US5025798A - Methods and apparatus for directly sensing and measuring blood related parameters - Google Patents

Methods and apparatus for directly sensing and measuring blood related parameters Download PDF

Info

Publication number
US5025798A
US5025798A US07/547,381 US54738190A US5025798A US 5025798 A US5025798 A US 5025798A US 54738190 A US54738190 A US 54738190A US 5025798 A US5025798 A US 5025798A
Authority
US
United States
Prior art keywords
sensing
measuring
blood
encapsulating
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/547,381
Inventor
Gary M. Schindele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEDICAL SYSTEMS DEVELOPMENT LLC
Original Assignee
Medical Systems Dev Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medical Systems Dev Corp filed Critical Medical Systems Dev Corp
Priority to US07/547,381 priority Critical patent/US5025798A/en
Priority to US07/639,504 priority patent/US5048539A/en
Application granted granted Critical
Publication of US5025798A publication Critical patent/US5025798A/en
Assigned to Joseph J. Kaliko reassignment Joseph J. Kaliko ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHINDELE, GARY M.
Assigned to SCHINDELE, GARY M. reassignment SCHINDELE, GARY M. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MEDICAL SYSTEMS DEVELOPMENT CORPORATION
Assigned to MEDICAL SYSTEMS DEVELOPMENT, LLC reassignment MEDICAL SYSTEMS DEVELOPMENT, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KALIKO, JOSEPH J.
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/157Devices characterised by integrated means for measuring characteristics of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14539Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring pH
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/15003Source of blood for venous or arterial blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150351Caps, stoppers or lids for sealing or closing a blood collection vessel or container, e.g. a test-tube or syringe barrel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/153Devices specially adapted for taking samples of venous or arterial blood, e.g. with syringes
    • A61B5/154Devices using pre-evacuated means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150221Valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150389Hollow piercing elements, e.g. canulas, needles, for piercing the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150473Double-ended needles, e.g. used with pre-evacuated sampling tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150732Needle holders, for instance for holding the needle by the hub, used for example with double-ended needle and pre-evacuated tube

