through an oven wherein it can be rapidly heated to curing temperature. Since these are most frequently solvent-free formulations, solvent volatilization and bubbling of the coating do not present problems.
Commercially available silicone-polyimide block copolymers are applied as one-part systems, conveniently by diluting the neat resin to coating viscosity with a liquid solvent, and then curing the coating on the fiber by evaporating the solvent therefrom. Again, the coated fiber is passed through an oven to achieve the desired cure, with heating being at a rate sufficient to remove the solvent without bubbling the coating. The appropriate oven temperature and temperature profile to achieve this result can readily be determined for any selected coating formulation by routine experimentation.
Alternatively, the silicone-polyimide block copolymer could of course be applied in solvent-free form by hot melt coating or melt extrusion techniques. This approach would normally be preferred where relatively thick polyimide coatings are required.
The two-package silicone polymer to be supplied to the coater for application to the fiber may if desired be premixed and used in a batch mode in accordance with conventional practice. This normally involves thoroughly mixing the two coating components, degasing the mixture, and applying the mixture to the fiber as drawn while keeping it cold to delay gelation or cure.
For high volume production, an alternative and preferred method is an on-line two-package coating process. This process forms no part of the present invention, but is described and claimed in a copending, commonly assigned U.S. patent application, Ser. No. 229,444, filed by M. B. Cain et al. concurrently herewith. The process encompasses the continuous on-line mixing and supply, directly to the fiber coater, of the two-part silicone polymer to be used. The rate of continuous mixing and supply is directly controlled by the rate of application of the polymer to the fiber.
Apparatus for the two-package on-line coating of optical fibers in accordance with this latter process is schematically illustrated in FIG. 2 of the drawing. As shown in FIG. 2, liquid Part A of a selected two-package silicone polymer system is drawn from reservoir 10 through supply line 12 int precision positive displacement metering pump 14 and via pump 14 through conduit 16 to input 30 for static mixer 32. At the same time, liquid Part B of the selected polymer system is drawn from reservoir 20 through supply line 22 into precision positive displacement metering pump 24 and via pump 24 through conduit 26 to input 30 for the static mixer 32.
Static mixer 32 operates to thoroughly mix Parts A and B of the silicone polymer system to form a reactive liquid mixture which is continuously supplied through mixer output conduit 34 to coater 40 (a liquid coating die). The liquid mixture is then applied to optical fiber 2 as drawn from glass preform 1 to produce liquid-coated optical fiber 3. Thereafter, liquid-coated optical fiber 3 passes through oven 70 where the liquid coating is thermally cured to produce silicone-polymer-coated fiber 4.
The rate of mixing and supply of the reactive liquid mixture to the coater 40 is controlled by feedback from a pressure transducer 42 attached to coater 40. As the mixture is depleted by application to the fiber, the pressure drop in coater 40 is sensed by transducer 42 and a feedback signal is transmitted via signal line 44 to a flow controller 50, which may be, for example, a PID controller. Also input to controller 50 via signal line 46 is a fluid flow rate signal from metering pump 14. Based on the feedback control signals on lines 44 and 46, flow controller 50 outputs a control signal via control line 52 to metering pump 14 to control the motor drive (not shown) on the pump, thus controlling the flow of Part A liquid through the pump to static mixer 32. In this way, a selected fluid pressure in coater 40 in response to input from pressure transducer 42 is maintained.
The flow of liquid Part B to the mixer is also controlled by feedback signals, those signals being input to flow controller 60 for the control of metering pump 24. The preferred feedback signal in this case, however, is a control signal transmitted to controller 60 via signal line 54 from controller 50 for the Part A liquid component. Thus, since for any selected polymer system the relative proportions of the Part A and Part B liquids are fixed, the flow rate for the Part B component is most conveniently controlled by the flow rate of the Part A component. Alternatively, of course, the coater pressure feedback signal on control line 44 could be directly used by controller 60.
In addition to the feedback signal on line 54 from controller 50, controller 60 also receives a feedback signal on line 56 from metering pump 24 which is proportional to the flow rate of the Part B liquid through metering pump 24. In response to these signals, output signal 62 from controller 60 controls the motor drive (not shown) on metering pump 24, thereby controlling the flow of Part B liquid to the mixer.
Desirably, static mixer 32 is jacketed so that the temperature of the mixer and liquid therein may be controlled. In the apparatus of FIG. 2, a temperature control fluid such as water may be passed through the jacket via fluid input and output conduits 36 and 38, respectively. Also, as is well known, the temperature of the liquid mixture in coater 40 may be controlled by jacketing or by means of conduits (not shown) provided directly in the body of the coating die, such being useful for conducting a temperature control fluid therethrough.
In the operation of oven 70 to cure the liquid polymer coating, purge gas inlet and outlet ports 72 and 74, respectively, may be useful. These provide a convenient means for flushing oven 70 and/or maintaining a controlled curing atmosphere therein. Helium is an example of a controlled atmosphere which aids in the conduction of heat to the silicone coating to accelerate cure.
Of course the foregoing represents only a commercially preferred method for applying the silicone coating to the optical fiber. Obviously, alternative application techniques involving conventional batch methods for preparing and applying the silicone could instead be used.
Following the application of the silicone coating as above described, and where the block copolymer overcoating is to be immediately applied over the silicone before the silicone coating contacts any other material, it is important to cool the silicone-coated fiber. If this is not done the overcoating is more difficult to apply and cosmetic defects in the form of waviness in the coating can appear. Sufficient cooling can readily be achieved utilizing fiber cooling apparatus which is well known in the art.
In contrast to the chemical curing process required for the silicone undercoating, the curing process for the block copolymer overcoating is simply by solvent evaporation. This evaporation is most conveniently carried out in a forced gas curing furnace. A proper balance between gas flow and furnace temperature aids in achieving a cosmetically suitable coating. During the initial stages of evaporation, low heat and high gas flow are preferred. The high gas flow helps to physically remove the solvent molecules in the gas phase from the coating interface. This effectively maintains the non-equilibrium condition which drives the evaporation process.
During the later stages of evaporation, more heat is used in order to give the solvent molecules trapped in the coating enough kinetic energy to allow rapid migration through the film to the coating gas interface, where evaporation can occur. However overheating should be avoided since such can cause solvent molecules to go into the gas phase in the body of the coating rather than at the gas-coating interface. This can lead to defects such pin holes and blisters in the coating.
The invention may be further understood by reference to the following working example.
EXAMPLE 1
A thermally curable two-package silicone elastomer is selected for application as a primary coating to an optical fiber. The silicone selected is a silica-hydride-cured alkene, commercially available as Sylgardâ„¢ 184 silicone elastomer system from the Dow Corning Corporation of Midland, Mich.
The optical fiber to be coated is a glass optical fiber comprising a high-refractive-index glass core, a glass cladding somewhat lower in refractive index than the core, and a thin outer glass layer on the cladding having a relatively high refractive index to optically isolate the fiber cladding from the silicone coating to be applied thereto. The optical fiber has an outer diameter of approximately 125 microns. All of the glasses making up the optical fiber are of fused silica or doped fused silica composition, the thin outer glass layer being formed of a TiO2 -doped fused silica glass.
To apply the two-part silicone elastomer coating to this optical fiber as drawn, coating apparatus as described above and in FIG. 2 of the drawing is used. Referring to the drawing, resin Part A is fed to the apparatus through supply line 12, while curing agent Part B is fed to the apparatus through supply line 22.
During the process of coating the fiber, coolant liquids are fed through the jacketing of static mixer 32 and through conduits in the body of coater 40 to maintain the temperature of the mixture of the Part A and Part B components at a temperature of approximately 25° C. The pumping rates on metering pumps 14 and 24 are adjusted to provide a flow rate through static mixer 32 and coater 40 sufficient to provide a liquid coating slightly in excess of 50 microns in thickness on the surface of the fiber, thus to achieve an outer diameter of approximately 230 microns for the fiber with cured silicone coating.
The liquid-coated fiber thus provided is next drawn through a curing furnace being maintained at a temperature of approximately 500° C. and wherein a helium atmosphere is provided. These conditions are effective to assure complete cure of the silicone polymer coating at the point of exit of the fiber from the furnace.
Following exit from the furnace, the silicone-coated fiber is passed through a conventional optical fiber cooling tube (not shown in the drawing). This achieves a reduction in the surface temperature of the silicone-coated fiber to approximately the temperature of the silicone-polyimide liquid coating to be subsequently applied, in this case approximately 25° C.
The application of the silicone-polyimide block copolymer overcoating to the silicone-coated fiber is accomplished utilizing conventional liquid coating apparatus. This apparatus is be positioned immediately below the cooling tube so that the second coating is applied over the silicone coating immediately after the silicone-coated fiber exits the cooling tube. Like coater 40, the block copolymer coater is again a coating die assembly of the type shown in U.S. Pat. No. 4,531,959.
The silicone-polyimide block copolymer used is Siltemâ„¢ Copolymer 87-73, commercially obtainable from the General Electric Company, Waterford, N.Y. This copolymer is sold in the form of an undiluted solid resin. For convenient application to the fiber, it is first dissolved in toluene to provide a resin solution consisting of about 10% resin and 90% toluene by weight. This solution is then applied to the fiber by the coater at a resin solution flow rate sufficient to provide a cured coating approximately 10 microns thick over the silicone base coating.
The optical fiber with applied liquid coating is next transported into a forced gas curing furnace to remove the solvent therefrom, thus to cure the coating. The furnace comprises an upper zone which is maintained at a temperature of 150° C. and wherein a flow of helium gas at a rate of about 10 liters/minute is maintained to speed solvent volatilization. After passage through the upper zone the fiber passes through a lower zone in the furnace wherein the temperature is maintained at about 600° C., again in an atmosphere of helium. This heating is sufficient to cure the block copolymer coating on the fiber.
After exit from the furnace the fiber is finally collected by winding onto a drum, and is thereafter tested for properties. The fiber is found to exhibit excellent resistance to heat degradation while retaining all of the optical properties such as resistance to bending loss and resistance to light propagation by the cladding which are necessary for proper fiber operation in an optical communications system. Further, the combination coating is non-tacky and exhibits other physical and handling characteristics such that the coated fiber can easily be rewound for testing, cabling or any other post-manufacture processing of the kind to which coated optical fibers are customarily subjected.
Of course, the foregoing Example and description are intended merely to illustrate presently preferred formulations and procedures for use in the practice of the invention, and numerous modifications and variations upon the materials and techniques specifically described herein may be resorted to by those skilled in the art within the scope of the appended claims.

