US5295551A - System for the cooperative driving of two or more vehicles - Google Patents

System for the cooperative driving of two or more vehicles Download PDF

Info

Publication number
US5295551A
US5295551A US07/569,742 US56974290A US5295551A US 5295551 A US5295551 A US 5295551A US 56974290 A US56974290 A US 56974290A US 5295551 A US5295551 A US 5295551A
Authority
US
United States
Prior art keywords
vehicle
trailing
leading
car
vehicles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/569,742
Inventor
Josef Sukonick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US07/569,742 priority Critical patent/US5295551A/en
Priority to EP93308901A priority patent/EP0652543B1/en
Application granted granted Critical
Publication of US5295551A publication Critical patent/US5295551A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0295Fleet control by at least one leading vehicle of the fleet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/24Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted
    • B62D1/28Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted non-mechanical, e.g. following a line or other known markers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D12/00Steering specially adapted for vehicles operating in tandem or having pivotally connected frames
    • B62D12/02Steering specially adapted for vehicles operating in tandem or having pivotally connected frames for vehicles operating in tandem
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires

Definitions

  • This invention relates to a new system for traffic mitigation. More specifically, it relates to a system for the cooperative driving between vehicles whereby the flow of automobiles on freeways and city streets at peak hours is substantially increased.
  • communications sensor and logic means for receiving collision-avoidance information from onboard or remote sensors, e.g., radar; positioning information from a remote source, e.g., a wire conductor buried in the roadway as a guide; and operating information from a remote computer or remote human operator, e.g., radiocontrol.
  • onboard or remote sensors e.g., radar
  • positioning information from a remote source e.g., a wire conductor buried in the roadway as a guide
  • operating information from a remote computer or remote human operator e.g., radiocontrol.
  • the information received and interpreted by the communications sensor and logic means is operatively connected to the lateral and longitudinal control means so that the vehicle safely and effectively moves along the roadway. In other words, the car goes, stops and steers in response to the data received.
  • Numerous articles have been published on such automated highway systems and many patents have been issued on its variations.
  • Automated route guidance means that a vehicle's operator can request and get guidance from a central computer about the best route to take from point A to point B.
  • the computer knows the roads, the normal daily traffic patterns, and perhaps the real time situation with respect to traffic accidents and construction tie-ups.
  • the human operator can then read and follow the computer's suggested directions which are communicated to a display terminal in the vehicle.
  • the automated route guidance system is able to make more complete use of an area's total network of roads and highways.
  • the use of such a system is limited to regions which have several roadways between points A and B. In other words, there can be no redirection of the vehicle if there is only one roadway.
  • This operator-controlled traffic mitigation system is an automated control system for traffic lights, currently in use in Los Angeles. Under the Los Angeles system, a central computer automatically controls intersection lights in response to actual traffic patterns. This system has had success in relieving traffic congestion during the Olympics.
  • the advantage of this system is limited primarily to preventing gridlock, a traffic condition experienced daily in New York City, where traffic from all directions is stopped at an intersection for extremely lengthy periods. (The system is able to prevent gridlock by anticipating the ingress and egress flow rate of vehicles into and out of an intersection.
  • the automated traffic light control system though a practical tool for traffic intersection control, is inapplicable in solving the problem of getting more cars on a road between A and B.
  • Reid U.S. Pat. No. 3,011,580, also teaches an automatic vehicle control system which attempts to accomplish a similar result of closely spaced vehicles on a roadway.
  • Reid teaches a system where the steering, braking, and acceleration of a trailing vehicle is controlled by a leading vehicle so as to maintain a predetermined separation between the two vehicles without the use of a physical connecting means.
  • Reid accomplishes this purpose by employing a pick up assembly on the trailing vehicle which detects infrared radiation from the two tail lights of the leading vehicle.
  • the two tail lights and the pick up assembly which is centered at the front of the trailing vehicle, define three points of a triangle.
  • the angle subtended by the line between the two tail lights is directly proportional to the distance between the two vehicles.
  • Reid controls the trailing vehicle to maintain a constant subtended angle.
  • An objective of the present invention is to provide a new system for the cooperative driving of two or more vehicles which minimizes the disadvantages of the prior art.
  • the present invention has several uses and advantages.
  • One use is for traffic mitigation. It is well known that individual driver reaction time is a major factor in determining the number of vehicles per hour that is able to pass a fixed point on a freeway or a traffic-light-controlled intersection. If all vehicles are cooperatively paired up, the number of individual reaction times is halved (the trailing vehicles effectively have no driver to react). Hence, the number of vehicles per hour would increase substantially, thereby permitting existing roadways to carry more traffic. Specifically, it is estimated that a 60% improvement over present traffic density may be achieved with a 2 foot separation.
  • a second independent use of the invention would be vehicle delivery. Once two vehicles are cooperatively paired, no operator is required in the trail vehicle Hence, the paired vehicles could be driven to a destination by a single operator. This would be economically beneficial for delivery of new or rental cars, or for returning a car from servicing. Clearly delivering two cars with one driver is less expensive than requiring a driver for each car.
  • the drafting effect i.e. the reduction of wind resistance caused by the lead vehicle, is well known by racing drivers. If the distance between the vehicles is small and the aerodynamics well thought out, the drafting effect could save 25 percent or more in fuel costs.
  • the new system that I propose requires only equipment that may be retrofitted onto existing motor vehicles.
  • the present invention works with current streets and freeways, and therefore no publicly owned equipment needs to be built or operated.
  • a vehicle equipped with the invention can be operated manually as a conventional motor vehicle and can then, under command of its operator, switch into a mode called "Tow Mode.”
  • the onboard equipment required for Tow Mode consists of mechanisms for vehicle longitudinal control, e.g., acceleration, speed maintenance, and braking; lateral control, e.g., steering; and communication, position sensing, and logical computer equipment.
  • vehicle longitudinal control e.g., acceleration, speed maintenance, and braking
  • lateral control e.g., steering
  • communication position sensing, and logical computer equipment.
  • lead and trail cars should be identically equipped, as either vehicle may be required to take on lead or trail roles.
  • Tow Mode requires at least two vehicles; each may have their own operators.
  • the front vehicle, or lead vehicle needs to be driven by an operator during Tow Mode.
  • the rear vehicle, or trailing vehicle is controlled by the lead vehicle and mimics all the motions of the lead vehicle.
  • the operator of the trailing vehicle does not drive but simply waits passively while being towed. He/she resumes driving when Tow Mode is terminated.
  • Tow Mode is initiated by a trailing vehicle which interrogates ahead vehicle through its communication system.
  • the communication system automatically trades vehicle identification codes as well as static vehicular performance characteristics.
  • the logical computer system determines whether the trail car is compatible performance-wise with the lead car in terms of its being "towed” in Tow Mode. If the computer judges the two cars compatible, Tow Mode may begin with both vehicles becoming “joined” by each of their communications channel and onboard sensors. At that point, both vehicles are then driven by the actions of the operator in the lead vehicle.
  • the onboard sensors continually detect the actual driving performance of the lead driver, the actual performance characteristics of both vehicles, and the relative positions of the two vehicles The computer system monitors this incoming data and controls the two vehicles so that the trail vehicle is able to safely mimic the lead vehicle.
  • Tow Mode ends, the vehicles separate and are driven off independently by their respective drivers. At no time do the vehicles need to be physically joined.
  • FIG. 1 is a prospective view of the present invention's system.
  • FIG. 2 shows various types of data being inputted to and outputted out of the control system of a lead vehicle.
  • FIG. 3a shows the trailing vehicle's hardware for use in the present invention's system.
  • FIG. 3b shows the lead vehicle's hardware for use in the present invention's system.
  • FIG. 4 is a flow chart of the present invention's operation when initiating, establishing and operating in tow mode.
  • FIG. 5 is a flow chart of the present invention's operation when disengaging from tow mode.
  • the present invention is preferably used for the cooperative driving of two vehicle.
  • the present invention may also be extended to include additional vehicles as also indicated in FIG. 1.
  • cars 1,1a are identically equipped, as shown in FIGS. 3a and 3b, so that either car may assume lead or trail roles.
  • cars 1,1a are equipped with communication means, which typically comprise receivers 5,5a and transmitters 6,6a.
  • cars 1,1a are each equipped with means for controlling their respective steering, braking and acceleration.
  • this control means includes computers 8,8a, which also serve as judging means for evaluating performance and operator data from, both cars 1,1a.
  • a vehicle's performance and operator data is accumulated by various sensors and may be transferred to another vehicle by the communication means.
  • transponders 2,2a, 3,3a located at the rear of each car. These transponders provide such information as a vehicle's identification code (ID), a separation distance between two vehicles (D), and an offset angle between the two vehicles ( ⁇ ).
  • ID vehicle's identification code
  • D separation distance between two vehicles
  • offset angle between the two vehicles
  • sensors 4,4a monitor operators' 7,7a driving responses by detecting acceleration pedal pressure, brake pedal pressure, and steering wheel rotation.
  • sensors 4',4a' monitor actual vehicle performance with respect to acceleration, velocity, braking (decelerations) and turning.
  • This vehicle performance data also includes-lag times in the mechanical systems, an example of which is the lag between the application of pressure at the accelerator to the time acceleration begins.
  • This acceleration lag or delay can be substantial since it cumulatively comprises the additive delays from the fuel delivery system, the combustion chamber, the crank shaft inertia, and the transmission.
