US5150691A - Engine fuel injector - Google Patents

Engine fuel injector Download PDF

Info

Publication number
US5150691A
US5150691A US07/824,624 US82462492A US5150691A US 5150691 A US5150691 A US 5150691A US 82462492 A US82462492 A US 82462492A US 5150691 A US5150691 A US 5150691A
Authority
US
United States
Prior art keywords
fuel injector
fuel
intake
combustion chamber
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/824,624
Inventor
Minoru Imajo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Assigned to NISSAN MOTOR CO., LTD. reassignment NISSAN MOTOR CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: IMAJO, MINORU
Application granted granted Critical
Publication of US5150691A publication Critical patent/US5150691A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/045Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/08Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by the fuel being carried by compressed air into main stream of combustion-air

Definitions

  • This invention relates to an engine provided with a plurality of intake ports and a single fuel injector for each cylinder, and more particularly, an improvement of a fuel injector intended to make the fuel density in the engine combustion chamber uniform.
  • the intake ports may for example be branched in the cylinder head, a fuel injector may be provided immediately before the branch, and fuel sprayed toward the branch.
  • Tokkai Sho 63-106357, Jikkai Hei 1-118159 and Jikkai Shoe 64-11364 published by the Japanese Patent Office disclose a structure wherein fuel and air are mixed in the injector to promote conversion of fuel to fine droplets and mixing.
  • this invention provides a fuel injector for an engine provided with a cylinder head, a combustion chamber situated below the cylinder head, a plurality of intake ports in the cylinder head facing the combustion chamber, a branch where these intake ports divide, an intake manifold connected to the intake ports via the branch, intake valves which open and close the intake ports, and steams passing through the intake ports which support the intake valves on the cylinder head.
  • This fuel injector comprises a fuel injector body situated between the branch and the intake manifold, and a guide pipe having branched ends for ejecting fuel delivered from the fuel injector body near the steam of each intake valve.
  • the ends of the guide pipe is situated closer to the center of the combustion chamber than the intake valve stem.
  • the fuel injector body is provided with a mixing mechanism that mixes fuel and air before fuel injection.
  • the fuel injector body injects fuel only when the intake valves are open.
  • each end of the guide pipe are further divided into two branches opening onto either side of the intake valve steam adjacent respectively to the center and the outer side of the combustion chamber.
  • the branch opening onto a side of the intake valve steam adjacent to the outer side of the combustion chamber has a smaller cross-section than the branch opening onto a side of the intake valve stem adjacent to the center side of the combustion chamber.
  • FIG. 1 is a plan view of an engine cylinder head showing the location of a fuel injector according to this invention.
  • FIG. 2 is a vertical section of an engine cylinder head also showing the location of the fuel injector according to this invention.
  • FIG. 3 is a fuel injection timing chart according to this invention.
  • FIG. 4 is a plan view of the fuel injector according to this invention.
  • FIG. 5 is a drawing similar to FIG. 1 but showing another embodiment of this invention regarding the shape and position of a guide pipe.
  • FIG. 6 is a drawing similar to FIG. 2 but showing the embodiment of FIG. 5.
  • FIG. 7 is a vertical section of the cylinder head showing yet another embodiment of this invention regarding the support structure of the fuel injector.
  • FIG. 1 shows the structure of a cylinder head 28 of an engine.
  • Two intake ports 22a, 22b are formed facing each combustion chamber 21 of this cylinder head 28.
  • These intake ports 22a, 22b are fashioned like Siamese ports branched in the cylinder head 28, and intake valves 26 are provided in an opening of each of the intake ports 22a, 22b.