Claims (9)

I claim:
1. A glass optical fiber having at least two protective polymer coatings disposed on the outer surface thereof wherein the polymer coatings comprise a silicone-polyimide block copolymer layer bonded to the exterior surface of a silicone polymer layer.
2. A glass optical fiber in accordance with claim 1 which comprises a glass core and a glass cladding, and wherein the silicone polymer layer is disposed on the exterior surface of the glass cladding.
3. A glass optical fiber in accordance with claim 2 wherein the glass cladding comprises an outer glass layer and an inner glass region, and wherein the outer glass layer has a higher refractive index than the inner glass region.
4. In a silicone-coated optical waveguide comprising a glass optical fiber and one or more polymer coatings on the optical fiber, at least one of the polymer coatings consisting essentially of a silicone coating, the improvement wherein the silicone coating is provided with a polymer overcoating consisting essentially of a silicone-polyimide block copolymer.
5. A silicone-coated optical fiber in accordance with claim 4 wherein the glass optical fiber comprises a glass core and a glass cladding, and wherein the silicone coating is disposed on and in contact with glass cladding.
6. A method for treating an optical fiber having an exterior silicone coating to improve the handling characteristics thereof which comprises the step of applying to the exterior silicone coating a polymer overcoating consisting essentially of a silicone-polyimide block copolymer coating.
7. A method in accordance with claim 6 wherein the silicone-polyimide block copolymer overcoating is applied to the exterior silicone coating before the silicone coating contacts any solid or liquid material other than the silicone-polyimide block copolymer.
8. A method in accordance with claim 7 wherein the silicone-polyimide block copolymer overcoating is applied as a solution of a silicone-polyimide resin in a volatile solvent.
9. A method in accordance with claim 7 wherein the silicone-polyimide block copolymer is applied by melt extrusion.
US07/229,443 1988-08-08 1988-08-08 Method of coating and optical fiber comprising polyimide-silicone block copolymer coating Expired - Lifetime US4848869A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US07/229,443 US4848869A (en) 1988-08-08 1988-08-08 Method of coating and optical fiber comprising polyimide-silicone block copolymer coating
EP88312030A EP0354289A1 (en) 1988-08-08 1988-12-19 Optical fiber comprising polyimide-silicone block copolymer coating
EP19920100253 EP0481960A3 (en) 1988-08-08 1988-12-19 Apparatus for supplying a two-package liquid polymer to an optical fiber coater
CN88108978A CN1040187A (en) 1988-08-08 1988-12-29 The photoconductive fiber and the method and apparatus thereof that comprise polyimide-silicone block copolymer coating
JP1064041A JP2975606B2 (en) 1988-08-08 1989-03-17 Glass optical fiber and method for manufacturing the same
KR1019890009816A KR900003651A (en) 1988-08-08 1989-07-08 Optical fiber containing polyimide-silicon block copolymer coating and method and apparatus for manufacturing same
AU39414/89A AU623668B2 (en) 1988-08-08 1989-08-08 Optical fiber comprising polyimide-silicone block copolymer coating, and method and apparatus therefor
AU85995/91A AU639613B2 (en) 1988-08-08 1991-10-21 Method and apparatus for applying two-package liquid coating system to optical fiber
CA000616415A CA1325316C (en) 1988-08-08 1992-06-24 Optical fiber comprising polyimide-silicone block copolymer coating, and method and apparatus therefor
JP32965198A JP3257626B2 (en) 1988-08-08 1998-11-19 Manufacturing method of glass optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/229,443 US4848869A (en) 1988-08-08 1988-08-08 Method of coating and optical fiber comprising polyimide-silicone block copolymer coating

Publications (1)