Definitions

  • the invention relates generally to methods and apparatus for sensing and measuring blood related parameters associated with a blood sample. More particularly, the invention relates to methods and apparatus for directly performing both of the aforementioned sensing and measurement functions on said sample utilizing disposable cartridge means.
  • blood samples are gathered using techniques such as the well known VACUTAINER drawing system, hepronized syringe systems and finger/heel prick systems using capillary tubes.
  • a blood sample could be obtained by making a small incision on the scalp and placing a capillary tube in the proximity of the incision whereby the blood is drawn up into the interior portions of the tube through capillary action.
  • Commonly used clinical devices for measuring blood related parameters include the blood gas analyzer manufactured by Corning Medical Corporation and the PHM71 Mk2 acid base analyzer from Radiometer Copenhagen.
  • the sensing surface of an electrode is placed in contact with the blood, which in turn is contacting a reference electrode via an electrolyte junction.
  • the system is maintained at a preselected temperature by way of a relatively complex circulating heated water bath.
  • Older analyzers required two point calibration necessitating relatively sophisticated electronics normally used by trained personnel.
  • Such analyzers generally require the transfer of the blood sample from a capillary tube to a receptacle in the instrument. As is known in the art, if any ambient air mixes with the blood sample, there is a possibility of contaminating the sample during the transfer from the original collecting device to the instrument.
  • thermally conductive means on the cartridge housing is adapted for receipt of a sensor for sensing the temperature of the liquid.
  • the cartridge is designed to be slidably mounted in a socket attached to a pivoting door of an electronic measurement machine.
  • the socket includes two opposing plates which come into contact with the cartridge.
  • the temperature sensor is adapted to engage the thermally conductive means on the housing and provides an output signal to control the heating of the cartridge to quickly bring the components in the cartridge to a desired temperature.
  • Enzer et al employs an ampule containing an electrolyte solution which rests in a trough in the cartridge. Means are provided for breaking the capsule when the door is pivoted to the closed position. A sensing arrangement is provided for detecting the condition of the ampule and serves to trigger a calibration measurement when the capsule is broken to cover the electrodes with the solution. A forced air heater system is recommended by Enzer et al to keep the cartridge at a preselected temperature level to permit accurate measurement of the parameters being measured.
  • the Enzer et al system like Diamond, requires calibration measurements and a warm up period because their cartridges use buffer solutions that need to be maintained at a specific temperature level.
  • the aforementioned prior art systems are also problematic in that the blood sample must be mixed with the buffer solution and as a result parameter measurement is, at best, indirect and based on a sample adulterated by support media.
  • the prior art is devoid of a blood parameter measurement system that is capable of either directly or indirectly collecting a blood sample and directing it to a predetermined portion of the sensing and measuring device (in unadulterated form) where the unadulterated sample is directly analyzed.
  • the aforesaid objectives are achieved by locating means for performing both of the aforesaid sensing and measuring functions within a disposable cartridge within which an unadulterated blood sample is directly placed in proximity to the sensing means.
  • the cartridge itself contains a vacuum chamber that helps with sample introduction while negating the prospect of contamination of the sample by exposure to air. Since no buffer solution is utilized, no warm up period is required. Precalibration of the disposable sensing and measuring devices themselves allows for use of the sensing and measuring system by personnel not necessarily trained in calibrating sophisticated electrical equipment.
  • the disposable cartridges (containing the blood sample from which a preselected parameter is being sensed and measured) may be inserted into or otherwise coupled to relatively unsophisticated support equipment, such as an output device for conveniently reading measured parameters in a convenient format.
  • support equipment such as an output device for conveniently reading measured parameters in a convenient format.
  • the support equipment might contain LEDs for producing a digital display.
  • the invention features the precalibrated sensor and measurement means contained in a disposable cartridge; accurate means for sensing and measuring blood related parameters without performing on site calibration; parameter measurements that are based on the use of unadulterated blood samples; and a total system concept that includes relatively unsophisticated support equipment to conveniently output data.
  • FIG. 1 depicts a comparison of the functions performed with the cartridge of known cartridge parameter sensing systems versus the functions performed within the cartridge that achieves the objects of the invention.
  • FIG. 2 depicts an embodiment of a disposable cartridge that achieves the objects of the invention.
  • FIG. 3 depicts the cartridge of FIG. 2 being utilized in conjunction with a VACUTAINER drawing system.
  • FIG. 4 depicts the cartridge of FIG. 2 being utilized in conjunction with a digital read out device.
  • FIG. 1 shows in block diagram form a characterization of one of the key conceptual differences between known systems for sensing and measuring blood related parameters and the system disclosed herein.
  • Section 101 of FIG. 1 shows the sensing taking place within the cartridge itself.
  • the measurement and display functions are shown, in section 102 of FIG. 1, as taking place outside the cartridge in an external measurement and display device.
  • FIG. 1 goes on to show that, in accordance with the teachings of the invention, both the parameter sensing and measurement functions are to be performed within the disposable cartridge (section 103 of FIG. 1) and that the display function is handled outside the cartridge (as shown by section 104 of FIG. 1) or even in some cases (not depicted) within the cartridge as well.
  • a blood sample is directed, in unadulterated form, to the sensing and measuring means located with the disposable cartridge.
  • FIG. 2 depicts an example of a cartridge fashioned in accordance with the teachings of the invention.
  • the illustration in FIG. 2 is not to scale, but exaggerated to illustrate the various components of the invention more clearly.
  • the cartridge houses a complete sensing and measuring system and also serves as the blood introduction port and sampling chamber. As indicated hereinbefore, use of the evacuated chamber helps in sample introduction and negates possible contamination by air.
  • Cartridge 201 of FIG. 2 is similar in shape and operation to well known VACUTAINER blood sample tubes. These tubes are typically evacuated (partial vacuum) and the sample is collected by piercing the top seal with a syringe.
  • blood is directed to the sensor housing via a capillary tube 202.
  • the capillary tube could be omitted if seal 203 were fabricated as a part of sensor and measurement device housing 204.
  • sensor and measurement device housing 204 is sized to hold a 50 microliter blood sample, and utilizes well known pressure relief means, such as a pressure relief valve, to prevent damage to the seal and sensor/measurement components if over-filling is attempted. All surfaces of the cartridge and housing 204 which come in contact with blood should be heparinized to prevent clotting.
  • FIG. 2 depicts hypodermic needle 250 being used to introduce blood through a relatively thin portion of seal 203, shown as portion 215 in FIG. 2.
  • seal 203 is simply a rubber stopper.
  • Capillary tube 202 is shown in FIG. 2 to direct the injected blood sample to sensor and measurement housing 204. No buffer solution or air contact is made with the blood sample to be analyzed.
  • Output lead wires from housing 204 are shown as lead wires 290 in FIG. 2, are shown as means for outputting measurements calculated within cartridge 201.
  • the lead wires are shown coupled to electrical connector means such as contact pins 295.
  • the cartridge is designed to be coupled to a display device. A means of accomplishing this will be set forth hereinafter.
  • the cartridge is plastic. Glass would also be a suitable material and the invention is specifically not meant to be limited by the composition of the housing.
  • the lead wires shown in FIG. 2 could be bundled or unbundled wires per se, fiber optic paths, or in fact, any means for coupling the measurements output by the device or devices in housing 204, to a means for displaying or otherwise using the output from the tube.
  • connector means such as contact pins 295, may be appropriate; a single pin for bundled leads may be appropriate; or in fact any other means of communications between the inside of the cartridge and devices located outside the cartridge may be contemplated by those skilled in the art.
  • sensing and measuring devices in the form of off the shelf thermometers, are known that when bathed with a liquid sample (e.g. blood) will both sense and measure the temperature of the sample.
  • the measured temperature output could easily be directed, via lead wires 290 and contact pins 295, to a display device where the temperature could be read out on a digital display.
  • the sensor housing were transparent and the thermometer means had degree marks thereon, it would be possible to sense, measure and display the output, all within the cartridge.
  • housing 204 For sensing a variety of blood related parameters of interest to the medical profession, could be installed in housing 204.
  • housing pH, Pco2 and Po2 sensing and measuring devices in the cartridge sensor and measurement housing.
  • the actual device or devices contained in the housing per se is not meant to be a limiting factor regarding the scope of the invention.
  • the ability to house devices that perform both the sensing and measurement function on an unadulterated blood sample, within a disposable cartridge, is a principal object of the invention per se.
  • FIG. 3 goes on to depict how the cartridge of FIG. 2 could be used in conjunction with a VACUTAINER drawing system.
  • FIG. 3 shows the cartridge, 301, being inserted into VACUTAINER device 302 and that a needle, 303, can be used to directly convey blood from a patient's blood vessel to (and through) the stopper atop cartridge 301 (the stopper is shown in FIG. 3 as component 350).
  • FIG. 3 illustrates how blood can be conveyed directly from the patient to the measuring and sensing cartridge in a manner that assures that unadulterated blood is supplied to the cartridge and device(s) located therein.
  • the disposable cartridge can be used with or without the VACUTAINER drawing system, as seen in a comparison of FIGS. 2 and 3.
  • FIG. 4 depicts an example of how the cartridge of FIG. 2 may be used in conjunction with a display device to provide a readout of the sample analyzed.
  • Devices are known which accommodate an inserted cartridge (such as the prior art cited specifically herein).
  • the device depicted in FIG. 4 simply takes the electrical output on lead wires 290 and contact pins 295, and couples same to an LED digital display.
  • Device 401 of FIG. 4 could conceivably contain more sophisticated electronics, processing equipment, transmission equipment, etc., to handle the output of the cartridge in many ways.
  • the type of output device per se is not important; that the cartridge has a measurement output that can be coupled to external devices and be used in a variety of ways, is important to an understanding the invention.
  • a disposable cartridge device that can be used to both sense and measure blood related parameters, where the sample being analyzed is directly placed in contact with the sensor without intervening buffer solutions, exposure to air, etc.
  • the unadulterated sample is analyzed within the cartridge and the measurement output therefrom is communicated to means outside the tube for the purposes of display, further analysis, transmission to a remote location, etc.
  • the cartridge does not require calibration or a warm up period. Multiple uses are not intended, and therefore a new cartridge may be used for analyzing subsequent samples and these too do not require cleaning, warm up or calibration.

Abstract

A disposable cartridge, included in a blood sample analysis system, is described wherein the cartridge itself contains means for both sensing and measuring preselected blood related parameters. The blood sample being analyzed is directly placed in contact with sensing means in the cartridge without intervening buffer solutions, exposure to air, etc. The unadulterated sample is analyzed within the cartridge and the measurement output therefrom is communicated to means outside the cartridge where it can be displayed, be analyzed further, be transmitted to a remote location, etc. The cartridge and its contents do not require on site calibration or a warm up period. This feature allows the system to be used by personnel not necessarily trained in calibrating sophisticated electronic equipment and facilitates rapid data output, particularly vital in critical care and emergency treatment situations.