  • the intake valves 26 are lifted by stems 25 passing through each of the intake ports 22a, 22b, and air is aspirated into the combustion chamber 21 from an intake manifold depending on the lift.
  • a single fuel injector 23 is also provided upstream of a branch 22c of the intake ports 22a, 22b in order to supply fuel to the combustion chamber 21.
  • the fuel injector comprises a body 23a and a guide pipe 24.
  • the guide pipe 24 is connected to the body 23 via a connector 24a.
  • a fuel injection valve is installed in the body 23a. This valve is opened and closed by a electromagnetic coil in response to a pulse signal so as to supply fuel intermittently to the guide pipe 24 via the connector 24a.
  • the guide pipe 24 is branched in a "Y" shape midway along its length in the same way as the intake ports 22a, 22b.
  • the ends 24b of the branch project into the intake ports 22a, 22b, are directed at a point near the center of the combustion chamber 21, and open onto one side of the stem 25 of the intake valve 26 closer to the center of the chamber 21 than the stem 25.
  • the guide pipe 24 and the body 23a of the fuel injector 23 ave a separate construction are previously fixed in the engine cylinder head 28 by casting or another method. Further, the guide pipe 24 and the body 23a are formed in one piece construction via the connector 24a.
  • the fuel injector 23 injects fuel from the tips of the ends 24b of the guide pipe 24 according to a pulse signal. This injection is performed, as shown in FIG. 3, within a predetermined range depending on the fuel injection amount having the maximum lift position of the intake valve 26 as its center.
  • Fuel is therefore injected directly into the combustion chamber 21 without colliding with the stem 25 or the walls of the intake ports 22a, 22b. Further, the injection position is closer to the center of the combustion chamber 21 than the stem 25 some distance away from the opposite wall of the chamber 21, and there is therefore no risk of fuel colliding with the opposite wall of the combustion chamber 21 to set up a wall flow. Fuel injected into the chamber 21 is therefore dispersed uniformly.
  • an enhanced effect may be obtained by providing the fuel injector 23 with an "assist air" mixing mechanism as shown in FIG. 4.
  • the fuel injector 23 is provided with an air inlet port 29. Air led in from this inlet port 29 reaches an internal chamber 41 of the body 23a of the fuel injector 23 via a valve 30 for adjusting flowrate, and is ejected from a circular passage 42 into a fuel passage 40 via a plurality of ejection ports 31.
  • Fuel is supplied from a fuel injection valve 43 situated at the base of this fuel passage 40, and a connector 24a of the guide pipe 24 is connected to the end of the fuel passage 40. Fuel supplied from the fuel passage 40 is therefore mixed with air ejected from the ports 31, and is ejected as a mixture into the combustion chamber 21 from the guide pipe 24. By first mixing fuel and air together in the fuel injector 23 in this way, conversion of fuel to fine droplets is promoted.
  • ends 24b of the guide pipe 24 are also branched in a "U" shape so as to open onto either side of the stems 25 as shown in FIGS. 5 and 6, deposition of fuel on the stems 25 can be effectively prevented, and homogenizing of fuel injected into the chamber 21 is further enhanced.
  • the cross-section of the branches 32 opening onto the outer side of the stems 25 is made smaller than that of the branches 33 opening onto the inner side of the stems 25. More fuel is thereby distributed to the branches 33 so that the fuel density in the center of the combustion chamber 21 does not thin out.
  • FIG. 7 shows another embodiment regarding the installation of the fuel injector 23.
  • the fuel injector 23 is not fixed directly in the cylinder head 28 or intake manifold 34, but is previously fixed on an adapter 35 forming part of the intake manifold 34 and interposed between the cylinder head 28 and the manifold 34.
  • the guide pipe is first fixed by casting or internal chill, the adapter 35 is then interposed between the cylinder head 28 and the intake manifold 34, and the fuel injector 23 is then attached.
  • the guide pipe 24 is easily attached to the engine, and the precision of installing the fuel injector 23 on the guide pipe 24 is improved.