Publication Number Publication Date
US4848869A true US4848869A (en) 1989-07-18

Family

ID=22861272

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/229,443 Expired - Lifetime US4848869A (en) 1988-08-08 1988-08-08 Method of coating and optical fiber comprising polyimide-silicone block copolymer coating

Country Status (1)

Country Link
US (1) US4848869A (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4969706A (en) * 1989-04-25 1990-11-13 At&T Bell Laboratories Plenum cable which includes halogenated and non-halogenated plastic materials
US5024506A (en) * 1989-01-27 1991-06-18 At&T Bell Laboratories Plenum cables which include non-halogenated plastic materials
US5058987A (en) * 1989-06-28 1991-10-22 Sumitomo Electric Industries, Ltd. Coated optical fiber
US5062685A (en) * 1989-10-11 1991-11-05 Corning Incorporated Coated optical fibers and cables and method
US5147433A (en) * 1990-02-15 1992-09-15 At&T Bell Laboratories Methods of making coated optical fiber
US5170459A (en) * 1991-08-30 1992-12-08 Hughes Aircraft Company Optical fiber attachment structure and method
US5320904A (en) * 1991-08-12 1994-06-14 Corning Incorporated Reduction of hydrogen generation by silicone-coated optical fibers
US5656205A (en) * 1994-12-29 1997-08-12 International Business Machines Corporation Optical components from phase separated block polymers
US5729645A (en) * 1996-08-13 1998-03-17 The Trustees Of The University Of Pennsylvania Graded index optical fibers
US6173090B1 (en) * 1998-10-29 2001-01-09 The United States Of America As Represented By The Secretary Of The Navy Apparatus for ingress and egress of fiber optic sensor leads from the surface of composite parts and a method for the manufacture thereof
US6627697B2 (en) * 2001-07-23 2003-09-30 The Boeing Company Low density ablator composition
WO2003085058A1 (en) 2002-04-04 2003-10-16 3M Innovative Properties Company Cured compositions transparent to ultraviolet radiation
US20040240804A1 (en) * 2003-06-02 2004-12-02 Amaresh Mahapatra Liquid crystal polymer clad optical fiber and its use in hermetic packaging
US20040255622A1 (en) * 2000-01-06 2004-12-23 Sung-Koog Oh Optical fiber coating device having cooler
US20050135763A1 (en) * 2003-12-17 2005-06-23 Gary Drenzek Optical fiber with a mechanically strippable coating and methods of making the same
US20050287047A1 (en) * 2000-12-13 2005-12-29 Polymicro Technologies, Llc Method of making a micro-channel array device
US20060088264A1 (en) * 2004-06-18 2006-04-27 Draka Comteq B.V. Component with optical fiber and associated optical fiber
US20070298255A1 (en) * 2006-06-22 2007-12-27 General Electric Company Conductive Wire Comprising A Polysiloxane/Polyimide Copolymer Blend
US20070299215A1 (en) * 2006-06-22 2007-12-27 General Electric Company Polysiloxane/Polyimide Copolymers and Blends Thereof
US20070299213A1 (en) * 2006-06-22 2007-12-27 General Electric Company Process For Making Polysiloxane/Polyimide Copolymer Blends
US20080095507A1 (en) * 2004-05-27 2008-04-24 Amaresh Mahapatra Environmentally robust liquid crystal polymer coated optical fiber cable and its use in hermetic packaging
US20080223602A1 (en) * 2007-03-12 2008-09-18 General Electric Company Polysiloxane/polyimide copolymer blends
US20080236864A1 (en) * 2007-03-28 2008-10-02 General Electric Company Cross linked polysiloxane/polyimide copolymers, methods of making, blends thereof, and articles derived therefrom
US20090175583A1 (en) * 2007-11-09 2009-07-09 Overton Bob J Microbend-Resistant Optical Fiber
US20100092139A1 (en) * 2007-11-09 2010-04-15 Draka Comteq, B.V. Reduced-Diameter, Easy-Access Loose Tube Cable
US20100092138A1 (en) * 2007-11-09 2010-04-15 Draka Comteq, B.V. ADSS Cables with High-Performance Optical Fiber
US20100092140A1 (en) * 2007-11-09 2010-04-15 Draka Comteq, B.V. Optical-Fiber Loose Tube Cables
US20100119202A1 (en) * 2008-11-07 2010-05-13 Draka Comteq, B.V. Reduced-Diameter Optical Fiber
US20100135624A1 (en) * 2007-11-09 2010-06-03 Draka Comteq, B.V. Reduced-Size Flat Drop Cable
US20100135623A1 (en) * 2007-11-09 2010-06-03 Draka Comteq, B.V. Single-Fiber Drop Cables for MDU Deployments
US20100135625A1 (en) * 2007-11-09 2010-06-03 Draka Comteq, B.V. Reduced-Diameter Ribbon Cables with High-Performance Optical Fiber
US20100200262A1 (en) * 2009-02-07 2010-08-12 Amaresh Mahapatra Hermetic electrical ports in liquid crystal polymer packages
US20110069932A1 (en) * 2007-11-09 2011-03-24 Draka Comteq, B.V. High-Fiber-Density Optical-Fiber Cable
US20140245589A1 (en) * 2007-01-19 2014-09-04 Adc Telecommunications, Inc. Overhead Cable Termination Arrangement
US9195019B1 (en) * 2009-05-13 2015-11-24 Draka Comteq, B.V. Low-shrink reduced-diameter buffer tubes
US9223102B1 (en) * 2009-05-13 2015-12-29 Draka Comteq, B.V. Low-shrink reduced-diameter dry buffer tubes
US9283711B1 (en) 2009-08-31 2016-03-15 The Boeing Company Hybrid ablative thermal protection systems and associated methods
US9442264B1 (en) 2014-12-23 2016-09-13 Superior Essex International LP Tight buffered optical fibers and optical fiber cables
US20170299807A1 (en) * 2016-04-15 2017-10-19 Zeus Industrial Products, Inc. Thermoplastic-coated optical elements
US10031303B1 (en) 2017-08-29 2018-07-24 Superior Essex International LP Methods for forming tight buffered optical fibers using compression to facilitate subsequent loosening
US20220107457A1 (en) * 2018-10-29 2022-04-07 Polyvalor, Limited Partnership Method and system for fabricating an optical fiber device for shape sensing
EP3872540A4 (en) * 2019-12-26 2022-04-20 Zhongtian Technology Fiber Potics Co., Ltd Optical fiber and forming method therefor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3556754A (en) * 1969-06-27 1971-01-19 Union Carbide Corp Coating compositions for glass fibers
US3980390A (en) * 1974-03-20 1976-09-14 Sumitomo Electric Industries, Ltd. Optical transmission fiber
US4114981A (en) * 1976-05-26 1978-09-19 Nippon Telegraph And Telephone Public Corporation Optical fiber for communication
GB2046625A (en) * 1979-01-23 1980-11-19 Nippon Telegraph & Telephone Glass fibres for optical transmission
US4270840A (en) * 1978-05-25 1981-06-02 Nippon Telegraph And Telephone Public Corporation Glass fibers for optical transmission
US4531959A (en) * 1984-10-04 1985-07-30 Corning Glass Works Method and apparatus for coating optical fibers
EP0204160A2 (en) * 1985-05-08 1986-12-10 DeSOTO, INC. Polyacrylated oligomers in ultraviolet curable optical fiber coatings
US4637956A (en) * 1985-03-29 1987-01-20 Ppg Industries, Inc. Sized glass fibers and reinforced polymers containing same
US4690997A (en) * 1984-01-26 1987-09-01 General Electric Company Flame retardant wire coating compositions
US4733941A (en) * 1985-09-03 1988-03-29 U.S. Philips Corporation Optical fibre comprising a synthetic resin cladding and method of and device for manufacturing such an optical fibre
US4758637A (en) * 1985-09-11 1988-07-19 Union Carbide Corporation Silicone-modified polyester resin and silicone-sheathed polyester fibers made therefrom

