US5275593A - Ophthalmic surgery probe assembly - Google Patents

Ophthalmic surgery probe assembly Download PDF

Info

Publication number
US5275593A
US5275593A US07/876,191 US87619192A US5275593A US 5275593 A US5275593 A US 5275593A US 87619192 A US87619192 A US 87619192A US 5275593 A US5275593 A US 5275593A
Authority
US
United States
Prior art keywords
handpiece
tip
optical fiber
probe assembly
set forth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/876,191
Inventor
James C. Easley
Gholam A. Peyman
Gregory A. Blount
Gregg D. Scheller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INNOVATION MEDICAL TECHNOLOGIES INC
Alcon Research LLC
Original Assignee
Surgical Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Surgical Tech Inc filed Critical Surgical Tech Inc
Priority to US07/876,191 priority Critical patent/US5275593A/en
Assigned to SURGICAL TECHNOLOGIES, INC., A MISSOURI CORP. reassignment SURGICAL TECHNOLOGIES, INC., A MISSOURI CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: PEYMAN, GHOLAM A., BLOUNT, GREGORY A., EASLEY, JAMES C., SCHELLER, GREGG D.
Priority to US08/099,056 priority patent/US5356407A/en
Application granted granted Critical
Publication of US5275593A publication Critical patent/US5275593A/en
Assigned to INFINITECH, INC. reassignment INFINITECH, INC. REEL/FRAME 6899/0202 CORRECTED ASSIGNMENT Assignors: SURGICAL TECHNOLOGIES, INC.
Assigned to INNOVATION MEDICAL TECHNOLOGIES,INC. reassignment INNOVATION MEDICAL TECHNOLOGIES,INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: INFINITECH,INC., SURGICAL TECHNOLOGY,INC.
Assigned to ALCON LABORATORIES, INC. reassignment ALCON LABORATORIES, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: INNOVATION MEDICAL TECHNOLOGIES, INC.
Assigned to ALCON LABORATORIES, INC. reassignment ALCON LABORATORIES, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: INNOVATION MEDICAL TECHNOLOGIES, INC.
Assigned to ALCON LABORATORIES, INC. reassignment ALCON LABORATORIES, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: INNOVATION MEDICAL TECHNOLOGIES, INC.
Assigned to ALCON MANUFACTURING, LTD. reassignment ALCON MANUFACTURING, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALCON LABORATORIES, INC.
Assigned to ALCON RESEARCH, LTD. reassignment ALCON RESEARCH, LTD. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: ALCON MANUFACTURING, LTD.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B2017/2808Clamp, e.g. towel clamp
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/30Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
    • A61B2090/306Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure using optical fibres

Definitions

  • the present invention relates to probe assemblies and more particularly to such systems used in ophthalmic surgery and the like.
  • ophthalmic surgery involves numerous functions which are typically supplied by separate instruments. For example, separate laser handpieces, illumination probes, and irrigation/aspiration instruments are often used during ophthalmic surgery. Unfortunately, there are disadvantages that result from the use of separate instruments to provide these various functions.
  • laser light is typically transmitted from a laser source (which is disposed at some distance from the patient) through an optical fiber cable (which can be eight feet or so in length) to the patient.
  • the optical fiber cable terminates proximally in a laser connector (for connection to the laser source) and terminates distally in a handpiece which is manipulated by the surgeon.
  • the illumination is transmitted from an illumination source (also disposed at some distance from the patient) through another optical fiber cable to a second handpiece.
  • the suction probe occasionally draws in material (such as a portion of the retina) which must remain in the eye. Reflux of these materials from current suction probes is not always simple.
  • instruments for ophthalmic surgery which address some of these problems.
  • instruments are available that provide fiber optic illumination and suction in a single instrument.
  • Such combined-function instruments are desirable since they allow the surgeon to perform multiple functions during the operation without the lost time and trauma otherwise resulting from placing and removing separate instruments.
  • Another object is the provision of such a probe assembly which provides laser, illumination and aspiration/irrigation capability in a single device.
  • a third object is the provision of such a probe assembly which provides suction capability precisely at the point where it is needed.
  • a fourth object is the provision of such a probe assembly which provides laser, illumination and aspiration/irrigation capability in a device operable by one hand.
  • a fifth object is the provision of such a probe assembly which is reliable, yet relatively simple to manufacture.
  • a probe assembly of the present invention is especially suited for ophthalmic surgery and the like.
  • the probe assembly includes a handpiece having a handpiece body and a hollow tip of a size suitable for insertion into a human eye, the hollow tip extending distally from the handpiece body.
  • a laser connector is included for connection to a laser source with a first optical fiber terminating at the proximal end in the laser connector and terminating at the distal end in the handpiece for transmitting laser light from the laser source to an eye to be treated.
  • the first optical fiber extends at least partially through the handpiece tip.
  • An illumination connector is included for connection to an illumination source, with a second optical fiber terminating at the proximal end in the illumination connector and terminating at the distal end in the handpiece for transmitting illumination from the illumination source to an eye to be treated.
  • the second optical fiber extends at least partially through the handpiece tip, which tip also includes a fluid path from the distal end thereof to the interior of the handpiece body.
  • the handpiece body has a fluid path in fluid communication with the fluid path of the tip, the handpiece body fluid path extending to the exterior of the handpiece so that fluid may flow through the tip and the handpiece body while laser light or illumination is directed by the optical fiber into the eye for irrigation and aspiration.
  • FIG. 1 is is a side view, with parts broken away for clarity, of the probe assembly of the present invention
  • FIG. 2 is an enlarged sectional view taken along lines 2--2 of FIG. 1;
  • FIG. 3 is a sectional view, on an enlarged scale, of the handpiece body of the probe assembly of FIG. 1;
  • FIG. 4 is a perspective view of a reflux sleeve making up a portion of the probe assembly of FIG. 1;
  • FIG. 4A is a cross-sectional view of the reflux sleeve of FIG. 4, on an enlarged scale;
  • FIG. 5 is a partial elevation of the probe assembly of FIG. 1 attached to an aspiration/irrigation source
  • FIG. 6 is a partial elevation of the probe assembly of FIG. 1 with the aspiration/irrigation port thereof closed by a plug.
  • a probe assembly 11 of the present invention includes a handpiece 13, a laser connector 15, an illumination connector 16, and a pair of optical fiber cables 17 and 18.
  • Optical fiber 17, the laser delivery optical fiber is preferably a glass (silica) optical fiber, while optical fiber 18 (the illumination fiber) may be acrylic or any other suitable material such as other plastics or glass.
  • Handpiece 13 has a handpiece body made up of a handpiece proximal end portion 19, a handpiece distal end portion 21, and a reflux sleeve 23.
  • a hollow metal tip 25 of a size suitable for insertion into a human eye extends distally from the handpiece body.
  • Tip 25 is preferably a metal tube having approximately one and three-sixteenths inches thereof exposed distally from the handpiece body.
  • the metal tube although not circular, as explained below, has an outer circumference corresponding to a 20 gauge tube. It is preferred that the wall thickness of the metal tube be as small as possible. These dimensions are illustrative of those for a tip suitable for insertion in the human eye.
  • Laser connector 15 may be of any desired construction suitable for connection to a laser source 26.
  • the laser connector construction shown is illustrative only.
  • optical fiber cable 17 terminates proximally in laser connector 15 in such a manner that it is exposed to the laser light from the laser source.
  • the optical cable extends for any desired length (such as eight feet or so) and terminates distally in the tip 25 of handpiece 13.
  • Optical fiber cable 17 thereby forms an optical path for the laser light from the laser source to an eye being treated.
  • illumination connector 16 may be of any desired construction suitable for connection to an illumination source 27.
  • Optical fiber cable 18 terminates proximally in illumination connector 16 so that it is exposed to light from the illumination source.
  • the illumination optical cable also extends for any desired length to terminate distally in the tip 25 of handpiece 13.
  • Optical fiber cable 18 thereby forms an optical path for illumination from the illumination source to an eye being treated.
  • both optical fibers 17 and 18 are covered by a length of tubing 28 from the handpiece proximally to a separation point where the two fibers separate. From the separation point proximally to the respective connectors, the fibers are covered by individual lengths of tubing 29 all the way back to the respective connectors. Portions of the tubing are removed for clarity in FIG. 1.
  • clamps 30 used to removably secure cables 17 and 18 to any appropriate structure to hold the cables in place without significantly restricting movement of the handpiece by the surgeon.
  • clamps 30 may be readily secured to a surgical drape (not shown) in the operative field by pressing both sides in the directions indicated by the arrows in FIG. 1. This pressure opens the jaws of the clamps so that the jaws may be placed over a fold in the drape. Once the pressure is removed, the jaws close on the drape, thereby holding the respective optical cables fixed in the surgical field. This prevents the optical cables from moving excessively during the medical procedure, which movement could otherwise result in contamination of the sterile field.
  • FIG. 2 there is shown on a greatly enlarged scale the relationship between optical fibers 17, 18 and tip 25.
  • the portion of optical fiber 17 which is disposed in tip 25 has an outer diameter of approximately 0.3 mm, for example, while the outer diameter of optical fiber 18 is approximately 0.5 mm.
  • tip 25 has an oval shape which accommodates both optical fibers while reducing the overall size of the tip (compared to a circular tip).
  • the placement of the optical fibers leaves a gap 31 disposed between the optical fibers and the inner wall of the tip. This gap runs the entire length of the tip and forms a fluid path from the distal end of tip 25 to the interior of the handpiece body.
  • the optical fibers were secured to tip 25 by adhesive, the adhesive would tend to block off gap 31. To prevent this, the optical fibers are not secured directly to tip 25 at all. Instead they are suitably secured to proximal end portion 19 of the handpiece body.
  • the fluid path formed by gap 31 allows fluid and other material to be withdrawn through the gap and also permits irrigation of the operative area as desired.
  • the distal end of this fluid path is disposed immediately adjacent the spot where the laser light and illumination exit the tip, so that aspiration and irrigation takes place almost exactly where needed.
  • gap 31 is in fluid communication with a fluid path through handpiece 13. That latter fluid path is formed by a cavity 33 (FIG. 3) formed in handpiece distal end portion 21, which opens into a cavity 35 between handpiece distal end portion 21 and reflux sleeve 23.
  • Sleeve 23 has a port 36 (shown plugged by a stainless steel plug 37 in FIG. 3) formed therein above cavity 35, so that fluid in cavity 35 may flow out the port to the exterior of handpiece 13 when plug 37 is not present.
  • the interior of an eye being operated on may be placed under pressure with a suitable solution so as to maintain its sphericity during the procedure.
  • This pressure causes fluid to flow through gap 31 in handpiece tip 25, through cavities 33 and 35, and out the port.
  • the surgeon can stop this flow simply by covering port 37 with a finger.
  • fluid in the eye may flow through the tip and the handpiece body even while laser light from the laser source or illumination from the illumination source are directed by the optical fibers into the eye.
  • the surgeon with one-handed control, can thus apply laser power or illumination to the surgical area while at the same time aspirating or irrigating exactly the same area.
  • Bushing 38 is preferably stainless steel and is itself suitably secured to distal handpiece portion 21.
  • Reflux sleeve 23 is formed from a relatively soft, elastically deformable, resilient material such as 50 durometer silicone rubber.
  • Sleeve 23 is shown best in FIGS. 4 and 4A. It includes an elongate bulb 39 located directly over cavity 35 (which cavity is formed by cutting away the corresponding part of handpiece distal end portion 21). By pressing downwardly on bulb 39 above cavity 35, the surgeon applies pressure on the fluid path through the distal end of tip 25. This pressure forces any undesired material back out of the distal end of tip 25. Note that because port 36 is disposed on bulb 39, the mere act of pressing downwardly on the sleeve in this location automatically closes port 36. This ensures that the effect of the downward motion is to force fluid and any accompanying material distally out of tip 25.
  • the proximal portion 19 of the handpiece has a first bore 41 through which passes optical fiber 17, and a second bore 43 in fluid communication with cavities 33 and 35.
  • Bore 43 may be attached to any suitable aspiration/irrigation source by means of a conventional tube 45 (see FIGS. 1, 5, and 6) fixedly secured in a sleeve 47 disposed in bore 43.
  • a syringe 48 (FIG. 5) for example constitutes a suitable aspiration/irrigation source.
  • tube 45 terminates proximally in a suitable connector 49 adapted to accept the aspiration/irrigation source.
  • a plug 50 is provided to close off connector 49 when not in use (see FIG. 6). Plug 50 is suitably connected to tubing 29 so that it cannot be lost.