Abstract

This invention concerns a fuel injector for an engine having a combustion chamber provided with a plurality of intake ports, an intake manifold connected to these ports via a branch, intake valves which open and close the ports, and stems passing through the ports which support the intake valves. A fuel injector body is provided upstream of the branch, and the fuel delivered by this body is ejected near the valve stems of the intake ports via a guide pipe which is branched at its end. The openings in the ends of the guide pipe are preferably situated on the side of the center of the combustion chamber, and inject fuel only when the intake valves are open. A mixing mechanism may also be provided to mix fuel and air in the body of the fuel injector. The ends of the guide pipe may also be further branched toward respectively the center and the outside of the combustion chamber. By means of this construction, fuel is prevented from depositing on the walls of the intake ports or the stems of the intake valves, is converted efficiently to fine droplets, and is dispersed evenly in the combustion chamber.

Description

FIELD OF THE INVENTION
This invention relates to an engine provided with a plurality of intake ports and a single fuel injector for each cylinder, and more particularly, an improvement of a fuel injector intended to make the fuel density in the engine combustion chamber uniform.
BACKGROUND OF THE INVENTION
In engines provided with a plurality of intake ports for one combustion chamber, the intake ports may for example be branched in the cylinder head, a fuel injector may be provided immediately before the branch, and fuel sprayed toward the branch.
With this kind of system, however, much of the fuel sprayed collides with the walls of the intake ports, and tends to set up a liquid wall flow along the walls. As this wall flow reaches the combustion chamber later than the vaporized fuel, the air-fuel ratio (AFR) is rendered unstable and engine running performance declines.
To improve this situation, Jikkai Sho 60-97373 and Jikkai Sho 63-132876 published by the Japanese Patent Office disclose a fuel injector having a fuel injection outlet pointing towards each intake port.
In this case, fuel is sprayed toward every port, and wall flow is therefore less. However, even in this fuel injector, there is a small distance from the outlet situated just before the branch and the intake valve, and it is therefore impossible to avoid some of the fuel being deposited on the wall of the port or on the stem of the intake valve which opens and closes the port before it reaches the chamber.
In another method of preventing wall flow, Tokkai Sho 63-106357, Jikkai Hei 1-118159 and Jikkai Shoe 64-11364 published by the Japanese Patent Office disclose a structure wherein fuel and air are mixed in the injector to promote conversion of fuel to fine droplets and mixing.
In this system, fuel is injected from a valve in the injector, and the mixture of this fuel with air aspirated into the fuel injector is delivered by a guide pipe close to the intake valve where is it expelled.
In this fuel injector, wall flow in the intake port is completely prevented. However, the guide pipe from the fuel injector body leads close to the intake valve, and in an engine provided with a plurality of intake ports for each cylinder as described hereintofore, fuel can be supplied to only one port. It was therefore difficult to overcome the problem of unevenness of fuel density in the combustion chamber.
SUMMARY OF THE INVENTION
It is therefore an object of the invention to make the fuel density in the combustion chamber uniform as well as to prevent wall flow in an engine provided with a plurality of intake ports for one cylinder.
In order to achieve the above object, this invention provides a fuel injector for an engine provided with a cylinder head, a combustion chamber situated below the cylinder head, a plurality of intake ports in the cylinder head facing the combustion chamber, a branch where these intake ports divide, an intake manifold connected to the intake ports via the branch, intake valves which open and close the intake ports, and steams passing through the intake ports which support the intake valves on the cylinder head. This fuel injector comprises a fuel injector body situated between the branch and the intake manifold, and a guide pipe having branched ends for ejecting fuel delivered from the fuel injector body near the steam of each intake valve.
According to a preferred aspect of this invention, the ends of the guide pipe is situated closer to the center of the combustion chamber than the intake valve stem.
According to another preferred aspect of this invention, the fuel injector body is provided with a mixing mechanism that mixes fuel and air before fuel injection.
According yet another preferred aspect of this invention, the fuel injector body injects fuel only when the intake valves are open.
According to yet another preferred aspect of this invention, each end of the guide pipe are further divided into two branches opening onto either side of the intake valve steam adjacent respectively to the center and the outer side of the combustion chamber.
In this case, the branch opening onto a side of the intake valve steam adjacent to the outer side of the combustion chamber has a smaller cross-section than the branch opening onto a side of the intake valve stem adjacent to the center side of the combustion chamber.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a plan view of an engine cylinder head showing the location of a fuel injector according to this invention.
FIG. 2 is a vertical section of an engine cylinder head also showing the location of the fuel injector according to this invention.