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3556754A (en) * 1969-06-27 1971-01-19 Union Carbide Corp Coating compositions for glass fibers
US3980390A (en) * 1974-03-20 1976-09-14 Sumitomo Electric Industries, Ltd. Optical transmission fiber
US4114981A (en) * 1976-05-26 1978-09-19 Nippon Telegraph And Telephone Public Corporation Optical fiber for communication
US4270840A (en) * 1978-05-25 1981-06-02 Nippon Telegraph And Telephone Public Corporation Glass fibers for optical transmission
GB2046625A (en) * 1979-01-23 1980-11-19 Nippon Telegraph & Telephone Glass fibres for optical transmission
US4690997A (en) * 1984-01-26 1987-09-01 General Electric Company Flame retardant wire coating compositions
US4531959A (en) * 1984-10-04 1985-07-30 Corning Glass Works Method and apparatus for coating optical fibers
US4637956A (en) * 1985-03-29 1987-01-20 Ppg Industries, Inc. Sized glass fibers and reinforced polymers containing same
EP0204160A2 (en) * 1985-05-08 1986-12-10 DeSOTO, INC. Polyacrylated oligomers in ultraviolet curable optical fiber coatings
US4733941A (en) * 1985-09-03 1988-03-29 U.S. Philips Corporation Optical fibre comprising a synthetic resin cladding and method of and device for manufacturing such an optical fibre
US4758637A (en) * 1985-09-11 1988-07-19 Union Carbide Corporation Silicone-modified polyester resin and silicone-sheathed polyester fibers made therefrom

