US5272757A - Multi-dimensional reproduction system - Google Patents

Multi-dimensional reproduction system Download PDF

Info

Publication number
US5272757A
US5272757A US07/819,625 US81962592A US5272757A US 5272757 A US5272757 A US 5272757A US 81962592 A US81962592 A US 81962592A US 5272757 A US5272757 A US 5272757A
Authority
US
United States
Prior art keywords
listener
localized
speakers
speaker
binaural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/819,625
Inventor
William C. Scofield
Lynn A. McCroskey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imax Corp
Original Assignee
Sonics Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sonics Associates Inc filed Critical Sonics Associates Inc
Priority to US07/819,625 priority Critical patent/US5272757A/en
Application granted granted Critical
Publication of US5272757A publication Critical patent/US5272757A/en
Assigned to IMAX CORPORATION reassignment IMAX CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SONICS ASSOCIATES, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S1/00Two-channel systems
    • H04S1/002Non-adaptive circuits, e.g. manually adjustable or static, for enhancing the sound image or the spatial distribution
    • H04S1/005For headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2420/00Details of connection covered by H04R, not provided for in its groups
    • H04R2420/07Applications of wireless loudspeakers or wireless microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S5/00Pseudo-stereo systems, e.g. in which additional channel signals are derived from monophonic signals by means of phase shifting, time delay or reverberation 

Definitions

  • the present invention pertains in general to a sound reproduction system, and more particularly, to a sound reproduction system for a multi-dimensional space using a binaural recording.
  • the sound can either appear as an echo to an individual, or as just a mere coloration of the direct sound. If the delay between two identical sounds is separated in time by around 10 mS, the sound will be perceived as a coloration of the direct sound, whereas for delays greater than around 50 mS, the sound will be perceived as an echo. Therefore, if the delayed sound were directed toward the listener from a rearward position with a delay between 10-50 mS relative to the direct sound, the listener would not perceive the location of the rearmost sound source, but, rather, he would experience a fuller and perhaps more intelligible sound at his location. Essentially, the human ear tends to lock on sound which arrives first.
  • multi-dimensional sound typically referred to as 3-D sound
  • multi-dimensional sound has been reproduced through either headphones or through loudspeakers.
  • loudspeakers it is important that the listener not move, since very complex systems have been developed which provide for cancellation of cross-talk between loudspeakers.
  • the rooms in which these experiments have been carried out typically are acoustically "dead" rooms.
  • Q-biphonic system One system that has been provided to reproduce binaural signals though loudspeakers is the Q-biphonic system.
  • This system utilizes a binaural synthesizer that takes pre-recorded monaural sources and converts them into binaural signals along with loudspeaker cross-talk cancellation circuitry necessary for playback through loudspeakers.
  • These systems claim to achieve full azimuthal localization in a four speaker system in addition to elevation localization.
  • This system is very sensitive to head movement and is restricted to only one listening position. In the early days of this system, it was found that an anechoic space was needed.
  • Another solution proposed for a multi-dimensional system is one utilizing a multiple delay line system controlled by a personal computer. Provisions are made for six delay lines and an additional four non-delay lines.
  • sounds can be localized by controlling the signal arrival times between loudspeakers in a multiple speaker system.
  • adjustable delay there is also an adjustable attenuation provided for each line. The individual delay times and attenuation calculations, which are accomplished on a computer, achieve the desired effect, i.e., phantom imaging. Delay times can be updated to account for moving sources through the use of the mouse, and preset configurations can be stored for future reference.
  • a recording system that employs an artificial head for making the recordings. This is sometimes referred to as a "dummy" head.
  • the system utilizes an artificial head that is fabricated from an anthropromorphic mannequin-like device that has lifelike pinnas and microphones disposed in the ear canals.
  • the microphones are disposed on either side of the artificial head, and these microphones are utilized in conjunction with a binaural processor that converts the standard signals into binaural signals.
  • the artificial head is typically utilized as an area microphone with additional circuitry provided for replicating the recordings of soloists which are converted and blended with the area recording.
  • the head is equalized for a flat free-field response at frontal incidence.
  • the experience of listening to binaural recordings through headphones typically produces interior or "in-the-head” sounds. This is due to the disturbance of the conch resonance in the pinna by earphone cups, which causes a sense of nearness and "in the head” localization.
  • the free-field equalization removes this resonance during recording, while for playback, the headphones are equalized to restore this resonance. It can be appreciated that the headphones destroy the natural conch resonance.
  • the equalization of the response with the headphones results in better external localization, which is still imperfect because of the uniqueness of the transfer function of the pinna of each individual.
  • the artificial head recordings made with the free-field equalization will reproduce with good results through regular stereo equipment. Furthermore, if these binaural recordings are reproduced through loudspeakers utilizing cross-talk cancelization (transaural listening), the conch resonance of the pinna is not presented twice, but is only restored by the natural action of the outer ear.
  • the present invention disclosed and claimed herein comprises a multi-dimensional sound reproduction system for reproducing binaural recordings having first and second channels.
  • the system includes first and second localized speakers for receiving and reproducing the first and second channels, respectively, of the binaural recording.
  • a support member is provided for disposing the first and second localized speakers in a substantially fixed position on opposite sides of the head.
  • the first and second localized speakers are supported such that they are proximate to the left and right ears, respectively, of the listener in such a position that each of the first and second localized speakers does not disturb the natural frequency response of the ears of the listener. They are sufficiently close to the head such that cross-talk between each of the first and second localized speakers and the ear on the opposite side of the head of the listener is minimized.
  • circuitry for extracting a portion of the frequency spectrum from each of the first and second channels of the binaural recording. At least one of these extracted portions of the frequency spectrum of the first and second channels of the binaural recording is output to an external speaker that is disposed away from the listener.
  • this comprises a lowpass filter/crossover circuit wherein the low frequency portion of each of the first and second channels of the binaural recording are extracted, summed and then output to the external speaker.
  • a highpass filter/crossover circuit is utilized to remove the low frequency portion of the frequency spectrum from the signals input to the first and second localized speakers.
  • the first and second localized speakers are supported in an eyeglass frame.
  • the eyeglass frame is supported on the listener's head with a headband.
  • Speaker housings are disposed on the headband to secure the localized speakers.
  • the localized speakers are positioned such that they are directed rearward toward the pinna of the associated left and right ear and disposed proximate to the zygomatic arch of the listener.
  • FIGS. 1a and 1b illustrate diagrams of the prior art multi-dimensional sound systems
  • FIG. 2 illustrates a block diagram of the present invention
  • FIG. 3 illustrates a diagram of the present invention utilized with a plurality of listeners in an auditorium
  • FIG. 4 illustrates a detail of the orientation of the localized speakers
  • FIG. 5 illustrates a perspective view of the support mechanism for these speakers
  • FIG. 6 illustrates a side view of the housing and the localized speaker
  • FIG. 7 illustrates a detail rear perspective view of the housing for containing one of the localized speakers
  • FIG. 8 illustrates a schematic block diagram of the system for generating the localized speaker driving signals
  • FIG. 9 illustrates a schematic diagram for generating the signals for driving the localized speakers.
  • FIG. 10 illustrates a block diagram of an alternate method for transmitting the binaural signals to the listener over a wireless link.
  • FIG. 1a there is illustrated a schematic diagram of a prior art system for recording and playing back binaural sound.
  • the prior art system is divided into a recording end and a playback end.
  • a dummy head 10 In the recording end, a dummy head 10 is provided which has microphones 12 and 14 disposed in place of the ear canals.
  • Two artificial pinnas 16 and 18, respectively, are provided for approximating the response of the human ear.
  • the output of each of the microphones 12 and 14 is fed through pre-filters 20 and 22, respectively, to a plane 24, representing the barrier between the recording end and the playback end.
  • the transfer function between the artificial ears 16 and 18 and the barrier 24 represents the first half of an equalizing system with the pre-filters 20 and 22 providing part of this equalization.
  • the playback end includes a listener 26 which has headphones comprised of a left earpiece 28 and a right earpiece 30.
  • a correction filter 32 is provided between the barrier 24 and the earphone 28 and a correction filter 34 is provided between the barrier 24 and the earphone 30.
  • the correction filter 34 is connected to the output of the pre-filter 20 and the correction filter 32 is connected to the output of the pre-filter 22.
  • the transfer function between the barrier 24 and the earphone 30 represents the playback end transfer function.
  • the product of the recording end transfer function and the playback end transfer function represents the overall transfer function of the system.
  • the pre-filters 20 and 22 and the correction filters 32 and 34 provide an equalization which, when taken in conjunction with the response of the dummy head, should result in a true reproduction of the sound. It should be appreciated that the earphones 28 and 30 alter the natural response of the pinna for the listener 26, and therefore, the equalization process must account for this.
  • FIG. 1b there is illustrated a diagrammatical representation of a prior art system, which is similar to the system of FIG. 1a with the exception that speakers 38 and 40 replace the headphones 28 and 30 and associated correction filters 32 and 34.
  • speakers 38 and 40 replace the headphones 28 and 30 and associated correction filters 32 and 34.
  • one problem that exists is cross-talk between the two speakers, since the speakers are typically disposed a large distance from the ears of the listener. Therefore, sound emanating from speaker 40 can impinge upon both ears of the listener 26, as can sound emitted by speaker 38. Further, the room acoustics would also affect the sound reproduction in that reflections occur from the walls of the room.
  • Headphones as compared to speakers, are usually equalized to a free field in that their transfer function ideally corresponds to that of a typical external ear when sound is presented in a free sound field directly from the front and from a considerable distance. This does not lend itself to reproduction from a loudspeaker.
  • loudspeakers will require some type of equalization to be performed at the recording end, but this will still result in distortions of tone and color. It can be seen that although the loudspeakers can be somewhat equalized with respect to a given position, the cross-talk of the speakers must be accounted for. However, when dealing with a large auditorium, this must occur for all the listeners at any given position, which is difficult at best.
  • the binaural recording is input to a signal conditioner 44 as a left and a right signal on lines 46 and 48, respectively.
  • the signal conditioner 44 as will be described hereinbelow, is operable to combine the left and the right signals for frequencies below 250 Hz and input them to low frequency speaker 52, there being no left or right distinctions made in the speaker 52.
  • the left and right signals of lines 46 and 48 are output as separate signals on left and right lines 54 and 56 to localized speakers 58 and 60 which are disposed proximate to the ears of the listener 26.
  • the localized speakers 58 and 60 are disposed such that they do not disturb the natural conch resonance of the ears of the listener 26, and they are disposed such that the sound emitted from either of the speakers 58 and 60 is significantly attenuated with respect to the hearing on the opposite side of the head. This is facilitated by disposing the localized speakers 58 and 60 proximate to the head such that the natural separation provided by the head will be maintained.
  • FIG. 3 there is illustrated a diagram of the system utilized with a plurality of listeners 26.
  • Each of the listeners 26 has associated therewith a set of localized speakers 58 and 60.
  • the listeners 26 are disposed in a room 64 with the speaker 52 disposed in a predetermined and fixed location. Since it is desirable that sound from the speaker 52 arrive at all of the listeners 26 generally at the same time, the speaker 52 would be located some distance from the listeners 26, it being understood that FIG. 3 is not drawn to scale.
  • a viewing screen 65 is disposed in front of the listeners 26 to provide visual cues.
  • the localized speakers 58 and 60 are supported on the heads of listeners 26 such that they are maintained at a predetermined and substantially fixed position relative to the head. Therefore, if the head were to move when, for example, viewing a movie, there would be no phase change in the sound arriving at either of the ears of the listener 26. Therefore, a support member is provided which is affixed to the head of the listener 26 to support the localized speakers 58 and 60.
  • groups consisting of six listeners are connected to common wires 54 and 56, such that the localized speakers 58 and 60 associated with each of the listeners 26 in a common group are connected to these wires, respectively.
  • the sound level is adjusted such that each listener 26 will hear the sound at the appropriate phase from the associated one of the localized speakers 58 and 60.
  • a listener 26 disposed in an adjacent seat with sound being emitted from his associated localized speakers 58 and 60 will not interfere with the sound received by the one listener 26. This is due to the fact that the sound levels are relatively low. If the localized speakers 58 and 60 are removed, then a listener 26 can hear sound emitted from localized speakers 58 and 60 among the listeners' seats adjacent thereto. The human ear "locks" onto the sound emitted from its associated localized speakers 58 and 60 and tends to ignore the sound from speakers disposed adjacent thereto. This is the result of many factors, including the Law of the First Wavefront.
  • the combination of the localized speakers 58 and 60 and visual cues on the screen 65 provide an additional aspect to the listener's ability to localize sound. In general, the listener cannot localize sound very well when it is directly in front or in back of the listener's head. Some type of head movement or visual cue would normally facilitate localization of the sound. Since the localized speakers 58 and 60 are fixed to the listener's head, visual cues on the screen 65 provide the listeners 26 with additional information to assist in localizing the sound.
  • the localized speaker 58 is disposed proximate to the right ear of the listener and its associated pinna 66.
  • the localized speaker 60 is disposed proximate to the left ear of the listener 26 and the associated pinna 68.
  • the localized speakers 58 and 60 are disposed forward of the pinnas 66 and 68, respectively, and proximate to the head of the listener 26. It has been determined experimentally that the optimum sound reproduction occurs when the speaker is directed rearward and disposed proximate to the zygomatic arch of the listener 26. If the associated localized speaker 58 or 60 is moved outward, directly to the side of the ear, the actual physical size of the speaker tends to disturb the conch resonance. However, if the speaker were reduced to an extremely small size, this would be acceptable.
  • the speaker It is important that the speaker not be moved too far from the listener, as cross-talk would occur. Of course, any type of separation in the front, the rear or on top of the head would improve this.
  • the torso provides separation beneath the head, but it would be necessary to improve the separation in the space forward, rearward and upward of the head if the localized speakers 58 and 60 were moved away from the head.
  • the localized speakers 58 and 60 are designed to be utilized in an auditorium with multiple users all receiving the same or similar signals. Therefore, they are disposed as close to the ear as possible without disturbing the conch resonance and to minimize the sound level necessary for output from the localized speakers 58 and 60.
  • FIG. 5 there is illustrated a perspective view of the support mechanism for the localized speakers 58 and 60.
  • the localized speakers 58 and 60 are supported in a pair of three-dimensional glasses 70, which are designed for three-dimensional viewing. These glasses 70 typically have LCD lenses 72 and 74 which operate as shutters to provide the three-dimensional effect.
  • a control circuit is disposed in a housing 76 which has a photo transistor 78 disposed on the frontal face thereof. The photo transistor 78 is part of a communications system that allows the synchronization signals to be transmitted to the glasses 70.
  • Housing 80 is disposed on one side of the glasses 70 for supporting the localized speaker 58.
  • a housing 82 is disposed on the opposite side of the glasses 70 for supporting the localized speaker 60.
  • the housings 80 and 82 provide the proper acoustic termination for the speakers 58 and 60, such that the frequency response thereof is optimized.
  • the speakers 58 and 60 are typically fabricated from a dynamic loudspeaker, which is conventionally available for use in stereo headphones.
  • FIG. 6 there is illustrated a side view of the housing 82 and the localized speaker 60.
  • the localized speaker 60 as described above, is disposed such that it is proximate to the side of the head in the area of the zygomatic arch. It is directed rearward toward the pinna 68 of the left ear of the listener 26 with the sound emitted therefrom being picked up by the pinna 68 and the ear canal of the left ear of the listener 26.
  • the housing 82 is slightly widened at the mounting point for the localized speaker 60, which, as described above, is a small dynamic loudspeaker.
  • a wire 84 is provided which is disposed through the housing 82 up to the control circuitry in the housing 76. Alternatively, the wire 84 can go to a separate control/driving circuit that is external to the housing 82 and the glasses 70.
  • the housing 82 is fabricated such that it has a cavity disposed therein at the rear of the localized speaker 60. The size of this cavity is experimentally determined and is a function of the particular brand of dynamic loudspeaker utilized for the localized speakers 58 and 60. This cavity is determined by measuring the response of the particular dynamic loudspeaker with a variable cavity disposed on the rear side thereof. This cavity is varied until an acceptable response is achieved.
  • FIG. 8 there is illustrated a schematic block diagram of the system for driving the localized speakers 58 and 60 and also the low frequency speaker 52.
  • the binaural recording system typically provides an output from a tape recording, which is played back and output from a binaural source 90 to provide left and right signals on lines 92 and 94. These are input to a 4 ⁇ 4 circuit 96 that outputs left and right signals on lines 98 and 100 for localized speakers 58 and 60, and also a summed signal on a line 102, which comprises the sum of both the left and right signals.
  • the 4 ⁇ 4 circuit 96 is manufactured by OXMOOR CORPORATION as a Buffer Amplifier and is operable to receive up to four inputs and provide up to four outputs as any combination of the four inputs or as the buffered form of the inputs.
  • the signal line 102 is output to a crossover circuit 112 which is essentially a low pass filter. This rejects all signals above approximately 250 Hz.
  • the crossover circuit 112 is typical of Part No. AC 22, which is a stereo two-way crossover, manufactured by RANE CORPORATION.
  • the output of the crossover 112 is input to a digital control amplifier (DCA) 108 to control the signal level. This is controlled by volume level control 110.
  • the DCA 108 is typical of Part No.
  • the output of the DCA 108 is input to an amplifier 114 which drives the speaker 52 with the low frequency signals.
  • the amplifier 114 is typical of Part No. 800X, manufactured by SONICS ASSOCIATES,INCORPORATED.
  • the left and right signals on lines 98 and 100 from the 4 ⁇ 4 circuit 96 are input to a delay circuit 106, which is typical of Part No. DN775, which is a Stereo Mastering Digital Delay Line, manufactured by KLARK-TEKNIK ELECTRONICS INC.
  • the outputs of the delay circuit 106 are input to a high pass filter 118 to reject all frequencies lower than 250 Hz.
  • the high pass filter 118 is identical to the part utilized for the crossover circuit 112.
  • the outputs of filter 118 are input to a headphone mixer 120 to provide separate signals on a multiplicity of lines 122, each set of lines comprising a left and a right line for an associated set of localized speakers 58 and 60 for listeners 26. This is typical of Part No. HC-6, which is a headphone console, manufactured by RANE CORPORATION.
  • the lines 122 are routed to particular listeners' localized speakers 58 and 60.
  • FIG. 9 there is illustrated a detailed schematic diagram of the circuit for driving the headphones.
  • Line 98 is input through delay 106, and high pass filter 118 to the wiper of a volume control 124, the output of which is input to the positive input of an operational amplifier (op amp) 126.
  • the output of op amp 126 is connected to a node 128 which is also connected to the base of both an NPN transistor 130 and a PNP transistor 132.
  • Transistors 130 and 132 are configured in a push-pull configuration with the emitters thereof tied together and to an output terminal 134.
  • the collector of transistor 130 is connected to a positive supply and the collector of transistor 132 is connected to a negative supply.
  • the emitters of transistors 130 and 132 are also connected through a resistor 136 to the node 128.
  • the negative input of the op amp 126 is connected through a resistor 138 to ground and also through a feedback resistor 140 to the output terminal 134.
  • An op amp 142 is provided with the positive input thereof connected to the output of volume control 125.
  • the wiper of volume control 125 is connected through delay 106 and the filter 118.
  • Op amp 142 is configured similar to op amp 126 with an associated NPN transistor 144 and PNP transistor 146, configured similar to transistors 130 and 132.
  • a feedback resistor 148 is provided, similar to the resistor 140, with feedback resistor 148 connected to the negative input of op amp 142 and an output terminal 150.
  • a resistor 152 is connected to the negative input of op amp 142 and ground.
  • the volume controls 124 and 125 provide individual volume control by the listener 26.
  • Line 98 is also illustrated as connected through a summing resistor 156 to a summing node 158.
  • the line 100 is connected through a summing resistor 160 to the summing node 158.
  • the summing node 158 is connected to the negative input of an op amp 162, the positive input of which is connected to ground through a resistor 164.
  • the negative input of op amp 162 is connected to the output thereof through a feedback resistor 166.
  • Op amp 162 is configured for unity gain at the first stage.
  • the output of op amp 162 is connected through a resistor 170 to a negative input of an op amp 172.
  • the negative input of op amp 172 is also connected to the output thereof through a resistor 174.
  • op amp 172 The positive input of op amp 172 is connected to ground through a resistor 176.
  • Op amp 172 is configured as a unity gain inverting amplifier.
  • the output of op amp 172 is connected to an output terminal 178 to provide the sum of the left and right channels.
  • the op amps 162 and 172 provide the function of the summing portion of 4 ⁇ 4 circuit 96, and are provided by way of illustration only.
  • the binaural source has electronic signals modulated onto a carrier by a modulator 180, the carrier then transmitted by transmitter 182 over a data link 184.
  • the data link 184 is comprised of an infrared data link that has an infrared transmitting diode 185 disposed on the transmitter 182.
  • a receiver 186 is provided with a receiver Light Emitting Diode 188 that receives the transmitted carrier from the diode 185.
  • the output of the receiver 186 is demodulated by a demodulator 190 and this provides a left and right signal for input to the conditioning circuit 44.
  • a multi-dimensional sound reproduction system comprising of two localized speakers which are supported in a substantially fixed relationship with respect to the head of a listener.
  • the localized speakers are disposed proximate to the ear in such a position that they do not disturb the natural response of the ear, and sufficiently close to the head such that the cross-talk between each of the speakers and the opposite ear is minimized.
  • Low frequency sound that does not contain important localization cues is filtered from the original binaural recording, and this is transmitted to the listener by an external speaker.