FIG. 3 is a fuel injection timing chart according to this invention.
FIG. 4 is a plan view of the fuel injector according to this invention.
FIG. 5 is a drawing similar to FIG. 1 but showing another embodiment of this invention regarding the shape and position of a guide pipe.
FIG. 6 is a drawing similar to FIG. 2 but showing the embodiment of FIG. 5.
FIG. 7 is a vertical section of the cylinder head showing yet another embodiment of this invention regarding the support structure of the fuel injector.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1 shows the structure of a cylinder head 28 of an engine. Two intake ports 22a, 22b are formed facing each combustion chamber 21 of this cylinder head 28. These intake ports 22a, 22b are fashioned like Siamese ports branched in the cylinder head 28, and intake valves 26 are provided in an opening of each of the intake ports 22a, 22b. The intake valves 26 are lifted by stems 25 passing through each of the intake ports 22a, 22b, and air is aspirated into the combustion chamber 21 from an intake manifold depending on the lift.
A single fuel injector 23 is also provided upstream of a branch 22c of the intake ports 22a, 22b in order to supply fuel to the combustion chamber 21. The fuel injector comprises a body 23a and a guide pipe 24. The guide pipe 24 is connected to the body 23 via a connector 24a.
A fuel injection valve, not shown, is installed in the body 23a. This valve is opened and closed by a electromagnetic coil in response to a pulse signal so as to supply fuel intermittently to the guide pipe 24 via the connector 24a.
As shown in FIG. 1, the guide pipe 24 is branched in a "Y" shape midway along its length in the same way as the intake ports 22a, 22b. The ends 24b of the branch project into the intake ports 22a, 22b, are directed at a point near the center of the combustion chamber 21, and open onto one side of the stem 25 of the intake valve 26 closer to the center of the chamber 21 than the stem 25.
The guide pipe 24 and the body 23a of the fuel injector 23 ave a separate construction. The guide pipe 24 is previously fixed in the engine cylinder head 28 by casting or another method. Further, the guide pipe 24 and the body 23a are formed in one piece construction via the connector 24a.
The fuel injector 23 injects fuel from the tips of the ends 24b of the guide pipe 24 according to a pulse signal. This injection is performed, as shown in FIG. 3, within a predetermined range depending on the fuel injection amount having the maximum lift position of the intake valve 26 as its center.
Fuel is therefore injected directly into the combustion chamber 21 without colliding with the stem 25 or the walls of the intake ports 22a, 22b. Further, the injection position is closer to the center of the combustion chamber 21 than the stem 25 some distance away from the opposite wall of the chamber 21, and there is therefore no risk of fuel colliding with the opposite wall of the combustion chamber 21 to set up a wall flow. Fuel injected into the chamber 21 is therefore dispersed uniformly.
In addition to the aforesaid construction, an enhanced effect may be obtained by providing the fuel injector 23 with an "assist air" mixing mechanism as shown in FIG. 4.
In this figure, the fuel injector 23 is provided with an air inlet port 29. Air led in from this inlet port 29 reaches an internal chamber 41 of the body 23a of the fuel injector 23 via a valve 30 for adjusting flowrate, and is ejected from a circular passage 42 into a fuel passage 40 via a plurality of ejection ports 31.
Fuel is supplied from a fuel injection valve 43 situated at the base of this fuel passage 40, and a connector 24a of the guide pipe 24 is connected to the end of the fuel passage 40. Fuel supplied from the fuel passage 40 is therefore mixed with air ejected from the ports 31, and is ejected as a mixture into the combustion chamber 21 from the guide pipe 24. By first mixing fuel and air together in the fuel injector 23 in this way, conversion of fuel to fine droplets is promoted.
If the ends 24b of the guide pipe 24 are also branched in a "U" shape so as to open onto either side of the stems 25 as shown in FIGS. 5 and 6, deposition of fuel on the stems 25 can be effectively prevented, and homogenizing of fuel injected into the chamber 21 is further enhanced. In this case, the cross-section of the branches 32 opening onto the outer side of the stems 25 is made smaller than that of the branches 33 opening onto the inner side of the stems 25. More fuel is thereby distributed to the branches 33 so that the fuel density in the center of the combustion chamber 21 does not thin out.
FIG. 7 shows another embodiment regarding the installation of the fuel injector 23. In this figure, the fuel injector 23 is not fixed directly in the cylinder head 28 or intake manifold 34, but is previously fixed on an adapter 35 forming part of the intake manifold 34 and interposed between the cylinder head 28 and the manifold 34.
More specifically when the adapter 35 is cast, the guide pipe is first fixed by casting or internal chill, the adapter 35 is then interposed between the cylinder head 28 and the intake manifold 34, and the fuel injector 23 is then attached.
In this construction, the guide pipe 24 is easily attached to the engine, and the precision of installing the fuel injector 23 on the guide pipe 24 is improved.
This invention is not limited to the above description, and various modifications may be made by those skilled in the art within the scope of the claims which are appended. Possible modifications include, for example, application to an engine provided with three or more intake ports for one combustion chamber.