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
C. A. Arnold et al., "Polyimide Homopolymers and Polyimide-Polysiloxane Segmented Copolymers: Influence of Synthesis and Compositional Variables on Solubility Characteristics," Polymer Preprints, 29 (1) 349-351 (1988).
C. A. Arnold et al., "Structure-Property Relationship of Polyimide Silioxane Copolymers Prepared by Bulk and Solution Imidization Techniques," Polymer Preprints, 28 (2) 217-219 (1987).
C. A. Arnold et al., Polyimide Homopolymers and Polyimide Polysiloxane Segmented Copolymers: Influence of Synthesis and Compositional Variables on Solubility Characteristics, Polymer Preprints, 29 (1) 349 351 (1988). *
C. A. Arnold et al., Structure Property Relationship of Polyimide Silioxane Copolymers Prepared by Bulk and Solution Imidization Techniques, Polymer Preprints, 28 (2) 217 219 (1987). *
S. Kilic et al., "Linear Thermal Expansion and Extension Coefficients of Various Polyimide Films by Using A Thermomechanical Analyzer," Polymer Preprints, 28 (2) 212-213 (1987).
S. Kilic et al., Linear Thermal Expansion and Extension Coefficients of Various Polyimide Films by Using A Thermomechanical Analyzer, Polymer Preprints, 28 (2) 212 213 (1987). *