Description

This application is a continuation of application Ser. No. 07/264,614, filed Oct. 31,1988, now abandoned.
1. Field of the Invention
The invention relates generally to methods and apparatus for sensing and measuring blood related parameters associated with a blood sample. More particularly, the invention relates to methods and apparatus for directly performing both of the aforementioned sensing and measurement functions on said sample utilizing disposable cartridge means.
2. Description of the Related Art
Conventionally, blood samples are gathered using techniques such as the well known VACUTAINER drawing system, hepronized syringe systems and finger/heel prick systems using capillary tubes.
For example, a blood sample could be obtained by making a small incision on the scalp and placing a capillary tube in the proximity of the incision whereby the blood is drawn up into the interior portions of the tube through capillary action.
Commonly used clinical devices for measuring blood related parameters, such as pH, include the blood gas analyzer manufactured by Corning Medical Corporation and the PHM71 Mk2 acid base analyzer from Radiometer Copenhagen. According to the prior art, the sensing surface of an electrode is placed in contact with the blood, which in turn is contacting a reference electrode via an electrolyte junction. The system is maintained at a preselected temperature by way of a relatively complex circulating heated water bath. Older analyzers required two point calibration necessitating relatively sophisticated electronics normally used by trained personnel.
Such analyzers generally require the transfer of the blood sample from a capillary tube to a receptacle in the instrument. As is known in the art, if any ambient air mixes with the blood sample, there is a possibility of contaminating the sample during the transfer from the original collecting device to the instrument.
Since such analyzers are complex and costly devices, they are typically located only in the hospital laboratory where they are operated by skilled technicians. As a result, there is often considerable delay between the time of taking the blood sample until the results from the lab are received. Of course, such delays are undesirable in emergency situations.
Many of these problems, however, are solved by the method and apparatus disclosed in U.S. Pat. No. 4,272,245, to Diamond et al, which discloses the broad concept of utilizing a disposable cartridge containing indicating and reference electrodes. A common electrolytic solution is used to establish a one point calibration factor and also serves as an electrolytic bridge during measurement of the sample. The sample is collected in a capillary tube and the cartridge is adapted to receive the blood sample directly from the tube. The capillary tube is slipped over the indicating electrode so that the blood displaces the solution and covers the indicating electrode. The electrical properties between the two electrodes are again measured and used to calculate the electrochemical activity (e.g., pH) of the sample in conjunction with the previously measured calibration factor.
A further improvement on the Diamond patent is disclosed by Enzer et al in U.S. Pat. No. 4,336,121 issued June 22, 1982. Enzer et al builds on the disposable cartridge concept and addresses the problem of quickly bringing and accurately maintaining the liquid sample at a predetermined temperature during the measurement process.
According to Enzer et al, thermally conductive means on the cartridge housing is adapted for receipt of a sensor for sensing the temperature of the liquid. The cartridge is designed to be slidably mounted in a socket attached to a pivoting door of an electronic measurement machine. The socket includes two opposing plates which come into contact with the cartridge. The temperature sensor is adapted to engage the thermally conductive means on the housing and provides an output signal to control the heating of the cartridge to quickly bring the components in the cartridge to a desired temperature.
Enzer et al employs an ampule containing an electrolyte solution which rests in a trough in the cartridge. Means are provided for breaking the capsule when the door is pivoted to the closed position. A sensing arrangement is provided for detecting the condition of the ampule and serves to trigger a calibration measurement when the capsule is broken to cover the electrodes with the solution. A forced air heater system is recommended by Enzer et al to keep the cartridge at a preselected temperature level to permit accurate measurement of the parameters being measured.
The Enzer et al system, like Diamond, requires calibration measurements and a warm up period because their cartridges use buffer solutions that need to be maintained at a specific temperature level. The aforementioned prior art systems are also problematic in that the blood sample must be mixed with the buffer solution and as a result parameter measurement is, at best, indirect and based on a sample adulterated by support media.
The prior art is devoid of a blood parameter measurement system that is capable of either directly or indirectly collecting a blood sample and directing it to a predetermined portion of the sensing and measuring device (in unadulterated form) where the unadulterated sample is directly analyzed.
Accordingly, it would be desirable to be able to analyze blood samples taken directly from the patient (or provided indirectly), via a sensing and measuring device that works on the unadulterated sample directly and does not requiring calibration or a warm up period. Such a device would facilitate use by personnel not trained to calibrate the equipment and allow rapid feedback regarding the parameter being measured.
Additionally, it would be desirable to be able to measure parameters associated with blood using disposable means that prevent adulteration of the sample from contact with the air or contact with a buffering solution.
Further yet, it would be desirable to be able to perform both the sensing and measurement of blood related parameters inside the disposable means to thereby eliminate the need for sophisticated, expensive support equipment traditionally utilized to perform the measuring function.
Realization of these desirable features would facilitate quick and accurate measurement, either in the laboratory or directly at a patient's bedside, of desired parameters and allow the speedy processing and output of accurate data, particularly vital to the treatment of critical care and Emergency Room patients.
SUMMARY OF THE INVENTION
It is therefore an object of the invention to both sense and measure blood related parameters within a disposable cartridge not requiring sophisticated support equipment to perform the measuring function.
It is a further object of the invention to sense and measure blood related parameters directly from blood samples unadulterated by any type of buffering solution or airborne contaminents.
It is still a further object of the invention to be able to perform the aforesaid sensing and measuring utilizing disposable means that does not require calibration or a warm up period to thereby provide the potential for more rapid feedback without the need for skilled operators.
According to the invention, the aforesaid objectives are achieved by locating means for performing both of the aforesaid sensing and measuring functions within a disposable cartridge within which an unadulterated blood sample is directly placed in proximity to the sensing means. The cartridge itself contains a vacuum chamber that helps with sample introduction while negating the prospect of contamination of the sample by exposure to air. Since no buffer solution is utilized, no warm up period is required. Precalibration of the disposable sensing and measuring devices themselves allows for use of the sensing and measuring system by personnel not necessarily trained in calibrating sophisticated electrical equipment.
Furthermore, according to the preferred embodiment of the invention, the disposable cartridges (containing the blood sample from which a preselected parameter is being sensed and measured) may be inserted into or otherwise coupled to relatively unsophisticated support equipment, such as an output device for conveniently reading measured parameters in a convenient format. As an example, the support equipment might contain LEDs for producing a digital display.
The invention features the precalibrated sensor and measurement means contained in a disposable cartridge; accurate means for sensing and measuring blood related parameters without performing on site calibration; parameter measurements that are based on the use of unadulterated blood samples; and a total system concept that includes relatively unsophisticated support equipment to conveniently output data.
These and other objects and features of the invention will be recognized by those skilled in the art upon reviewing the detailed description set forth hereinafter in conjunction with the Drawing.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 depicts a comparison of the functions performed with the cartridge of known cartridge parameter sensing systems versus the functions performed within the cartridge that achieves the objects of the invention.
FIG. 2 depicts an embodiment of a disposable cartridge that achieves the objects of the invention.