Abstract

A multi-dimensional sound reproduction system is provided for receiving a binaural or other appropriately produced recording on left and right channels and outputting the recording to localized speakers (58) and (60). The localized speakers (58) and (60) are supported on a pair of glasses (70) in housings (80) and (82). Each of the speakers (58) and (60) are directed rearward toward the pinna (68) of the associated left and right ear of the individual and disposed proximate to the zygomatic arch of the listener (26). In this manner, the localized speakers (58) and (60) are separated from the opposite one of the ears of the listener (26) such as not to disturb the conch resonance or the unique pinna response of the listener's ear. The low frequency end of the frequency spectrum for the binaural recording is filtered from the input to the localized speakers (58) and (60), summed and then output on external speaker (52). A display (64) is provided for outputting visual cues to the listener (26) to assist in localizing sound.

Description

This application is a continuation of application Ser. No. 07/581,468, filed Sep. 12, 1990.
TECHNICAL FIELD OF THE INVENTION
The present invention pertains in general to a sound reproduction system, and more particularly, to a sound reproduction system for a multi-dimensional space using a binaural recording.
BACKGROUND OF THE INVENTION
In stereophonic sound systems, such as those found in home entertainment applications, there is an attempt to control the localization of sounds typically using balance potentiometers. In this process, the relative level between two loudspeakers affects where the phantom image will exist as perceived by a listener positioned equidistant from two loudspeakers with respect to a single plane. The perception of where the sound originates, i.e., the phantom image, has also been observed to be a function of the delay between the two otherwise identical sources. For gradual increasing delays, which are on the order of the Interaural Time Difference (ITD) between the ears, the phantom image will shift toward the real undelayed source, which is disposed away from the phantom image. As the amount of delay is increased toward 10 mS, sound direction is "fused" to the speaker from which the sound first arrived. In fact, it has been observed that if two similar sounds, which originate from separate sources are delayed with repsect to each other by an amount that is between 10 mS-50 mS, a listener who is positioned equidistant from the two loudspeakers will perceive the sound to be coming from the direction of the speaker whose sound arrives first, to the exclusion of the second speaker. This has been referred to as the Law of the First Wavefront, the Precedence Effect or the Haas Effect.
For sound arriving from two different sources, be they reflections or delayed sources, the sound can either appear as an echo to an individual, or as just a mere coloration of the direct sound. If the delay between two identical sounds is separated in time by around 10 mS, the sound will be perceived as a coloration of the direct sound, whereas for delays greater than around 50 mS, the sound will be perceived as an echo. Therefore, if the delayed sound were directed toward the listener from a rearward position with a delay between 10-50 mS relative to the direct sound, the listener would not perceive the location of the rearmost sound source, but, rather, he would experience a fuller and perhaps more intelligible sound at his location. Essentially, the human ear tends to lock on sound which arrives first.
The above observations can generally be explained based on the theory that the position of a sound source is cued by interaural differences in the intensity and time of arrival (phase). This is the so-called duplex theory of localization which states that phase is the main mechanism of the localization below 1500 Hz, while for frequencies above around 4000 Hz, intensity is the main localization cue. For the intervening range of frequencies, localization is not good and it may be that confusion comes about because of conflict between the two mechanisms over this range of frequencies. The duplex theory of localization will break down when it comes to defining unique sound source positions. A sound source which is located directly in front of a listener and one which is located directly behind a listener provides identical signals to the ears according to the duplex theory. However, it is a common everyday experience to discriminate between front and back localized sounds. There is much evidence to support the idea that a third mechanism contributes to the localization of sound, and that is the pinna transformation of sound.
Over the years, experiments have shown that the pinna performs a spectral modification which gives additional cues for the localization of sounds. This is particularly true with respect to elevation and front-back cues. The brain/nervous systems appears to process angular dependant spectral information in order to determine direction. This is due to the complex shape of the pinna which, when presented to a sound in front of the user, results in a significantly different response to the ear canal as compared to that for a sound originating from behind the listener. This spectral modification is also affected by the head and torso.
For multi-dimensional sound, typically referred to as 3-D sound, it is necessary to localize the sound, identify moving sound sources, enlarge the ideal listening area for the listener and remove the actual sound from a viewing area, such as a movie screen, to the individual. When considering only a single individual in a room, multi-dimensional sound has been reproduced through either headphones or through loudspeakers. With respect to the loudspeakers, it is important that the listener not move, since very complex systems have been developed which provide for cancellation of cross-talk between loudspeakers. Further, the rooms in which these experiments have been carried out typically are acoustically "dead" rooms.
One system that has been provided to reproduce binaural signals though loudspeakers is the Q-biphonic system. This system utilizes a binaural synthesizer that takes pre-recorded monaural sources and converts them into binaural signals along with loudspeaker cross-talk cancellation circuitry necessary for playback through loudspeakers. These systems claim to achieve full azimuthal localization in a four speaker system in addition to elevation localization. This system is very sensitive to head movement and is restricted to only one listening position. In the early days of this system, it was found that an anechoic space was needed.
Another solution proposed for a multi-dimensional system is one utilizing a multiple delay line system controlled by a personal computer. Provisions are made for six delay lines and an additional four non-delay lines. By utilizing a computer "mouse", which provides coordinate manipulation, sounds can be localized by controlling the signal arrival times between loudspeakers in a multiple speaker system. In addition to the adjustable delay, there is also an adjustable attenuation provided for each line. The individual delay times and attenuation calculations, which are accomplished on a computer, achieve the desired effect, i.e., phantom imaging. Delay times can be updated to account for moving sources through the use of the mouse, and preset configurations can be stored for future reference.
Some present research that is going on in the multi-dimensional sound system field is that for developing a multisensory "virtual environment" work station (VIEW) for use in space station teleoperation, tele-presence and automation activities. The auditory requirements for this project led to the prototyping of a binaural signal processor for converting generated or recorded sounds into binaural signals. Researchers measured a subject's pinna responses as a function of azimuth and elevation and arrived at pure head related transfer functions (HRTFs) using Fast Fourier Transform techniques. These HRTFs were implemented in a Digital Signal Processing (DSP) device which allowed the user to apply direction dependent equalization to an incoming signal. By establishing the proper relationship between the ITD, the Interaural Level Difference (ILD), and the HRTF, experimenters were able to synthesize free field stimuli and present this over headphones. Motion trajectories and static locations that represented greater resolution of HRTFs than measured were arrived at through interpolation. However, this system had some problems with front-back reversals.
To record binaural soundtracks, a recording system has been utilized that employs an artificial head for making the recordings. This is sometimes referred to as a "dummy" head. The system utilizes an artificial head that is fabricated from an anthropromorphic mannequin-like device that has lifelike pinnas and microphones disposed in the ear canals. The microphones are disposed on either side of the artificial head, and these microphones are utilized in conjunction with a binaural processor that converts the standard signals into binaural signals. The artificial head is typically utilized as an area microphone with additional circuitry provided for replicating the recordings of soloists which are converted and blended with the area recording.
In the recording process utilizing the artificial head, the head is equalized for a flat free-field response at frontal incidence. This accomplishes two things. First, the experience of listening to binaural recordings through headphones typically produces interior or "in-the-head" sounds. This is due to the disturbance of the conch resonance in the pinna by earphone cups, which causes a sense of nearness and "in the head" localization. The free-field equalization removes this resonance during recording, while for playback, the headphones are equalized to restore this resonance. It can be appreciated that the headphones destroy the natural conch resonance. The equalization of the response with the headphones results in better external localization, which is still imperfect because of the uniqueness of the transfer function of the pinna of each individual.
Secondly, the artificial head recordings made with the free-field equalization will reproduce with good results through regular stereo equipment. Furthermore, if these binaural recordings are reproduced through loudspeakers utilizing cross-talk cancelization (transaural listening), the conch resonance of the pinna is not presented twice, but is only restored by the natural action of the outer ear.
In U.S. Pat. No. 4,817,149, issued Mar. 28, 1989, a system is disclosed that enables sounds to be localized from all directions when played through headphones. Elevation and front/back cues are established utilizing direction-dependant filtering while horizontal (aximuthal) localization is achieved by control of interaural time differences.
SUMMARY OF THE INVENTION
The present invention disclosed and claimed herein comprises a multi-dimensional sound reproduction system for reproducing binaural recordings having first and second channels. The system includes first and second localized speakers for receiving and reproducing the first and second channels, respectively, of the binaural recording. A support member is provided for disposing the first and second localized speakers in a substantially fixed position on opposite sides of the head. The first and second localized speakers are supported such that they are proximate to the left and right ears, respectively, of the listener in such a position that each of the first and second localized speakers does not disturb the natural frequency response of the ears of the listener. They are sufficiently close to the head such that cross-talk between each of the first and second localized speakers and the ear on the opposite side of the head of the listener is minimized.
In another embodiment of the present invention, circuitry is provided for extracting a portion of the frequency spectrum from each of the first and second channels of the binaural recording. At least one of these extracted portions of the frequency spectrum of the first and second channels of the binaural recording is output to an external speaker that is disposed away from the listener. In one aspect of the present invention, this comprises a lowpass filter/crossover circuit wherein the low frequency portion of each of the first and second channels of the binaural recording are extracted, summed and then output to the external speaker. Further, a highpass filter/crossover circuit is utilized to remove the low frequency portion of the frequency spectrum from the signals input to the first and second localized speakers.
In a further embodiment of the present invention, the first and second localized speakers are supported in an eyeglass frame. The eyeglass frame is supported on the listener's head with a headband. Speaker housings are disposed on the headband to secure the localized speakers. The localized speakers are positioned such that they are directed rearward toward the pinna of the associated left and right ear and disposed proximate to the zygomatic arch of the listener.
BRIEF DESCRIPTION OF THE DRAWINGS
For a more complete understanding of the present invention and the advantages thereof, reference is now made to the following description taken in conjunction with the accompanying Drawings in which:
FIGS. 1a and 1b illustrate diagrams of the prior art multi-dimensional sound systems;
FIG. 2 illustrates a block diagram of the present invention;
FIG. 3 illustrates a diagram of the present invention utilized with a plurality of listeners in an auditorium;
FIG. 4 illustrates a detail of the orientation of the localized speakers;
FIG. 5 illustrates a perspective view of the support mechanism for these speakers;
FIG. 6 illustrates a side view of the housing and the localized speaker;
FIG. 7 illustrates a detail rear perspective view of the housing for containing one of the localized speakers;
FIG. 8 illustrates a schematic block diagram of the system for generating the localized speaker driving signals;
FIG. 9 illustrates a schematic diagram for generating the signals for driving the localized speakers; and
FIG. 10 illustrates a block diagram of an alternate method for transmitting the binaural signals to the listener over a wireless link.
DETAILED DESCRIPTION OF THE INVENTION
Referring now to FIG. 1a, there is illustrated a schematic diagram of a prior art system for recording and playing back binaural sound. The prior art system is divided into a recording end and a playback end. In the recording end, a dummy head 10 is provided which has microphones 12 and 14 disposed in place of the ear canals. Two artificial pinnas 16 and 18, respectively, are provided for approximating the response of the human ear. The output of each of the microphones 12 and 14 is fed through pre-filters 20 and 22, respectively, to a plane 24, representing the barrier between the recording end and the playback end. The transfer function between the artificial ears 16 and 18 and the barrier 24 represents the first half of an equalizing system with the pre-filters 20 and 22 providing part of this equalization.
The playback end includes a listener 26 which has headphones comprised of a left earpiece 28 and a right earpiece 30. A correction filter 32 is provided between the barrier 24 and the earphone 28 and a correction filter 34 is provided between the barrier 24 and the earphone 30. The correction filter 34 is connected to the output of the pre-filter 20 and the correction filter 32 is connected to the output of the pre-filter 22. The transfer function between the barrier 24 and the earphone 30 represents the playback end transfer function. The product of the recording end transfer function and the playback end transfer function represents the overall transfer function of the system. The pre-filters 20 and 22 and the correction filters 32 and 34 provide an equalization which, when taken in conjunction with the response of the dummy head, should result in a true reproduction of the sound. It should be appreciated that the earphones 28 and 30 alter the natural response of the pinna for the listener 26, and therefore, the equalization process must account for this.
Referring now to FIG. 1b, there is illustrated a diagrammatical representation of a prior art system, which is similar to the system of FIG. 1a with the exception that speakers 38 and 40 replace the headphones 28 and 30 and associated correction filters 32 and 34. However, when headphones are replaced by speakers, one problem that exists is cross-talk between the two speakers, since the speakers are typically disposed a large distance from the ears of the listener. Therefore, sound emanating from speaker 40 can impinge upon both ears of the listener 26, as can sound emitted by speaker 38. Further, the room acoustics would also affect the sound reproduction in that reflections occur from the walls of the room.
Headphones, as compared to speakers, are usually equalized to a free field in that their transfer function ideally corresponds to that of a typical external ear when sound is presented in a free sound field directly from the front and from a considerable distance. This does not lend itself to reproduction from a loudspeaker. In general, loudspeakers will require some type of equalization to be performed at the recording end, but this will still result in distortions of tone and color. It can be seen that although the loudspeakers can be somewhat equalized with respect to a given position, the cross-talk of the speakers must be accounted for. However, when dealing with a large auditorium, this must occur for all the listeners at any given position, which is difficult at best.
Referring now to FIG. 2, there is illustrated a diagram of the system of the present invention. The binaural recording is input to a signal conditioner 44 as a left and a right signal on lines 46 and 48, respectively. The signal conditioner 44, as will be described hereinbelow, is operable to combine the left and the right signals for frequencies below 250 Hz and input them to low frequency speaker 52, there being no left or right distinctions made in the speaker 52. In addition, the left and right signals of lines 46 and 48 are output as separate signals on left and right lines 54 and 56 to localized speakers 58 and 60 which are disposed proximate to the ears of the listener 26. The localized speakers 58 and 60 are disposed such that they do not disturb the natural conch resonance of the ears of the listener 26, and they are disposed such that the sound emitted from either of the speakers 58 and 60 is significantly attenuated with respect to the hearing on the opposite side of the head. This is facilitated by disposing the localized speakers 58 and 60 proximate to the head such that the natural separation provided by the head will be maintained.
Only signals above 250 Hz are transmitted to the localized speakers 58 and 60. As will be described hereinbelow, a delay is provided to the sound emitted from localized speakers 58 and 60 as compared to that emitted from speaker 52, such that the sound emitted from speaker 52 will arrive at the location of the listener 26 at the approximate time that the sound is emitted from localized speakers 58 and 60, within at worst plus and minus 25 ms. This accounts for the sound delay through the room and the distance of the listener 26 from the speaker 52. It has been noted that the important localization cues are not contained in the low frequency portion of the signal. Therefore, this low frequency portion of the audio spectrum is split out and routed to the listeners through the speaker 52. In this manner, the amount of sound energy that can be output at the low frequencies is increased, since the small size of the transducers that will be utilized for the localized speakers 58 and 60 cannot reproduce low frequency sounds with any acceptable fidelity.
Referring now to FIG. 3, there is illustrated a diagram of the system utilized with a plurality of listeners 26. Each of the listeners 26 has associated therewith a set of localized speakers 58 and 60. The listeners 26 are disposed in a room 64 with the speaker 52 disposed in a predetermined and fixed location. Since it is desirable that sound from the speaker 52 arrive at all of the listeners 26 generally at the same time, the speaker 52 would be located some distance from the listeners 26, it being understood that FIG. 3 is not drawn to scale. A viewing screen 65 is disposed in front of the listeners 26 to provide visual cues.
The localized speakers 58 and 60 are supported on the heads of listeners 26 such that they are maintained at a predetermined and substantially fixed position relative to the head. Therefore, if the head were to move when, for example, viewing a movie, there would be no phase change in the sound arriving at either of the ears of the listener 26. Therefore, a support member is provided which is affixed to the head of the listener 26 to support the localized speakers 58 and 60. In the preferred embodiment, groups consisting of six listeners are connected to common wires 54 and 56, such that the localized speakers 58 and 60 associated with each of the listeners 26 in a common group are connected to these wires, respectively. The sound level is adjusted such that each listener 26 will hear the sound at the appropriate phase from the associated one of the localized speakers 58 and 60. However, it has been determined experimentally that a listener 26 disposed in an adjacent seat with sound being emitted from his associated localized speakers 58 and 60 will not interfere with the sound received by the one listener 26. This is due to the fact that the sound levels are relatively low. If the localized speakers 58 and 60 are removed, then a listener 26 can hear sound emitted from localized speakers 58 and 60 among the listeners' seats adjacent thereto. The human ear "locks" onto the sound emitted from its associated localized speakers 58 and 60 and tends to ignore the sound from speakers disposed adjacent thereto. This is the result of many factors, including the Law of the First Wavefront.
The combination of the localized speakers 58 and 60 and visual cues on the screen 65 provide an additional aspect to the listener's ability to localize sound. In general, the listener cannot localize sound very well when it is directly in front or in back of the listener's head. Some type of head movement or visual cue would normally facilitate localization of the sound. Since the localized speakers 58 and 60 are fixed to the listener's head, visual cues on the screen 65 provide the listeners 26 with additional information to assist in localizing the sound.
Referring now to FIG. 4, there is illustrated a detail of the orientation of the localized speakers 58 and 60 relative to the listener 26. The localized speaker 58 is disposed proximate to the right ear of the listener and its associated pinna 66. Similarly, the localized speaker 60 is disposed proximate to the left ear of the listener 26 and the associated pinna 68. In the preferred embodiment, the localized speakers 58 and 60 are disposed forward of the pinnas 66 and 68, respectively, and proximate to the head of the listener 26. It has been determined experimentally that the optimum sound reproduction occurs when the speaker is directed rearward and disposed proximate to the zygomatic arch of the listener 26. If the associated localized speaker 58 or 60 is moved outward, directly to the side of the ear, the actual physical size of the speaker tends to disturb the conch resonance. However, if the speaker were reduced to an extremely small size, this would be acceptable.
It is important that the speaker not be moved too far from the listener, as cross-talk would occur. Of course, any type of separation in the front, the rear or on top of the head would improve this. The torso, of course, provides separation beneath the head, but it would be necessary to improve the separation in the space forward, rearward and upward of the head if the localized speakers 58 and 60 were moved away from the head. However, in the preferred embodiment, the localized speakers 58 and 60 are designed to be utilized in an auditorium with multiple users all receiving the same or similar signals. Therefore, they are disposed as close to the ear as possible without disturbing the conch resonance and to minimize the sound level necessary for output from the localized speakers 58 and 60.
Referring now to FIG. 5, there is illustrated a perspective view of the support mechanism for the localized speakers 58 and 60. The localized speakers 58 and 60 are supported in a pair of three-dimensional glasses 70, which are designed for three-dimensional viewing. These glasses 70 typically have LCD lenses 72 and 74 which operate as shutters to provide the three-dimensional effect. A control circuit is disposed in a housing 76 which has a photo transistor 78 disposed on the frontal face thereof. The photo transistor 78 is part of a communications system that allows the synchronization signals to be transmitted to the glasses 70.
Housing 80 is disposed on one side of the glasses 70 for supporting the localized speaker 58. A housing 82 is disposed on the opposite side of the glasses 70 for supporting the localized speaker 60. The housings 80 and 82 provide the proper acoustic termination for the speakers 58 and 60, such that the frequency response thereof is optimized. The speakers 58 and 60 are typically fabricated from a dynamic loudspeaker, which is conventionally available for use in stereo headphones.
Referring now to FIG. 6, there is illustrated a side view of the housing 82 and the localized speaker 60. The localized speaker 60, as described above, is disposed such that it is proximate to the side of the head in the area of the zygomatic arch. It is directed rearward toward the pinna 68 of the left ear of the listener 26 with the sound emitted therefrom being picked up by the pinna 68 and the ear canal of the left ear of the listener 26.
Referring now to FIG. 7, there is illustrated a detailed view of the housing 82 and the speaker 60. The housing 82 is slightly widened at the mounting point for the localized speaker 60, which, as described above, is a small dynamic loudspeaker. A wire 84 is provided which is disposed through the housing 82 up to the control circuitry in the housing 76. Alternatively, the wire 84 can go to a separate control/driving circuit that is external to the housing 82 and the glasses 70. The housing 82 is fabricated such that it has a cavity disposed therein at the rear of the localized speaker 60. The size of this cavity is experimentally determined and is a function of the particular brand of dynamic loudspeaker utilized for the localized speakers 58 and 60. This cavity is determined by measuring the response of the particular dynamic loudspeaker with a variable cavity disposed on the rear side thereof. This cavity is varied until an acceptable response is achieved.
Referring now to FIG. 8, there is illustrated a schematic block diagram of the system for driving the localized speakers 58 and 60 and also the low frequency speaker 52. The binaural recording system typically provides an output from a tape recording, which is played back and output from a binaural source 90 to provide left and right signals on lines 92 and 94. These are input to a 4×4 circuit 96 that outputs left and right signals on lines 98 and 100 for localized speakers 58 and 60, and also a summed signal on a line 102, which comprises the sum of both the left and right signals. The 4×4 circuit 96 is manufactured by OXMOOR CORPORATION as a Buffer Amplifier and is operable to receive up to four inputs and provide up to four outputs as any combination of the four inputs or as the buffered form of the inputs. The signal line 102 is output to a crossover circuit 112 which is essentially a low pass filter. This rejects all signals above approximately 250 Hz. The crossover circuit 112 is typical of Part No. AC 22, which is a stereo two-way crossover, manufactured by RANE CORPORATION. The output of the crossover 112 is input to a digital control amplifier (DCA) 108 to control the signal level. This is controlled by volume level control 110. The DCA 108 is typical of Part No. DCA-2, manufactured by OXMOOR CORPORATION. The output of the DCA 108 is input to an amplifier 114 which drives the speaker 52 with the low frequency signals. The amplifier 114 is typical of Part No. 800X, manufactured by SONICS ASSOCIATES,INCORPORATED.
The left and right signals on lines 98 and 100 from the 4×4 circuit 96 are input to a delay circuit 106, which is typical of Part No. DN775, which is a Stereo Mastering Digital Delay Line, manufactured by KLARK-TEKNIK ELECTRONICS INC. The outputs of the delay circuit 106 are input to a high pass filter 118 to reject all frequencies lower than 250 Hz. The high pass filter 118 is identical to the part utilized for the crossover circuit 112. The outputs of filter 118 are input to a headphone mixer 120 to provide separate signals on a multiplicity of lines 122, each set of lines comprising a left and a right line for an associated set of localized speakers 58 and 60 for listeners 26. This is typical of Part No. HC-6, which is a headphone console, manufactured by RANE CORPORATION. The lines 122 are routed to particular listeners' localized speakers 58 and 60.
Referring now to FIG. 9, there is illustrated a detailed schematic diagram of the circuit for driving the headphones. Line 98 is input through delay 106, and high pass filter 118 to the wiper of a volume control 124, the output of which is input to the positive input of an operational amplifier (op amp) 126. The output of op amp 126 is connected to a node 128 which is also connected to the base of both an NPN transistor 130 and a PNP transistor 132. Transistors 130 and 132 are configured in a push-pull configuration with the emitters thereof tied together and to an output terminal 134. The collector of transistor 130 is connected to a positive supply and the collector of transistor 132 is connected to a negative supply. The emitters of transistors 130 and 132 are also connected through a resistor 136 to the node 128. The negative input of the op amp 126 is connected through a resistor 138 to ground and also through a feedback resistor 140 to the output terminal 134.
An op amp 142 is provided with the positive input thereof connected to the output of volume control 125. The wiper of volume control 125 is connected through delay 106 and the filter 118. Op amp 142 is configured similar to op amp 126 with an associated NPN transistor 144 and PNP transistor 146, configured similar to transistors 130 and 132. A feedback resistor 148 is provided, similar to the resistor 140, with feedback resistor 148 connected to the negative input of op amp 142 and an output terminal 150. A resistor 152 is connected to the negative input of op amp 142 and ground. The volume controls 124 and 125 provide individual volume control by the listener 26.
Line 98 is also illustrated as connected through a summing resistor 156 to a summing node 158. Similarly, the line 100 is connected through a summing resistor 160 to the summing node 158. The summing node 158 is connected to the negative input of an op amp 162, the positive input of which is connected to ground through a resistor 164. The negative input of op amp 162 is connected to the output thereof through a feedback resistor 166. Op amp 162 is configured for unity gain at the first stage. The output of op amp 162 is connected through a resistor 170 to a negative input of an op amp 172. The negative input of op amp 172 is also connected to the output thereof through a resistor 174. The positive input of op amp 172 is connected to ground through a resistor 176. Op amp 172 is configured as a unity gain inverting amplifier. The output of op amp 172 is connected to an output terminal 178 to provide the sum of the left and right channels. The op amps 162 and 172 provide the function of the summing portion of 4×4 circuit 96, and are provided by way of illustration only.
Referring now to FIG. 10, there is illustrated a block diagram of an alternate method for transmitting the left and right signals to the localized speakers 58 and 60. The binaural source has electronic signals modulated onto a carrier by a modulator 180, the carrier then transmitted by transmitter 182 over a data link 184. The data link 184 is comprised of an infrared data link that has an infrared transmitting diode 185 disposed on the transmitter 182. A receiver 186 is provided with a receiver Light Emitting Diode 188 that receives the transmitted carrier from the diode 185. The output of the receiver 186 is demodulated by a demodulator 190 and this provides a left and right signal for input to the conditioning circuit 44.
In summary, there has been provided a multi-dimensional sound reproduction system. The system is comprised of two localized speakers which are supported in a substantially fixed relationship with respect to the head of a listener. The localized speakers are disposed proximate to the ear in such a position that they do not disturb the natural response of the ear, and sufficiently close to the head such that the cross-talk between each of the speakers and the opposite ear is minimized. Low frequency sound that does not contain important localization cues is filtered from the original binaural recording, and this is transmitted to the listener by an external speaker.
Although the preferred embodiment has been described in detail, it should be understood that various changes, substitutions and alterations can be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (17)