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024506A (en) * 1989-01-27 1991-06-18 At&T Bell Laboratories Plenum cables which include non-halogenated plastic materials
US4969706A (en) * 1989-04-25 1990-11-13 At&T Bell Laboratories Plenum cable which includes halogenated and non-halogenated plastic materials
AU618185B2 (en) * 1989-04-25 1991-12-12 American Telephone And Telegraph Company Plenum cable which includes halogenated and non-halogented plastic materials
US5058987A (en) * 1989-06-28 1991-10-22 Sumitomo Electric Industries, Ltd. Coated optical fiber
US5062685A (en) * 1989-10-11 1991-11-05 Corning Incorporated Coated optical fibers and cables and method
US5147433A (en) * 1990-02-15 1992-09-15 At&T Bell Laboratories Methods of making coated optical fiber
US5320904A (en) * 1991-08-12 1994-06-14 Corning Incorporated Reduction of hydrogen generation by silicone-coated optical fibers
US5170459A (en) * 1991-08-30 1992-12-08 Hughes Aircraft Company Optical fiber attachment structure and method
US5656205A (en) * 1994-12-29 1997-08-12 International Business Machines Corporation Optical components from phase separated block polymers
US5729645A (en) * 1996-08-13 1998-03-17 The Trustees Of The University Of Pennsylvania Graded index optical fibers
US5911025A (en) * 1996-08-13 1999-06-08 The Trustees Of The University Of Pennsylvania Method for the preparation of optical fibers
US6173090B1 (en) * 1998-10-29 2001-01-09 The United States Of America As Represented By The Secretary Of The Navy Apparatus for ingress and egress of fiber optic sensor leads from the surface of composite parts and a method for the manufacture thereof
US20040255622A1 (en) * 2000-01-06 2004-12-23 Sung-Koog Oh Optical fiber coating device having cooler
US8216980B2 (en) * 2000-12-13 2012-07-10 Polymicro Technologies Llc Method of making a micro-channel array device
US20050287047A1 (en) * 2000-12-13 2005-12-29 Polymicro Technologies, Llc Method of making a micro-channel array device
US6627697B2 (en) * 2001-07-23 2003-09-30 The Boeing Company Low density ablator composition
US20030199603A1 (en) * 2002-04-04 2003-10-23 3M Innovative Properties Company Cured compositions transparent to ultraviolet radiation
WO2003085058A1 (en) 2002-04-04 2003-10-16 3M Innovative Properties Company Cured compositions transparent to ultraviolet radiation
US20070189687A1 (en) * 2002-04-04 2007-08-16 3M Innovative Properties Company Coated Optical Fiber and Grating and Processes for Forming Same
US20050154079A1 (en) * 2002-04-04 2005-07-14 3M Innovative Properties Company Cured compositions transparent to ultraviolet radiation
US20040240804A1 (en) * 2003-06-02 2004-12-02 Amaresh Mahapatra Liquid crystal polymer clad optical fiber and its use in hermetic packaging
WO2005058769A3 (en) * 2003-12-17 2006-01-12 Verrillon Inc An optical fiber with a mechanically strippable coating and methods of making the same
WO2005058769A2 (en) * 2003-12-17 2005-06-30 Verrillon, Inc. An optical fiber with a mechanically strippable coating and methods of making the same
US20050135763A1 (en) * 2003-12-17 2005-06-23 Gary Drenzek Optical fiber with a mechanically strippable coating and methods of making the same
US7570853B2 (en) 2004-05-27 2009-08-04 Linden Photonics, Inc. Environmentally robust liquid crystal polymer coated optical fiber cable and its use in hermetic packaging
US20080095507A1 (en) * 2004-05-27 2008-04-24 Amaresh Mahapatra Environmentally robust liquid crystal polymer coated optical fiber cable and its use in hermetic packaging
US20060088264A1 (en) * 2004-06-18 2006-04-27 Draka Comteq B.V. Component with optical fiber and associated optical fiber
US7308179B2 (en) 2004-06-18 2007-12-11 Draka Comteq B.V. Component with optical fiber and associated optical fiber
US7477822B2 (en) 2004-06-18 2009-01-13 Draka Comteq B.V. Component with optical fiber and associated optical fiber
US20080050080A1 (en) * 2004-06-18 2008-02-28 Draka Comteq B.V. Component with optical fiber and associated optical fiber
US8168726B2 (en) 2006-06-22 2012-05-01 Sabic Innovative Plastics Ip B.V. Process for making polysiloxane/polymide copolymer blends
US20070299213A1 (en) * 2006-06-22 2007-12-27 General Electric Company Process For Making Polysiloxane/Polyimide Copolymer Blends
US8597788B2 (en) 2006-06-22 2013-12-03 Sabic Innovative Plastics Ip B.V. Conductive wire comprising a polysiloxane/polyimide copolymer blend
US8491997B2 (en) 2006-06-22 2013-07-23 Sabic Innovative Plastics Ip B.V. Conductive wire comprising a polysiloxane/polyimide copolymer blend
US20070298255A1 (en) * 2006-06-22 2007-12-27 General Electric Company Conductive Wire Comprising A Polysiloxane/Polyimide Copolymer Blend