FIG. 3 depicts the cartridge of FIG. 2 being utilized in conjunction with a VACUTAINER drawing system.
FIG. 4 depicts the cartridge of FIG. 2 being utilized in conjunction with a digital read out device.
DETAILED DESCRIPTION
FIG. 1 shows in block diagram form a characterization of one of the key conceptual differences between known systems for sensing and measuring blood related parameters and the system disclosed herein.
The prior art systems, as typified by the teachings of the aforementioned Diamond and Ezer et al patents, sense predetermined parameters associated with blood (like pH) using a disposable cartridge that contains a pair of electrodes acting as the sensing means.
Section 101 of FIG. 1 shows the sensing taking place within the cartridge itself. The measurement and display functions are shown, in section 102 of FIG. 1, as taking place outside the cartridge in an external measurement and display device.
FIG. 1 goes on to show that, in accordance with the teachings of the invention, both the parameter sensing and measurement functions are to be performed within the disposable cartridge (section 103 of FIG. 1) and that the display function is handled outside the cartridge (as shown by section 104 of FIG. 1) or even in some cases (not depicted) within the cartridge as well.
The development of new and improved sensing and measuring devices, along with their miniaturization, makes the new measurement system concept feasible and economical.
In addition, the ability to calibrate the sensing and measuring device (or devices) at the factory for one time use, eliminates the need for complex multiple usage calibration required by the prior art.
According to the invention, a blood sample is directed, in unadulterated form, to the sensing and measuring means located with the disposable cartridge.
FIG. 2 depicts an example of a cartridge fashioned in accordance with the teachings of the invention. The illustration in FIG. 2 is not to scale, but exaggerated to illustrate the various components of the invention more clearly.
The cartridge houses a complete sensing and measuring system and also serves as the blood introduction port and sampling chamber. As indicated hereinbefore, use of the evacuated chamber helps in sample introduction and negates possible contamination by air.
Cartridge 201 of FIG. 2 is similar in shape and operation to well known VACUTAINER blood sample tubes. These tubes are typically evacuated (partial vacuum) and the sample is collected by piercing the top seal with a syringe. In disposable cartridge 201, blood is directed to the sensor housing via a capillary tube 202. The capillary tube could be omitted if seal 203 were fabricated as a part of sensor and measurement device housing 204. According to the preferred embodiment of the invention, sensor and measurement device housing 204 is sized to hold a 50 microliter blood sample, and utilizes well known pressure relief means, such as a pressure relief valve, to prevent damage to the seal and sensor/measurement components if over-filling is attempted. All surfaces of the cartridge and housing 204 which come in contact with blood should be heparinized to prevent clotting.
FIG. 2 depicts hypodermic needle 250 being used to introduce blood through a relatively thin portion of seal 203, shown as portion 215 in FIG. 2. According to one embodiment of the invention, seal 203 is simply a rubber stopper.
Capillary tube 202 is shown in FIG. 2 to direct the injected blood sample to sensor and measurement housing 204. No buffer solution or air contact is made with the blood sample to be analyzed.
Output lead wires from housing 204, shown as lead wires 290 in FIG. 2, are shown as means for outputting measurements calculated within cartridge 201. The lead wires are shown coupled to electrical connector means such as contact pins 295. According to this illustrative embodiment the cartridge is designed to be coupled to a display device. A means of accomplishing this will be set forth hereinafter.
According to one embodiment of the invention the cartridge is plastic. Glass would also be a suitable material and the invention is specifically not meant to be limited by the composition of the housing.
The lead wires shown in FIG. 2 could be bundled or unbundled wires per se, fiber optic paths, or in fact, any means for coupling the measurements output by the device or devices in housing 204, to a means for displaying or otherwise using the output from the tube. Thus connector means, such as contact pins 295, may be appropriate; a single pin for bundled leads may be appropriate; or in fact any other means of communications between the inside of the cartridge and devices located outside the cartridge may be contemplated by those skilled in the art.
The types of sensing and measuring devices that may be housed within housing 204 are varied. For example, temperature sensing and measuring devices, in the form of off the shelf thermometers, are known that when bathed with a liquid sample (e.g. blood) will both sense and measure the temperature of the sample. The measured temperature output could easily be directed, via lead wires 290 and contact pins 295, to a display device where the temperature could be read out on a digital display. In fact, if the sensor housing were transparent and the thermometer means had degree marks thereon, it would be possible to sense, measure and display the output, all within the cartridge.
Other devices for sensing a variety of blood related parameters of interest to the medical profession, could be installed in housing 204. In particular, for analyzing blood gases rapidly, one skilled in the art would contemplate housing pH, Pco2 and Po2 sensing and measuring devices in the cartridge sensor and measurement housing. The actual device or devices contained in the housing per se is not meant to be a limiting factor regarding the scope of the invention. The ability to house devices that perform both the sensing and measurement function on an unadulterated blood sample, within a disposable cartridge, is a principal object of the invention per se.
FIG. 3 goes on to depict how the cartridge of FIG. 2 could be used in conjunction with a VACUTAINER drawing system. FIG. 3 shows the cartridge, 301, being inserted into VACUTAINER device 302 and that a needle, 303, can be used to directly convey blood from a patient's blood vessel to (and through) the stopper atop cartridge 301 (the stopper is shown in FIG. 3 as component 350).
The apparatus depicted in FIG. 3 illustrates how blood can be conveyed directly from the patient to the measuring and sensing cartridge in a manner that assures that unadulterated blood is supplied to the cartridge and device(s) located therein. One skilled in the art will readily appreciate that the disposable cartridge can be used with or without the VACUTAINER drawing system, as seen in a comparison of FIGS. 2 and 3.
FIG. 4 depicts an example of how the cartridge of FIG. 2 may be used in conjunction with a display device to provide a readout of the sample analyzed. Devices are known which accommodate an inserted cartridge (such as the prior art cited specifically herein). The device depicted in FIG. 4 simply takes the electrical output on lead wires 290 and contact pins 295, and couples same to an LED digital display. Device 401 of FIG. 4 could conceivably contain more sophisticated electronics, processing equipment, transmission equipment, etc., to handle the output of the cartridge in many ways. The type of output device per se is not important; that the cartridge has a measurement output that can be coupled to external devices and be used in a variety of ways, is important to an understanding the invention.
What has been described is a disposable cartridge device that can be used to both sense and measure blood related parameters, where the sample being analyzed is directly placed in contact with the sensor without intervening buffer solutions, exposure to air, etc. The unadulterated sample is analyzed within the cartridge and the measurement output therefrom is communicated to means outside the tube for the purposes of display, further analysis, transmission to a remote location, etc.
The cartridge does not require calibration or a warm up period. Multiple uses are not intended, and therefore a new cartridge may be used for analyzing subsequent samples and these too do not require cleaning, warm up or calibration.
Having described in detail methods and apparatus for directly sensing and measuring blood related parameters within a disposable cartridge, methods for obtaining an unadulterated blood sample for analysis, etc., one of ordinary skill in the art will readily appreciate that the objectives of the invention, set forth hereinbefore, have been met.
The foregoing description of a preferred embodiment and illustrative examples of the novel methods and apparatus has been presented for the purposes of illustration and description only. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously many modifications and variations are possible in light of the above teaching.
The embodiment and examples set forth herein were presented in order to best explain the principles of the instant invention and its practical application to thereby enable others skilled in the art to best utilize the instant invention in various embodiments and with various modifications as are suited to the particular use contemplated.
It is intended that the scope of the instant invention be defined by the claims appended hereto.