Abstract

An ophthalmic surgery probe assembly includes a handpiece having a handpiece body and a hollow tip of a size suitable for insertion into a human eye, the hollow tip extending distally from the handpiece body. A laser connector is provided for connection to a laser source. A first optical fiber terminates at its proximal end in the laser connector and terminates at the distal end in the handpiece for transmitting laser light from the laser source to an eye to be treated, the first optical fiber extending at least partially through the handpiece tip. An illumination connector is provided for connection to an illumination source. A second optical fiber terminates at its proximal end in the illumination connector and terminates at the distal end in the handpiece for transmitting illumination from the illumination source to an eye to be treated, the second optical fiber extending at least partially through the handpiece tip. The tip also includes a fluid path from the distal end thereof to the interior of the handpiece body. The handpiece body has a fluid path in fluid communication with the fluid path of the tip, the handpiece body fluid path extending to the exterior of the handpiece so that fluid may flow through the tip and the handpiece body while laser light or illumination is directed by the optical fiber into the eye for irrigation and aspiration.

Description

BACKGROUND OF THE INVENTION
The present invention relates to probe assemblies and more particularly to such systems used in ophthalmic surgery and the like.
It is known that ophthalmic surgery involves numerous functions which are typically supplied by separate instruments. For example, separate laser handpieces, illumination probes, and irrigation/aspiration instruments are often used during ophthalmic surgery. Unfortunately, there are disadvantages that result from the use of separate instruments to provide these various functions.
Considering for the moment just laser handpieces and illumination probes, laser light is typically transmitted from a laser source (which is disposed at some distance from the patient) through an optical fiber cable (which can be eight feet or so in length) to the patient. The optical fiber cable terminates proximally in a laser connector (for connection to the laser source) and terminates distally in a handpiece which is manipulated by the surgeon. Similarly, the illumination is transmitted from an illumination source (also disposed at some distance from the patient) through another optical fiber cable to a second handpiece. Use of two separate handpieces requires either separate incisions to accommodate the tips of both handpieces or the successive replacement of one handpiece by the other, which increases the time required for the operation and the resulting trauma to the patient.
In addition, during ophthalmic surgery it is often necessary to remove blood and blood clots from the surface of the retina before the application of laser energy or to irrigate the surface during the time illumination is applied. Currently this is done by using a third instrument (one in addition to the laser handpiece and illumination probe) which has an aspiration/irrigation capability. Given the small incision sizes used in eye surgery, it is often difficult to place the suction probe in the eye simultaneously with the laser probe and an illumination probe because of size limitations, and because the surgeon has only two hands. The laser handpiece must be removed from the eye during suction and replaced when laser treatment is required. This unnecessarily increases the complexity and duration of the medical procedure.
During such medical procedures, the suction probe occasionally draws in material (such as a portion of the retina) which must remain in the eye. Reflux of these materials from current suction probes is not always simple.
These medical procedures presently require at least two hands for operation of the laser handpiece and the suction probe, but both hands are generally not available since one hand is generally occupied with an illumination probe. As a result, the procedures presently require sequential replacement of laser handpiece and suction probe. Reflux of material from the suction probe can require even more hands and/or can significantly increase the complexity of the medical procedure.
There are multi-function instruments for ophthalmic surgery which address some of these problems. For example, instruments are available that provide fiber optic illumination and suction in a single instrument. Such combined-function instruments are desirable since they allow the surgeon to perform multiple functions during the operation without the lost time and trauma otherwise resulting from placing and removing separate instruments.
Present combined-function instruments could, however, be improved. For example, presently available instruments of this type are quite costly and tend to be somewhat unreliable. Moreover, the diameter of these instruments is at the outer margin of what is considered acceptable for instruments which are inserted into the eye.
SUMMARY OF THE INVENTION
Among the several objects and features of the present invention may be noted the provision of an improved probe assembly which is especially suited for ophthalmic surgery or the like.
Another object is the provision of such a probe assembly which provides laser, illumination and aspiration/irrigation capability in a single device.
A third object is the provision of such a probe assembly which provides suction capability precisely at the point where it is needed.
A fourth object is the provision of such a probe assembly which provides laser, illumination and aspiration/irrigation capability in a device operable by one hand.
A fifth object is the provision of such a probe assembly which is reliable, yet relatively simple to manufacture.
Other objects and features will be in part apparent and in part pointed out hereinafter.
Briefly, a probe assembly of the present invention is especially suited for ophthalmic surgery and the like. The probe assembly includes a handpiece having a handpiece body and a hollow tip of a size suitable for insertion into a human eye, the hollow tip extending distally from the handpiece body. A laser connector is included for connection to a laser source with a first optical fiber terminating at the proximal end in the laser connector and terminating at the distal end in the handpiece for transmitting laser light from the laser source to an eye to be treated. The first optical fiber extends at least partially through the handpiece tip. An illumination connector is included for connection to an illumination source, with a second optical fiber terminating at the proximal end in the illumination connector and terminating at the distal end in the handpiece for transmitting illumination from the illumination source to an eye to be treated. The second optical fiber extends at least partially through the handpiece tip, which tip also includes a fluid path from the distal end thereof to the interior of the handpiece body. The handpiece body has a fluid path in fluid communication with the fluid path of the tip, the handpiece body fluid path extending to the exterior of the handpiece so that fluid may flow through the tip and the handpiece body while laser light or illumination is directed by the optical fiber into the eye for irrigation and aspiration.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is is a side view, with parts broken away for clarity, of the probe assembly of the present invention;
FIG. 2 is an enlarged sectional view taken along lines 2--2 of FIG. 1;
FIG. 3 is a sectional view, on an enlarged scale, of the handpiece body of the probe assembly of FIG. 1;
FIG. 4 is a perspective view of a reflux sleeve making up a portion of the probe assembly of FIG. 1;
FIG. 4A is a cross-sectional view of the reflux sleeve of FIG. 4, on an enlarged scale;
FIG. 5 is a partial elevation of the probe assembly of FIG. 1 attached to an aspiration/irrigation source; and
FIG. 6 is a partial elevation of the probe assembly of FIG. 1 with the aspiration/irrigation port thereof closed by a plug.
Similar reference characters indicate similar parts throughout the several views of the drawings.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Turning to the drawings, a probe assembly 11 of the present invention includes a handpiece 13, a laser connector 15, an illumination connector 16, and a pair of optical fiber cables 17 and 18. Optical fiber 17, the laser delivery optical fiber, is preferably a glass (silica) optical fiber, while optical fiber 18 (the illumination fiber) may be acrylic or any other suitable material such as other plastics or glass.
Handpiece 13 has a handpiece body made up of a handpiece proximal end portion 19, a handpiece distal end portion 21, and a reflux sleeve 23. A hollow metal tip 25 of a size suitable for insertion into a human eye extends distally from the handpiece body. Tip 25 is preferably a metal tube having approximately one and three-sixteenths inches thereof exposed distally from the handpiece body. The metal tube, although not circular, as explained below, has an outer circumference corresponding to a 20 gauge tube. It is preferred that the wall thickness of the metal tube be as small as possible. These dimensions are illustrative of those for a tip suitable for insertion in the human eye.
Laser connector 15 may be of any desired construction suitable for connection to a laser source 26. The laser connector construction shown is illustrative only.
As can be readily seen in FIG. 1, optical fiber cable 17 terminates proximally in laser connector 15 in such a manner that it is exposed to the laser light from the laser source. The optical cable extends for any desired length (such as eight feet or so) and terminates distally in the tip 25 of handpiece 13. Optical fiber cable 17 thereby forms an optical path for the laser light from the laser source to an eye being treated.
Similarly, illumination connector 16 may be of any desired construction suitable for connection to an illumination source 27. Optical fiber cable 18 terminates proximally in illumination connector 16 so that it is exposed to light from the illumination source. The illumination optical cable also extends for any desired length to terminate distally in the tip 25 of handpiece 13. Optical fiber cable 18 thereby forms an optical path for illumination from the illumination source to an eye being treated.
As can readily be seen from FIG. 1, both optical fibers 17 and 18 are covered by a length of tubing 28 from the handpiece proximally to a separation point where the two fibers separate. From the separation point proximally to the respective connectors, the fibers are covered by individual lengths of tubing 29 all the way back to the respective connectors. Portions of the tubing are removed for clarity in FIG. 1.
Also shown in FIG. 1 are a pair of clamps 30 used to removably secure cables 17 and 18 to any appropriate structure to hold the cables in place without significantly restricting movement of the handpiece by the surgeon. For example, clamps 30 may be readily secured to a surgical drape (not shown) in the operative field by pressing both sides in the directions indicated by the arrows in FIG. 1. This pressure opens the jaws of the clamps so that the jaws may be placed over a fold in the drape. Once the pressure is removed, the jaws close on the drape, thereby holding the respective optical cables fixed in the surgical field. This prevents the optical cables from moving excessively during the medical procedure, which movement could otherwise result in contamination of the sterile field.
Turning to FIG. 2, there is shown on a greatly enlarged scale the relationship between optical fibers 17, 18 and tip 25. The portion of optical fiber 17 which is disposed in tip 25 has an outer diameter of approximately 0.3 mm, for example, while the outer diameter of optical fiber 18 is approximately 0.5 mm. As can readily be seen from FIG. 2, tip 25 has an oval shape which accommodates both optical fibers while reducing the overall size of the tip (compared to a circular tip). Moreover, the placement of the optical fibers leaves a gap 31 disposed between the optical fibers and the inner wall of the tip. This gap runs the entire length of the tip and forms a fluid path from the distal end of tip 25 to the interior of the handpiece body.
Note that if the optical fibers were secured to tip 25 by adhesive, the adhesive would tend to block off gap 31. To prevent this, the optical fibers are not secured directly to tip 25 at all. Instead they are suitably secured to proximal end portion 19 of the handpiece body.
The fluid path formed by gap 31 allows fluid and other material to be withdrawn through the gap and also permits irrigation of the operative area as desired. Significantly, the distal end of this fluid path is disposed immediately adjacent the spot where the laser light and illumination exit the tip, so that aspiration and irrigation takes place almost exactly where needed.
The fluid path formed by gap 31 is in fluid communication with a fluid path through handpiece 13. That latter fluid path is formed by a cavity 33 (FIG. 3) formed in handpiece distal end portion 21, which opens into a cavity 35 between handpiece distal end portion 21 and reflux sleeve 23. Sleeve 23 has a port 36 (shown plugged by a stainless steel plug 37 in FIG. 3) formed therein above cavity 35, so that fluid in cavity 35 may flow out the port to the exterior of handpiece 13 when plug 37 is not present.
As is known, the interior of an eye being operated on may be placed under pressure with a suitable solution so as to maintain its sphericity during the procedure. This pressure causes fluid to flow through gap 31 in handpiece tip 25, through cavities 33 and 35, and out the port. The surgeon can stop this flow simply by covering port 37 with a finger.
Note that with this construction, fluid in the eye may flow through the tip and the handpiece body even while laser light from the laser source or illumination from the illumination source are directed by the optical fibers into the eye. The surgeon, with one-handed control, can thus apply laser power or illumination to the surgical area while at the same time aspirating or irrigating exactly the same area.
Also shown in FIG. 3 is a bushing 38 in which is mounted tip 25. Bushing 38 is preferably stainless steel and is itself suitably secured to distal handpiece portion 21.
On occasion, distal tip 25 can suction in undesired material, such as a portion of the retina. With the present construction, this material can easily and rapidly be refluxed back into the eye, again with a one-handed operation. Reflux sleeve 23 is formed from a relatively soft, elastically deformable, resilient material such as 50 durometer silicone rubber.
Sleeve 23 is shown best in FIGS. 4 and 4A. It includes an elongate bulb 39 located directly over cavity 35 (which cavity is formed by cutting away the corresponding part of handpiece distal end portion 21). By pressing downwardly on bulb 39 above cavity 35, the surgeon applies pressure on the fluid path through the distal end of tip 25. This pressure forces any undesired material back out of the distal end of tip 25. Note that because port 36 is disposed on bulb 39, the mere act of pressing downwardly on the sleeve in this location automatically closes port 36. This ensures that the effect of the downward motion is to force fluid and any accompanying material distally out of tip 25.
Turning back to FIG. 3, the proximal portion 19 of the handpiece has a first bore 41 through which passes optical fiber 17, and a second bore 43 in fluid communication with cavities 33 and 35. Bore 43 may be attached to any suitable aspiration/irrigation source by means of a conventional tube 45 (see FIGS. 1, 5, and 6) fixedly secured in a sleeve 47 disposed in bore 43. A syringe 48 (FIG. 5) for example constitutes a suitable aspiration/irrigation source.
As can be seen in FIGS. 1, 5, and 6, tube 45 terminates proximally in a suitable connector 49 adapted to accept the aspiration/irrigation source. A plug 50 is provided to close off connector 49 when not in use (see FIG. 6). Plug 50 is suitably connected to tubing 29 so that it cannot be lost.
In view of the above it will be seen that the various objects and features of the above described invention are achieved and other advantageous results obtained. The description and drawings of the present invention contained herein are illustrative only and are not to be interpreted in a limiting sense.