US20070299215A1 (en) * 2006-06-22 2007-12-27 General Electric Company Polysiloxane/Polyimide Copolymers and Blends Thereof
US8071693B2 (en) 2006-06-22 2011-12-06 Sabic Innovative Plastics Ip B.V. Polysiloxane/polyimide copolymers and blends thereof
US20110180299A1 (en) * 2006-06-22 2011-07-28 Sabic Innovative Plastics Ip B.V. Conductive Wire Comprising A Polysiloxane/Polyimide Copolymer Blend
US20140245589A1 (en) * 2007-01-19 2014-09-04 Adc Telecommunications, Inc. Overhead Cable Termination Arrangement
US9632274B2 (en) * 2007-01-19 2017-04-25 Commscope Technologies Llc Overhead cable termination arrangement
US7847023B2 (en) 2007-03-12 2010-12-07 Sabic Innovative Plastics Ip B.V. Polysiloxane/polyimide copolymer blends
US20080223602A1 (en) * 2007-03-12 2008-09-18 General Electric Company Polysiloxane/polyimide copolymer blends
US20080236864A1 (en) * 2007-03-28 2008-10-02 General Electric Company Cross linked polysiloxane/polyimide copolymers, methods of making, blends thereof, and articles derived therefrom
US20100135624A1 (en) * 2007-11-09 2010-06-03 Draka Comteq, B.V. Reduced-Size Flat Drop Cable
US8165439B2 (en) 2007-11-09 2012-04-24 Draka Comteq, B.V. ADSS cables with high-performance optical fiber
US20100135625A1 (en) * 2007-11-09 2010-06-03 Draka Comteq, B.V. Reduced-Diameter Ribbon Cables with High-Performance Optical Fiber
US8031997B2 (en) 2007-11-09 2011-10-04 Draka Comteq, B.V. Reduced-diameter, easy-access loose tube cable
US8041168B2 (en) 2007-11-09 2011-10-18 Draka Comteq, B.V. Reduced-diameter ribbon cables with high-performance optical fiber
US8041167B2 (en) 2007-11-09 2011-10-18 Draka Comteq, B.V. Optical-fiber loose tube cables
US20100135623A1 (en) * 2007-11-09 2010-06-03 Draka Comteq, B.V. Single-Fiber Drop Cables for MDU Deployments
US8081853B2 (en) 2007-11-09 2011-12-20 Draka Comteq, B.V. Single-fiber drop cables for MDU deployments
US8145026B2 (en) 2007-11-09 2012-03-27 Draka Comteq, B.V. Reduced-size flat drop cable
US20110069932A1 (en) * 2007-11-09 2011-03-24 Draka Comteq, B.V. High-Fiber-Density Optical-Fiber Cable
US20090175583A1 (en) * 2007-11-09 2009-07-09 Overton Bob J Microbend-Resistant Optical Fiber
US20100092139A1 (en) * 2007-11-09 2010-04-15 Draka Comteq, B.V. Reduced-Diameter, Easy-Access Loose Tube Cable
US20100092140A1 (en) * 2007-11-09 2010-04-15 Draka Comteq, B.V. Optical-Fiber Loose Tube Cables
US8265442B2 (en) 2007-11-09 2012-09-11 Draka Comteq, B.V. Microbend-resistant optical fiber
US8385705B2 (en) 2007-11-09 2013-02-26 Draka Comteq, B.V. Microbend-resistant optical fiber
US8467650B2 (en) 2007-11-09 2013-06-18 Draka Comteq, B.V. High-fiber-density optical-fiber cable
US20100092138A1 (en) * 2007-11-09 2010-04-15 Draka Comteq, B.V. ADSS Cables with High-Performance Optical Fiber
US8600206B2 (en) 2008-11-07 2013-12-03 Draka Comteq, B.V. Reduced-diameter optical fiber
US20100119202A1 (en) * 2008-11-07 2010-05-13 Draka Comteq, B.V. Reduced-Diameter Optical Fiber
US9244220B2 (en) 2008-11-07 2016-01-26 Drake Comteq, B.V. Reduced-diameter optical fiber
US20100200262A1 (en) * 2009-02-07 2010-08-12 Amaresh Mahapatra Hermetic electrical ports in liquid crystal polymer packages
US8263862B2 (en) 2009-02-07 2012-09-11 Linden Photonics, Inc. Hermetic electrical ports in liquid crystal polymer packages
US9223102B1 (en) * 2009-05-13 2015-12-29 Draka Comteq, B.V. Low-shrink reduced-diameter dry buffer tubes
US9195019B1 (en) * 2009-05-13 2015-11-24 Draka Comteq, B.V. Low-shrink reduced-diameter buffer tubes
US9283711B1 (en) 2009-08-31 2016-03-15 The Boeing Company Hybrid ablative thermal protection systems and associated methods
US10279931B2 (en) 2009-08-31 2019-05-07 The Boeing Company Hybrid ablative thermal protection systems and associated methods
US9442264B1 (en) 2014-12-23 2016-09-13 Superior Essex International LP Tight buffered optical fibers and optical fiber cables
US20170299807A1 (en) * 2016-04-15 2017-10-19 Zeus Industrial Products, Inc. Thermoplastic-coated optical elements
US11169323B2 (en) * 2016-04-15 2021-11-09 Zeus Industrial Products, Inc. Thermoplastic-coated optical elements
US10031303B1 (en) 2017-08-29 2018-07-24 Superior Essex International LP Methods for forming tight buffered optical fibers using compression to facilitate subsequent loosening
US20220107457A1 (en) * 2018-10-29 2022-04-07 Polyvalor, Limited Partnership Method and system for fabricating an optical fiber device for shape sensing
EP3872540A4 (en) * 2019-12-26 2022-04-20 Zhongtian Technology Fiber Potics Co., Ltd Optical fiber and forming method therefor