What is claimed is:
1. A multi-dimensional sound reproduction system for reproducing binaural audio signals having first and second channels, comprising:
a binaural audio signal source for generating first and second channels of binaural audio signals associated with the right and left ears, respectively, of a listener;
a first localized speaker for outputting as binaural sound the binaural audio signal associated with one ear of the listener;
a second localized speaker for outputting as binaural sound the binaural audio signal associated with the other ear of the listener; and
a support for supporting said first and second localized speakers in a substantially fixed position on opposite sides of the head of the listener and proximate to the zygomatic arch of the listener for substantially all positions of the head of the listener, and directed rearward toward the pinna of the left and right ears of the listener for substantially all positions of the head of the listener such that each of said first and second localized speakers does not substantially disturb the natural response of the ears of the listener relative to the binaural sound output by said first and second localized speakers, the disposition of said first and second localized speakers minimizing cross-talk between each of said first and second localized speakers and the ear on the respective opposite side of the head of the listener.
2. The sound reproduction system of claim 1 and further comprising a display device for outputting visual cues to the listener which, in conjunction with the audio signals, enhances the listener's ability to localize binaural sound reproduced by said first and second localized speakers.
3. The sound reproduction system of claim 1 and further comprising:
at least one external speaker disposed away from the listener in a fixed position relative to the listener;
a filter circuit for extracting a predetermined portion of the frequency spectrum of at least one of the first and second channels of the audio signals, which predetermined portion is not adaptable to reproducing binaural recordings; and
a mixing circuit for outputting the extracted portion of the frequency spectrum from the at least one of the first and second channels of the audio signals to drive said external speaker.
4. The sound reproduction system of claim 3 wherein said filter circuit is operable to extract the predetermined portion of the frequency spectrum from both of the first and second channels of the audio signals, and said mixer is operable to combine the extracted portion of the frequency spectrum of the first and second channels of the audio signals into a monaural signal for output on said external speaker.
5. The sound reproduction system of claim 3 wherein the portion of the frequency spectrum of the first and second channels of the audio signals extracted by said filter circuit comprise the low frequency end of the frequency spectrum of the first and second channels of the audio signals.
6. The sound reproduction system of claim 1 wherein the binaural audio signal generates the first and second channels of the binaural audio signals on first and second outputs and further comprising:
a communication link for connecting the first and second outputs of said binaural audio signal source to said first and second localized speakers.
7. The sound reproduction system of claim 6 wherein said communication link comprises a wireless communication link.
8. A multi-dimensional sound reproduction system for reproducing binaural audio signals having first and second channels, comprising:
a binaural audio signal source for generating first and second channels of binaural audio signals associated with the right and left ears, respectively, of a listener;
a first localized speaker for outputting as binaural sound the binaural audio signal associated with one ear of the listener;
a second localized speaker for outputting as binaural sound the binaural audio signal associated with the other ear of the listener;
a support member for being supported on the head of the listener; and
first and second speaker housings secured to said support member, each of said first and second speaker housings supporting said first and second localized speakers, respectively, in a position wherein said first and second localized speakers are disposed proximate to and away from the associated one of the left and right ears of the listener;
wherein said first and second speaker housings secure and orient said associated first and second localized speakers, respectively, such that they are directed rearward toward the associated one of the pinnas of the associated one of the left and right ears of the listener and slightly forward thereof, such that each of said first and second localized speakers does not substantially disturb the natural response of the ears of the listener relative to the binaural sound output by said first and second localized speakers.
9. The sound reproduction system of claim 8 wherein said first and second localized speakers are supported by said associated first and second speaker housings, respectively, such that they are disposed proximate to the zygomatic arch of the listener on the associated side of the listener's head.
10. The sound reproduction system of claim 8 wherein each of said first and second speaker housings includes a cavity for being disposed about the rear of said associated first and second localized speakers to provide the proper acoustic termination for said associated first and second localized speakers.
11. A method for reproducing binaural audio signals having first and second channels, comprising the steps of:
generating the first and second channels of binaural audio signals associated with the left and right ears of a listener, respectively;
disposing a first localized speaker proximate to the zygomatic arch of one of the left and right ears of the listener for substantially all positions of the head of the listener, and directed rearward toward the pinna of the one of the left and right ears of the listener for substantially all positions of the head of the listener, and in such a position that the first localized speaker does not substantially disturb the natural frequency response of the ears of the listener relative to the binaural sound output by the first localized speaker, the first localized speaker being sufficiently close to the head, such that cross-talk between the first localized speaker and the ear of the listener on the opposite side of the head is substantially minimized;
disposing a second localized speaker on the opposite side of the head from the first localized speaker and proximate to the zygomatic arch of the other of the left and right ears of the listener for substantially all positions of the head of the listener, and directed rearward toward the pinna of the other of the left and right ears of the listener for substantially all positions of the head of the listener, and in such a position that the second localized speaker does not substantially disturb the natural frequency response of the ears of the listener relative to the binaural sound output by the second localized speaker, the second localized speaker being sufficiently close to the head such that cross-talk between the second localized speaker and the ear on the opposite side of the head is substantially minimized;
inputting the first channel of the audio signal to the first localized speaker and outputting binaural sound therefrom;
inputting the second channel of the audio signal to the second localized speaker and outputting binaural sound therefrom; and
supporting the first and second localized speakers in their respective position such that the relative positions are substantially fixed relative to the head of the listener and for substantially all positions of the head of the listener.
12. The method of claim 11 and further comprising:
extracting a predetermined portion of the frequency spectrum from at least one of the first and second channels of the binaural audio signals, which predetermined portion is not adaptable to reproducing binaural recordings;
providing an external speaker that is in a fixed position relative to the listener and disposed away from the listener; and
outputting the extracted portion of the frequency spectrum of the first or second channel of the binaural audio signals to the speaker.
13. The method of claim 12 wherein the step of extracting is operable to extract the predetermined portion of the frequency spectrum from both the first and second channels of the binaural audio signals.
14. The method of claim 12 wherein the extracted portion comprises the lower end of the frequency spectrum that extends from a predetermined frequency point downward in frequency.
15. The method of claim 11 and further comprising outputting visual cues to the listener which, in conjunction with the binaural audio signals, enhance the listener's ability to integrate the visual and auditory cues.
16. The method of claim 11 and further comprising:
generating the binaural audio signals on the first and second channels at a point remote from the listener and not connected thereto; and
transmitting the binaural audio signals over a communication link to the first and second localized speakers.
17. The method of claim 16 wherein the communication link is a wireless communication link.
US07/819,625 1990-09-12 1992-01-09 Multi-dimensional reproduction system Expired - Lifetime US5272757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/819,625 US5272757A (en) 1990-09-12 1992-01-09 Multi-dimensional reproduction system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US58146890A 1990-09-12 1990-09-12
US07/819,625 US5272757A (en) 1990-09-12 1992-01-09 Multi-dimensional reproduction system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US58146890A Continuation 1990-09-12 1990-09-12