Claims (18)

What is claimed is:
1. A probe assembly for opthalmic surgery and the like comprising:
a handpiece having a handpiece body and a hollow tip of a size suitable for insertion into a human eye, said handpiece body having a proximal end and a distal end, said hollow tip having a proximal end and a distal end and extending distally from the handpiece body;
a laser connector for connection to a laser source;
a first optical fiber having a proximal end and a distal end, said first optical fiber terminating at the proximal end in the laser connector and terminating at the distal end in the handpiece for transmitting laser light from the laser source to an eye to be treated;
said first optical fiber extending at least partially through the handpiece tip;
an illumination connector for connection to an illumination source;
a second optical fiber having a proximal end and a distal end, said second optical fiber terminating at the proximal end in the illumination connector and terminating at the distal end in the handpiece for transmitting illumination from the illumination source to an eye to be treated;
said second optical fiber extending at least partially through the handpiece tip;
said tip also including a fluid path from the distal end thereof to the interior of the handpiece body;
said handpiece body having a fluid path in fluid communication with the fluid path of the tip, said handpiece body fluid path extending to the exterior of the handpiece, whereby fluid may flow through the tip and the handpiece body while laser light or illumination is directed by the optical fiber into the eye for irrigation and aspiration.
2. The probe assembly as set forth in claim 1 wherein the handpiece body fluid path includes a cavity inside the handpiece body, a bore extending from the cavity to the exterior of the handpiece, and a tube for providing fluid communication between the bore and an irrigation/aspiration source, said tube having a proximal end and a distal end.
3. The probe assembly as set forth in claim 2 further including a plug for plugging the proximal end of the fluid communication tube, said plug being secured to the probe assembly at a position convenient to the proximal end of the fluid communication tube.
4. The probe assembly as set forth in claim 2 wherein the irrigation/aspiration source is a syringe, said fluid communication tube terminating at its proximal end in a fitting suitable for accepting the distal end of the syringe.
5. The probe assembly as set forth in claim 2 further including a sleeve disposed around the distal end of the fluid communication tube at the handpiece.
6. The probe assembly as set forth in claim 1 wherein the handpiece tip is substantially non-circular in cross section.
7. The probe assembly as set forth in claim 6 wherein the handpiece tip is substantially oval in cross section.
8. The probe assembly as set forth in claim 6 wherein the first optical fiber and the second optical fiber extend substantially to the distal end of the handpiece tip.
9. The probe assembly as set forth in claim 6 wherein the first optical fiber is substantially smaller in diameter than the second optical fiber.
10. The probe assembly as set forth in claim 6 wherein the interior cross-sectional area of the handpiece tip is larger than the sum of the cross-sectional areas of the first and second optical fibers.
11. The probe assembly as set forth in claim 1 further including a bushing disposed in the distal end of the handpiece body, said hollow tip being secured in said bushing.
12. The probe assembly as set forth in claim 1 further including a length of tubing covering the first and second optical fibers for a predetermined distance proximally from the proximal end of the handpiece.
13. The probe assembly as set forth in claim 12 further including first and second separate lengths of tubing covering the first and second optical fibers respectively proximally from the aforesaid length of tubing to the laser and illumination connectors.
14. The probe assembly as set forth in claim 1 wherein the sum of the first optical fiber diameter and the second optical fiber diameter substantially equal the inner dimension of the handpiece tip measured along the major axis of the tip.
15. The probe assembly as set forth in claim 1 wherein the inner dimension of the handpiece tip measured along the minor axis of the tip is substantially less than the inner dimension measured along the major axis of the tip.
16. The probe assembly as set forth in claim 1 wherein the first optical fiber is composed of a different material than the second optical fiber.
17. The probe assembly as set forth in claim 16 wherein the first optical fiber is silica.
18. The probe assembly as set forth in claim 1 wherein the handpiece tip substantially corresponds in outer circumference to twenty gauge tubing.
US07/876,191 1992-04-30 1992-04-30 Ophthalmic surgery probe assembly Expired - Lifetime US5275593A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US07/876,191 US5275593A (en) 1992-04-30 1992-04-30 Ophthalmic surgery probe assembly
US08/099,056 US5356407A (en) 1992-04-30 1993-07-29 Ophthalmic surgery probe assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/876,191 US5275593A (en) 1992-04-30 1992-04-30 Ophthalmic surgery probe assembly