Claims (6)

The embodiments of this invention in which an exclusive property or privilege is claimed are defined as follows:
1. A fuel injector adapted to be installed in an engine provided with a cylinder head, a combustion chamber situated below the cylinder head, a plurality of intake ports in the cylinder head facing the combustion chamber, a branch where these intake ports divide, an intake manifold connected to the intake ports via the branch, intake valves which open and close the intake ports, and stems passing through the intake ports which support the intake valves on the cylinder head, said fuel injector comprising:
a fuel injector body situated between the branch and the intake manifold, and
a guide pipe having branched ends for ejecting fuel delivered from said fuel injector body near the stem of each intake valve.
2. A fuel injector adapted to be installed in an engine as defined in claim 1, wherein the ends of said guide pipe are situated between the intake valve stems when viewed from directly above the combustion chamber.
3. A fuel injector adapted to be installed in an engine as defined in claim 1, wherein said fuel injector body further comprises a mixing mechanisms for mixing fuel and air before fuel injection.
4. A fuel injector adapted to be installed in an engine as defined in claim 1, wherein said fuel injector body injects fuel only when the intake valves are open.
5. A fuel injector adapted to be installed in an engine as defined in claim 1, wherein the ends of said guide pipe are further divided into two branches opening onto either side of the intake valve stem adjacent respectively to the center and the outer side of the combustion chamber when viewed from directly above the combustion chamber.
6. A fuel injector adapted to be installed in an engine as defined in claim 5, wherein the branch opening onto a side of the intake valve steam adjacent to the outer side of the combustion chamber has a smaller cross-section that the branch opening onto a side of the intake valve stem adjacent to the center side of the combustion chamber.
US07/824,624 1991-01-25 1992-01-23 Engine fuel injector Expired - Fee Related US5150691A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3-7803 1991-01-25
JP3007803A JPH04252867A (en) 1991-01-25 1991-01-25 Fuel supply system for internal combustion engine

Publications (1)

Publication Number Publication Date
US5150691A true US5150691A (en) 1992-09-29

Family

ID=11675786

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/824,624 Expired - Fee Related US5150691A (en) 1991-01-25 1992-01-23 Engine fuel injector

Country Status (2)

Country Link
US (1) US5150691A (en)
JP (1) JPH04252867A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5249557A (en) * 1991-02-18 1993-10-05 Sanshin Kogyo Kabushiki Kaisha Fuel injection system for two cycle engine
US5295464A (en) * 1992-02-28 1994-03-22 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Stratified burning internal combustion engine
US5477830A (en) * 1993-12-30 1995-12-26 Servojet Products International Electronic fuel injection system for internal combustion engines having a common intake port for each pair of cylinders
US5501194A (en) * 1993-09-09 1996-03-26 Nippon Soken Inc. Fuel injection apparatus
US5520157A (en) * 1994-07-12 1996-05-28 Magneti Marelli France Dual-jet fuel injector with pneumatic assistance in spray generation for an internal combustion engine fed by injection
US5575263A (en) * 1994-12-01 1996-11-19 Magneti Marelli France Fuel-dispersing skirt for an injector of a fuel-injected engine
US5623904A (en) * 1995-05-16 1997-04-29 Yamaha Hatsudoki Kabushiki Kaisha Air-assisted fuel injection system
US5673673A (en) * 1996-04-30 1997-10-07 Servojet Products International Method and apparatus for the high Mach injection of a gaseous fuel into an internal combustion engine
US5694898A (en) * 1994-12-01 1997-12-09 Magnetic Marelli France Injector with fuel-dispersing skirt
US5738076A (en) * 1994-10-15 1998-04-14 Daewoo Motor Co., Ltd. Compressed natural gas engine
US5829408A (en) * 1993-11-08 1998-11-03 Hitachi, Ltd. Internal combustion engine and air-fuel mixture supply apparatus therefor
EP0921286A3 (en) * 1997-12-05 1999-10-06 Audi Ag Direct injection type internal combustion engine
EP1043485A1 (en) 1999-04-09 2000-10-11 Institut Francais Du Petrole Method and device for the intake of an air-fuel mixture into at least one combustion space of a spark ignited engine
US6196204B1 (en) * 1995-03-09 2001-03-06 Robert Bosch Gmbh Method and device for forming a turbulent fuel-air mixture in the combustion chamber of each cylinder of an internal combustion engine controlled with valve timing
US6467465B1 (en) * 2001-01-10 2002-10-22 Anthony R. Lorts Throttle body fuel injector adapter manifold
US6609499B2 (en) 2001-11-08 2003-08-26 Ford Global Technologies, Llc Gaseous-fuel injection system and method
WO2009065679A1 (en) * 2007-11-23 2009-05-28 Robert Bosch Gmbh Fuel injection device
US7584744B2 (en) * 2006-11-30 2009-09-08 Institut Francais Du Patrole Internal-combustion and burnt gas scavenging supercharged engine with at least two intake means
US20100275878A1 (en) * 2009-05-01 2010-11-04 Scuderi Group, Llc Split-cycle engine with dual spray targeting fuel injection
US20110041806A1 (en) * 2009-08-21 2011-02-24 Axel Lang Method for performing an intake manifold injection
US20120085322A1 (en) * 2010-10-12 2012-04-12 Alfred Trzmiel Internal Combustion Engine as well as Retrofitting/Conversion Kit for such an Internal Combustion Engine
US20120227706A1 (en) * 2011-03-08 2012-09-13 Dai Tanaka Internal combustion engine
US8267068B1 (en) * 2009-06-01 2012-09-18 David Nicholson Low Method for improved fuel-air mixing by countercurrent fuel injection in an internal combustion engine
EP2527639A1 (en) * 2011-05-24 2012-11-28 Yamaha Hatsudoki Kabushiki Kaisha Four-stroke engine
CN103459818A (en) * 2011-04-14 2013-12-18 罗伯特·博世有限公司 Intake and injection device, system and internal combustion engine
US20150292441A1 (en) * 2014-04-15 2015-10-15 Cummins Inc. Cryogenic fuel injection and combustion
CN105041538A (en) * 2015-06-26 2015-11-11 中国北车集团大连机车车辆有限公司 Fuel gas distributor for multi-point injection gas engine
US20160230730A1 (en) * 2015-02-05 2016-08-11 Caterpillar Inc. System and Method for Introducing Gas into Engine Cylinder
US9518547B2 (en) 2015-05-07 2016-12-13 Caterpillar Inc. Fuel injector including extensions for split spray angles
KR20170052619A (en) * 2014-10-01 2017-05-12 샌디아 코포레이션 Ducted fuel injection
US20180202403A1 (en) * 2015-07-13 2018-07-19 Reggio Dwayne HUFF Dual function fuel injector with tunable intra-port air & fuel flow control
US10801395B1 (en) 2016-11-29 2020-10-13 National Technology & Engineering Solutions Of Sandia, Llc Ducted fuel injection