Publications (1)

Publication Number Publication Date
US5272757A true US5272757A (en) 1993-12-21

Family

ID=27078338

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/819,625 Expired - Lifetime US5272757A (en) 1990-09-12 1992-01-09 Multi-dimensional reproduction system

Country Status (1)

Country Link
US (1) US5272757A (en)

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633993A (en) * 1993-02-10 1997-05-27 The Walt Disney Company Method and apparatus for providing a virtual world sound system
US5841879A (en) * 1996-11-21 1998-11-24 Sonics Associates, Inc. Virtually positioned head mounted surround sound system
US6038330A (en) * 1998-02-20 2000-03-14 Meucci, Jr.; Robert James Virtual sound headset and method for simulating spatial sound
US6144747A (en) * 1997-04-02 2000-11-07 Sonics Associates, Inc. Head mounted surround sound system
US6178245B1 (en) * 2000-04-12 2001-01-23 National Semiconductor Corporation Audio signal generator to emulate three-dimensional audio signals
US20030081115A1 (en) * 1996-02-08 2003-05-01 James E. Curry Spatial sound conference system and apparatus
US6647119B1 (en) * 1998-06-29 2003-11-11 Microsoft Corporation Spacialization of audio with visual cues
US6879952B2 (en) 2000-04-26 2005-04-12 Microsoft Corporation Sound source separation using convolutional mixing and a priori sound source knowledge
US6961439B2 (en) 2001-09-26 2005-11-01 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for producing spatialized audio signals
US20060056639A1 (en) * 2001-09-26 2006-03-16 Government Of The United States, As Represented By The Secretary Of The Navy Method and apparatus for producing spatialized audio signals
US7133730B1 (en) * 1999-06-15 2006-11-07 Yamaha Corporation Audio apparatus, controller, audio system, and method of controlling audio apparatus
US20060262939A1 (en) * 2003-11-06 2006-11-23 Herbert Buchner Apparatus and Method for Processing an Input Signal
US7668325B2 (en) 2005-05-03 2010-02-23 Earlens Corporation Hearing system having an open chamber for housing components and reducing the occlusion effect
US7867160B2 (en) 2004-10-12 2011-01-11 Earlens Corporation Systems and methods for photo-mechanical hearing transduction
US8295523B2 (en) 2007-10-04 2012-10-23 SoundBeam LLC Energy delivery and microphone placement methods for improved comfort in an open canal hearing aid
US8396239B2 (en) 2008-06-17 2013-03-12 Earlens Corporation Optical electro-mechanical hearing devices with combined power and signal architectures
US8401214B2 (en) 2009-06-18 2013-03-19 Earlens Corporation Eardrum implantable devices for hearing systems and methods
US8401212B2 (en) 2007-10-12 2013-03-19 Earlens Corporation Multifunction system and method for integrated hearing and communication with noise cancellation and feedback management
JP2013247477A (en) * 2012-05-24 2013-12-09 Canon Inc Sound reproduction device and sound reproduction method
US8715152B2 (en) 2008-06-17 2014-05-06 Earlens Corporation Optical electro-mechanical hearing devices with separate power and signal components
US8715154B2 (en) 2009-06-24 2014-05-06 Earlens Corporation Optically coupled cochlear actuator systems and methods
US8715153B2 (en) 2009-06-22 2014-05-06 Earlens Corporation Optically coupled bone conduction systems and methods
US8761431B1 (en) 2013-08-15 2014-06-24 Joelise, LLC Adjustable headphones
US8824715B2 (en) 2008-06-17 2014-09-02 Earlens Corporation Optical electro-mechanical hearing devices with combined power and signal architectures
US8845705B2 (en) 2009-06-24 2014-09-30 Earlens Corporation Optical cochlear stimulation devices and methods
US9055379B2 (en) 2009-06-05 2015-06-09 Earlens Corporation Optically coupled acoustic middle ear implant systems and methods
US9107023B2 (en) 2011-03-18 2015-08-11 Dolby Laboratories Licensing Corporation N surround
US9392377B2 (en) 2010-12-20 2016-07-12 Earlens Corporation Anatomically customized ear canal hearing apparatus
US20160212722A1 (en) 2003-07-28 2016-07-21 Sonos, Inc Obtaining Content from Remote Source for Playback
US9544707B2 (en) 2014-02-06 2017-01-10 Sonos, Inc. Audio output balancing
US9544700B2 (en) 2009-06-15 2017-01-10 Earlens Corporation Optically coupled active ossicular replacement prosthesis
US9549258B2 (en) 2014-02-06 2017-01-17 Sonos, Inc. Audio output balancing
US9681223B2 (en) 2011-04-18 2017-06-13 Sonos, Inc. Smart line-in processing in a group
US9729115B2 (en) 2012-04-27 2017-08-08 Sonos, Inc. Intelligently increasing the sound level of player
US9734242B2 (en) 2003-07-28 2017-08-15 Sonos, Inc. Systems and methods for synchronizing operations among a plurality of independently clocked digital data processing devices that independently source digital data
US9749758B2 (en) 2008-09-22 2017-08-29 Earlens Corporation Devices and methods for hearing
US9748647B2 (en) 2011-07-19 2017-08-29 Sonos, Inc. Frequency routing based on orientation
US9749760B2 (en) 2006-09-12 2017-08-29 Sonos, Inc. Updating zone configuration in a multi-zone media system
US9756424B2 (en) 2006-09-12 2017-09-05 Sonos, Inc. Multi-channel pairing in a media system
US9766853B2 (en) 2006-09-12 2017-09-19 Sonos, Inc. Pair volume control
US9787550B2 (en) 2004-06-05 2017-10-10 Sonos, Inc. Establishing a secure wireless network with a minimum human intervention
US9826299B1 (en) * 2016-08-22 2017-11-21 Osterhout Group, Inc. Speaker systems for head-worn computer systems
US9880441B1 (en) 2016-09-08 2018-01-30 Osterhout Group, Inc. Electrochromic systems for head-worn computer systems
US9924276B2 (en) 2014-11-26 2018-03-20 Earlens Corporation Adjustable venting for hearing instruments
US9930458B2 (en) 2014-07-14 2018-03-27 Earlens Corporation Sliding bias and peak limiting for optical hearing devices
US9939646B2 (en) 2014-01-24 2018-04-10 Osterhout Group, Inc. Stray light suppression for head worn computing
US9977561B2 (en) 2004-04-01 2018-05-22 Sonos, Inc. Systems, methods, apparatus, and articles of manufacture to provide guest access
US10031716B2 (en) 2013-09-30 2018-07-24 Sonos, Inc. Enabling components of a playback device
US10034103B2 (en) 2014-03-18 2018-07-24 Earlens Corporation High fidelity and reduced feedback contact hearing apparatus and methods
US10061379B2 (en) 2004-05-15 2018-08-28 Sonos, Inc. Power increase based on packet type
US10073266B2 (en) 2014-01-21 2018-09-11 Osterhout Group, Inc. See-through computer display systems
EP3373594A1 (en) * 2017-03-05 2018-09-12 Oculus VR, LLC Strap arm of head-mounted display with integrated audio port
US10178483B2 (en) 2015-12-30 2019-01-08 Earlens Corporation Light based hearing systems, apparatus, and methods
US10194225B2 (en) 2017-03-05 2019-01-29 Facebook Technologies, Llc Strap arm of head-mounted display with integrated audio port
US10286215B2 (en) 2009-06-18 2019-05-14 Earlens Corporation Optically coupled cochlear implant systems and methods
US10292601B2 (en) 2015-10-02 2019-05-21 Earlens Corporation Wearable customized ear canal apparatus
US10306364B2 (en) 2012-09-28 2019-05-28 Sonos, Inc. Audio processing adjustments for playback devices based on determined characteristics of audio content
US10359987B2 (en) 2003-07-28 2019-07-23 Sonos, Inc. Adjusting volume levels
US20190238971A1 (en) 2018-01-31 2019-08-01 Bose Corporation Eyeglass Headphones
US10492010B2 (en) 2015-12-30 2019-11-26 Earlens Corporations Damping in contact hearing systems
US10555100B2 (en) 2009-06-22 2020-02-04 Earlens Corporation Round window coupled hearing systems and methods
US10578875B1 (en) * 2018-05-30 2020-03-03 Facebook Technologies, Llc Head-mounted display with integrated speaker enclosure
US10613817B2 (en) 2003-07-28 2020-04-07 Sonos, Inc. Method and apparatus for displaying a list of tracks scheduled for playback by a synchrony group
US10698223B2 (en) 2014-01-21 2020-06-30 Mentor Acquisition One, Llc See-through computer display systems
US10705339B2 (en) 2014-01-21 2020-07-07 Mentor Acquisition One, Llc Suppression of stray light in head worn computing
US11102594B2 (en) 2016-09-09 2021-08-24 Earlens Corporation Contact hearing systems, apparatus and methods
US11106425B2 (en) 2003-07-28 2021-08-31 Sonos, Inc. Synchronizing operations among a plurality of independently clocked digital data processing devices
US11106424B2 (en) 2003-07-28 2021-08-31 Sonos, Inc. Synchronizing operations among a plurality of independently clocked digital data processing devices
US11166114B2 (en) 2016-11-15 2021-11-02 Earlens Corporation Impression procedure
US11212626B2 (en) 2018-04-09 2021-12-28 Earlens Corporation Dynamic filter
US11265652B2 (en) 2011-01-25 2022-03-01 Sonos, Inc. Playback device pairing
US11294618B2 (en) 2003-07-28 2022-04-05 Sonos, Inc. Media player system
US11350226B2 (en) 2015-12-30 2022-05-31 Earlens Corporation Charging protocol for rechargeable hearing systems
US11363402B2 (en) 2019-12-30 2022-06-14 Comhear Inc. Method for providing a spatialized soundfield
US11403062B2 (en) 2015-06-11 2022-08-02 Sonos, Inc. Multiple groupings in a playback system
US11429343B2 (en) 2011-01-25 2022-08-30 Sonos, Inc. Stereo playback configuration and control
US11481182B2 (en) 2016-10-17 2022-10-25 Sonos, Inc. Room association based on name
US11487110B2 (en) 2014-01-21 2022-11-01 Mentor Acquisition One, Llc Eye imaging in head worn computing
US11516603B2 (en) 2018-03-07 2022-11-29 Earlens Corporation Contact hearing device and retention structure materials
US11650784B2 (en) 2003-07-28 2023-05-16 Sonos, Inc. Adjusting volume levels
US11894975B2 (en) 2004-06-05 2024-02-06 Sonos, Inc. Playback device connection
US11956622B2 (en) 2022-06-13 2024-04-09 Comhear Inc. Method for providing a spatialized soundfield