  • the performance data from sensors 4',4a' is then stored in memories of computers 8,8a so as to maintain an updated record on the vehicle's performance capabilities, e.g., acceleration, braking and steering capabilities.
  • FIGS. 4 and 5 are simplified flow charts of the four phases of operation.
  • FIG. 2 shows the control system of the lead vehicle and the various types of information being exchanged between the two vehicles via their communication means. Note that incoming arrows into the lead vehicle's control system indicates incoming information transmitted from the trail vehicle. Outgoing arrows indicate information being transmitted to the trail vehicle. Incoming and outgoing arrows indicate that that information is exchanged between the two vehicles. Conversely, a similar figure may be drawn for the trail vehicle's control system except that the arrows will be reversed in direction. These figures are not to be read as limiting since the present invention encompasses other embodiments not illustrated in these figures.
  • driver 7a of vehicle la initiates a "tow request" signal, preferably by pushing a button on his/her dash. By pressing the "tow request” button, driver 7a causes interrogator 9a to interrogate transponders 2,3 of vehicle 1. Transponders 2,3 then feed back to computer 8a of vehicle la a variety of information to determine whether the second phase of operation, tow mode, should be established. This information preferably includes both the separation distance, D, between the-two vehicles and their respective offset angle, ⁇ . Computer 8a then determines whether vehicle 1 and 1a are properly positioned for tow mode. If not, a display may indicate what operator 7a needs to do to position vehicle 1a properly.
  • the transmitted information from vehicle 1 preferably includes vehicle 1's vehicle identification code, e.g., a license plate number, which is displayed to operator 7a to permit him/her to ascertain whether the correct lead vehicle is being interrogated.
  • vehicle 1's current performance characteristic e.g., its acceleration, braking and steering capability. Vehicle 1's performance characteristics are compared with vehicle 1a's performance characteristics to determine whether the two vehicles are compatible for establishing tow mode. This determination is preferably based on pre-established safety factors stored in memories of computers 8,8a.
  • a display so informs operator 7a and tow mode is precluded from being established. If the two vehicles are judged compatible, a compatibility signal is transmitted to vehicle 1, which is displayed to operator 7 as a "tow request". Either computers 8 or 8a may serve as the judging means for compatibility.
  • computers 8 or 8a may warn lead operator 7 of any needed modifications in his/her vehicle's performance responses to his/her driving actions in order to mesh the two vehicle's performance characteristics safely for cooperative driving. In other words, operator 7 may be warned that his/her vehicle's braking, acceleration, or steering responses have been modified to accommodate trailing vehicle 1a's poorer performance characteristics.
  • Operator 7 preferably has the option of accepting or rejecting the tow request. If operator 7 chooses to reject the tow request, he/she may initiate a refusal signal which is transmitted to operator 7a. If operator 7 wishes to accept the tow request, he/she may initiate a tow accept signal which is similarly transmitted to operator 7a.
  • FIG. 4 The above description of the invention's operation is illustrated by FIG. 4's flow chart. The above description and the illustration is not to be read as limiting. Other variations of initiating "tow mode" come within the scope of the invention.
  • vehicles 1,1a After operator 7a's tow request has been accepted, vehicles 1,1a become "linked” through their communication means. Once linkage is established, operator 7a relinquishes control of vehicle 1a to operator 7. Operator 7a may then take his/her hands off the steering wheel and his/her feet off the foot controls of vehicle 1a. In other words, vehicle 1a becomes unresponsive to operator 7a's driving action. However, as will be explained later, operator 7a may disengage from "tow mode" by stepping on vehicle 1a's brakes.
  • computer 8 of vehicle 1 drives one of the two vehicles, bringing them together to a predetermined proper tow position, preferably within a car length. For example, with a 2 foot separation and a 0 degree offset angle between the two vehicles, it is estimated that a 60% improvement over present traffic density may be achieved.
  • computer 8 accelerates and steers trailing vehicle 1a so that the desired separation distance and offset angle is achieved.
  • computer 8 may slow down lead vehicle 1 to achieve the desired separation distance.
  • FIG. 4 The above description of the invention's operation is illustrated by FIG. 4's flow chart. The above description and the illustration is not to be read as limiting. Other variations of establishing tow mode come within the scope of the invention.
  • computer 8 maintains control over trailing vehicle 1a so that it remains in the proper predetermined tow position behind lead vehicle 1.
  • computer 8 is fed instantaneous information regarding operator 7's driving actions through sensors 4.
  • Computer 8 receives this information before vehicle 1 responds to operator 7's actions.
  • Computer 8 has also been fed, via the communications link established with vehicle 1a, information regarding trailing vehicle 1a's current performance characteristics.
  • Computer 8 judges whether vehicle 1a may safely mimic operator 7's desired driving action, e.g., braking, acceleration, and steering. If the maneuver is judged safe, vehicle 1 is permitted to respond normally to operator 7's driving action. If the maneuver is judged unsafe, computer 8 modifies the performance response of vehicle 1 to safely permit the maneuver for both vehicles.
  • a typical case may involve a situation where lead vehicle 1 has a superior braking capitulatory over trailing vehicle 1a.
  • computer 8 modifies the braking response of lead vehicle 1 in order to permit trailing vehicle 1a to brake safely, e.g., reduces the braking response of vehicle 1.
  • lead operator 7 has been preferably warned on his/her display of this reduced braking capability at the time tow mode was initiated.
  • FIG. 4 The above description of the invention's operation is illustrated by FIG. 4's flow chart. The above description and the illustration is not to be read as limiting. Other variations of operating in tow mode come within the scope of the invention.
  • computer 8 of the lead vehicle instead of computer 8 of the lead vehicle, computer 8a of the trailing vehicle may be used for judging and for controlling the driving of the two vehicles in accordance with the performance characteristics of the vehicles and the lead driver's driving action to achieve safe cooperative driving.
  • tow mode may be disengaged by either operator 7 or 7a. If operator 7a of trailing vehicle 1a wishes to disengage, he/she initiates a "tow mode" disengage signal. This causes computer 8a to resume control of vehicle 1a. Computer 8a increases the separation between the two vehicles by slowing down vehicle 1a. During this separation vehicle 1a should remain in tow mode. Once a safe separation distance has been established, mainitiates a warning signal to operator 7a to resume manual control of vehicle 1a. After several seconds of warning, computer 8a relinquishes control over vehicle 1a back to operator 7a. Alternatively, operator 7a may initiate a tow mode disengage signal by stepping on vehicle 1a's brakes. In that case, the disengage operation preferably remains the same as described above.
  • FIG. 5 The above description of the invention's operation is illustrated by FIG. 5's flow chart.
  • the above description and the illustration is not to be read as limiting.
  • Other variations of disengaging from tow mode come within the scope of the invention.
  • a natural extension of the present invention allows additional trail vehicles to follow the lead vehicle.
  • that vehicle would initiate tow mode by interrogating vehicle 1a.
  • transponders in vehicle 1a transmit to vehicle 1b information with respect to vehicle 1a's separation distance, offset angle, and vehicle identification.
  • vehicle 1's and vehicle 1a's performance characteristics are compared to those of vehicle 1b to determine their overall compatibility. If overall compatibility exists, a "tow request" is preferably displayed to vehicle 1's operator, which he/she may accept.
  • a "tow request" may be displayed to vehicle 1a's operator, which he/she may accept. Once the tow request is accepted, tow mode is established and operated similarly as in the earlier described two-car situation.
  • vehicle 1b' performance characteristics may just be compared to those of the lead vehicle's to determine compatibility.
  • Disengaging from tow mode in a train of 3 or more vehicles is also somewhat similar to the two-car situation. If the lead car wishes to disengage from tow mode, preferably operators of both trailing vehicles must affirmatively respond. If vehicle 1a wishes to disengage, an affirmative response is preferably only required from vehicle 1b. On the other hand, vehicle 1b may unilaterally disengage, preferably leaving vehicles 1 and 1a remaining in tow mode. Thus, in this preferred embodiment, a disengaging vehicle must have first received an affirmative response from all the vehicles trailing it, and in disengaging, it leaves the vehicles in front of it remaining in tow mode. Alternatively, the disengaging vehicle may assume a new leading role, "towing" the vehicles trailing it. The actual operation of tow mode is nearly similar to that of the earlier described two-car situation except that a further warning may be displayed to the lead operator with respect to any additional modifications of the lead vehicle's performance characteristics.
  • a train of 3 or more vehicles could still be driven by a single operator in the lead vehicle. All that is required is additional driver training in maneuvering a train of cars. Furthermore, the number of vehicles in the train may be increased if sub-compact vehicles are cooperatively joined. Consequently, traffic efficiency would be further enhanced by such trains and the economics of vehicle delivery would be even greater than in the two-car case.
  • One suggested way of beginning and ending Tow Mode was manual entry where the drivers determine the beginning and ending of Tow Mode.
  • Another possible way is semi-automatic entry, where towing is begun automatically at each stopping place whenever the preceding vehicle is deemed compatible. The trail vehicle is then towed until a certain speed is reached, say 25 mph, or until it clears the intersection, at which point it is automatically released from the tow.
  • the semiautomatic mode would proceed without operator intervention and would be useful during street driving for efficiently passing through a series of traffic lights or stop signs, or for efficiently turning at intersections.
  • the hardware used in the present invention may also be easily adapted for use in an automatic highway system whereby a vehicle is controlled by an external central computer.
  • a communication link will be established between the external computer and a vehicle for inputting the vehicle's positonal information and performance characteristics.
  • the external computer instead of the lead vehicle may then appropriately control the driving of the vehicle through its driving control means.
  • the concept of the automatic highway system is not to be read as limiting.
  • Other embodiments whereby an external computer controls a vehicle's actions are within the scope of the present invention.
  • the scope of the present invention includes an automatic parking system whereby an external computer controls the driving of a vehicle within a parking garage so as to automatically park the vehicle without an operator.