Similar Documents

Publication Publication Date Title
US4848869A (en) Method of coating and optical fiber comprising polyimide-silicone block copolymer coating
US5408564A (en) Strippable tight buffered optical waveguide
EP0527266B1 (en) Strippable tight buffered optical fiber
KR100321507B1 (en) Optical fiber element and method of making
US5062685A (en) Coated optical fibers and cables and method
US4511209A (en) Composition having improved optical qualities
US4835057A (en) Glass fibers having organosilsesquioxane coatings and claddings
CA1269261A (en) Optical fibre comprising a synthetic resin cladding and method of and device for manufacturing such an optical fibre
AU720160B2 (en) Strippable tight buffered optical waveguide fiber
JPH09325251A (en) Thermally peelable and strippable optical fiber ribbon
CA2071063C (en) Plastics packaged optical fibre
US4867775A (en) Method and apparatus for coating optical fibers
AU639613B2 (en) Method and apparatus for applying two-package liquid coating system to optical fiber
US20110274397A1 (en) Tight-buffered optical fiber having improved fiber access
US20040062480A1 (en) Stable recoated fiber bragg grating
US6577802B1 (en) Application of silane-enhanced adhesion promoters for optical fibers and fiber ribbons
US5298291A (en) Epoxy-functional fluoropolyol polyacrylate coating of optical fibers
JPH07309633A (en) Method of augmenting tensile strength of polymer-coated optical fiber
JPH0251856B2 (en)
Lawson et al. Optical Fiber Buffer Coatings Cured With Ultraviolet Light
Lawson Contributions And Effects Of Coatings On Optical Fibers
JPH0361909A (en) Polymer clad fiber for light transmission

Legal Events

Date Code Title Description
AS Assignment

Owner name: CORNING GLASS WORKS, CORNING, NEW YORK, A CORP. OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:URRUTI, ERIC H.;REEL/FRAME:004930/0368

Effective date: 19880804

Owner name: CORNING GLASS WORKS, A CORP. OF NY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:URRUTI, ERIC H.;REEL/FRAME:004930/0368

Effective date: 19880804

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12