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906160A (en) * 1968-03-19 1975-09-16 Matsushita Electric Ind Co Ltd Headphone type FM stereo receiver
US4005278A (en) * 1974-09-16 1977-01-25 Akg Akustische U. Kino-Gerate Gesellschaft M.B.H. Headphone
JPS5323601A (en) * 1976-08-17 1978-03-04 Victor Co Of Japan Ltd Headphone for 4 channels
US4110583A (en) * 1975-02-03 1978-08-29 Wilhelm Lepper Earphone construction
JPS5577295A (en) * 1978-12-06 1980-06-10 Matsushita Electric Ind Co Ltd Acoustic reproducing device
JPS5590197A (en) * 1978-12-27 1980-07-08 Matsushita Electric Ind Co Ltd Headphone unit
JPS5647197A (en) * 1979-09-26 1981-04-28 Olympus Optical Co Ltd Car-mounted speaker
DE3214080A1 (en) * 1982-04-16 1983-10-27 Institut für Rundfunktechnik GmbH, 8000 München Device for reproduction of stereophonic, in particular head-related signals
US4574391A (en) * 1983-08-22 1986-03-04 Funai Electric Company Limited Stereophonic sound producing apparatus for a game machine
US4641345A (en) * 1983-10-28 1987-02-03 Pioneer Electronic Corporation Body-sensible acoustic device
EP0284286A2 (en) * 1987-03-25 1988-09-28 Bose Corporation Stereo electroacoustical transducing
US4845751A (en) * 1988-03-16 1989-07-04 Schwab Brian H Wireless stereo headphone
US4888804A (en) * 1988-05-12 1989-12-19 Gefvert Herbert I Sound reproduction system
US4952024A (en) * 1986-08-29 1990-08-28 Gale Thomas S Three-dimensional sight and sound reproduction apparatus for individual use
US4967268A (en) * 1989-07-31 1990-10-30 Stereographics Liquid crystal shutter system for stereoscopic and other applications
US4993074A (en) * 1988-04-13 1991-02-12 Carroll Robert J Earphone spacer
EP0421681A2 (en) * 1989-09-30 1991-04-10 Sony Corporation Electro-acoustic transducer and sound reproducing system
US5034983A (en) * 1987-10-15 1991-07-23 Cooper Duane H Head diffraction compensated stereo system

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906160A (en) * 1968-03-19 1975-09-16 Matsushita Electric Ind Co Ltd Headphone type FM stereo receiver
US4005278A (en) * 1974-09-16 1977-01-25 Akg Akustische U. Kino-Gerate Gesellschaft M.B.H. Headphone
US4110583A (en) * 1975-02-03 1978-08-29 Wilhelm Lepper Earphone construction
JPS5323601A (en) * 1976-08-17 1978-03-04 Victor Co Of Japan Ltd Headphone for 4 channels
JPS5577295A (en) * 1978-12-06 1980-06-10 Matsushita Electric Ind Co Ltd Acoustic reproducing device
JPS5590197A (en) * 1978-12-27 1980-07-08 Matsushita Electric Ind Co Ltd Headphone unit
JPS5647197A (en) * 1979-09-26 1981-04-28 Olympus Optical Co Ltd Car-mounted speaker
DE3214080A1 (en) * 1982-04-16 1983-10-27 Institut für Rundfunktechnik GmbH, 8000 München Device for reproduction of stereophonic, in particular head-related signals
US4574391A (en) * 1983-08-22 1986-03-04 Funai Electric Company Limited Stereophonic sound producing apparatus for a game machine
US4641345A (en) * 1983-10-28 1987-02-03 Pioneer Electronic Corporation Body-sensible acoustic device
US4952024A (en) * 1986-08-29 1990-08-28 Gale Thomas S Three-dimensional sight and sound reproduction apparatus for individual use
EP0284286A2 (en) * 1987-03-25 1988-09-28 Bose Corporation Stereo electroacoustical transducing
US5034983A (en) * 1987-10-15 1991-07-23 Cooper Duane H Head diffraction compensated stereo system
US4845751A (en) * 1988-03-16 1989-07-04 Schwab Brian H Wireless stereo headphone
US4993074A (en) * 1988-04-13 1991-02-12 Carroll Robert J Earphone spacer
US4888804A (en) * 1988-05-12 1989-12-19 Gefvert Herbert I Sound reproduction system
US4967268A (en) * 1989-07-31 1990-10-30 Stereographics Liquid crystal shutter system for stereoscopic and other applications
EP0421681A2 (en) * 1989-09-30 1991-04-10 Sony Corporation Electro-acoustic transducer and sound reproducing system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Lokalisierung von Schallereignissen--biphones/quadro-biphones Verfahren" by Toshiy Inoue, Funkschau, vol. 49, No. 10, May 1977, pp. 57-58; 71-72.
Lokalisierung von Schallereignissen biphones/quadro biphones Verfahren by Toshiy Inoue, Funkschau, vol. 49, No. 10, May 1977, pp. 57 58; 71 72. *