Abstract

The present invention teaches a system of cooperative driving for use in traffic mitigation or towing, in which two or more non-mechanically connected vehicles are identically equipped with automatic driving controls, which cooperate with sensors and communication devices so that the vehicles are effectively driven by the driver in the leading vehicle.

Description

This application is a continuation of application Ser. No. 07/390,485 filed on Jul. 31, 1989, now abandoned, which is a continuation of application Ser. No. 07/279,322 filed on Dec. 1, 1988 and now abandoned, which is a continuation of application Ser. No. 06/836,834 filed on Mar. 6, 1986 and now abandoned.
BACKGROUND OF THE INVENTION
This invention relates to a new system for traffic mitigation. More specifically, it relates to a system for the cooperative driving between vehicles whereby the flow of automobiles on freeways and city streets at peak hours is substantially increased.
Heavy rush hour traffic is considered an urgent unsolved problem in all major metropolitan areas of the United States. For example, planners in Santa Clara County, Calif., 50 miles south of San Francisco, have declared traffic congestion to be the region's number one public problem. The final bits and pieces of the freeway systems planned and begun in the 50's and 60's are now being completed. Major new highway construction is dubious since the public mood does not support it. Each mile and each interchange is fought by no-growth proponents. Public transit systems are recognized to have only marginal value in areas of low population density, such as Santa Clara County. Even the staunchest advocates of public transit do not think it can replace the private automobile in low density areas.
With major freeway expansions and the replacement of the car by public transit being unlikely, traffic congestion grows worse every year. As a result, there have been several attempts to make the automobile more efficient in heavy traffic thereby allowing already existing freeways and city streets to handle rush hour traffic more easily.
One such attempt is the idea of automatically guided vehicles, which has spawned numerous studies and approaches. Research has proceeded as far as a working prototype of a test track with suitable vehicles for an "automated highway". Typically such vehicles have onboard the following:
1) longitudinal control means for acceleration, speed maintenance, and braking,
2) lateral control means for steering, and
3) communications sensor and logic means for receiving collision-avoidance information from onboard or remote sensors, e.g., radar; positioning information from a remote source, e.g., a wire conductor buried in the roadway as a guide; and operating information from a remote computer or remote human operator, e.g., radiocontrol.
The information received and interpreted by the communications sensor and logic means is operatively connected to the lateral and longitudinal control means so that the vehicle safely and effectively moves along the roadway. In other words, the car goes, stops and steers in response to the data received. Numerous articles have been published on such automated highway systems and many patents have been issued on its variations.
Despite the promise of the automated highway and the urgency of its need, the U.S. Department of Transportation stopped funding of automated highway demonstration projects in 1980. Despair over its complexity and high cost has eroded the public desire to fund experiments in this area.
In West Germany and Japan currently funded demonstrations are limited to the less ambitious "automated route guidance," where the driver retains operating control over his/her vehicle. Automated route guidance means that a vehicle's operator can request and get guidance from a central computer about the best route to take from point A to point B. The computer knows the roads, the normal daily traffic patterns, and perhaps the real time situation with respect to traffic accidents and construction tie-ups. The human operator can then read and follow the computer's suggested directions which are communicated to a display terminal in the vehicle. By directing a driver to less traveled routes, the automated route guidance system is able to make more complete use of an area's total network of roads and highways. The use of such a system, however, is limited to regions which have several roadways between points A and B. In other words, there can be no redirection of the vehicle if there is only one roadway.
Another variation of this operator-controlled traffic mitigation system is an automated control system for traffic lights, currently in use in Los Angeles. Under the Los Angeles system, a central computer automatically controls intersection lights in response to actual traffic patterns. This system has had success in relieving traffic congestion during the Olympics. The advantage of this system is limited primarily to preventing gridlock, a traffic condition experienced daily in New York City, where traffic from all directions is stopped at an intersection for extremely lengthy periods. (The system is able to prevent gridlock by anticipating the ingress and egress flow rate of vehicles into and out of an intersection. By appropriately controlling lights at that intersection, the computer is able to balance the two flow rates so that no substantial back-up occurs.) The automated traffic light control system, though a practical tool for traffic intersection control, is inapplicable in solving the problem of getting more cars on a road between A and B.
Some experiments at traffic mitigation have been made with totally self-contained robot-guided vehicles, but so far, little promise has been shown. One such vehicle was equipped with a TV camera to "see" ahead a short stretch of road while driving itself slowly down the road. In that case, the robot vehicle tried to drive itself up a roadside tree. Technicians later explained that the sun's angle had caused the tree shadow to be unexpectedly sharp. The programmers have promised that next year's model will know more about shadows. I believe robots are decades away from being acceptable drivers.
Other prior art systems, in obliquely dealing with the problem of traffic mitigation, have suggested methods of automatically maintaining fixed close distances between two cars, thereby increasing the potential carrying capacity of a roadway. For example, Ayotte, U.S. Pat. No. 4,119,166, teaches a dual vehicle operating system whereby a lead vehicle is physically connected to a trailing vehicle by a zeroforce mechanical connecting link and signal wires. Mechanical transducers in the connecting link and pedal transducers in the lead car provide information via signal wires of the lead vehicle's steering, braking, and acceleration to an electronic control in the trailing vehicle that controls the trailing vehicle's throttle, brakes and steering. In this way, the trailing vehicle mimics the lead vehicle.
Such systems, however, suffer from the obvious disadvantage of requiring a physical hookup. The requirement of a hookup destroys most of the system's usefulness in dealing with the problem of traffic mitigation. The extra time and steps required to both prearrange for a car to be hooked up and to physically hook up the mechanical connection presents a nearly insurmountable barrier to the general and popular usage of this prior art system. Like car pools, this type of system will most likely die for lack of interest.
Reid, U.S. Pat. No. 3,011,580, also teaches an automatic vehicle control system which attempts to accomplish a similar result of closely spaced vehicles on a roadway. In contrast to Ayotte, Reid teaches a system where the steering, braking, and acceleration of a trailing vehicle is controlled by a leading vehicle so as to maintain a predetermined separation between the two vehicles without the use of a physical connecting means. Reid accomplishes this purpose by employing a pick up assembly on the trailing vehicle which detects infrared radiation from the two tail lights of the leading vehicle. The two tail lights and the pick up assembly, which is centered at the front of the trailing vehicle, define three points of a triangle. The angle subtended by the line between the two tail lights is directly proportional to the distance between the two vehicles. To maintain a fixed distance between the two vehicles, Reid controls the trailing vehicle to maintain a constant subtended angle.
One major disadvantage of this type of system is its inability to compensate for differing vehicular performance characteristics of the two vehicles. To take an extreme example, such a system may be dangerously inoperable if a semitrailer is trailing a high performance sports car. In that case, if the sports car either accelerates quickly or makes a sharp turn, the semitrailer with its poor acceleration characteristics and poor turning radius may be unable to follow the sports car, and in its attempt to do so, may overturn.
Another major disadvantage of this type of system is its failure to provide methods of use during actual roadway operation. For example, there is no provision for a vehicle operator to spontaneously engage in this type of an automatic vehicle control system while on the road. Consequently, this type of system appears to similarly require drivers to prearrange getting their vehicles together In addition, there is no provision for vehicles in this system to voluntarily disengage, thereby limiting the trailing operator's driving freedom and the widespread usefulness of this system.
An objective of the present invention is to provide a new system for the cooperative driving of two or more vehicles which minimizes the disadvantages of the prior art. In accomplishing this objective, the present invention has several uses and advantages. One use is for traffic mitigation. It is well known that individual driver reaction time is a major factor in determining the number of vehicles per hour that is able to pass a fixed point on a freeway or a traffic-light-controlled intersection. If all vehicles are cooperatively paired up, the number of individual reaction times is halved (the trailing vehicles effectively have no driver to react). Hence, the number of vehicles per hour would increase substantially, thereby permitting existing roadways to carry more traffic. Specifically, it is estimated that a 60% improvement over present traffic density may be achieved with a 2 foot separation.
A second independent use of the invention would be vehicle delivery. Once two vehicles are cooperatively paired, no operator is required in the trail vehicle Hence, the paired vehicles could be driven to a destination by a single operator. This would be economically beneficial for delivery of new or rental cars, or for returning a car from servicing. Clearly delivering two cars with one driver is less expensive than requiring a driver for each car.
One advantage of using the present invention's system would be a full savings for the trail vehicle. The drafting effect, i.e. the reduction of wind resistance caused by the lead vehicle, is well known by racing drivers. If the distance between the vehicles is small and the aerodynamics well thought out, the drafting effect could save 25 percent or more in fuel costs.
SUMMARY OF THE INVENTION
The new system that I propose requires only equipment that may be retrofitted onto existing motor vehicles. Thus, the present invention works with current streets and freeways, and therefore no publicly owned equipment needs to be built or operated. A vehicle equipped with the invention can be operated manually as a conventional motor vehicle and can then, under command of its operator, switch into a mode called "Tow Mode."
The onboard equipment required for Tow Mode consists of mechanisms for vehicle longitudinal control, e.g., acceleration, speed maintenance, and braking; lateral control, e.g., steering; and communication, position sensing, and logical computer equipment. Both lead and trail cars should be identically equipped, as either vehicle may be required to take on lead or trail roles.
Tow Mode requires at least two vehicles; each may have their own operators. The front vehicle, or lead vehicle, needs to be driven by an operator during Tow Mode. The rear vehicle, or trailing vehicle, is controlled by the lead vehicle and mimics all the motions of the lead vehicle. The operator of the trailing vehicle does not drive but simply waits passively while being towed. He/she resumes driving when Tow Mode is terminated.
Tow Mode is initiated by a trailing vehicle which interrogates ahead vehicle through its communication system. The communication system automatically trades vehicle identification codes as well as static vehicular performance characteristics. The logical computer system then determines whether the trail car is compatible performance-wise with the lead car in terms of its being "towed" in Tow Mode. If the computer judges the two cars compatible, Tow Mode may begin with both vehicles becoming "joined" by each of their communications channel and onboard sensors. At that point, both vehicles are then driven by the actions of the operator in the lead vehicle. The onboard sensors continually detect the actual driving performance of the lead driver, the actual performance characteristics of both vehicles, and the relative positions of the two vehicles The computer system monitors this incoming data and controls the two vehicles so that the trail vehicle is able to safely mimic the lead vehicle. When Tow Mode ends, the vehicles separate and are driven off independently by their respective drivers. At no time do the vehicles need to be physically joined.
What is new and inventive therefore is the concept that vehicles in Tow Mode are being cooperatively driven by the human operator of the lead vehicle with the performance characteristics of all cars being accounted for. Also inventive is the logic, computer software, and operator control panel needed to use Tow Mode safely and effectively. Also inventive are the needed sequences for beginning and ending Tow Mode.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a prospective view of the present invention's system.
FIG. 2 shows various types of data being inputted to and outputted out of the control system of a lead vehicle.
FIG. 3a shows the trailing vehicle's hardware for use in the present invention's system.
FIG. 3b shows the lead vehicle's hardware for use in the present invention's system.
FIG. 4 is a flow chart of the present invention's operation when initiating, establishing and operating in tow mode.
FIG. 5 is a flow chart of the present invention's operation when disengaging from tow mode.
DESCRIPTION OF THE PREFERRED EMBODIMENT
The following description is of the best presently contemplated mode of carrying out the present invention. This description is not to be taken in a limiting sense;.it is made merely for the purpose of illustrating the general principles of the invention since the scope of the invention is best defined by the appended claims.
As shown in FIG. 1, the present invention is preferably used for the cooperative driving of two vehicle. The present invention, however, may also be extended to include additional vehicles as also indicated in FIG. 1.
In accordance with the preferred embodiment, cars 1,1a are identically equipped, as shown in FIGS. 3a and 3b, so that either car may assume lead or trail roles. For example, cars 1,1a are equipped with communication means, which typically comprise receivers 5,5a and transmitters 6,6a.
In addition, cars 1,1a are each equipped with means for controlling their respective steering, braking and acceleration. Typically, this control means includes computers 8,8a, which also serve as judging means for evaluating performance and operator data from, both cars 1,1a. As will be explained below, a vehicle's performance and operator data is accumulated by various sensors and may be transferred to another vehicle by the communication means.