Claims (11)

What is claimed is:
1. A method for directly sensing and measuring blood related parameters in a non-reusable disposable container, the method comprising the steps of:
(a) introducing an unadulterated blood sample into non-reuseable disposable encapsulating means for performing both the sensing and measuring of a preselected blood related parameter;
(b) directing said blood sample to means within said encapsulating means for performing both the sensing and measuring of said preselected blood related parameter, wherein said step of directing is performed utilizing a capillary tube located within said encapsulating means;
(c) sensing and measuring said preselected parameter entirely within said encapsulating means; and
(d) outputting, from said encapsulating means, the measured value of said parameter.
2. A method for directly sensing and measuring blood related parameters in a non-reusable disposable container, the method comprising the steps of:
(a) introducing an unadulterated blood sample into non-reusable disposable encapsulating means for performing both the sensing and measuring of a preselected blood related parameter, wherein said step of introducing further comprises the step of creating a partial vacuum within said encapsulating means to prevent contamination of said blood sample by airborne contaminants;
(b) directing said blood sample to means within said encapsulating means for performing both the sensing and measuring of said preselected blood related parameter;
(c) sensing and measuring said preselected parameter entirely within said encapsulating means; and
(d) outputting, from said encapsulating means, the measured value of said parameter.
3. A method for directly sensing and measuring blood related parameters in a non-reusable disposable container, the method comprising the steps of:
(a) introducing an unadulterated blood sample into non-reusable disposable encapsulating means for performing both the sensing and measuring of a preselected blood related parameter, wherein said step of introducing further comprises the steps of (a1) inserting said encapsulating means within a blood drawing device; (a2) drawing a blood sample directly from a patient via said blood drawing device; and (a3) directly introducing said drawn sample into said encapsulating means as the blood sample is being drawn;
(b) directing said blood sample to means within said encapsulating means for performing both the sensing and measuring of said preselected blood related parameter;
(c) sensing and measuring said preselected parameter entirely within said encapsulating means; and
(d) outputting, from said encapsulating means, the measured value of said parameter.
4. Apparatus for directly sensing and measuring blood related parameters, comprising encapsulating means including means for performing both the sensing and measuring of a preselected blood related parameter entirely within said encapsulating means, wherein said means for performing is calibrated prior to encapsulation thereby eliminating the need for calibration at time of use.
5. Apparatus for directly sensing and measuring blood related parameters, comprising:
(a) encapsulating means including means for performing both the sensing and measuring of a preselected blood related parameter entirely within said encapsulating means;
(b) means for sealing said encapsulating means which permits the introduction of an unadulterated blood sample into said encapsulating means;
(c) means for assuring that a blood sample introduced into said encapsulating means remains unadulterated and is placed in proximity to said means for performing both the sensing and measuring of said preselected blood related parameter to thereby permit direct analysis of said unadulterated blood sample; and
(d) means, coupled to said means for sensing and measuring, for outputting the measured value of said preselected parameter.
6. Apparatus as set forth in claim 5 further comprising means for communicating a signal indicative of the measured value of said parameter between said means for outputting and the outside of said encapsulating means.
7. Apparatus as set forth in claim 5 wherein said means for sealing comprises stopper means including a puncturable portion which may be used to permit the introduction of said blood sample via a needle.
8. Apparatus as set forth in claim 7 wherein said means for assuring comprises a capillary tube, located in an evacuated portion of said encapsulating means, coupled between the puncturable portion of said seal and said means for sensing and measuring, to thereby permit blood injected into said encapsulating means, through the puncturable portion of said seal, to flow via capillary action to said means for sensing and measuring.
9. Apparatus as set forth in claim 6 wherein said means for outputting comprises at least one lead wire coupled between said means for sensing and measuring and said means for communicating.
10. Apparatus as set forth in claim 9 wherein said means for communicating comprises at least one contact pin.
11. A system for obtaining an unadulterated blood sample, analyzing said sample to sense and measure a preselected parameter associated therewith, and output a signal indicative of the measured value of said parameter, comprising:
(a) encapsulating means including means for performing both the sensing and measuring of said parameter entirely within said encapsulating means;
(b) means for sealing said encapsulating means, which permits the introduction of an unadulterated blood sample into said encapsulating means through a puncturable portion of said means for sealing;
(c) means for introducing an unadulterated blood sample into said encapsulating means;
(d) means for sensing the blood sample introduced into said encapsulating means is conveyed, in unadulterated form, to said means for sensing and measuring so that direct analysis of said sample may be performed, wherein said means for assuring further comprises a capillary tube, located in an evacuated portion of said encapsulating means, coupled between the puncturable portion of said seal and said means for sensing and measuring, to thereby permit blood injected into said encapsulating means, through the puncturable portion of said seal, to flow via capillary action to said means for sensing and measuring;
(e) output means, coupled to said means for sensing and measuring, for outputting a signal indicative of the measure of said parameter;
(f) means, coupled between said output means and the outside of said encapsulating means, for communicating said output signal to display means; and
(g) display means for displaying the value of said measured parameter as a function of the value of said signal.
US07/547,381 1988-10-31 1990-07-30 Methods and apparatus for directly sensing and measuring blood related parameters Expired - Fee Related US5025798A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US07/547,381 US5025798A (en) 1988-10-31 1990-07-30 Methods and apparatus for directly sensing and measuring blood related parameters
US07/639,504 US5048539A (en) 1988-10-31 1990-09-28 Methods and apparatus for directly sensing and measuring blood related parameters