Cited By (251)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633993A (en) * 1993-02-10 1997-05-27 The Walt Disney Company Method and apparatus for providing a virtual world sound system
US20060133619A1 (en) * 1996-02-08 2006-06-22 Verizon Services Corp. Spatial sound conference system and method
US20030081115A1 (en) * 1996-02-08 2003-05-01 James E. Curry Spatial sound conference system and apparatus
US8170193B2 (en) 1996-02-08 2012-05-01 Verizon Services Corp. Spatial sound conference system and method
US7012630B2 (en) * 1996-02-08 2006-03-14 Verizon Services Corp. Spatial sound conference system and apparatus
US5841879A (en) * 1996-11-21 1998-11-24 Sonics Associates, Inc. Virtually positioned head mounted surround sound system
US6144747A (en) * 1997-04-02 2000-11-07 Sonics Associates, Inc. Head mounted surround sound system
US6038330A (en) * 1998-02-20 2000-03-14 Meucci, Jr.; Robert James Virtual sound headset and method for simulating spatial sound
US6647119B1 (en) * 1998-06-29 2003-11-11 Microsoft Corporation Spacialization of audio with visual cues
US7133730B1 (en) * 1999-06-15 2006-11-07 Yamaha Corporation Audio apparatus, controller, audio system, and method of controlling audio apparatus
US6178245B1 (en) * 2000-04-12 2001-01-23 National Semiconductor Corporation Audio signal generator to emulate three-dimensional audio signals
US20050091042A1 (en) * 2000-04-26 2005-04-28 Microsoft Corporation Sound source separation using convolutional mixing and a priori sound source knowledge
US7047189B2 (en) 2000-04-26 2006-05-16 Microsoft Corporation Sound source separation using convolutional mixing and a priori sound source knowledge
US6879952B2 (en) 2000-04-26 2005-04-12 Microsoft Corporation Sound source separation using convolutional mixing and a priori sound source knowledge
US20060056639A1 (en) * 2001-09-26 2006-03-16 Government Of The United States, As Represented By The Secretary Of The Navy Method and apparatus for producing spatialized audio signals
US6961439B2 (en) 2001-09-26 2005-11-01 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for producing spatialized audio signals
US7415123B2 (en) 2001-09-26 2008-08-19 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for producing spatialized audio signals
US9733891B2 (en) 2003-07-28 2017-08-15 Sonos, Inc. Obtaining content from local and remote sources for playback
US10754613B2 (en) 2003-07-28 2020-08-25 Sonos, Inc. Audio master selection
US10185540B2 (en) 2003-07-28 2019-01-22 Sonos, Inc. Playback device
US10175932B2 (en) 2003-07-28 2019-01-08 Sonos, Inc. Obtaining content from direct source and remote source
US10175930B2 (en) 2003-07-28 2019-01-08 Sonos, Inc. Method and apparatus for playback by a synchrony group
US10157034B2 (en) 2003-07-28 2018-12-18 Sonos, Inc. Clock rate adjustment in a multi-zone system
US10157035B2 (en) 2003-07-28 2018-12-18 Sonos, Inc. Switching between a directly connected and a networked audio source
US10157033B2 (en) 2003-07-28 2018-12-18 Sonos, Inc. Method and apparatus for switching between a directly connected and a networked audio source
US11650784B2 (en) 2003-07-28 2023-05-16 Sonos, Inc. Adjusting volume levels
US10209953B2 (en) 2003-07-28 2019-02-19 Sonos, Inc. Playback device
US11635935B2 (en) 2003-07-28 2023-04-25 Sonos, Inc. Adjusting volume levels
US11625221B2 (en) 2003-07-28 2023-04-11 Sonos, Inc Synchronizing playback by media playback devices
US11556305B2 (en) 2003-07-28 2023-01-17 Sonos, Inc. Synchronizing playback by media playback devices
US11550539B2 (en) 2003-07-28 2023-01-10 Sonos, Inc. Playback device
US11550536B2 (en) 2003-07-28 2023-01-10 Sonos, Inc. Adjusting volume levels
US10146498B2 (en) 2003-07-28 2018-12-04 Sonos, Inc. Disengaging and engaging zone players
US10140085B2 (en) 2003-07-28 2018-11-27 Sonos, Inc. Playback device operating states
US11301207B1 (en) 2003-07-28 2022-04-12 Sonos, Inc. Playback device
US11294618B2 (en) 2003-07-28 2022-04-05 Sonos, Inc. Media player system
US11200025B2 (en) 2003-07-28 2021-12-14 Sonos, Inc. Playback device
US10133536B2 (en) 2003-07-28 2018-11-20 Sonos, Inc. Method and apparatus for adjusting volume in a synchrony group
US10216473B2 (en) 2003-07-28 2019-02-26 Sonos, Inc. Playback device synchrony group states
US10120638B2 (en) 2003-07-28 2018-11-06 Sonos, Inc. Synchronizing operations among a plurality of independently clocked digital data processing devices
US11132170B2 (en) 2003-07-28 2021-09-28 Sonos, Inc. Adjusting volume levels
US11106424B2 (en) 2003-07-28 2021-08-31 Sonos, Inc. Synchronizing operations among a plurality of independently clocked digital data processing devices
US20160212722A1 (en) 2003-07-28 2016-07-21 Sonos, Inc Obtaining Content from Remote Source for Playback
US11106425B2 (en) 2003-07-28 2021-08-31 Sonos, Inc. Synchronizing operations among a plurality of independently clocked digital data processing devices
US11080001B2 (en) 2003-07-28 2021-08-03 Sonos, Inc. Concurrent transmission and playback of audio information
US10228902B2 (en) 2003-07-28 2019-03-12 Sonos, Inc. Playback device
US10282164B2 (en) 2003-07-28 2019-05-07 Sonos, Inc. Synchronizing operations among a plurality of independently clocked digital data processing devices
US9658820B2 (en) 2003-07-28 2017-05-23 Sonos, Inc. Resuming synchronous playback of content
US10289380B2 (en) 2003-07-28 2019-05-14 Sonos, Inc. Playback device
US10970034B2 (en) 2003-07-28 2021-04-06 Sonos, Inc. Audio distributor selection
US9727304B2 (en) 2003-07-28 2017-08-08 Sonos, Inc. Obtaining content from direct source and other source
US10963215B2 (en) 2003-07-28 2021-03-30 Sonos, Inc. Media playback device and system
US9727303B2 (en) 2003-07-28 2017-08-08 Sonos, Inc. Resuming synchronous playback of content
US9727302B2 (en) 2003-07-28 2017-08-08 Sonos, Inc. Obtaining content from remote source for playback
US10185541B2 (en) 2003-07-28 2019-01-22 Sonos, Inc. Playback device
US9733892B2 (en) 2003-07-28 2017-08-15 Sonos, Inc. Obtaining content based on control by multiple controllers
US9733893B2 (en) 2003-07-28 2017-08-15 Sonos, Inc. Obtaining and transmitting audio
US9734242B2 (en) 2003-07-28 2017-08-15 Sonos, Inc. Systems and methods for synchronizing operations among a plurality of independently clocked digital data processing devices that independently source digital data
US9740453B2 (en) 2003-07-28 2017-08-22 Sonos, Inc. Obtaining content from multiple remote sources for playback
US10031715B2 (en) 2003-07-28 2018-07-24 Sonos, Inc. Method and apparatus for dynamic master device switching in a synchrony group
US10956119B2 (en) 2003-07-28 2021-03-23 Sonos, Inc. Playback device
US10949163B2 (en) 2003-07-28 2021-03-16 Sonos, Inc. Playback device
US10296283B2 (en) 2003-07-28 2019-05-21 Sonos, Inc. Directing synchronous playback between zone players
US10303432B2 (en) 2003-07-28 2019-05-28 Sonos, Inc Playback device
US10754612B2 (en) 2003-07-28 2020-08-25 Sonos, Inc. Playback device volume control
US9778897B2 (en) 2003-07-28 2017-10-03 Sonos, Inc. Ceasing playback among a plurality of playback devices
US9778900B2 (en) 2003-07-28 2017-10-03 Sonos, Inc. Causing a device to join a synchrony group
US10747496B2 (en) 2003-07-28 2020-08-18 Sonos, Inc. Playback device
US9778898B2 (en) 2003-07-28 2017-10-03 Sonos, Inc. Resynchronization of playback devices
US10303431B2 (en) 2003-07-28 2019-05-28 Sonos, Inc. Synchronizing operations among a plurality of independently clocked digital data processing devices
US10613817B2 (en) 2003-07-28 2020-04-07 Sonos, Inc. Method and apparatus for displaying a list of tracks scheduled for playback by a synchrony group
US10545723B2 (en) 2003-07-28 2020-01-28 Sonos, Inc. Playback device
US10324684B2 (en) 2003-07-28 2019-06-18 Sonos, Inc. Playback device synchrony group states
US10445054B2 (en) 2003-07-28 2019-10-15 Sonos, Inc. Method and apparatus for switching between a directly connected and a networked audio source
US10359987B2 (en) 2003-07-28 2019-07-23 Sonos, Inc. Adjusting volume levels
US10365884B2 (en) 2003-07-28 2019-07-30 Sonos, Inc. Group volume control
US10387102B2 (en) 2003-07-28 2019-08-20 Sonos, Inc. Playback device grouping
US8218774B2 (en) * 2003-11-06 2012-07-10 Herbert Buchner Apparatus and method for processing continuous wave fields propagated in a room
US20060262939A1 (en) * 2003-11-06 2006-11-23 Herbert Buchner Apparatus and Method for Processing an Input Signal
US9977561B2 (en) 2004-04-01 2018-05-22 Sonos, Inc. Systems, methods, apparatus, and articles of manufacture to provide guest access
US11907610B2 (en) 2004-04-01 2024-02-20 Sonos, Inc. Guess access to a media playback system
US11467799B2 (en) 2004-04-01 2022-10-11 Sonos, Inc. Guest access to a media playback system
US10983750B2 (en) 2004-04-01 2021-04-20 Sonos, Inc. Guest access to a media playback system
US10303240B2 (en) 2004-05-15 2019-05-28 Sonos, Inc. Power decrease based on packet type
US10254822B2 (en) 2004-05-15 2019-04-09 Sonos, Inc. Power decrease and increase based on packet type
US10372200B2 (en) 2004-05-15 2019-08-06 Sonos, Inc. Power decrease based on packet type
US11157069B2 (en) 2004-05-15 2021-10-26 Sonos, Inc. Power control based on packet type
US10126811B2 (en) 2004-05-15 2018-11-13 Sonos, Inc. Power increase based on packet type
US11733768B2 (en) 2004-05-15 2023-08-22 Sonos, Inc. Power control based on packet type
US10228754B2 (en) 2004-05-15 2019-03-12 Sonos, Inc. Power decrease based on packet type
US10061379B2 (en) 2004-05-15 2018-08-28 Sonos, Inc. Power increase based on packet type
US10965545B2 (en) 2004-06-05 2021-03-30 Sonos, Inc. Playback device connection
US11909588B2 (en) 2004-06-05 2024-02-20 Sonos, Inc. Wireless device connection
US11025509B2 (en) 2004-06-05 2021-06-01 Sonos, Inc. Playback device connection
US10097423B2 (en) 2004-06-05 2018-10-09 Sonos, Inc. Establishing a secure wireless network with minimum human intervention
US10979310B2 (en) 2004-06-05 2021-04-13 Sonos, Inc. Playback device connection
US9787550B2 (en) 2004-06-05 2017-10-10 Sonos, Inc. Establishing a secure wireless network with a minimum human intervention
US10439896B2 (en) 2004-06-05 2019-10-08 Sonos, Inc. Playback device connection
US9866447B2 (en) 2004-06-05 2018-01-09 Sonos, Inc. Indicator on a network device
US9960969B2 (en) 2004-06-05 2018-05-01 Sonos, Inc. Playback device connection
US11456928B2 (en) 2004-06-05 2022-09-27 Sonos, Inc. Playback device connection
US10541883B2 (en) 2004-06-05 2020-01-21 Sonos, Inc. Playback device connection
US11894975B2 (en) 2004-06-05 2024-02-06 Sonos, Inc. Playback device connection
US9226083B2 (en) 2004-07-28 2015-12-29 Earlens Corporation Multifunction system and method for integrated hearing and communication with noise cancellation and feedback management
US8696541B2 (en) 2004-10-12 2014-04-15 Earlens Corporation Systems and methods for photo-mechanical hearing transduction
US7867160B2 (en) 2004-10-12 2011-01-11 Earlens Corporation Systems and methods for photo-mechanical hearing transduction
US9154891B2 (en) 2005-05-03 2015-10-06 Earlens Corporation Hearing system having improved high frequency response
US9949039B2 (en) 2005-05-03 2018-04-17 Earlens Corporation Hearing system having improved high frequency response
US7668325B2 (en) 2005-05-03 2010-02-23 Earlens Corporation Hearing system having an open chamber for housing components and reducing the occlusion effect
US9756424B2 (en) 2006-09-12 2017-09-05 Sonos, Inc. Multi-channel pairing in a media system
US10028056B2 (en) 2006-09-12 2018-07-17 Sonos, Inc. Multi-channel pairing in a media system
US9766853B2 (en) 2006-09-12 2017-09-19 Sonos, Inc. Pair volume control
US10469966B2 (en) 2006-09-12 2019-11-05 Sonos, Inc. Zone scene management
US10136218B2 (en) 2006-09-12 2018-11-20 Sonos, Inc. Playback device pairing
US9860657B2 (en) 2006-09-12 2018-01-02 Sonos, Inc. Zone configurations maintained by playback device
US10228898B2 (en) 2006-09-12 2019-03-12 Sonos, Inc. Identification of playback device and stereo pair names
US11082770B2 (en) 2006-09-12 2021-08-03 Sonos, Inc. Multi-channel pairing in a media system
US10555082B2 (en) 2006-09-12 2020-02-04 Sonos, Inc. Playback device pairing
US10897679B2 (en) 2006-09-12 2021-01-19 Sonos, Inc. Zone scene management
US10848885B2 (en) 2006-09-12 2020-11-24 Sonos, Inc. Zone scene management
US9813827B2 (en) 2006-09-12 2017-11-07 Sonos, Inc. Zone configuration based on playback selections
US10448159B2 (en) 2006-09-12 2019-10-15 Sonos, Inc. Playback device pairing
US11385858B2 (en) 2006-09-12 2022-07-12 Sonos, Inc. Predefined multi-channel listening environment
US11388532B2 (en) 2006-09-12 2022-07-12 Sonos, Inc. Zone scene activation
US10966025B2 (en) 2006-09-12 2021-03-30 Sonos, Inc. Playback device pairing
US9749760B2 (en) 2006-09-12 2017-08-29 Sonos, Inc. Updating zone configuration in a multi-zone media system
US9928026B2 (en) 2006-09-12 2018-03-27 Sonos, Inc. Making and indicating a stereo pair
US11540050B2 (en) 2006-09-12 2022-12-27 Sonos, Inc. Playback device pairing
US10306365B2 (en) 2006-09-12 2019-05-28 Sonos, Inc. Playback device pairing
US8295523B2 (en) 2007-10-04 2012-10-23 SoundBeam LLC Energy delivery and microphone placement methods for improved comfort in an open canal hearing aid