Certain data fed to computers 8,8a is accumulated by transponders 2,2a, 3,3a, located at the rear of each car. These transponders provide such information as a vehicle's identification code (ID), a separation distance between two vehicles (D), and an offset angle between the two vehicles (α). The above information is provided to vehicle 1a when transponders 2, 3 are interrogated by interrogator 9a. In accordance with the preferred embodiment, an identical interrogator 9 is located on car 1.
Other information fed to computers 8,8a are accumulated by various sensors. For example, sensors 4,4a monitor operators' 7,7a driving responses by detecting acceleration pedal pressure, brake pedal pressure, and steering wheel rotation. In addition, sensors 4',4a'monitor actual vehicle performance with respect to acceleration, velocity, braking (decelerations) and turning. This vehicle performance data also includes-lag times in the mechanical systems, an example of which is the lag between the application of pressure at the accelerator to the time acceleration begins. This acceleration lag or delay can be substantial since it cumulatively comprises the additive delays from the fuel delivery system, the combustion chamber, the crank shaft inertia, and the transmission. The performance data from sensors 4',4a' is then stored in memories of computers 8,8a so as to maintain an updated record on the vehicle's performance capabilities, e.g., acceleration, braking and steering capabilities.
The present invention will be best understood in the context of its preferred mode of operation. As discussed in the following sections, there are four distinct phases of operation with respect to the present invention. Reference should be concurrently made to FIGS. 2, 4, and 5 for a better understanding of the invention.
FIGS. 4 and 5 are simplified flow charts of the four phases of operation. FIG. 2 shows the control system of the lead vehicle and the various types of information being exchanged between the two vehicles via their communication means. Note that incoming arrows into the lead vehicle's control system indicates incoming information transmitted from the trail vehicle. Outgoing arrows indicate information being transmitted to the trail vehicle. Incoming and outgoing arrows indicate that that information is exchanged between the two vehicles. Conversely, a similar figure may be drawn for the trail vehicle's control system except that the arrows will be reversed in direction. These figures are not to be read as limiting since the present invention encompasses other embodiments not illustrated in these figures.
Initiating Tow Mode
In the first phase, which is the initiation mode, driver 7a of vehicle la initiates a "tow request" signal, preferably by pushing a button on his/her dash. By pressing the "tow request" button, driver 7a causes interrogator 9a to interrogate transponders 2,3 of vehicle 1. Transponders 2,3 then feed back to computer 8a of vehicle la a variety of information to determine whether the second phase of operation, tow mode, should be established. This information preferably includes both the separation distance, D, between the-two vehicles and their respective offset angle, α. Computer 8a then determines whether vehicle 1 and 1a are properly positioned for tow mode. If not, a display may indicate what operator 7a needs to do to position vehicle 1a properly. In addition, the transmitted information from vehicle 1 preferably includes vehicle 1's vehicle identification code, e.g., a license plate number, which is displayed to operator 7a to permit him/her to ascertain whether the correct lead vehicle is being interrogated. Furthermore, the transmitted information preferably includes vehicle 1's current performance characteristic, e.g., its acceleration, braking and steering capability. Vehicle 1's performance characteristics are compared with vehicle 1a's performance characteristics to determine whether the two vehicles are compatible for establishing tow mode. This determination is preferably based on pre-established safety factors stored in memories of computers 8,8a.
If the two vehicles are judged incompatible, a display so informs operator 7a and tow mode is precluded from being established. If the two vehicles are judged compatible, a compatibility signal is transmitted to vehicle 1, which is displayed to operator 7 as a "tow request". Either computers 8 or 8a may serve as the judging means for compatibility.
A judgment of compatibility is preferably not based on the two vehicles sharing identical performance characteristics. In reality, few vehicles, if any, are exactly alike in terms of steering, braking, and accelerating capabilities. In accordance with this preferred embodiment, computers 8 or 8a may warn lead operator 7 of any needed modifications in his/her vehicle's performance responses to his/her driving actions in order to mesh the two vehicle's performance characteristics safely for cooperative driving. In other words, operator 7 may be warned that his/her vehicle's braking, acceleration, or steering responses have been modified to accommodate trailing vehicle 1a's poorer performance characteristics. These potential modifications will be further discussed in the section on "Operating in Tow Mode."
Operator 7 preferably has the option of accepting or rejecting the tow request. If operator 7 chooses to reject the tow request, he/she may initiate a refusal signal which is transmitted to operator 7a. If operator 7 wishes to accept the tow request, he/she may initiate a tow accept signal which is similarly transmitted to operator 7a.
The above description of the invention's operation is illustrated by FIG. 4's flow chart. The above description and the illustration is not to be read as limiting. Other variations of initiating "tow mode" come within the scope of the invention.
Establishing Tow Mode
After operator 7a's tow request has been accepted, vehicles 1,1a become "linked" through their communication means. Once linkage is established, operator 7a relinquishes control of vehicle 1a to operator 7. Operator 7a may then take his/her hands off the steering wheel and his/her feet off the foot controls of vehicle 1a. In other words, vehicle 1a becomes unresponsive to operator 7a's driving action. However, as will be explained later, operator 7a may disengage from "tow mode" by stepping on vehicle 1a's brakes.
After linkage is established, computer 8 of vehicle 1 drives one of the two vehicles, bringing them together to a predetermined proper tow position, preferably within a car length. For example, with a 2 foot separation and a 0 degree offset angle between the two vehicles, it is estimated that a 60% improvement over present traffic density may be achieved. Preferably, computer 8 accelerates and steers trailing vehicle 1a so that the desired separation distance and offset angle is achieved. Alternatively, computer 8 may slow down lead vehicle 1 to achieve the desired separation distance.
The above description of the invention's operation is illustrated by FIG. 4's flow chart. The above description and the illustration is not to be read as limiting. Other variations of establishing tow mode come within the scope of the invention.
Operating in Tow Mode
In accordance with the preferred embodiment, computer 8 maintains control over trailing vehicle 1a so that it remains in the proper predetermined tow position behind lead vehicle 1. During this towing operation, computer 8 is fed instantaneous information regarding operator 7's driving actions through sensors 4. Computer 8 receives this information before vehicle 1 responds to operator 7's actions. Computer 8 has also been fed, via the communications link established with vehicle 1a, information regarding trailing vehicle 1a's current performance characteristics. Computer 8 then judges whether vehicle 1a may safely mimic operator 7's desired driving action, e.g., braking, acceleration, and steering. If the maneuver is judged safe, vehicle 1 is permitted to respond normally to operator 7's driving action. If the maneuver is judged unsafe, computer 8 modifies the performance response of vehicle 1 to safely permit the maneuver for both vehicles. For example, a typical case may involve a situation where lead vehicle 1 has a superior braking capitulatory over trailing vehicle 1a. In the event that lead operator 7 slams on his/her brakes, vehicle 1a may collide into vehicle 1 since it is unable to stop as quickly. Consequently, in accordance with the present invention's preferred embodiment, computer 8 modifies the braking response of lead vehicle 1 in order to permit trailing vehicle 1a to brake safely, e.g., reduces the braking response of vehicle 1. As mentioned earlier, lead operator 7 has been preferably warned on his/her display of this reduced braking capability at the time tow mode was initiated.
The above description of the invention's operation is illustrated by FIG. 4's flow chart. The above description and the illustration is not to be read as limiting. Other variations of operating in tow mode come within the scope of the invention. For example, instead of computer 8 of the lead vehicle, computer 8a of the trailing vehicle may be used for judging and for controlling the driving of the two vehicles in accordance with the performance characteristics of the vehicles and the lead driver's driving action to achieve safe cooperative driving.
Disengaging from Two Mode
In accordance with the preferred embodiment, tow mode may be disengaged by either operator 7 or 7a. If operator 7a of trailing vehicle 1a wishes to disengage, he/she initiates a "tow mode" disengage signal. This causes computer 8a to resume control of vehicle 1a. Computer 8a increases the separation between the two vehicles by slowing down vehicle 1a. During this separation vehicle 1a should remain in tow mode. Once a safe separation distance has been established, mainitiates a warning signal to operator 7a to resume manual control of vehicle 1a. After several seconds of warning, computer 8a relinquishes control over vehicle 1a back to operator 7a. Alternatively, operator 7a may initiate a tow mode disengage signal by stepping on vehicle 1a's brakes. In that case, the disengage operation preferably remains the same as described above.
In the event that operator 7 of lead vehicle 1 wishes to disengage, he/she initiates a "tow mode" disengage signal to operator 7a. Preferably, disengagement occurs only when operator 7a affirmatively responds by initiating a "tow mode" disengage accept signal. This safety feature prevents operator 7 from unilaterally disengaging tow mode and catching operator 7a unawares. Disengagement occurs as described above. In the event that operator 7 wishes to unilaterally disengage from tow mode, he/she preferably feeds to first bring both vehicles to a fully stopped position.
The above description of the invention's operation is illustrated by FIG. 5's flow chart. The above description and the illustration is not to be read as limiting. Other variations of disengaging from tow mode come within the scope of the invention.
The above description of the presently preferred embodiment of the invention was intended to illustrate by way of example the novel features that are believed to be characteristics of the present invention. It is to be expressly understood, however, that the specific embodiment is for the purpose of illustration and description only and is not intended as a definition of the limits of the invention.
Other possible embodiments of the invention are included within the scope of the invention. For example, a natural extension of the present invention allows additional trail vehicles to follow the lead vehicle. In an example where there is one additional trail vehicle 1b, as shown in FIG. 1, that vehicle would initiate tow mode by interrogating vehicle 1a. As with the two-car situation, transponders in vehicle 1a transmit to vehicle 1b information with respect to vehicle 1a's separation distance, offset angle, and vehicle identification. Preferably, vehicle 1's and vehicle 1a's performance characteristics are compared to those of vehicle 1b to determine their overall compatibility. If overall compatibility exists, a "tow request" is preferably displayed to vehicle 1's operator, which he/she may accept. Additionally, a "tow request" may be displayed to vehicle 1a's operator, which he/she may accept. Once the tow request is accepted, tow mode is established and operated similarly as in the earlier described two-car situation. The above description of initiating tow mode is not to be read as limiting. For example, vehicle 1b' performance characteristics may just be compared to those of the lead vehicle's to determine compatibility.
Disengaging from tow mode in a train of 3 or more vehicles is also somewhat similar to the two-car situation. If the lead car wishes to disengage from tow mode, preferably operators of both trailing vehicles must affirmatively respond. If vehicle 1a wishes to disengage, an affirmative response is preferably only required from vehicle 1b. On the other hand, vehicle 1b may unilaterally disengage, preferably leaving vehicles 1 and 1a remaining in tow mode. Thus, in this preferred embodiment, a disengaging vehicle must have first received an affirmative response from all the vehicles trailing it, and in disengaging, it leaves the vehicles in front of it remaining in tow mode. Alternatively, the disengaging vehicle may assume a new leading role, "towing" the vehicles trailing it. The actual operation of tow mode is nearly similar to that of the earlier described two-car situation except that a further warning may be displayed to the lead operator with respect to any additional modifications of the lead vehicle's performance characteristics.
In accordance with the above described preferred embodiment of the invention, a train of 3 or more vehicles could still be driven by a single operator in the lead vehicle. All that is required is additional driver training in maneuvering a train of cars. Furthermore, the number of vehicles in the train may be increased if sub-compact vehicles are cooperatively joined. Consequently, traffic efficiency would be further enhanced by such trains and the economics of vehicle delivery would be even greater than in the two-car case.
Also within the scope of the present invention are methods of safely going between operator mode and Tow Mode while in a stream of traffic. One suggested way of beginning and ending Tow Mode was manual entry where the drivers determine the beginning and ending of Tow Mode. Another possible way is semi-automatic entry, where towing is begun automatically at each stopping place whenever the preceding vehicle is deemed compatible. The trail vehicle is then towed until a certain speed is reached, say 25 mph, or until it clears the intersection, at which point it is automatically released from the tow. The semiautomatic mode would proceed without operator intervention and would be useful during street driving for efficiently passing through a series of traffic lights or stop signs, or for efficiently turning at intersections.
The above suggestions are not to be read as limiting and any other methods of entering and ending Tow Mode, or of utilizing the present invention are included within the scope of the invention.
Furthermore, the hardware used in the present invention may also be easily adapted for use in an automatic highway system whereby a vehicle is controlled by an external central computer. In those cases, a communication link will be established between the external computer and a vehicle for inputting the vehicle's positonal information and performance characteristics. The external computer instead of the lead vehicle may then appropriately control the driving of the vehicle through its driving control means.
The concept of the automatic highway system is not to be read as limiting. Other embodiments whereby an external computer controls a vehicle's actions are within the scope of the present invention. For example, the scope of the present invention includes an automatic parking system whereby an external computer controls the driving of a vehicle within a parking garage so as to automatically park the vehicle without an operator.