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4325341A (en) * 1978-11-06 1982-04-20 Hitachi, Ltd. Fuel control device for fuel injection system for internal combustion engine
US4361126A (en) * 1979-09-08 1982-11-30 Robert Bosch Gmbh Fuel injection valve
US4373491A (en) * 1980-05-22 1983-02-15 Robert Bosch Gmbh Fuel supply system
US4556037A (en) * 1983-05-18 1985-12-03 Shirley A. Wisdom Apparatus for the uniform distribution of fuel to a multi cylinder spark ignition engine
US4708117A (en) * 1986-04-14 1987-11-24 Colt Industries Inc. Multi-point fuel injection apparatus
JPS63106357A (en) * 1986-10-24 1988-05-11 Toyota Motor Corp Fuel injection device for internal combustion engine
JPS63132876A (en) * 1986-11-04 1988-06-04 ユ セ ベ ソシエテ アノニム Substituted 1h-imidazole compound
US4798190A (en) * 1986-05-30 1989-01-17 Nitrous Oxide Systems, Inc. Nozzle
JPH01118159A (en) * 1987-10-07 1989-05-10 Canon Inc Image forming device
US4945877A (en) * 1988-03-12 1990-08-07 Robert Bosch Gmbh Fuel injection valve
US5027778A (en) * 1988-11-16 1991-07-02 Hitachi, Ltd. Fuel injection control apparatus
JPH0697373A (en) * 1992-09-10 1994-04-08 Mitsubishi Electric Corp Bias generating circuit

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4325341A (en) * 1978-11-06 1982-04-20 Hitachi, Ltd. Fuel control device for fuel injection system for internal combustion engine
US4361126A (en) * 1979-09-08 1982-11-30 Robert Bosch Gmbh Fuel injection valve
US4373491A (en) * 1980-05-22 1983-02-15 Robert Bosch Gmbh Fuel supply system
US4556037A (en) * 1983-05-18 1985-12-03 Shirley A. Wisdom Apparatus for the uniform distribution of fuel to a multi cylinder spark ignition engine
US4708117A (en) * 1986-04-14 1987-11-24 Colt Industries Inc. Multi-point fuel injection apparatus
US4798190A (en) * 1986-05-30 1989-01-17 Nitrous Oxide Systems, Inc. Nozzle
JPS63106357A (en) * 1986-10-24 1988-05-11 Toyota Motor Corp Fuel injection device for internal combustion engine
JPS63132876A (en) * 1986-11-04 1988-06-04 ユ セ ベ ソシエテ アノニム Substituted 1h-imidazole compound
JPH01118159A (en) * 1987-10-07 1989-05-10 Canon Inc Image forming device
US4945877A (en) * 1988-03-12 1990-08-07 Robert Bosch Gmbh Fuel injection valve
US5027778A (en) * 1988-11-16 1991-07-02 Hitachi, Ltd. Fuel injection control apparatus
JPH0697373A (en) * 1992-09-10 1994-04-08 Mitsubishi Electric Corp Bias generating circuit