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/099,056 Continuation-In-Part US5356407A (en) 1992-04-30 1993-07-29 Ophthalmic surgery probe assembly

Publications (1)

Publication Number Publication Date
US5275593A true US5275593A (en) 1994-01-04

Family

ID=25367172

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/876,191 Expired - Lifetime US5275593A (en) 1992-04-30 1992-04-30 Ophthalmic surgery probe assembly

Country Status (1)

Country Link
US (1) US5275593A (en)

Cited By (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478338A (en) * 1993-09-24 1995-12-26 Reynard; Michael Fiber optic sleeve for surgical instruments
US5588952A (en) * 1993-08-02 1996-12-31 Dandolu; Bhaktavathsala R. Intracardiac illuminator with suction
US6015403A (en) * 1996-02-26 2000-01-18 Alcon Laboratories, Inc. Ophthalmic surgery probe with soft tip
WO2000019919A1 (en) * 1998-10-06 2000-04-13 Edwards Lifesciences Corporation Laser handpiece having zero time positioning system
US6106162A (en) * 1998-11-12 2000-08-22 Delphi Technologies Inc. Glass optical fiber bundle connector for a hybrid fiber optic lighting distribution system
EP1210624A1 (en) * 1999-07-30 2002-06-05 CeramOptec GmbH Laser delivery system with optical fibers having fluid delivery channels
US6575989B1 (en) 1999-09-13 2003-06-10 Synergetics, Inc. Adjustable stiffness membrane scraper
US20040116958A1 (en) * 2001-02-06 2004-06-17 Achim Gopferich Spacing device for releasing active substances in the paranasal sinus
US20040199149A1 (en) * 1996-03-21 2004-10-07 Myers Raymond I. Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation
US20050033389A1 (en) * 2003-07-28 2005-02-10 Auld Michael D. Coaxial illuminated laser endoscopic probe and active numerical aperture control
US20050209618A1 (en) * 2004-03-05 2005-09-22 Auld Michael D Rigid shafted instrumentation for vitreoretinal surgery
US20060063973A1 (en) * 2004-04-21 2006-03-23 Acclarent, Inc. Methods and apparatus for treating disorders of the ear, nose and throat
US20070073269A1 (en) * 2005-09-23 2007-03-29 Becker Bruce B Multi-conduit balloon catheter
US20070129751A1 (en) * 2004-04-21 2007-06-07 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
US20070139924A1 (en) * 2004-07-27 2007-06-21 Easley James C Coaxial illuminated laser endoscopic probe and active numerical aperture control
US20070173794A1 (en) * 2006-01-20 2007-07-26 Frey Rudolph W System and method for treating the structure of the human lens with a laser
US20070179518A1 (en) * 2006-02-02 2007-08-02 Becker Bruce B Balloon Catheters and Methods for Treating Paranasal Sinuses
US20070208252A1 (en) * 2004-04-21 2007-09-06 Acclarent, Inc. Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses
US20070208301A1 (en) * 2005-06-10 2007-09-06 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
US20070249896A1 (en) * 2004-04-21 2007-10-25 Eric Goldfarb Endoscopic methods and devices for transnasal procedures
US20070265485A1 (en) * 2001-02-22 2007-11-15 Dejuan Eugene Jr Beta radiotherapy emitting surgical device and methods of use thereof
US20070282305A1 (en) * 2004-04-21 2007-12-06 Eric Goldfarb Endoscopic methods and devices for transnasal procedures
US20070293726A1 (en) * 2004-04-21 2007-12-20 Eric Goldfarb Endoscopic methods and devices for transnasal procedures
EP1872753A1 (en) * 2006-06-30 2008-01-02 Alcon, Inc. Multifunction surgical probe
US20080082045A1 (en) * 2006-09-15 2008-04-03 Eric Goldfarb Methods and devices for facilitating visualization in a surgical environment
US20080097514A1 (en) * 2004-04-21 2008-04-24 Acclarent, Inc. Devices, Systems and Methods for Treating Disorders of the Ear, Nose and Throat
US20080097420A1 (en) * 2006-04-13 2008-04-24 D.O.R.C. Dutch Ophthalmic Research Center (International) B.V. Eye Surgical Instrument
US20080125720A1 (en) * 2006-05-17 2008-05-29 Acclarent, Inc. Adapter for attaching electromagnetic image guidance components to a medical device
US20080154250A1 (en) * 2004-04-21 2008-06-26 Acclarent, Inc. Devices, Systems and Methods For Diagnosing and Treating Sinusitis and Other Disorders of the Ears, Nose and/or Throat
US20080195041A1 (en) * 2004-04-21 2008-08-14 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose and throat
US20080228085A1 (en) * 2006-09-15 2008-09-18 Acclarent, Inc. Sinus illumination lightwire device
US20080319424A1 (en) * 2004-04-21 2008-12-25 Acclarent, Inc. Devices and Methods for Delivering Therapeutic Substances for the Treatment of Sinusitis and Other Disorders
US20090015923A1 (en) * 2007-07-09 2009-01-15 Auld Jack R Multi-Spot Ophthalmic Laser Probe
US20090028923A1 (en) * 2005-01-18 2009-01-29 Acclarent, Inc. Implantable Devices and Methods for Treating Sinusitis and Other Disorders
US20090030409A1 (en) * 2007-07-27 2009-01-29 Eric Goldfarb Methods and devices for facilitating visualization in a surgical environment
WO2009058498A1 (en) * 2007-11-03 2009-05-07 Ophthalmed, Llc Ophthalmic surgical device
WO2009085592A1 (en) * 2007-12-19 2009-07-09 Bausch & Lomb Incorporated Illuminated ophthalmic instruments
US20090187098A1 (en) * 2004-04-21 2009-07-23 Acclarent, Inc. Devices, Systems and Methods for Diagnosing and Treating Sinusitis and Other Disorders of the Ears, Nose, and/or Throat
US20090198216A1 (en) * 2004-04-21 2009-08-06 Acclarent, Inc. Frontal sinus spacer
US20090312745A1 (en) * 2004-04-21 2009-12-17 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US20100004643A1 (en) * 2006-01-20 2010-01-07 Frey Rudolph W System and method for improving the accommodative amplitude and increasing the refractive power of the human lens with a laser
US20100004641A1 (en) * 2006-01-20 2010-01-07 Frey Rudolph W System and apparatus for delivering a laser beam to the lens of an eye
US20100022995A1 (en) * 2008-07-25 2010-01-28 Frey Rudolph W Method and system for removal and replacement of lens material from the lens of an eye
US20100022994A1 (en) * 2008-07-25 2010-01-28 Frey Rudolph W Liquid filled index matching device for ophthalmic laser procedures
US20100022996A1 (en) * 2008-07-25 2010-01-28 Frey Rudolph W Method and system for creating a bubble shield for laser lens procedures
US20100099946A1 (en) * 2004-04-21 2010-04-22 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US20100114066A1 (en) * 2004-08-04 2010-05-06 Acclarent, Inc. Implantable devices and methods for delivering drugs and other substances to treat sinusitis and other disorders
US20100174308A1 (en) * 2004-04-21 2010-07-08 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US20100292678A1 (en) * 2006-01-20 2010-11-18 Frey Rudolph W System and method for providing laser shot patterns to the lens of an eye
US20100305697A1 (en) * 2009-03-31 2010-12-02 Acclarent, Inc. System and Method For Treatment of Non-Ventilating Middle Ear by Providing a Gas Pathway Through the Nasopharynx
US20110004057A1 (en) * 2004-04-21 2011-01-06 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US20110022036A1 (en) * 2009-07-24 2011-01-27 Frey Rudolph W System and method for performing ladar assisted procedures on the lens of an eye
US20110022035A1 (en) * 2009-07-24 2011-01-27 Porter Gerrit N Liquid holding interface device for ophthalmic laser procedures
US20110122366A1 (en) * 2009-11-24 2011-05-26 Smith Ronald T Single-fiber multi-spot laser probe for ophthalmic endoillumination
US20110144627A1 (en) * 2009-12-15 2011-06-16 Smith Ronald T Multi-spot laser probe
US20110160740A1 (en) * 2009-12-28 2011-06-30 Acclarent, Inc. Tissue Removal in The Paranasal Sinus and Nasal Cavity
US20110160710A1 (en) * 2009-07-24 2011-06-30 Frey Rudolph W Laser system and method for performing and sealing corneal incisions in the eye
US20110166557A1 (en) * 2009-07-24 2011-07-07 Naranjo-Tackman Ramon Laser system and method for astigmatic corrections in asssociation with cataract treatment
US20110190740A1 (en) * 2010-02-01 2011-08-04 Lensar, Inc. Placido ring measurement of astigmatism axis and laser marking of astigmatism axis
US8100933B2 (en) 2002-09-30 2012-01-24 Acclarent, Inc. Method for treating obstructed paranasal frontal sinuses
US8118757B2 (en) 2007-04-30 2012-02-21 Acclarent, Inc. Methods and devices for ostium measurement
US8172828B2 (en) 2004-04-21 2012-05-08 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US8182432B2 (en) 2008-03-10 2012-05-22 Acclarent, Inc. Corewire design and construction for medical devices
US8262646B2 (en) 2006-01-20 2012-09-11 Lensar, Inc. System and method for providing the shaped structural weakening of the human lens with a laser
US8353812B2 (en) 2008-06-04 2013-01-15 Neovista, Inc. Handheld radiation delivery system
WO2013019859A1 (en) * 2011-08-03 2013-02-07 Alcon Research, Ltd. Articulating ophthalmic surgical probe
US8439687B1 (en) 2006-12-29 2013-05-14 Acclarent, Inc. Apparatus and method for simulated insertion and positioning of guidewares and other interventional devices
US20130137935A1 (en) * 2011-11-28 2013-05-30 Patrick Haley Fiber optic illumination device and method of manufacturing
US8485199B2 (en) 2007-05-08 2013-07-16 Acclarent, Inc. Methods and devices for protecting nasal turbinate during surgery
US20130267876A1 (en) * 2010-12-14 2013-10-10 Aslam Khan Stylus and treatment head for use with a medical device
US8556425B2 (en) 2010-02-01 2013-10-15 Lensar, Inc. Purkinjie image-based alignment of suction ring in ophthalmic applications
USD694890S1 (en) 2010-10-15 2013-12-03 Lensar, Inc. Laser system for treatment of the eye
USD695408S1 (en) 2010-10-15 2013-12-10 Lensar, Inc. Laser system for treatment of the eye
US8617146B2 (en) 2009-07-24 2013-12-31 Lensar, Inc. Laser system and method for correction of induced astigmatism
US8702626B1 (en) 2004-04-21 2014-04-22 Acclarent, Inc. Guidewires for performing image guided procedures
US8801186B2 (en) 2010-10-15 2014-08-12 Lensar, Inc. System and method of scan controlled illumination of structures within an eye
US8864787B2 (en) 2004-04-21 2014-10-21 Acclarent, Inc. Ethmoidotomy system and implantable spacer devices having therapeutic substance delivery capability for treatment of paranasal sinusitis
US8932276B1 (en) 2004-04-21 2015-01-13 Acclarent, Inc. Shapeable guide catheters and related methods
US8979888B2 (en) 2008-07-30 2015-03-17 Acclarent, Inc. Paranasal ostium finder devices and methods
US9072626B2 (en) 2009-03-31 2015-07-07 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
US9155492B2 (en) 2010-09-24 2015-10-13 Acclarent, Inc. Sinus illumination lightwire device
US9265407B2 (en) 2004-04-21 2016-02-23 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US9335455B2 (en) 2012-05-30 2016-05-10 Cygnus, LP Extended tip laser and illumination probe for retina surgery
US9351750B2 (en) 2004-04-21 2016-05-31 Acclarent, Inc. Devices and methods for treating maxillary sinus disease
US9370447B2 (en) * 2011-10-10 2016-06-21 Cygnus LP Probes for use in ophthalmic and vitreoretinal surgery
US9393154B2 (en) 2011-10-28 2016-07-19 Raymond I Myers Laser methods for creating an antioxidant sink in the crystalline lens for the maintenance of eye health and physiology and slowing presbyopia development
US9433437B2 (en) 2013-03-15 2016-09-06 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9629684B2 (en) 2013-03-15 2017-04-25 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US10188413B1 (en) 2004-04-21 2019-01-29 Acclarent, Inc. Deflectable guide catheters and related methods
US10206821B2 (en) 2007-12-20 2019-02-19 Acclarent, Inc. Eustachian tube dilation balloon with ventilation path
US10244931B2 (en) 2015-07-13 2019-04-02 Novartis Ag Illuminated ophthalmic infusion line and associated devices, systems, and methods
US10245181B2 (en) 2012-12-21 2019-04-02 Alcon Research, Ltd. Grin fiber multi-spot laser probe
US10307290B2 (en) 2015-07-13 2019-06-04 Novartis Ag Vitreous cutter with integrated illumination system
US10376414B2 (en) 2015-12-14 2019-08-13 Novartis Ag Uni-port hybrid gauge surgical apparatuses and methods
US10463541B2 (en) 2011-03-25 2019-11-05 Lensar, Inc. System and method for correcting astigmatism using multiple paired arcuate laser generated corneal incisions
US10470651B2 (en) 2012-03-09 2019-11-12 D.O.R.C. Dutch Ophthalmic Research Center (International) B.V. Eye surgical lighting unit
US10478266B2 (en) 2016-12-15 2019-11-19 Novartis Ag Illuminated surgical probe having multiple optical fibers
US10524814B2 (en) 2009-03-20 2020-01-07 Acclarent, Inc. Guide system with suction
US10610408B2 (en) 2017-05-24 2020-04-07 Alcon Inc. Illuminated infusion cannula
US10729461B2 (en) 2017-05-24 2020-08-04 Alcon Inc. Illuminated infusion cannula
US10869735B2 (en) 2016-11-17 2020-12-22 Alcon Inc. Medical instrument with an integrated optical fiber
US10952808B2 (en) 2016-08-25 2021-03-23 Alcon, Inc. Planar illuminator for ophthalmic surgery
US11110005B2 (en) 2016-11-17 2021-09-07 Alcon Inc. Medical instrument with an integrated optical fiber
US11109938B2 (en) 2017-11-14 2021-09-07 Alcon Inc. Multi-spot laser probe with illumination features
US11173008B2 (en) 2015-11-01 2021-11-16 Alcon Inc. Illuminated ophthalmic cannula
US11395713B2 (en) 2018-07-19 2022-07-26 Alcon Inc. Illuminated cannula
US11399914B2 (en) 2017-08-09 2022-08-02 Alcon Inc. Self-illuminating microsurgical cannula device
US11471242B1 (en) 2018-03-14 2022-10-18 Alcon Inc. Medical instruments with an integrated optical fiber and methods of manufacture
US11529502B2 (en) 2004-04-21 2022-12-20 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583526A (en) * 1985-01-14 1986-04-22 Ali Mir A Flexible endoscope structure
US4607622A (en) * 1985-04-11 1986-08-26 Charles D. Fritch Fiber optic ocular endoscope
US4784637A (en) * 1987-03-23 1988-11-15 Ryder International Corporation Aseptic irrigation syringe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583526A (en) * 1985-01-14 1986-04-22 Ali Mir A Flexible endoscope structure
US4607622A (en) * 1985-04-11 1986-08-26 Charles D. Fritch Fiber optic ocular endoscope
US4784637A (en) * 1987-03-23 1988-11-15 Ryder International Corporation Aseptic irrigation syringe