Claims (9)

What is claimed is:
1. A system for the cooperative driving of two vehicles, a leading vehicle and a trailing vehicle, said trailing vehicle behind said leading vehicle but not physically connected thereto, comprising
data acquisition means, in said trailing vehicle, for acquiring performance capabilities from said leading vehicle, and
cooperative driving means, in said trailing vehicle, for driving said trailing vehicle in response to said acquired performance capabilities.
2. A system according to claim 1 further comprising means for modifying said performance capabilities of said leading vehicle so that said performance capabilities of said leading vehicle are compatible with the performance parameters of said trailing vehicle
3. A system according to claim 1 wherein said data acquisition means in said trailing vehicle acquires data communicated from said leading vehicle without wire connection, said acquired data further including relative positional information of said leading vehicle; and said cooperative driving means adjusting the performance of at least one of said leading and trailing vehicles in accordance with said acquired data for compatible cooperative driving between said vehicles.
4. In a cooperative driving system in which at least one trailing car is driven cooperatively by a transmitted signal from a leading car, including:
means in said leading car for sensing driver action therein, and
means in said leading car for adjusting the performance response of said leading car to said driver action in accordance with the performance capabilities the trailing car, so that the performance of said leading car is modified so as to not to exceed the performance of said trailing car.
5. In a cooperative driving system in which at least one trailing car is driven cooperatively by a transmitted signal from a leading car, including:
means in said trailing car for sensing driver action of said leading car and
means in said trailing car for adjusting the performance response of said trailing car to said driver action in, accordance with the performance capabilities of the leading car, so that the performance of said trailing car is modified so as not to exceed the performance of said leading car.
6. A method for the cooperative driving of two vehicles, a leading vehicle and a trailing vehicle, said trailing vehicle being behind said leading vehicle but not physically connected thereto, comprising the steps of:
acquiring performance capabilities from said leading vehicle, and
cooperatively driving said trailing vehicle in response to said acquired performance capabilities.
7. A method according to claim 6 further comprising the step of modifying said performance capabilities of said leading vehicle so that said performance capabilities of said leading vehicle are compatible with the performance capabilities of said trailing vehicle.
8. A method according to claim 6 wherein the step of acquiring performance capabilities from said leading vehicle further includes the step of acquiring relative positional information of said leading vehicle.
9. A method according to claim 6 wherein the step of acquiring performance capabilities from said leading vehicle further includes the step of acquiring the time between initiation of a vehicle action by the driver of said leading vehicle and the response of said leading vehicle to that action.
US07/569,742 1986-03-06 1990-08-21 System for the cooperative driving of two or more vehicles Expired - Fee Related US5295551A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US07/569,742 US5295551A (en) 1986-03-06 1990-08-21 System for the cooperative driving of two or more vehicles
EP93308901A EP0652543B1 (en) 1990-08-21 1993-11-08 A system for the cooperative driving of two or more vehicles

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US83683486A 1986-03-06 1986-03-06
US27932288A 1988-12-01 1988-12-01
US39048589A 1989-07-31 1989-07-31
US07/569,742 US5295551A (en) 1986-03-06 1990-08-21 System for the cooperative driving of two or more vehicles
EP93308901A EP0652543B1 (en) 1990-08-21 1993-11-08 A system for the cooperative driving of two or more vehicles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US39048589A Continuation 1986-03-06 1989-07-31

Publications (1)

Publication Number Publication Date
US5295551A true US5295551A (en) 1994-03-22

Family

ID=26134538

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/569,742 Expired - Fee Related US5295551A (en) 1986-03-06 1990-08-21 System for the cooperative driving of two or more vehicles

Country Status (2)

Country Link
US (1) US5295551A (en)
EP (1) EP0652543B1 (en)