US10863286B2 (en) 2007-10-12 2020-12-08 Earlens Corporation Multifunction system and method for integrated hearing and communication with noise cancellation and feedback management
US10516950B2 (en) 2007-10-12 2019-12-24 Earlens Corporation Multifunction system and method for integrated hearing and communication with noise cancellation and feedback management
US11483665B2 (en) 2007-10-12 2022-10-25 Earlens Corporation Multifunction system and method for integrated hearing and communication with noise cancellation and feedback management
US10154352B2 (en) 2007-10-12 2018-12-11 Earlens Corporation Multifunction system and method for integrated hearing and communication with noise cancellation and feedback management
US8401212B2 (en) 2007-10-12 2013-03-19 Earlens Corporation Multifunction system and method for integrated hearing and communication with noise cancellation and feedback management
US9591409B2 (en) 2008-06-17 2017-03-07 Earlens Corporation Optical electro-mechanical hearing devices with separate power and signal components
US9961454B2 (en) 2008-06-17 2018-05-01 Earlens Corporation Optical electro-mechanical hearing devices with separate power and signal components
US8715152B2 (en) 2008-06-17 2014-05-06 Earlens Corporation Optical electro-mechanical hearing devices with separate power and signal components
US9049528B2 (en) 2008-06-17 2015-06-02 Earlens Corporation Optical electro-mechanical hearing devices with combined power and signal architectures
US11310605B2 (en) 2008-06-17 2022-04-19 Earlens Corporation Optical electro-mechanical hearing devices with separate power and signal components
US8396239B2 (en) 2008-06-17 2013-03-12 Earlens Corporation Optical electro-mechanical hearing devices with combined power and signal architectures
US8824715B2 (en) 2008-06-17 2014-09-02 Earlens Corporation Optical electro-mechanical hearing devices with combined power and signal architectures
US10516949B2 (en) 2008-06-17 2019-12-24 Earlens Corporation Optical electro-mechanical hearing devices with separate power and signal components
US9949035B2 (en) 2008-09-22 2018-04-17 Earlens Corporation Transducer devices and methods for hearing
US10511913B2 (en) 2008-09-22 2019-12-17 Earlens Corporation Devices and methods for hearing
US10516946B2 (en) 2008-09-22 2019-12-24 Earlens Corporation Devices and methods for hearing
US11057714B2 (en) 2008-09-22 2021-07-06 Earlens Corporation Devices and methods for hearing
US9749758B2 (en) 2008-09-22 2017-08-29 Earlens Corporation Devices and methods for hearing
US10743110B2 (en) 2008-09-22 2020-08-11 Earlens Corporation Devices and methods for hearing
US10237663B2 (en) 2008-09-22 2019-03-19 Earlens Corporation Devices and methods for hearing
US9055379B2 (en) 2009-06-05 2015-06-09 Earlens Corporation Optically coupled acoustic middle ear implant systems and methods
US9544700B2 (en) 2009-06-15 2017-01-10 Earlens Corporation Optically coupled active ossicular replacement prosthesis
US9277335B2 (en) 2009-06-18 2016-03-01 Earlens Corporation Eardrum implantable devices for hearing systems and methods
US8787609B2 (en) 2009-06-18 2014-07-22 Earlens Corporation Eardrum implantable devices for hearing systems and methods
US10286215B2 (en) 2009-06-18 2019-05-14 Earlens Corporation Optically coupled cochlear implant systems and methods
US8401214B2 (en) 2009-06-18 2013-03-19 Earlens Corporation Eardrum implantable devices for hearing systems and methods
US8715153B2 (en) 2009-06-22 2014-05-06 Earlens Corporation Optically coupled bone conduction systems and methods
US10555100B2 (en) 2009-06-22 2020-02-04 Earlens Corporation Round window coupled hearing systems and methods
US11323829B2 (en) 2009-06-22 2022-05-03 Earlens Corporation Round window coupled hearing systems and methods
US8845705B2 (en) 2009-06-24 2014-09-30 Earlens Corporation Optical cochlear stimulation devices and methods
US8986187B2 (en) 2009-06-24 2015-03-24 Earlens Corporation Optically coupled cochlear actuator systems and methods
US8715154B2 (en) 2009-06-24 2014-05-06 Earlens Corporation Optically coupled cochlear actuator systems and methods
US9392377B2 (en) 2010-12-20 2016-07-12 Earlens Corporation Anatomically customized ear canal hearing apparatus
US11153697B2 (en) 2010-12-20 2021-10-19 Earlens Corporation Anatomically customized ear canal hearing apparatus
US10609492B2 (en) 2010-12-20 2020-03-31 Earlens Corporation Anatomically customized ear canal hearing apparatus
US10284964B2 (en) 2010-12-20 2019-05-07 Earlens Corporation Anatomically customized ear canal hearing apparatus
US11743663B2 (en) 2010-12-20 2023-08-29 Earlens Corporation Anatomically customized ear canal hearing apparatus
US11265652B2 (en) 2011-01-25 2022-03-01 Sonos, Inc. Playback device pairing
US11429343B2 (en) 2011-01-25 2022-08-30 Sonos, Inc. Stereo playback configuration and control
US11758327B2 (en) 2011-01-25 2023-09-12 Sonos, Inc. Playback device pairing
US9107023B2 (en) 2011-03-18 2015-08-11 Dolby Laboratories Licensing Corporation N surround
US9686606B2 (en) 2011-04-18 2017-06-20 Sonos, Inc. Smart-line in processing
US9681223B2 (en) 2011-04-18 2017-06-13 Sonos, Inc. Smart line-in processing in a group
US10853023B2 (en) 2011-04-18 2020-12-01 Sonos, Inc. Networked playback device
US11531517B2 (en) 2011-04-18 2022-12-20 Sonos, Inc. Networked playback device
US10108393B2 (en) 2011-04-18 2018-10-23 Sonos, Inc. Leaving group and smart line-in processing
US9748646B2 (en) 2011-07-19 2017-08-29 Sonos, Inc. Configuration based on speaker orientation
US9748647B2 (en) 2011-07-19 2017-08-29 Sonos, Inc. Frequency routing based on orientation
US10965024B2 (en) 2011-07-19 2021-03-30 Sonos, Inc. Frequency routing based on orientation
US11444375B2 (en) 2011-07-19 2022-09-13 Sonos, Inc. Frequency routing based on orientation
US10256536B2 (en) 2011-07-19 2019-04-09 Sonos, Inc. Frequency routing based on orientation
US10063202B2 (en) 2012-04-27 2018-08-28 Sonos, Inc. Intelligently modifying the gain parameter of a playback device
US9729115B2 (en) 2012-04-27 2017-08-08 Sonos, Inc. Intelligently increasing the sound level of player
US10720896B2 (en) 2012-04-27 2020-07-21 Sonos, Inc. Intelligently modifying the gain parameter of a playback device
JP2013247477A (en) * 2012-05-24 2013-12-09 Canon Inc Sound reproduction device and sound reproduction method
US10306364B2 (en) 2012-09-28 2019-05-28 Sonos, Inc. Audio processing adjustments for playback devices based on determined characteristics of audio content
US8761431B1 (en) 2013-08-15 2014-06-24 Joelise, LLC Adjustable headphones
US10871938B2 (en) 2013-09-30 2020-12-22 Sonos, Inc. Playback device using standby mode in a media playback system
US10031716B2 (en) 2013-09-30 2018-07-24 Sonos, Inc. Enabling components of a playback device
US11816390B2 (en) 2013-09-30 2023-11-14 Sonos, Inc. Playback device using standby in a media playback system
US11619820B2 (en) 2014-01-21 2023-04-04 Mentor Acquisition One, Llc See-through computer display systems
US11796805B2 (en) 2014-01-21 2023-10-24 Mentor Acquisition One, Llc Eye imaging in head worn computing
US10698223B2 (en) 2014-01-21 2020-06-30 Mentor Acquisition One, Llc See-through computer display systems
US10705339B2 (en) 2014-01-21 2020-07-07 Mentor Acquisition One, Llc Suppression of stray light in head worn computing
US11719934B2 (en) 2014-01-21 2023-08-08 Mentor Acquisition One, Llc Suppression of stray light in head worn computing
US11947126B2 (en) 2014-01-21 2024-04-02 Mentor Acquisition One, Llc See-through computer display systems
US11487110B2 (en) 2014-01-21 2022-11-01 Mentor Acquisition One, Llc Eye imaging in head worn computing
US10073266B2 (en) 2014-01-21 2018-09-11 Osterhout Group, Inc. See-through computer display systems
US11782274B2 (en) 2014-01-24 2023-10-10 Mentor Acquisition One, Llc Stray light suppression for head worn computing
US10578874B2 (en) 2014-01-24 2020-03-03 Mentor Acquisition One, Llc Stray light suppression for head worn computing
US9939646B2 (en) 2014-01-24 2018-04-10 Osterhout Group, Inc. Stray light suppression for head worn computing
US9544707B2 (en) 2014-02-06 2017-01-10 Sonos, Inc. Audio output balancing
US9794707B2 (en) 2014-02-06 2017-10-17 Sonos, Inc. Audio output balancing
US9549258B2 (en) 2014-02-06 2017-01-17 Sonos, Inc. Audio output balancing
US9781513B2 (en) 2014-02-06 2017-10-03 Sonos, Inc. Audio output balancing
US10034103B2 (en) 2014-03-18 2018-07-24 Earlens Corporation High fidelity and reduced feedback contact hearing apparatus and methods
US11317224B2 (en) 2014-03-18 2022-04-26 Earlens Corporation High fidelity and reduced feedback contact hearing apparatus and methods
US11800303B2 (en) 2014-07-14 2023-10-24 Earlens Corporation Sliding bias and peak limiting for optical hearing devices
US11259129B2 (en) 2014-07-14 2022-02-22 Earlens Corporation Sliding bias and peak limiting for optical hearing devices
US9930458B2 (en) 2014-07-14 2018-03-27 Earlens Corporation Sliding bias and peak limiting for optical hearing devices
US10531206B2 (en) 2014-07-14 2020-01-07 Earlens Corporation Sliding bias and peak limiting for optical hearing devices
US10516951B2 (en) 2014-11-26 2019-12-24 Earlens Corporation Adjustable venting for hearing instruments
US9924276B2 (en) 2014-11-26 2018-03-20 Earlens Corporation Adjustable venting for hearing instruments
US11252516B2 (en) 2014-11-26 2022-02-15 Earlens Corporation Adjustable venting for hearing instruments
US11403062B2 (en) 2015-06-11 2022-08-02 Sonos, Inc. Multiple groupings in a playback system
US11058305B2 (en) 2015-10-02 2021-07-13 Earlens Corporation Wearable customized ear canal apparatus
US10292601B2 (en) 2015-10-02 2019-05-21 Earlens Corporation Wearable customized ear canal apparatus
US10178483B2 (en) 2015-12-30 2019-01-08 Earlens Corporation Light based hearing systems, apparatus, and methods
US10779094B2 (en) 2015-12-30 2020-09-15 Earlens Corporation Damping in contact hearing systems
US11350226B2 (en) 2015-12-30 2022-05-31 Earlens Corporation Charging protocol for rechargeable hearing systems
US11516602B2 (en) 2015-12-30 2022-11-29 Earlens Corporation Damping in contact hearing systems
US10306381B2 (en) 2015-12-30 2019-05-28 Earlens Corporation Charging protocol for rechargable hearing systems
US11070927B2 (en) 2015-12-30 2021-07-20 Earlens Corporation Damping in contact hearing systems
US11337012B2 (en) 2015-12-30 2022-05-17 Earlens Corporation Battery coating for rechargable hearing systems
US10492010B2 (en) 2015-12-30 2019-11-26 Earlens Corporations Damping in contact hearing systems
US10757495B2 (en) * 2016-08-22 2020-08-25 Mentor Acquisition One, Llc Speaker systems for head-worn computer systems
US9826299B1 (en) * 2016-08-22 2017-11-21 Osterhout Group, Inc. Speaker systems for head-worn computer systems
US11825257B2 (en) 2016-08-22 2023-11-21 Mentor Acquisition One, Llc Speaker systems for head-worn computer systems
US11350196B2 (en) 2016-08-22 2022-05-31 Mentor Acquisition One, Llc Speaker systems for head-worn computer systems
US20180167707A1 (en) * 2016-08-22 2018-06-14 Osterhout Group, Inc. Speaker systems for head-worn computer systems
US11415856B2 (en) 2016-09-08 2022-08-16 Mentor Acquisition One, Llc Electrochromic systems for head-worn computer systems
US11768417B2 (en) 2016-09-08 2023-09-26 Mentor Acquisition One, Llc Electrochromic systems for head-worn computer systems
US10768500B2 (en) 2016-09-08 2020-09-08 Mentor Acquisition One, Llc Electrochromic systems for head-worn computer systems
US9880441B1 (en) 2016-09-08 2018-01-30 Osterhout Group, Inc. Electrochromic systems for head-worn computer systems
US11102594B2 (en) 2016-09-09 2021-08-24 Earlens Corporation Contact hearing systems, apparatus and methods
US11540065B2 (en) 2016-09-09 2022-12-27 Earlens Corporation Contact hearing systems, apparatus and methods
US11481182B2 (en) 2016-10-17 2022-10-25 Sonos, Inc. Room association based on name
US11166114B2 (en) 2016-11-15 2021-11-02 Earlens Corporation Impression procedure
US11671774B2 (en) 2016-11-15 2023-06-06 Earlens Corporation Impression procedure
EP3373594A1 (en) * 2017-03-05 2018-09-12 Oculus VR, LLC Strap arm of head-mounted display with integrated audio port
US10560769B2 (en) 2017-03-05 2020-02-11 Facebook Technologies, Llc Strap arm of head-mounted display with integrated audio port
US10194225B2 (en) 2017-03-05 2019-01-29 Facebook Technologies, Llc Strap arm of head-mounted display with integrated audio port
US20190238971A1 (en) 2018-01-31 2019-08-01 Bose Corporation Eyeglass Headphones
US10555071B2 (en) 2018-01-31 2020-02-04 Bose Corporation Eyeglass headphones
US11516603B2 (en) 2018-03-07 2022-11-29 Earlens Corporation Contact hearing device and retention structure materials
US11212626B2 (en) 2018-04-09 2021-12-28 Earlens Corporation Dynamic filter
US11564044B2 (en) 2018-04-09 2023-01-24 Earlens Corporation Dynamic filter
US11036052B1 (en) 2018-05-30 2021-06-15 Facebook Technologies, Llc Head-mounted display systems with audio delivery conduits
US10578875B1 (en) * 2018-05-30 2020-03-03 Facebook Technologies, Llc Head-mounted display with integrated speaker enclosure
US11363402B2 (en) 2019-12-30 2022-06-14 Comhear Inc. Method for providing a spatialized soundfield
US11956622B2 (en) 2022-06-13 2024-04-09 Comhear Inc. Method for providing a spatialized soundfield