Cited By (255)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5588952A (en) * 1993-08-02 1996-12-31 Dandolu; Bhaktavathsala R. Intracardiac illuminator with suction
US5478338A (en) * 1993-09-24 1995-12-26 Reynard; Michael Fiber optic sleeve for surgical instruments
US5558669A (en) * 1993-09-24 1996-09-24 Reynard; Michael Fiber optic sleeve for surgical instruments
US5591160A (en) * 1993-09-24 1997-01-07 Reynard; Michael Fiber optic sleeve for surgical instruments
US6015403A (en) * 1996-02-26 2000-01-18 Alcon Laboratories, Inc. Ophthalmic surgery probe with soft tip
US7655002B2 (en) 1996-03-21 2010-02-02 Second Sight Laser Technologies, Inc. Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation
US20040199149A1 (en) * 1996-03-21 2004-10-07 Myers Raymond I. Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation
US20100114079A1 (en) * 1996-03-21 2010-05-06 Second Sight Laser Technologies, Inc. Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation
WO2000019919A1 (en) * 1998-10-06 2000-04-13 Edwards Lifesciences Corporation Laser handpiece having zero time positioning system
US6106162A (en) * 1998-11-12 2000-08-22 Delphi Technologies Inc. Glass optical fiber bundle connector for a hybrid fiber optic lighting distribution system
EP1210624A1 (en) * 1999-07-30 2002-06-05 CeramOptec GmbH Laser delivery system with optical fibers having fluid delivery channels
EP1210624A4 (en) * 1999-07-30 2009-06-17 Ceramoptec Gmbh Laser delivery system with optical fibers having fluid delivery channels
US6575989B1 (en) 1999-09-13 2003-06-10 Synergetics, Inc. Adjustable stiffness membrane scraper
US20040116958A1 (en) * 2001-02-06 2004-06-17 Achim Gopferich Spacing device for releasing active substances in the paranasal sinus
US8740929B2 (en) 2001-02-06 2014-06-03 Acclarent, Inc. Spacing device for releasing active substances in the paranasal sinus
US8100818B2 (en) 2001-02-22 2012-01-24 TDH Partners, Inc. Beta radiotherapy emitting surgical device and methods of use thereof
US20070265485A1 (en) * 2001-02-22 2007-11-15 Dejuan Eugene Jr Beta radiotherapy emitting surgical device and methods of use thereof
US8317816B2 (en) 2002-09-30 2012-11-27 Acclarent, Inc. Balloon catheters and methods for treating paranasal sinuses
US8764786B2 (en) 2002-09-30 2014-07-01 Acclarent, Inc. Balloon catheters and methods for treating paranasal sinuses
US8100933B2 (en) 2002-09-30 2012-01-24 Acclarent, Inc. Method for treating obstructed paranasal frontal sinuses
US9457175B2 (en) 2002-09-30 2016-10-04 Acclarent, Inc. Balloon catheters and methods for treating paranasal sinuses
US7189226B2 (en) * 2003-07-28 2007-03-13 Synergetics, Inc. Coaxial illuminated laser endoscopic probe and active numerical aperture control
US20050033389A1 (en) * 2003-07-28 2005-02-10 Auld Michael D. Coaxial illuminated laser endoscopic probe and active numerical aperture control
US20050209618A1 (en) * 2004-03-05 2005-09-22 Auld Michael D Rigid shafted instrumentation for vitreoretinal surgery
US10631756B2 (en) 2004-04-21 2020-04-28 Acclarent, Inc. Guidewires for performing image guided procedures
US8764709B2 (en) 2004-04-21 2014-07-01 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US20070282305A1 (en) * 2004-04-21 2007-12-06 Eric Goldfarb Endoscopic methods and devices for transnasal procedures
US20070293726A1 (en) * 2004-04-21 2007-12-20 Eric Goldfarb Endoscopic methods and devices for transnasal procedures
US9265407B2 (en) 2004-04-21 2016-02-23 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US9241834B2 (en) 2004-04-21 2016-01-26 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US9220879B2 (en) 2004-04-21 2015-12-29 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US20080097514A1 (en) * 2004-04-21 2008-04-24 Acclarent, Inc. Devices, Systems and Methods for Treating Disorders of the Ear, Nose and Throat
US9167961B2 (en) 2004-04-21 2015-10-27 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US20080097515A1 (en) * 2004-04-21 2008-04-24 Acclarent, Inc. Devices, Systems and Methods for Treating Disorders of the Ear, Nose and Throat
US20080103521A1 (en) * 2004-04-21 2008-05-01 Acclarent, Inc. Methods and Apparatus for Treating Disorders of the Ear Nose and Throat
US20080119693A1 (en) * 2004-04-21 2008-05-22 Acclarent, Inc. Methods and Apparatus for Treating Disorders of the Ear, Nose and Throat
US9351750B2 (en) 2004-04-21 2016-05-31 Acclarent, Inc. Devices and methods for treating maxillary sinus disease
US20080154250A1 (en) * 2004-04-21 2008-06-26 Acclarent, Inc. Devices, Systems and Methods For Diagnosing and Treating Sinusitis and Other Disorders of the Ears, Nose and/or Throat
US20080195041A1 (en) * 2004-04-21 2008-08-14 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose and throat
US9107574B2 (en) 2004-04-21 2015-08-18 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US9101384B2 (en) 2004-04-21 2015-08-11 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, Nose and/or throat
US20080234720A1 (en) * 2004-04-21 2008-09-25 Acclarent, Inc. Devices, Systems and Methods for Treating Disorders of the Ear, Nose and Throat
US20080275483A1 (en) * 2004-04-21 2008-11-06 Acclarent, Inc. Methods and Apparatus for Treating Disorders of the Ear Nose and Throat
US20080319424A1 (en) * 2004-04-21 2008-12-25 Acclarent, Inc. Devices and Methods for Delivering Therapeutic Substances for the Treatment of Sinusitis and Other Disorders
US11864725B2 (en) 2004-04-21 2024-01-09 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
US9089258B2 (en) 2004-04-21 2015-07-28 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US9370649B2 (en) 2004-04-21 2016-06-21 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US11589742B2 (en) 2004-04-21 2023-02-28 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US11529502B2 (en) 2004-04-21 2022-12-20 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US11511090B2 (en) 2004-04-21 2022-11-29 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US9055965B2 (en) 2004-04-21 2015-06-16 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US8961495B2 (en) 2004-04-21 2015-02-24 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US11202644B2 (en) 2004-04-21 2021-12-21 Acclarent, Inc. Shapeable guide catheters and related methods
US8961398B2 (en) 2004-04-21 2015-02-24 Acclarent, Inc. Methods and apparatus for treating disorders of the ear, nose and throat
US20090187098A1 (en) * 2004-04-21 2009-07-23 Acclarent, Inc. Devices, Systems and Methods for Diagnosing and Treating Sinusitis and Other Disorders of the Ears, Nose, and/or Throat
US11065061B2 (en) 2004-04-21 2021-07-20 Acclarent, Inc. Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses
US20090198216A1 (en) * 2004-04-21 2009-08-06 Acclarent, Inc. Frontal sinus spacer
US9399121B2 (en) 2004-04-21 2016-07-26 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US8945088B2 (en) 2004-04-21 2015-02-03 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US20090312745A1 (en) * 2004-04-21 2009-12-17 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US8932276B1 (en) 2004-04-21 2015-01-13 Acclarent, Inc. Shapeable guide catheters and related methods
US8905922B2 (en) 2004-04-21 2014-12-09 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
US7645272B2 (en) 2004-04-21 2010-01-12 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US11020136B2 (en) 2004-04-21 2021-06-01 Acclarent, Inc. Deflectable guide catheters and related methods
US11019989B2 (en) 2004-04-21 2021-06-01 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US10874838B2 (en) 2004-04-21 2020-12-29 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US20070208252A1 (en) * 2004-04-21 2007-09-06 Acclarent, Inc. Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses
US10856727B2 (en) 2004-04-21 2020-12-08 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US20100099946A1 (en) * 2004-04-21 2010-04-22 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US8894614B2 (en) 2004-04-21 2014-11-25 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
US8870893B2 (en) 2004-04-21 2014-10-28 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
US20100121308A1 (en) * 2004-04-21 2010-05-13 Acclarent, Inc. Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders
US20100174308A1 (en) * 2004-04-21 2010-07-08 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US20100210901A1 (en) * 2004-04-21 2010-08-19 Acclarent, Inc. Devices, Systems and Methods For Diagnosing and Treating Sinusitis and Other Disorders of the Ears, Nose and/or Throat
US8864787B2 (en) 2004-04-21 2014-10-21 Acclarent, Inc. Ethmoidotomy system and implantable spacer devices having therapeutic substance delivery capability for treatment of paranasal sinusitis
US8858586B2 (en) 2004-04-21 2014-10-14 Acclarent, Inc. Methods for enlarging ostia of paranasal sinuses
US20110004057A1 (en) * 2004-04-21 2011-01-06 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US8852143B2 (en) 2004-04-21 2014-10-07 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US10806477B2 (en) 2004-04-21 2020-10-20 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US8828041B2 (en) 2004-04-21 2014-09-09 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US10779752B2 (en) 2004-04-21 2020-09-22 Acclarent, Inc. Guidewires for performing image guided procedures
US20060063973A1 (en) * 2004-04-21 2006-03-23 Acclarent, Inc. Methods and apparatus for treating disorders of the ear, nose and throat
US10702295B2 (en) 2004-04-21 2020-07-07 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US10695080B2 (en) 2004-04-21 2020-06-30 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
US8777926B2 (en) 2004-04-21 2014-07-15 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasel or paranasal structures