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26461488A 1988-10-31 1988-10-31
US07/547,381 US5025798A (en) 1988-10-31 1990-07-30 Methods and apparatus for directly sensing and measuring blood related parameters

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US26461488A Continuation 1988-10-31 1988-10-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US07/639,504 Continuation US5048539A (en) 1988-10-31 1990-09-28 Methods and apparatus for directly sensing and measuring blood related parameters

Publications (1)

Publication Number Publication Date
US5025798A true US5025798A (en) 1991-06-25

Family

ID=26950660

Family Applications (2)

Application Number Title Priority Date Filing Date
US07/547,381 Expired - Fee Related US5025798A (en) 1988-10-31 1990-07-30 Methods and apparatus for directly sensing and measuring blood related parameters
US07/639,504 Expired - Fee Related US5048539A (en) 1988-10-31 1990-09-28 Methods and apparatus for directly sensing and measuring blood related parameters

Family Applications After (1)

Application Number Title Priority Date Filing Date
US07/639,504 Expired - Fee Related US5048539A (en) 1988-10-31 1990-09-28 Methods and apparatus for directly sensing and measuring blood related parameters

Country Status (1)

Country Link
US (2) US5025798A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288646A (en) * 1988-12-22 1994-02-22 Radiometer A/S Method of photometric in vitro determination of the content of an analyte in a sample of whole blood
WO1994013203A1 (en) * 1992-12-10 1994-06-23 Novo Nordisk A/S Method and apparatus for in vivo determination of the concentration in a body fluid of metabolically significant substances
EP0725593A1 (en) * 1993-10-28 1996-08-14 I-Stat Corporation Fluid sample collection and introduction device
US5564419A (en) * 1987-11-25 1996-10-15 Radiometer A/S Method of photometric in vitro determination of the content of oxygen in a blood sample
US20040055898A1 (en) * 1997-02-06 2004-03-25 Adam Heller Integrated lancing and measurement device and analyte measuring methods
US20040176704A1 (en) * 2003-03-04 2004-09-09 Stevens Timothy A Collection device adapted to accept cartridge for point of care system
US20040176705A1 (en) * 2003-03-04 2004-09-09 Stevens Timothy A. Cartridge having an integrated collection element for point of care system
US20050009191A1 (en) * 2003-07-08 2005-01-13 Swenson Kirk D. Point of care information management system
US20080287760A1 (en) * 1998-03-04 2008-11-20 Therasense, Inc. method of making an electrochemical sensor
US20090130646A1 (en) * 2006-02-08 2009-05-21 Becton, Dickinson And Company Blood collection device, method, and system for using the same
US20100012526A1 (en) * 1998-10-08 2010-01-21 Feldman Benjamin J Small Volume In Vitro Sensor and Methods of Making
CN104135927A (en) * 2012-02-14 2014-11-05 西门子公司 Blood-sampling tube with integrated sensor device
US8973293B2 (en) 2010-11-19 2015-03-10 Becton, Dickinson And Company Specimen container label for automated clinical laboratory processing systems

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ322108A (en) * 1995-11-13 1999-11-29 Provalis Uk Ltd Diagnostic test apparatus
US5980470A (en) * 1997-02-26 1999-11-09 Probiotix, Inc. Estriol monitoring of maternal blood for antenatal steroid acceleration of fetal lung maturation
EP1277438A1 (en) * 2001-07-10 2003-01-22 Agilent Technologies, Inc. (a Delaware corporation) System for point of care diagnosis and/or analysis

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3512517A (en) * 1964-11-30 1970-05-19 Beckman Instruments Inc Polarographic method and apparatus for monitoring blood glucose concentration
US3661010A (en) * 1970-04-07 1972-05-09 Instrumentation Labor Inc Fluid sample analyzing apparatus
US3920396A (en) * 1972-03-08 1975-11-18 Klaus Dieter Schuy Method and device for determination of gases dissolved in a liquid especially in blood
US4040908A (en) * 1976-03-12 1977-08-09 Children's Hospital Medical Center Polarographic analysis of cholesterol and other macromolecular substances
US4272245A (en) * 1978-12-04 1981-06-09 Transidyne General Corporation Method and apparatus for electro-chemical measurement
US4339317A (en) * 1978-07-05 1982-07-13 Instituto Sieroterapico E Vaccinogeno Toscano "Sclavo" S.P.A. Device for performing measurements on fluids, directly in the sample container
US4468703A (en) * 1981-05-15 1984-08-28 Fuji Xerox Co., Ltd. Image signal processing device
US4478222A (en) * 1980-03-10 1984-10-23 Cordis Europa N.V. Electrochemical sensing apparatus with in situ calibration
US4535786A (en) * 1983-07-25 1985-08-20 Kater John A R Measurement of body fluid chemistry
US4791938A (en) * 1987-11-16 1988-12-20 Nanci Van Valkenburg Capillary blood collector and method
US4852584A (en) * 1988-10-11 1989-08-01 Selby Charles R Fluid collection tube with a safety funnel at its open end

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4418703A (en) * 1981-07-30 1983-12-06 Becton Dickinson And Company Multiple sample needle assembly
US4852548A (en) * 1988-05-31 1989-08-01 Shimek Ronald J Universal fireplace assembly