Cited By (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762364A2 (en) * 1995-09-11 1997-03-12 Toyota Jidosha Kabushiki Kaisha Platoon running control system
US5611406A (en) * 1994-09-16 1997-03-18 Nikko Electric Industry Co., Ltd. Automatic guiding and tracking device
US5623244A (en) * 1996-05-10 1997-04-22 The United States Of America As Represented By The Secretary Of The Navy Pilot vehicle which is useful for monitoring hazardous conditions on railroad tracks
US5627508A (en) * 1996-05-10 1997-05-06 The United States Of America As Represented By The Secretary Of The Navy Pilot vehicle which is useful for monitoring hazardous conditions on railroad tracks
US5670953A (en) * 1994-03-15 1997-09-23 Nissan Motor Co., Ltd. Distance control apparatus for vehicle
US5742141A (en) * 1996-06-04 1998-04-21 Ford Motor Company Semi-autonomous parking control system for a vehicle providing tactile feedback to a vehicle operator
US5781119A (en) * 1995-03-14 1998-07-14 Toyota Jidosha Kabushiki Kaisha Vehicle guiding system
US5815825A (en) * 1995-03-14 1998-09-29 Toyota Jidosha Kabushiki Kaisha Vehicle guidance system
US5821718A (en) * 1996-05-07 1998-10-13 Chrysler Corporation Robotic system for automated durability road (ADR) facility
US5865266A (en) * 1996-05-02 1999-02-02 Chrysler Corporation Steering wheel linkage for robotic system for automated durability road (ADR) facility
US5867089A (en) * 1996-09-03 1999-02-02 Chrysler Corporation Base-to-remotely controlled vehicle communications for automated durability road (ADR) facility
US5906647A (en) * 1996-09-03 1999-05-25 Chrysler Corporation Vehicle mounted guidance antenna for automated durability road (ADR) facility
US5908454A (en) * 1996-09-03 1999-06-01 Chrysler Corporation Operator interface for automated durability road (ADR) facility
US5913945A (en) * 1996-05-02 1999-06-22 Daimlerchrysler Corporation Pedal linkage for robotic control of vehicle
US5938707A (en) * 1995-08-23 1999-08-17 Toyota Jidosha Kabushiki Kaisha Automatic steering system for automatically changing a moving line
US5938705A (en) * 1996-09-03 1999-08-17 Chrysler Corporation Vehicle controller (VCON) for automated durability road (ADR) facility
US5991674A (en) * 1996-05-02 1999-11-23 Chrysler Corporation Floor shifter linkage for robotic control of vehicle
DE19824013A1 (en) * 1998-05-29 1999-12-09 Daimler Chrysler Ag Track-guided vehicle system
US6061613A (en) * 1996-09-03 2000-05-09 Chrysler Corporation Base station for automated durability road (ADR) facility
US6141620A (en) * 1996-09-03 2000-10-31 Chrysler Corporation Vehicle control system for automated durability road (ADR) facility
US6169940B1 (en) * 1997-09-03 2001-01-02 Honda Giken Kogyo Kabushiki Kaisha Automatic driving system
EP1118573A1 (en) * 2000-01-20 2001-07-25 Inventio Ag Method for providing collision safety in a transport system with vehicles travelling on the same lane
US6327219B1 (en) 1999-09-29 2001-12-04 Vi&T Group Method and system for directing a following device toward a movable object
US6343247B2 (en) * 1997-09-01 2002-01-29 Honda Giken Kogyo Kabushiki Kaisha Automatic drive control system
WO2002023296A1 (en) * 2000-09-12 2002-03-21 Ainsworth, Inc. Method of and apparatus for guidance of automated vehicles
US6397149B1 (en) * 1999-05-07 2002-05-28 Honda Giken Kogyo Kabushiki Kaisha Processional travel control apparatus
US6553288B2 (en) 1999-11-10 2003-04-22 Fujitsu Limited Vehicle traveling control system and vehicle control device
US20040181339A1 (en) * 2003-03-14 2004-09-16 Yoshio Mukaiyama Vehicular driving support apparatus and driving support method
US6831572B2 (en) * 2002-01-29 2004-12-14 Ford Global Technologies, Llc Rear collision warning system
US20060161341A1 (en) * 2005-01-14 2006-07-20 Alcatel Navigation service
DE10017139B4 (en) * 1999-04-07 2007-01-04 Honda Giken Kogyo K.K. Illumination control device for an automatic follow-up driving system
US20070242338A1 (en) * 2006-04-17 2007-10-18 James Roy Bradley System and Method for Vehicular Communications
US20070242337A1 (en) * 2006-04-17 2007-10-18 Bradley James R System and Method for Vehicular Communications
US20070242339A1 (en) * 2006-04-17 2007-10-18 James Roy Bradley System and Method for Vehicular Communications
US20070255497A1 (en) * 2006-04-28 2007-11-01 Paul Harms Device and method for determining the position of a road roller relative to a road finisher
WO2008008404A3 (en) * 2006-07-12 2008-03-13 Lucent Technologies Inc Radio communications for vehicle speed adjustment
US7353089B1 (en) * 2004-04-13 2008-04-01 P.E.M. Technologies, Llc Method and system for a signal guided motorized vehicle
US20080122607A1 (en) * 2006-04-17 2008-05-29 James Roy Bradley System and Method for Vehicular Communications
US20080122606A1 (en) * 2006-04-17 2008-05-29 James Roy Bradley System and Method for Vehicular Communications
US20090062993A1 (en) * 2007-08-30 2009-03-05 Caterpillar Inc. Excavating system utilizing machine-to-machine communication
US20090062974A1 (en) * 2007-09-03 2009-03-05 Junichi Tamamoto Autonomous Mobile Robot System
US20090118889A1 (en) * 2005-10-03 2009-05-07 Timo Heino Method of Driving Plurality of Mine Vehicles in Mine, and Transport System
DE10027168B4 (en) * 1999-05-31 2009-08-27 Honda Giken Kogyo K.K. Automatic following motion system
US20090222186A1 (en) * 2008-02-29 2009-09-03 Jeffrey Edward Jensen System for controlling a multimachine caravan
DE10020742B4 (en) * 1999-04-27 2009-12-24 Honda Giken Kogyo K.K. Column drive control device
DE102010063993A1 (en) * 2010-12-22 2012-06-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for weakening or separating vehicle combination of two individual vehicles, involves shifting remote acting coupling between two individual vehicles from coupling function to separation function
US20130041567A1 (en) * 2011-08-10 2013-02-14 Denso Corporation Travel support apparatus and travel support system
CN103308318A (en) * 2012-03-07 2013-09-18 奥迪股份公司 Method for testing the functionality of a driver assistance system installed in a test vehicle
US9075136B1 (en) 1998-03-04 2015-07-07 Gtj Ventures, Llc Vehicle operator and/or occupant information apparatus and method
US9147353B1 (en) 2013-05-29 2015-09-29 Allstate Insurance Company Driving analysis using vehicle-to-vehicle communication
US9182764B1 (en) * 2014-08-04 2015-11-10 Cummins, Inc. Apparatus and method for grouping vehicles for cooperative driving
US9355423B1 (en) 2014-01-24 2016-05-31 Allstate Insurance Company Reward system related to a vehicle-to-vehicle communication system
US9390451B1 (en) 2014-01-24 2016-07-12 Allstate Insurance Company Insurance system related to a vehicle-to-vehicle communication system
US20160274228A1 (en) * 2015-03-19 2016-09-22 Delphi Technologies, Inc. Radar object detection system
US9534906B2 (en) 2015-03-06 2017-01-03 Wal-Mart Stores, Inc. Shopping space mapping systems, devices and methods
US20170010621A1 (en) * 2016-09-20 2017-01-12 Caterpillar Paving Products Inc. Paving collision avoidance system
US9672734B1 (en) * 2016-04-08 2017-06-06 Sivalogeswaran Ratnasingam Traffic aware lane determination for human driver and autonomous vehicle driving system
WO2017100626A1 (en) 2015-12-11 2017-06-15 Avishtech, Llc Autonomous vehicle towing system and method
US9865019B2 (en) 2007-05-10 2018-01-09 Allstate Insurance Company Route risk mitigation
US9932033B2 (en) 2007-05-10 2018-04-03 Allstate Insurance Company Route risk mitigation
US9940676B1 (en) 2014-02-19 2018-04-10 Allstate Insurance Company Insurance system for analysis of autonomous driving
US10011247B2 (en) 1996-03-27 2018-07-03 Gtj Ventures, Llc Control, monitoring and/or security apparatus and method