US20070249896A1 (en) * 2004-04-21 2007-10-25 Eric Goldfarb Endoscopic methods and devices for transnasal procedures
US8080000B2 (en) 2004-04-21 2011-12-20 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US8090433B2 (en) 2004-04-21 2012-01-03 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US8088101B2 (en) 2004-04-21 2012-01-03 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US8764729B2 (en) 2004-04-21 2014-07-01 Acclarent, Inc. Frontal sinus spacer
US8764726B2 (en) 2004-04-21 2014-07-01 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US8114062B2 (en) 2004-04-21 2012-02-14 Acclarent, Inc. Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders
US9468362B2 (en) 2004-04-21 2016-10-18 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US10500380B2 (en) 2004-04-21 2019-12-10 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US8123722B2 (en) 2004-04-21 2012-02-28 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US8142422B2 (en) 2004-04-21 2012-03-27 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
US8146400B2 (en) 2004-04-21 2012-04-03 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US8747389B2 (en) 2004-04-21 2014-06-10 Acclarent, Inc. Systems for treating disorders of the ear, nose and throat
US8172828B2 (en) 2004-04-21 2012-05-08 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US10492810B2 (en) 2004-04-21 2019-12-03 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
US20070129751A1 (en) * 2004-04-21 2007-06-07 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
US8721591B2 (en) 2004-04-21 2014-05-13 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US8715169B2 (en) 2004-04-21 2014-05-06 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US10441758B2 (en) 2004-04-21 2019-10-15 Acclarent, Inc. Frontal sinus spacer
US10188413B1 (en) 2004-04-21 2019-01-29 Acclarent, Inc. Deflectable guide catheters and related methods
US8702626B1 (en) 2004-04-21 2014-04-22 Acclarent, Inc. Guidewires for performing image guided procedures
US9554691B2 (en) 2004-04-21 2017-01-31 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US10098652B2 (en) 2004-04-21 2018-10-16 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US8414473B2 (en) 2004-04-21 2013-04-09 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US8425457B2 (en) 2004-04-21 2013-04-23 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitus and other disorder of the ears, nose and/or throat
US10034682B2 (en) 2004-04-21 2018-07-31 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
US9610428B2 (en) 2004-04-21 2017-04-04 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
US9649477B2 (en) 2004-04-21 2017-05-16 Acclarent, Inc. Frontal sinus spacer
US9826999B2 (en) 2004-04-21 2017-11-28 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US20070139924A1 (en) * 2004-07-27 2007-06-21 Easley James C Coaxial illuminated laser endoscopic probe and active numerical aperture control
US20070139950A1 (en) * 2004-07-27 2007-06-21 Easley James C Coaxial illuminated laser endoscopic probe and active numerical aperture control
US9039680B2 (en) 2004-08-04 2015-05-26 Acclarent, Inc. Implantable devices and methods for delivering drugs and other substances to treat sinusitis and other disorders
US9084876B2 (en) 2004-08-04 2015-07-21 Acclarent, Inc. Implantable devices and methods for delivering drugs and other substances to treat sinusitis and other disorders
US20100114066A1 (en) * 2004-08-04 2010-05-06 Acclarent, Inc. Implantable devices and methods for delivering drugs and other substances to treat sinusitis and other disorders
US9039657B2 (en) 2004-08-04 2015-05-26 Acclarent, Inc. Implantable devices and methods for delivering drugs and other substances to treat sinusitis and other disorders
US20090028923A1 (en) * 2005-01-18 2009-01-29 Acclarent, Inc. Implantable Devices and Methods for Treating Sinusitis and Other Disorders
US9308361B2 (en) 2005-01-18 2016-04-12 Acclarent, Inc. Implantable devices and methods for treating sinusitis and other disorders
US8388642B2 (en) 2005-01-18 2013-03-05 Acclarent, Inc. Implantable devices and methods for treating sinusitis and other disorders
US20070208301A1 (en) * 2005-06-10 2007-09-06 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
US10124154B2 (en) 2005-06-10 2018-11-13 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
US8951225B2 (en) 2005-06-10 2015-02-10 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
US10842978B2 (en) 2005-06-10 2020-11-24 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
US9050440B2 (en) 2005-09-23 2015-06-09 Acclarent, Inc. Multi-conduit balloon catheter
US8968269B2 (en) 2005-09-23 2015-03-03 Acclarent, Inc. Multi-conduit balloon catheter
US20090171301A1 (en) * 2005-09-23 2009-07-02 Becker Bruce B Multi-conduit balloon catheter
US8114113B2 (en) 2005-09-23 2012-02-14 Acclarent, Inc. Multi-conduit balloon catheter
US20070073269A1 (en) * 2005-09-23 2007-03-29 Becker Bruce B Multi-conduit balloon catheter
US10639457B2 (en) 2005-09-23 2020-05-05 Acclarent, Inc. Multi-conduit balloon catheter
US9999752B2 (en) 2005-09-23 2018-06-19 Acclarent, Inc. Multi-conduit balloon catheter
US20100292678A1 (en) * 2006-01-20 2010-11-18 Frey Rudolph W System and method for providing laser shot patterns to the lens of an eye
US9375349B2 (en) 2006-01-20 2016-06-28 Lensar, Llc System and method for providing laser shot patterns to the lens of an eye
US9180051B2 (en) 2006-01-20 2015-11-10 Lensar Inc. System and apparatus for treating the lens of an eye
US10842675B2 (en) 2006-01-20 2020-11-24 Lensar, Inc. System and method for treating the structure of the human lens with a laser
US20070173795A1 (en) * 2006-01-20 2007-07-26 Frey Rudolph W System and apparatus for treating the lens of an eye
US9889043B2 (en) 2006-01-20 2018-02-13 Lensar, Inc. System and apparatus for delivering a laser beam to the lens of an eye
US20070173794A1 (en) * 2006-01-20 2007-07-26 Frey Rudolph W System and method for treating the structure of the human lens with a laser
US9545338B2 (en) 2006-01-20 2017-01-17 Lensar, Llc. System and method for improving the accommodative amplitude and increasing the refractive power of the human lens with a laser
US8262646B2 (en) 2006-01-20 2012-09-11 Lensar, Inc. System and method for providing the shaped structural weakening of the human lens with a laser
US20100004641A1 (en) * 2006-01-20 2010-01-07 Frey Rudolph W System and apparatus for delivering a laser beam to the lens of an eye
US20100004643A1 (en) * 2006-01-20 2010-01-07 Frey Rudolph W System and method for improving the accommodative amplitude and increasing the refractive power of the human lens with a laser
US20070179518A1 (en) * 2006-02-02 2007-08-02 Becker Bruce B Balloon Catheters and Methods for Treating Paranasal Sinuses
US8900220B2 (en) 2006-04-13 2014-12-02 D.O.R.C. Dutch Ophthalmic Research Center (International) B.V. Eye surgical instrument
US8162928B2 (en) * 2006-04-13 2012-04-24 D.O.R.C. Dutch Ophthalmic Research Center (International) B.V. Eye surgical instrument
US20110118711A1 (en) * 2006-04-13 2011-05-19 D.O.R.C. Dutch Ophthalmic Research Center (International) B.V. Eye Surgical Instrument
US20080097420A1 (en) * 2006-04-13 2008-04-24 D.O.R.C. Dutch Ophthalmic Research Center (International) B.V. Eye Surgical Instrument
US9629656B2 (en) 2006-05-17 2017-04-25 Acclarent, Inc. Adapter for attaching electromagnetic image guidance components to a medical device
US20080125720A1 (en) * 2006-05-17 2008-05-29 Acclarent, Inc. Adapter for attaching electromagnetic image guidance components to a medical device
US8190389B2 (en) 2006-05-17 2012-05-29 Acclarent, Inc. Adapter for attaching electromagnetic image guidance components to a medical device
US9198736B2 (en) 2006-05-17 2015-12-01 Acclarent, Inc. Adapter for attaching electromagnetic image guidance components to a medical device
EP1872753A1 (en) * 2006-06-30 2008-01-02 Alcon, Inc. Multifunction surgical probe
US20080004608A1 (en) * 2006-06-30 2008-01-03 Alcon, Inc. Multifunction surgical probe
US20090240112A1 (en) * 2006-09-15 2009-09-24 Acclarent, Inc. Methods and Devices for Facilitating Visualization In a Surgical Environment
US20090240237A1 (en) * 2006-09-15 2009-09-24 Acclarent Inc. Methods and Devices for Facilitating Visualization In a Surgical Environment
US9820688B2 (en) 2006-09-15 2017-11-21 Acclarent, Inc. Sinus illumination lightwire device
US20080228085A1 (en) * 2006-09-15 2008-09-18 Acclarent, Inc. Sinus illumination lightwire device
WO2008036149A3 (en) * 2006-09-15 2008-08-28 Acclarent Inc Methods and devices for facilitating visualization in a surgical environment
US20090030274A1 (en) * 2006-09-15 2009-01-29 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US7559925B2 (en) 2006-09-15 2009-07-14 Acclarent Inc. Methods and devices for facilitating visualization in a surgical environment
US10716629B2 (en) 2006-09-15 2020-07-21 Acclarent, Inc. Methods and devices for facilitating visualization in a surgical environment
US9179823B2 (en) 2006-09-15 2015-11-10 Acclarent, Inc. Methods and devices for facilitating visualization in a surgical environment
US20080082045A1 (en) * 2006-09-15 2008-04-03 Eric Goldfarb Methods and devices for facilitating visualization in a surgical environment
US9603506B2 (en) 2006-09-15 2017-03-28 Acclarent, Inc. Methods and devices for facilitating visualization in a surgical environment
US9572480B2 (en) 2006-09-15 2017-02-21 Acclarent, Inc. Methods and devices for facilitating visualization in a surgical environment
US8439687B1 (en) 2006-12-29 2013-05-14 Acclarent, Inc. Apparatus and method for simulated insertion and positioning of guidewares and other interventional devices