Similar Documents

Publication Publication Date Title
US5272757A (en) Multi-dimensional reproduction system
US6144747A (en) Head mounted surround sound system
US5841879A (en) Virtually positioned head mounted surround sound system
US5661812A (en) Head mounted surround sound system
US5459790A (en) Personal sound system with virtually positioned lateral speakers
US6853732B2 (en) Center channel enhancement of virtual sound images
US4418243A (en) Acoustic projection stereophonic system
US6961439B2 (en) Method and apparatus for producing spatialized audio signals
KR100416757B1 (en) Multi-channel audio reproduction apparatus and method for loud-speaker reproduction
US5073936A (en) Stereophonic microphone system
US7333622B2 (en) Dynamic binaural sound capture and reproduction
CN103053180B (en) For the system and method for audio reproduction
EP0674467B1 (en) Audio reproducing device
US4119798A (en) Binaural multi-channel stereophony
JP6092151B2 (en) Hearing aid that spatially enhances the signal
JP3803368B2 (en) Binaural signal processor
US20080056517A1 (en) Dynamic binaural sound capture and reproduction in focued or frontal applications
US4204092A (en) Audio image recovery system
US8442244B1 (en) Surround sound system
US6990210B2 (en) System for headphone-like rear channel speaker and the method of the same
US10440495B2 (en) Virtual localization of sound
CN115777203A (en) Information processing apparatus, output control method, and program
EP0549836B1 (en) Multi-dimensional sound reproduction system
US6983054B2 (en) Means for compensating rear sound effect
JP2002291100A (en) Audio signal reproducing method, and package media

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAT HLDR NO LONGER CLAIMS SMALL ENT STAT AS INDIV INVENTOR (ORIGINAL EVENT CODE: LSM1); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

SULP Surcharge for late payment

Year of fee payment: 11

AS Assignment

Owner name: IMAX CORPORATION, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SONICS ASSOCIATES, INC.;REEL/FRAME:019181/0847

Effective date: 20070403