US10017322B2 (en) 2016-04-01 2018-07-10 Wal-Mart Stores, Inc. Systems and methods for moving pallets via unmanned motorized unit-guided forklifts
US10096067B1 (en) 2014-01-24 2018-10-09 Allstate Insurance Company Reward system related to a vehicle-to-vehicle communication system
US10096038B2 (en) 2007-05-10 2018-10-09 Allstate Insurance Company Road segment safety rating system
US10152876B2 (en) 1996-03-27 2018-12-11 Gtj Ventures, Llc Control, monitoring, and/or security apparatus and method
US10157422B2 (en) 2007-05-10 2018-12-18 Allstate Insurance Company Road segment safety rating
US10185329B2 (en) * 2016-10-24 2019-01-22 GM Global Technology Operations LLC Methods and systems for vehicle-to-vehicle communication
US20190064839A1 (en) * 2017-08-28 2019-02-28 Toyota Research Institute, Inc. Trajectory plan modification for an autonomous vehicle operation in a heterogeneous vehicle environment
US10234871B2 (en) 2011-07-06 2019-03-19 Peloton Technology, Inc. Distributed safety monitors for automated vehicles
DE102006040879B4 (en) * 2006-08-31 2019-04-11 Bayerische Motoren Werke Aktiengesellschaft Parking and reversing aid
US10269075B2 (en) 2016-02-02 2019-04-23 Allstate Insurance Company Subjective route risk mapping and mitigation
US20190155274A1 (en) * 2017-11-21 2019-05-23 TT & G Co., Ltd. Golf cart system capable of autonomous driving based on accurate location information and method of controlling golf cart using the system
US10346794B2 (en) 2015-03-06 2019-07-09 Walmart Apollo, Llc Item monitoring system and method
US10369998B2 (en) 2016-08-22 2019-08-06 Peloton Technology, Inc. Dynamic gap control for automated driving
US10450001B2 (en) 2016-08-26 2019-10-22 Crown Equipment Corporation Materials handling vehicle obstacle scanning tools
US10474166B2 (en) 2011-07-06 2019-11-12 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US10514706B2 (en) 2011-07-06 2019-12-24 Peloton Technology, Inc. Gap measurement for vehicle convoying
US10520952B1 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US10520581B2 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Sensor fusion for autonomous or partially autonomous vehicle control
US20200021961A1 (en) * 2018-07-10 2020-01-16 Cavh Llc Vehicle on-board unit for connected and automated vehicle systems
US10546441B2 (en) 2013-06-04 2020-01-28 Raymond Anthony Joao Control, monitoring, and/or security, apparatus and method for premises, vehicles, and/or articles
US10562492B2 (en) 2002-05-01 2020-02-18 Gtj Ventures, Llc Control, monitoring and/or security apparatus and method
US10732645B2 (en) 2011-07-06 2020-08-04 Peloton Technology, Inc. Methods and systems for semi-autonomous vehicular convoys
US10762791B2 (en) 2018-10-29 2020-09-01 Peloton Technology, Inc. Systems and methods for managing communications between vehicles
US10775805B2 (en) 2016-08-26 2020-09-15 Crown Equipment Limited Materials handling vehicle path validation and dynamic path modification
US10783587B1 (en) 2014-02-19 2020-09-22 Allstate Insurance Company Determining a driver score based on the driver's response to autonomous features of a vehicle
US10783586B1 (en) 2014-02-19 2020-09-22 Allstate Insurance Company Determining a property of an insurance policy based on the density of vehicles
US10796369B1 (en) 2014-02-19 2020-10-06 Allstate Insurance Company Determining a property of an insurance policy based on the level of autonomy of a vehicle
US10796268B2 (en) 2001-01-23 2020-10-06 Gtj Ventures, Llc Apparatus and method for providing shipment information
US10800640B2 (en) 2016-08-26 2020-10-13 Crown Equipment Corporation Multi-field scanning tools in materials handling vehicles
US10803525B1 (en) 2014-02-19 2020-10-13 Allstate Insurance Company Determining a property of an insurance policy based on the autonomous features of a vehicle
US10843091B1 (en) 2016-11-02 2020-11-24 Brandon Paul Amusement park attractions, amusement karts, and magnetic assemblies
US10899323B2 (en) 2018-07-08 2021-01-26 Peloton Technology, Inc. Devices, systems, and methods for vehicle braking
US11046562B2 (en) 2015-03-06 2021-06-29 Walmart Apollo, Llc Shopping facility assistance systems, devices and methods
US20210269006A1 (en) * 2020-02-28 2021-09-02 Bendix Commercial Vehicle Systems Llc System and method for brake signal detection
US11294396B2 (en) 2013-03-15 2022-04-05 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US11334092B2 (en) 2011-07-06 2022-05-17 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US11364885B2 (en) 2018-01-18 2022-06-21 Vieletech Inc. Smart trailer controller
US11420695B2 (en) 2018-01-31 2022-08-23 Vieletech Inc. Semi-autonomous trailer hauler
US11427196B2 (en) 2019-04-15 2022-08-30 Peloton Technology, Inc. Systems and methods for managing tractor-trailers
US11443518B2 (en) 2020-11-30 2022-09-13 At&T Intellectual Property I, L.P. Uncrewed aerial vehicle shared environment privacy and security
US20220379960A1 (en) * 2021-05-26 2022-12-01 Ford Global Technologies, Llc Systems and methods for providing steering assistance when parking during electrified vehicle towing events
US11726475B2 (en) 2020-11-30 2023-08-15 At&T Intellectual Property I, L.P. Autonomous aerial vehicle airspace claiming and announcing
US11760227B2 (en) 2021-02-15 2023-09-19 Raymond Anthony Joao Battery power management apparatus and method
US11797896B2 (en) 2020-11-30 2023-10-24 At&T Intellectual Property I, L.P. Autonomous aerial vehicle assisted viewing location selection for event venue
US11865985B2 (en) 2014-06-30 2024-01-09 Raymond Anthony Joao Battery power management apparatus and method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19722292B4 (en) * 1997-05-28 2016-08-11 MAIBACH Verkehrssicherheits- und Lärmschutzeinrichtungen GmbH Method and arrangement for securing a mobile workstation on a roadway
JP2000113400A (en) * 1998-09-30 2000-04-21 Honda Motor Co Ltd Automatic tracking travel system
DE19919644C2 (en) * 1999-04-30 2002-05-08 Daimler Chrysler Ag Measuring and control system for the transverse regulation of successive vehicles and method therefor
WO2004077378A1 (en) * 2003-02-25 2004-09-10 Philips Intellectual Property & Standards Gmbh Method and system for leading a plurality of vehicles
DE102006026653B4 (en) 2005-12-13 2021-09-16 Volkswagen Ag Device and method for controlling a vehicle
DE102007024877A1 (en) * 2007-05-29 2008-12-04 GM Global Technology Operations, Inc., Detroit Method for controlling vehicles with existence of vehicle combination, involves identifying vehicle identification data of vehicles by vehicle combination, and traveling movement of vehicles detects data techniques of vehicle combination
CN104699103B (en) * 2015-02-28 2018-09-28 厦门大学 The four vehicle load sharing intelligent tow truck systems for narrow space
DE102017201551B4 (en) 2017-01-31 2019-09-26 Audi Ag A method of operating two trailers during a towing and motor vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2188293A (en) * 1937-04-29 1940-01-23 Allison R Willams Automatic vehicle control system
US3442347A (en) * 1965-03-31 1969-05-06 Robert W Hodgson Safe trailing distance maintenance system for a trailing carrier vehicle
US3790780A (en) * 1971-03-26 1974-02-05 Messerschmitt Boelkow Blohm Method and means for varying the speeds of vehicles moving along a track
DE2404884A1 (en) * 1974-02-01 1975-08-14 Standard Elektrik Lorenz Ag Spacing control between vehicles in column - error signal introduces acceleration or retardation for predetermined period
US4333147A (en) * 1980-05-13 1982-06-01 General Motors Corporation Multiplexed inductive automated guidance for moving vehicles
JPS57198172A (en) * 1981-05-29 1982-12-04 Hiroshi Shimizu Method for running of two or more coupled electric cars
US4578665A (en) * 1982-04-28 1986-03-25 Yang Tai Her Remote controlled surveillance train car