US9615775B2 (en) 2007-04-30 2017-04-11 Acclarent, Inc. Methods and devices for ostium measurements
US8118757B2 (en) 2007-04-30 2012-02-21 Acclarent, Inc. Methods and devices for ostium measurement
US9463068B2 (en) 2007-05-08 2016-10-11 Acclarent, Inc. Methods and devices for protecting nasal turbinates
US8485199B2 (en) 2007-05-08 2013-07-16 Acclarent, Inc. Methods and devices for protecting nasal turbinate during surgery
US20090015923A1 (en) * 2007-07-09 2009-01-15 Auld Jack R Multi-Spot Ophthalmic Laser Probe
US7566173B2 (en) * 2007-07-09 2009-07-28 Alcon, Inc. Multi-spot ophthalmic laser probe
US20090030409A1 (en) * 2007-07-27 2009-01-29 Eric Goldfarb Methods and devices for facilitating visualization in a surgical environment
WO2009058498A1 (en) * 2007-11-03 2009-05-07 Ophthalmed, Llc Ophthalmic surgical device
US20090118715A1 (en) * 2007-11-03 2009-05-07 Fouad Mansour Ophthalmic Surgical Device
US8647333B2 (en) 2007-11-03 2014-02-11 Cygnus Llc Ophthalmic surgical device
WO2009085592A1 (en) * 2007-12-19 2009-07-09 Bausch & Lomb Incorporated Illuminated ophthalmic instruments
US11311419B2 (en) 2007-12-20 2022-04-26 Acclarent, Inc. Eustachian tube dilation balloon with ventilation path
US11850120B2 (en) 2007-12-20 2023-12-26 Acclarent, Inc. Eustachian tube dilation balloon with ventilation path
US10206821B2 (en) 2007-12-20 2019-02-19 Acclarent, Inc. Eustachian tube dilation balloon with ventilation path
US8182432B2 (en) 2008-03-10 2012-05-22 Acclarent, Inc. Corewire design and construction for medical devices
US9861793B2 (en) 2008-03-10 2018-01-09 Acclarent, Inc. Corewire design and construction for medical devices
US8353812B2 (en) 2008-06-04 2013-01-15 Neovista, Inc. Handheld radiation delivery system
US20100022995A1 (en) * 2008-07-25 2010-01-28 Frey Rudolph W Method and system for removal and replacement of lens material from the lens of an eye
US20100022996A1 (en) * 2008-07-25 2010-01-28 Frey Rudolph W Method and system for creating a bubble shield for laser lens procedures
US20100042079A1 (en) * 2008-07-25 2010-02-18 Frey Rudolph W Method and System for Removal and Replacement of Lens Material fron the Lens of an Eye
US20100022994A1 (en) * 2008-07-25 2010-01-28 Frey Rudolph W Liquid filled index matching device for ophthalmic laser procedures
US8500723B2 (en) 2008-07-25 2013-08-06 Lensar, Inc. Liquid filled index matching device for ophthalmic laser procedures
US8708491B2 (en) 2008-07-25 2014-04-29 Lensar, Inc. Method and system for measuring an eye
US8480659B2 (en) 2008-07-25 2013-07-09 Lensar, Inc. Method and system for removal and replacement of lens material from the lens of an eye
US8979888B2 (en) 2008-07-30 2015-03-17 Acclarent, Inc. Paranasal ostium finder devices and methods
US11116392B2 (en) 2008-07-30 2021-09-14 Acclarent, Inc. Paranasal ostium finder devices and methods
US9750401B2 (en) 2008-07-30 2017-09-05 Acclarent, Inc. Paranasal ostium finder devices and methods
US10271719B2 (en) 2008-07-30 2019-04-30 Acclarent, Inc. Paranasal ostium finder devices and methods
US10524814B2 (en) 2009-03-20 2020-01-07 Acclarent, Inc. Guide system with suction
US11207087B2 (en) 2009-03-20 2021-12-28 Acclarent, Inc. Guide system with suction
US20100305697A1 (en) * 2009-03-31 2010-12-02 Acclarent, Inc. System and Method For Treatment of Non-Ventilating Middle Ear by Providing a Gas Pathway Through the Nasopharynx
US10376416B2 (en) 2009-03-31 2019-08-13 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
US9636258B2 (en) 2009-03-31 2017-05-02 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
US9072626B2 (en) 2009-03-31 2015-07-07 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
US8435290B2 (en) 2009-03-31 2013-05-07 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
US8617146B2 (en) 2009-07-24 2013-12-31 Lensar, Inc. Laser system and method for correction of induced astigmatism
US8382745B2 (en) 2009-07-24 2013-02-26 Lensar, Inc. Laser system and method for astigmatic corrections in association with cataract treatment
US20110166557A1 (en) * 2009-07-24 2011-07-07 Naranjo-Tackman Ramon Laser system and method for astigmatic corrections in asssociation with cataract treatment
US8465478B2 (en) 2009-07-24 2013-06-18 Lensar, Inc. System and method for performing LADAR assisted procedures on the lens of an eye
US20110160710A1 (en) * 2009-07-24 2011-06-30 Frey Rudolph W Laser system and method for performing and sealing corneal incisions in the eye
US8758332B2 (en) 2009-07-24 2014-06-24 Lensar, Inc. Laser system and method for performing and sealing corneal incisions in the eye
US20110022035A1 (en) * 2009-07-24 2011-01-27 Porter Gerrit N Liquid holding interface device for ophthalmic laser procedures
US20110022036A1 (en) * 2009-07-24 2011-01-27 Frey Rudolph W System and method for performing ladar assisted procedures on the lens of an eye
US8398240B2 (en) 2009-11-24 2013-03-19 Alcon Research, Ltd. Single-fiber multi-spot laser probe for ophthalmic endoillumination
US20110122366A1 (en) * 2009-11-24 2011-05-26 Smith Ronald T Single-fiber multi-spot laser probe for ophthalmic endoillumination
US20110144627A1 (en) * 2009-12-15 2011-06-16 Smith Ronald T Multi-spot laser probe
US8951244B2 (en) 2009-12-15 2015-02-10 Alcon Research, Ltd. Multi-spot laser probe
US20110160740A1 (en) * 2009-12-28 2011-06-30 Acclarent, Inc. Tissue Removal in The Paranasal Sinus and Nasal Cavity
US8556425B2 (en) 2010-02-01 2013-10-15 Lensar, Inc. Purkinjie image-based alignment of suction ring in ophthalmic applications
US20110190740A1 (en) * 2010-02-01 2011-08-04 Lensar, Inc. Placido ring measurement of astigmatism axis and laser marking of astigmatism axis
US9155492B2 (en) 2010-09-24 2015-10-13 Acclarent, Inc. Sinus illumination lightwire device
USD694890S1 (en) 2010-10-15 2013-12-03 Lensar, Inc. Laser system for treatment of the eye
USD695408S1 (en) 2010-10-15 2013-12-10 Lensar, Inc. Laser system for treatment of the eye
US8801186B2 (en) 2010-10-15 2014-08-12 Lensar, Inc. System and method of scan controlled illumination of structures within an eye
US9655813B2 (en) * 2010-12-14 2017-05-23 Kkt International Ltd. Stylus and treatment head for use with a medical device
US20130267876A1 (en) * 2010-12-14 2013-10-10 Aslam Khan Stylus and treatment head for use with a medical device
US10463541B2 (en) 2011-03-25 2019-11-05 Lensar, Inc. System and method for correcting astigmatism using multiple paired arcuate laser generated corneal incisions
US9795505B2 (en) 2011-08-03 2017-10-24 Alcon Research, Ltd. Articulating ophthalmic surgical probe
WO2013019859A1 (en) * 2011-08-03 2013-02-07 Alcon Research, Ltd. Articulating ophthalmic surgical probe
RU2606106C2 (en) * 2011-08-03 2017-01-10 Алькон Рисерч, Лтд. Flexible eye surgical probe
US9370447B2 (en) * 2011-10-10 2016-06-21 Cygnus LP Probes for use in ophthalmic and vitreoretinal surgery
US20160262932A1 (en) * 2011-10-10 2016-09-15 Cygnus LP Probes For Use In Ophthalmic And Vitreoretinal Surgery
US9393154B2 (en) 2011-10-28 2016-07-19 Raymond I Myers Laser methods for creating an antioxidant sink in the crystalline lens for the maintenance of eye health and physiology and slowing presbyopia development
US9937078B2 (en) 2011-10-28 2018-04-10 Raymond I Myers Laser methods for creating an antioxidant sink in the crystalline lens for the maintenance of eye health and physiology and slowing presbyopia development
US20130137935A1 (en) * 2011-11-28 2013-05-30 Patrick Haley Fiber optic illumination device and method of manufacturing
US9888837B2 (en) * 2011-11-28 2018-02-13 I-Tek Medical Solutions, Inc. Fiber optic illumination device and method of manufacturing
US10470651B2 (en) 2012-03-09 2019-11-12 D.O.R.C. Dutch Ophthalmic Research Center (International) B.V. Eye surgical lighting unit
US9335455B2 (en) 2012-05-30 2016-05-10 Cygnus, LP Extended tip laser and illumination probe for retina surgery
US10245181B2 (en) 2012-12-21 2019-04-02 Alcon Research, Ltd. Grin fiber multi-spot laser probe
US10524869B2 (en) 2013-03-15 2020-01-07 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9629684B2 (en) 2013-03-15 2017-04-25 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9433437B2 (en) 2013-03-15 2016-09-06 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US10307290B2 (en) 2015-07-13 2019-06-04 Novartis Ag Vitreous cutter with integrated illumination system
US10244931B2 (en) 2015-07-13 2019-04-02 Novartis Ag Illuminated ophthalmic infusion line and associated devices, systems, and methods
US11173008B2 (en) 2015-11-01 2021-11-16 Alcon Inc. Illuminated ophthalmic cannula
US10376414B2 (en) 2015-12-14 2019-08-13 Novartis Ag Uni-port hybrid gauge surgical apparatuses and methods
US10952808B2 (en) 2016-08-25 2021-03-23 Alcon, Inc. Planar illuminator for ophthalmic surgery
US10869735B2 (en) 2016-11-17 2020-12-22 Alcon Inc. Medical instrument with an integrated optical fiber
US11110005B2 (en) 2016-11-17 2021-09-07 Alcon Inc. Medical instrument with an integrated optical fiber
US10478266B2 (en) 2016-12-15 2019-11-19 Novartis Ag Illuminated surgical probe having multiple optical fibers
US10729461B2 (en) 2017-05-24 2020-08-04 Alcon Inc. Illuminated infusion cannula
US10610408B2 (en) 2017-05-24 2020-04-07 Alcon Inc. Illuminated infusion cannula
US11399914B2 (en) 2017-08-09 2022-08-02 Alcon Inc. Self-illuminating microsurgical cannula device
US11109938B2 (en) 2017-11-14 2021-09-07 Alcon Inc. Multi-spot laser probe with illumination features
US11471242B1 (en) 2018-03-14 2022-10-18 Alcon Inc. Medical instruments with an integrated optical fiber and methods of manufacture
US11395713B2 (en) 2018-07-19 2022-07-26 Alcon Inc. Illuminated cannula