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5249557A (en) * 1991-02-18 1993-10-05 Sanshin Kogyo Kabushiki Kaisha Fuel injection system for two cycle engine
US5295464A (en) * 1992-02-28 1994-03-22 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Stratified burning internal combustion engine
US5501194A (en) * 1993-09-09 1996-03-26 Nippon Soken Inc. Fuel injection apparatus
US5829408A (en) * 1993-11-08 1998-11-03 Hitachi, Ltd. Internal combustion engine and air-fuel mixture supply apparatus therefor
US5477830A (en) * 1993-12-30 1995-12-26 Servojet Products International Electronic fuel injection system for internal combustion engines having a common intake port for each pair of cylinders
US5520157A (en) * 1994-07-12 1996-05-28 Magneti Marelli France Dual-jet fuel injector with pneumatic assistance in spray generation for an internal combustion engine fed by injection
US5738076A (en) * 1994-10-15 1998-04-14 Daewoo Motor Co., Ltd. Compressed natural gas engine
US5694898A (en) * 1994-12-01 1997-12-09 Magnetic Marelli France Injector with fuel-dispersing skirt
US5575263A (en) * 1994-12-01 1996-11-19 Magneti Marelli France Fuel-dispersing skirt for an injector of a fuel-injected engine
US6196204B1 (en) * 1995-03-09 2001-03-06 Robert Bosch Gmbh Method and device for forming a turbulent fuel-air mixture in the combustion chamber of each cylinder of an internal combustion engine controlled with valve timing
US5769060A (en) * 1995-05-16 1998-06-23 Yamaha Hatsudoki Kabushiki Kaisha Air-assisted fuel injection system
US5623904A (en) * 1995-05-16 1997-04-29 Yamaha Hatsudoki Kabushiki Kaisha Air-assisted fuel injection system
US5673673A (en) * 1996-04-30 1997-10-07 Servojet Products International Method and apparatus for the high Mach injection of a gaseous fuel into an internal combustion engine
EP0921286A3 (en) * 1997-12-05 1999-10-06 Audi Ag Direct injection type internal combustion engine
EP1043485A1 (en) 1999-04-09 2000-10-11 Institut Francais Du Petrole Method and device for the intake of an air-fuel mixture into at least one combustion space of a spark ignited engine
FR2792034A1 (en) * 1999-04-09 2000-10-13 Inst Francais Du Petrole METHOD AND SYSTEM FOR INTAKE A FUEL MIXTURE IN AT LEAST ONE COMBUSTION CHAMBER OF A CONTROLLED IGNITION ENGINE
US6467465B1 (en) * 2001-01-10 2002-10-22 Anthony R. Lorts Throttle body fuel injector adapter manifold
US6609499B2 (en) 2001-11-08 2003-08-26 Ford Global Technologies, Llc Gaseous-fuel injection system and method
US7584744B2 (en) * 2006-11-30 2009-09-08 Institut Francais Du Patrole Internal-combustion and burnt gas scavenging supercharged engine with at least two intake means
WO2009065679A1 (en) * 2007-11-23 2009-05-28 Robert Bosch Gmbh Fuel injection device
CN102966477B (en) * 2007-11-23 2015-02-25 罗伯特·博世有限公司 Fuel injection device
RU2493426C2 (en) * 2007-11-23 2013-09-20 Роберт Бош Гмбх Fuel injection device
CN102966477A (en) * 2007-11-23 2013-03-13 罗伯特·博世有限公司 Fuel injection device
CN101868615B (en) * 2007-11-23 2013-01-23 罗伯特·博世有限公司 Fuel injection device
TWI485319B (en) * 2007-11-23 2015-05-21 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung
US20100275878A1 (en) * 2009-05-01 2010-11-04 Scuderi Group, Llc Split-cycle engine with dual spray targeting fuel injection
CN102105665A (en) * 2009-05-01 2011-06-22 史古德利集团有限责任公司 Split-cycle engine with dual spray targeting fuel injection
US8267068B1 (en) * 2009-06-01 2012-09-18 David Nicholson Low Method for improved fuel-air mixing by countercurrent fuel injection in an internal combustion engine
CN101994589B (en) * 2009-08-21 2015-05-27 罗伯特.博世有限公司 Method for performing an intake manifold injection
CN101994589A (en) * 2009-08-21 2011-03-30 罗伯特.博世有限公司 Method for performing an intake manifold injection
US20110041806A1 (en) * 2009-08-21 2011-02-24 Axel Lang Method for performing an intake manifold injection
US8548717B2 (en) * 2009-08-21 2013-10-01 Robert Bosch Gmbh Method for performing an intake manifold injection
US20120085322A1 (en) * 2010-10-12 2012-04-12 Alfred Trzmiel Internal Combustion Engine as well as Retrofitting/Conversion Kit for such an Internal Combustion Engine
US20120227706A1 (en) * 2011-03-08 2012-09-13 Dai Tanaka Internal combustion engine
CN103459818A (en) * 2011-04-14 2013-12-18 罗伯特·博世有限公司 Intake and injection device, system and internal combustion engine
US9458807B2 (en) 2011-05-24 2016-10-04 Yamaha Hatsudoki Kabushiki Kaisha Four-stroke engine
EP2527639A1 (en) * 2011-05-24 2012-11-28 Yamaha Hatsudoki Kabushiki Kaisha Four-stroke engine
US20150292441A1 (en) * 2014-04-15 2015-10-15 Cummins Inc. Cryogenic fuel injection and combustion
US10119496B2 (en) * 2014-04-15 2018-11-06 Cummins Inc. Cryogenic fuel injection and combustion
KR20170052619A (en) * 2014-10-01 2017-05-12 샌디아 코포레이션 Ducted fuel injection
KR101967767B1 (en) 2014-10-01 2019-08-13 내셔널 테크놀러지 앤드 엔지니어링 솔루션즈 오브 샌디아, 엘엘씨 Ducted fuel injection
US20160230730A1 (en) * 2015-02-05 2016-08-11 Caterpillar Inc. System and Method for Introducing Gas into Engine Cylinder
US9702327B2 (en) * 2015-02-05 2017-07-11 Caterpillar Inc. System and method for introducing gas into engine cylinder
US9518547B2 (en) 2015-05-07 2016-12-13 Caterpillar Inc. Fuel injector including extensions for split spray angles
CN105041538A (en) * 2015-06-26 2015-11-11 中国北车集团大连机车车辆有限公司 Fuel gas distributor for multi-point injection gas engine
US20180202403A1 (en) * 2015-07-13 2018-07-19 Reggio Dwayne HUFF Dual function fuel injector with tunable intra-port air & fuel flow control
US10920726B2 (en) * 2015-07-13 2021-02-16 Xcentrick Innovations, Ltd. Multi-function fuel injector for internal combustion engines and method
US10801395B1 (en) 2016-11-29 2020-10-13 National Technology & Engineering Solutions Of Sandia, Llc Ducted fuel injection