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3512517A (en) * 1964-11-30 1970-05-19 Beckman Instruments Inc Polarographic method and apparatus for monitoring blood glucose concentration
US3661010A (en) * 1970-04-07 1972-05-09 Instrumentation Labor Inc Fluid sample analyzing apparatus
US3920396A (en) * 1972-03-08 1975-11-18 Klaus Dieter Schuy Method and device for determination of gases dissolved in a liquid especially in blood
US4040908A (en) * 1976-03-12 1977-08-09 Children's Hospital Medical Center Polarographic analysis of cholesterol and other macromolecular substances
US4339317A (en) * 1978-07-05 1982-07-13 Instituto Sieroterapico E Vaccinogeno Toscano "Sclavo" S.P.A. Device for performing measurements on fluids, directly in the sample container
US4272245A (en) * 1978-12-04 1981-06-09 Transidyne General Corporation Method and apparatus for electro-chemical measurement
US4478222A (en) * 1980-03-10 1984-10-23 Cordis Europa N.V. Electrochemical sensing apparatus with in situ calibration
US4468703A (en) * 1981-05-15 1984-08-28 Fuji Xerox Co., Ltd. Image signal processing device
US4535786A (en) * 1983-07-25 1985-08-20 Kater John A R Measurement of body fluid chemistry
US4791938A (en) * 1987-11-16 1988-12-20 Nanci Van Valkenburg Capillary blood collector and method
US4852584A (en) * 1988-10-11 1989-08-01 Selby Charles R Fluid collection tube with a safety funnel at its open end

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5564419A (en) * 1987-11-25 1996-10-15 Radiometer A/S Method of photometric in vitro determination of the content of oxygen in a blood sample
US5288646A (en) * 1988-12-22 1994-02-22 Radiometer A/S Method of photometric in vitro determination of the content of an analyte in a sample of whole blood
US5366903A (en) * 1988-12-22 1994-11-22 Radiometer A/S Method of photometric in vitro determination of the content of an analyte in a sample of whole blood
US5525518A (en) * 1988-12-22 1996-06-11 Radiometer Medical A/S Method of photometric in vitro determination of a blood gas parameter in a blood sample
WO1994013203A1 (en) * 1992-12-10 1994-06-23 Novo Nordisk A/S Method and apparatus for in vivo determination of the concentration in a body fluid of metabolically significant substances
US5680858A (en) * 1992-12-10 1997-10-28 Novo Nordisk A/S Method and apparatus for in vivo determination of the concentration in a body fluid of metabolically significant substances
EP0725593A1 (en) * 1993-10-28 1996-08-14 I-Stat Corporation Fluid sample collection and introduction device
EP0725593A4 (en) * 1993-10-28 1998-10-21 I Stat Corp Fluid sample collection and introduction device
US8123929B2 (en) 1997-02-06 2012-02-28 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US20080277293A1 (en) * 1997-02-06 2008-11-13 Therasense, Inc. Small Volume In Vitro Analyte Sensor
US9234864B2 (en) 1997-02-06 2016-01-12 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US8808531B2 (en) 1997-02-06 2014-08-19 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US7988845B2 (en) 1997-02-06 2011-08-02 Abbott Diabetes Care Inc. Integrated lancing and measurement device and analyte measuring methods
US8142642B2 (en) 1997-02-06 2012-03-27 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US8142643B2 (en) 1997-02-06 2012-03-27 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US20040055898A1 (en) * 1997-02-06 2004-03-25 Adam Heller Integrated lancing and measurement device and analyte measuring methods
US20080017522A1 (en) * 1997-02-06 2008-01-24 Therasense, Inc. Integrated Lancing and Measurement Device
US7335294B2 (en) * 1997-02-06 2008-02-26 Abbott Diabetes Care, Inc. Integrated lancing and measurement device and analyte measuring methods
US20080277291A1 (en) * 1997-02-06 2008-11-13 Therasense, Inc. Small Volume In Vitro Analyte Sensor
US8105476B2 (en) 1997-02-06 2012-01-31 Abbott Diabetes Care Inc. Integrated lancing and measurement device
US7909984B2 (en) 1997-02-06 2011-03-22 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US20090002683A1 (en) * 1997-02-06 2009-01-01 Adam Heller Small Volume in Vitro Analyte Sensor
US20090078586A1 (en) * 1997-02-06 2009-03-26 Therasense, Inc. Small Volume In Vitro Analyte Sensor
US8118992B2 (en) 1997-02-06 2012-02-21 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US7906009B2 (en) 1997-02-06 2011-03-15 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US8114271B2 (en) 1997-02-06 2012-02-14 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US8114270B2 (en) 1997-02-06 2012-02-14 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US8117734B2 (en) 1998-03-04 2012-02-21 Abbott Diabetes Care Inc. Method of making an electrochemical sensor
US20080287760A1 (en) * 1998-03-04 2008-11-20 Therasense, Inc. method of making an electrochemical sensor
US8168051B2 (en) 1998-03-04 2012-05-01 Abbott Diabetes Care Inc. Sensor for determination of glucose
US8425743B2 (en) 1998-10-08 2013-04-23 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor and methods of making
US8701282B2 (en) 1998-10-08 2014-04-22 Abbott Diabetes Care Inc. Method for manufacturing a biosensor
US8083924B2 (en) 1998-10-08 2011-12-27 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor and methods of making
US8087162B2 (en) 1998-10-08 2012-01-03 Abbott Diabetes Care Inc. Methods of making small volume in vitro analyte sensors
US8091220B2 (en) 1998-10-08 2012-01-10 Abbott Diabetes Care Inc. Methods of making small volume in vitro analyte sensors
US8083929B2 (en) 1998-10-08 2011-12-27 Abbott Diabetes Care Inc. Small volume in vitro sensor and methods of making
US9891185B2 (en) 1998-10-08 2018-02-13 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US8163164B2 (en) 1998-10-08 2012-04-24 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor and methods of making
US20100012526A1 (en) * 1998-10-08 2010-01-21 Feldman Benjamin J Small Volume In Vitro Sensor and Methods of Making
US9341591B2 (en) 1998-10-08 2016-05-17 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US8118993B2 (en) 1998-10-08 2012-02-21 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor and methods of making
US9316609B2 (en) 1998-10-08 2016-04-19 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9291592B2 (en) 1998-10-08 2016-03-22 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US8153063B2 (en) 1998-10-08 2012-04-10 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor and methods of making
US9234863B2 (en) 1998-10-08 2016-01-12 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US8728297B2 (en) 1998-10-08 2014-05-20 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US8186044B2 (en) 1998-10-08 2012-05-29 Abbott Diabetes Care Inc. Method of manufacturing small volume in vitro analyte sensors
US8182670B2 (en) 1998-10-08 2012-05-22 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor and methods of making
US8182671B2 (en) 1998-10-08 2012-05-22 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor and methods of making
US8083928B2 (en) 1998-10-08 2011-12-27 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor and methods of making
US8187895B2 (en) 1998-10-08 2012-05-29 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor and methods of making
US8192611B2 (en) 1998-10-08 2012-06-05 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor and methods of making
US8211363B2 (en) 1998-10-08 2012-07-03 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor and methods of making
US8221685B2 (en) 1998-10-08 2012-07-17 Abbott Diabetes Care Inc. Small volume in vitro sensor and methods of making
US8226815B2 (en) 1998-10-08 2012-07-24 Abbott Diabetes Care Inc. Small volume in vitro sensor and methods of making
US8262996B2 (en) 1998-10-08 2012-09-11 Abbott Diabetes Care Inc. Small volume in vitro sensor and methods of making
US8268163B2 (en) 1998-10-08 2012-09-18 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor and methods of making
US8268144B2 (en) 1998-10-08 2012-09-18 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor and methods of making
US8272125B2 (en) 1998-10-08 2012-09-25 Abbott Diabetes Care Inc. Method of manufacturing in vitro analyte sensors
US8273241B2 (en) 1998-10-08 2012-09-25 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor and methods of making
US8372261B2 (en) 1998-10-08 2013-02-12 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor and methods of making
US8377378B2 (en) 1998-10-08 2013-02-19 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor and methods of making
US8425758B2 (en) 1998-10-08 2013-04-23 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor and methods of making
US8650751B2 (en) 1998-10-08 2014-02-18 Abbott Diabetes Care Inc. Methods of making small volume in vitro analyte sensors
US8449758B2 (en) 1998-10-08 2013-05-28 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor and methods of making
US20040176705A1 (en) * 2003-03-04 2004-09-09 Stevens Timothy A. Cartridge having an integrated collection element for point of care system
US20040176704A1 (en) * 2003-03-04 2004-09-09 Stevens Timothy A Collection device adapted to accept cartridge for point of care system
WO2004078233A2 (en) * 2003-03-04 2004-09-16 Becton, Dickinson And Company Cartridge having an integrated collection element for point of care system
WO2004078233A3 (en) * 2003-03-04 2005-04-14 Becton Dickinson Co Cartridge having an integrated collection element for point of care system
WO2004078232A2 (en) * 2003-03-04 2004-09-16 Becton Dickinson And Company Collection device adapted to accept cartridge for point of care system
WO2004078232A3 (en) * 2003-03-04 2005-02-24 Becton Dickinson Co Collection device adapted to accept cartridge for point of care system
US20050009191A1 (en) * 2003-07-08 2005-01-13 Swenson Kirk D. Point of care information management system
US8630016B2 (en) 2006-02-08 2014-01-14 Becton, Dickinson And Company Label processor and method relating thereto
US20090130646A1 (en) * 2006-02-08 2009-05-21 Becton, Dickinson And Company Blood collection device, method, and system for using the same
US20100067024A1 (en) * 2006-02-08 2010-03-18 Becton, Dickinson And Company Label processor and method relating thereto
US9724690B2 (en) 2006-02-08 2017-08-08 Becton, Dickinson And Company Blood collection device, method, and system for using the same
US20100279397A1 (en) * 2006-02-08 2010-11-04 Becton, Dickinson And Company Biological specimen collection and storage devices
US8973293B2 (en) 2010-11-19 2015-03-10 Becton, Dickinson And Company Specimen container label for automated clinical laboratory processing systems
US9604217B2 (en) 2010-11-19 2017-03-28 Becton, Dickinson And Company Specimen container label for automated clinical laboratory processing systems
CN104135927A (en) * 2012-02-14 2014-11-05 西门子公司 Blood-sampling tube with integrated sensor device
US9468404B2 (en) 2012-02-14 2016-10-18 Siemens Aktiengesellschaft Blood sampling tube with integrated sensor device