Similar Documents

Publication Publication Date Title
US5275593A (en) Ophthalmic surgery probe assembly
US5356407A (en) Ophthalmic surgery probe assembly
CA2099578C (en) Laser delivery system
US5441496A (en) Laser delivery system with soft tip
US6193650B1 (en) Shielded illumination device for ophthalmic surgery and the like
US4652255A (en) Irrigating and aspirating handpiece for use in ophthalmic surgery
US6575989B1 (en) Adjustable stiffness membrane scraper
US6015403A (en) Ophthalmic surgery probe with soft tip
US4617013A (en) Method and apparatus for surgical irrigation, aspiration and illumination
US5554155A (en) Fiber optic pick manipulator
US6585727B1 (en) Surgical instrument light source and surgical illumination method
US20090093800A1 (en) Flexible Surgical Probe
JP2009066388A (en) Trocar cannula
US20080097346A1 (en) Trocar cannula
US20110125139A1 (en) Multi-fiber flexible surgical probe
US20030057347A1 (en) Apparatus and method for cannulating retinal blood vessels
MX2012009035A (en) Multi-fiber flexible surgical probe.
US4878487A (en) Illuminated tissue manipulator for ophthalmic surgery
WO2003022336A1 (en) Apparatus and method for cannulating retinal blood vessels
CA2512255A1 (en) Handpiece for medical surgical treatments

Legal Events

Date Code Title Description
AS Assignment

Owner name: SURGICAL TECHNOLOGIES, INC., A MISSOURI CORP., MIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:EASLEY, JAMES C.;PEYMAN, GHOLAM A.;BLOUNT, GREGORY A.;AND OTHERS;REEL/FRAME:006159/0846;SIGNING DATES FROM 19920505 TO 19920513

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: INFINITECH, INC., MISSOURI

Free format text: REEL/FRAME 6899/0202 CORRECTED ASSIGNMENT;ASSIGNOR:SURGICAL TECHNOLOGIES, INC.;REEL/FRAME:006957/0194

Effective date: 19940311

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: INNOVATION MEDICAL TECHNOLOGIES,INC., TEXAS

Free format text: MERGER;ASSIGNORS:INFINITECH,INC.;SURGICAL TECHNOLOGY,INC.;REEL/FRAME:009711/0429

Effective date: 19981231

AS Assignment

Owner name: ALCON LABORATORIES, INC., TEXAS

Free format text: MERGER;ASSIGNOR:INNOVATION MEDICAL TECHNOLOGIES, INC.;REEL/FRAME:009737/0020

Effective date: 19981231

Owner name: ALCON LABORATORIES, INC., TEXAS

Free format text: MERGER;ASSIGNOR:INNOVATION MEDICAL TECHNOLOGIES, INC.;REEL/FRAME:009737/0012

Effective date: 19981231

AS Assignment

Owner name: ALCON LABORATORIES, INC., TEXAS

Free format text: MERGER;ASSIGNOR:INNOVATION MEDICAL TECHNOLOGIES, INC.;REEL/FRAME:009764/0553

Effective date: 19981231

FEPP Fee payment procedure

Free format text: PAT HLDR NO LONGER CLAIMS SMALL ENT STAT AS INDIV INVENTOR (ORIGINAL EVENT CODE: LSM1); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REFU Refund

Free format text: REFUND - PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: R284); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: ALCON MANUFACTURING, LTD., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALCON LABORATORIES, INC.;REEL/FRAME:011667/0559

Effective date: 20010322

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: ALCON RESEARCH, LTD., TEXAS

Free format text: MERGER;ASSIGNOR:ALCON MANUFACTURING, LTD.;REEL/FRAME:021266/0729

Effective date: 20080101

Owner name: ALCON RESEARCH, LTD.,TEXAS

Free format text: MERGER;ASSIGNOR:ALCON MANUFACTURING, LTD.;REEL/FRAME:021266/0729

Effective date: 20080101