Also Published As

Publication number Publication date
JPH04252867A (en) 1992-09-08

Similar Documents

Publication Publication Date Title
US5150691A (en) Engine fuel injector
USRE40199E1 (en) Fuel injection valve for an internal combustion engine
US5746189A (en) EGR gas assist injection system for internal combustion engine
US4211191A (en) Fuel supplying device for internal combustion engine
JPS63109279A (en) Fuel injection device
JPH057555B2 (en)
JPS5840647B2 (en) Internal combustion engine intake system
US4829943A (en) V-type multiple cylinder engine
JPS6341580Y2 (en)
JP3303619B2 (en) Fuel supply device for internal combustion engine
JPH048295Y2 (en)
EP0953761B1 (en) Internal combustion engine with auxiliary intake passage
JPS6113109B2 (en)
JPH0210292Y2 (en)
JPS6343408Y2 (en)
JPH0335852Y2 (en)
US4341191A (en) Fuel injection type carburetor
JP2759334B2 (en) Intake port structure of fuel injection engine
JPH04234565A (en) Fuel injection device for internal combustion engine
JPH029092Y2 (en)
JPS6327094Y2 (en)
KR19980080933A (en) Multi-cylinder internal combustion engine with multi-directional fuel injection valve and its intake pipe structure
JPS61232382A (en) Air intake device of engine
JPH0315031B2 (en)
JPH08193558A (en) Fuel supply system in internal combustion engine

Legal Events

Date Code Title Description
AS Assignment

Owner name: NISSAN MOTOR CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:IMAJO, MINORU;REEL/FRAME:006016/0690

Effective date: 19920110

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 20000929

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362