Also Published As

Publication number Publication date
US5048539A (en) 1991-09-17

Similar Documents

Publication Publication Date Title
US5025798A (en) Methods and apparatus for directly sensing and measuring blood related parameters
KR100687453B1 (en) Method and apparatus for data management authentication in a clinical analyzer
US5747666A (en) Point-of-care analyzer module
US5068536A (en) Method for providing custom calibration for near infrared instruments for measurement of blood glucose
US6066243A (en) Portable immediate response medical analyzer having multiple testing modules
US4615340A (en) Sensor assembly suitable for blood gas analysis and the like and the method of use
US5232667A (en) Temperature control for portable diagnostic system using a non-contact temperature probe
CA1131310A (en) Device for performing measurements on fluids directly in the sample container
EP0179129B1 (en) Self-calibrating single-use sensing device for clinical chemistry analyzer
US4397725A (en) Apparatus for measuring electrochemical activity
US20040193024A1 (en) Calibrator
US20040176704A1 (en) Collection device adapted to accept cartridge for point of care system
JPH04501768A (en) Disposable sensing device for real-time fluid analysis
EP0012031B1 (en) Method and apparatus for measuring ph
US20090163792A1 (en) Analyzer for Measuring Blood Gas Parameters
WO1994019684A1 (en) Portable immediate response medical analyzer
US4436610A (en) Apparatus for measuring electrochemical activity
WO2002100261A2 (en) Point-of-care in-vitro blood analysis system
EP0163694A1 (en) Clinical chemistry analyzer
US4336121A (en) Apparatus for measuring electrochemical activity
US3706499A (en) Blood test system
CN111876319A (en) Reaction tube and test kit
GB2191585A (en) Sensor indicating and controlling substance concentration
US20050054982A1 (en) Umbilical cord sampling system and method
US20040228764A1 (en) Sampling system

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment
AS Assignment

Owner name: MEDICAL SYSTEMS DEVELOPMENT, LLC, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KALIKO, JOSEPH J.;REEL/FRAME:010043/0108

Effective date: 19990621

Owner name: SCHINDELE, GARY M., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDICAL SYSTEMS DEVELOPMENT CORPORATION;REEL/FRAME:010043/0114

Effective date: 19980101

Owner name: JOSEPH J. KALIKO, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHINDELE, GARY M.;REEL/FRAME:010043/0104

Effective date: 19990521

LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20030625