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3634302A1 (en) * 1986-10-08 1988-04-21 Porsche Ag DISTANCE CONTROL SYSTEM FOR MOTOR VEHICLES
DE3830508A1 (en) * 1988-09-08 1990-03-22 Bosch Gmbh Robert METHOD FOR WIRELESS DATA TRANSFER AND DATA TRANSFER DEVICE
US5161632A (en) * 1990-06-01 1992-11-10 Mitsubishi Denki K.K. Tracking control device for a vehicle
DE4035501A1 (en) * 1990-11-08 1992-05-14 Bosch Gmbh Robert METHOD FOR DETERMINING THE RELATIVE POSITION OF VEHICLES IN ROAD TRANSPORT

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2188293A (en) * 1937-04-29 1940-01-23 Allison R Willams Automatic vehicle control system
US3442347A (en) * 1965-03-31 1969-05-06 Robert W Hodgson Safe trailing distance maintenance system for a trailing carrier vehicle
US3790780A (en) * 1971-03-26 1974-02-05 Messerschmitt Boelkow Blohm Method and means for varying the speeds of vehicles moving along a track
DE2404884A1 (en) * 1974-02-01 1975-08-14 Standard Elektrik Lorenz Ag Spacing control between vehicles in column - error signal introduces acceleration or retardation for predetermined period
US4333147A (en) * 1980-05-13 1982-06-01 General Motors Corporation Multiplexed inductive automated guidance for moving vehicles
JPS57198172A (en) * 1981-05-29 1982-12-04 Hiroshi Shimizu Method for running of two or more coupled electric cars
US4578665A (en) * 1982-04-28 1986-03-25 Yang Tai Her Remote controlled surveillance train car

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
Automated Guided Vehicles , Dr. Ing Thomas Muller, IFS (Publications), Ltd., UK, 1983. *
Automated Guided Vehicles, Dr.-Ing Thomas Muller, IFS (Publications), Ltd., UK, 1983.
Control in Transportation Systems , Proceedings of 4th IFAC/IFIP/IFORS Conf., Baden Baden, W. Ger., Apr. 20 22, 1983, Ed. D. Klamt & F. Lauber, Pergamon Press, On Safe Longitudinal Control of Ground Transportation Vehicles , J. Glimm. *
Control in Transportation Systems , Proceedings of 4th IFAC/IFIP/IFORS Conf., Baden Baden, W. Germany, Apr. 20 22, 1983, Edited by D. Klamt & F. Lauber Pergamon Press, A Velocity Adaptive, Microprocessor Based, Vehicle Lateral Controller S. S. Murphy & R. E. Fenton. *
Control in Transportation Systems, Proceedings of 4th IFAC/IFIP/IFORS Conf., Baden-Baden, W. Ger., Apr. 20-22, 1983, Ed. D. Klamt & F. Lauber, Pergamon Press, "On Safe Longitudinal Control of Ground Transportation Vehicles", J. Glimm.
Control in Transportation Systems, Proceedings of 4th IFAC/IFIP/IFORS Conf., Baden-Baden, W. Germany, Apr. 20-22, 1983, Edited by D. Klamt & F. Lauber Pergamon Press, "A Velocity-Adaptive, Microprocessor-Based, Vehicle Lateral Controller" S. S. Murphy & R. E. Fenton.
Highway Research Record , No. 344, Vehicle Characteristics (3 reports), Highway Research Board, Division of Engineering, National Research Counsil, Nat. Academy of Sciences, Nat. Academy of Engineering, 1971. *
Highway Research Record, No. 344, Vehicle Characteristics (3 reports), Highway Research Board, Division of Engineering, National Research Counsil, Nat. Academy of Sciences, Nat. Academy of Engineering, 1971.
IEEE Transactions of Automatic Control , vol. AC 21, No. 3, Jun. 1976, On the Steering of Automated Vehicles: Theory and Experiment , R. E. Fenton, G. C. Melocik & K. W. Olson. *
IEEE Transactions of Automatic Control, vol. AC-21, No. 3, Jun. 1976, "On the Steering of Automated Vehicles: Theory and Experiment", R. E. Fenton, G. C. Melocik & K. W. Olson.
IEEE Transactions on Automatic Control , vol. AC 22, No. 4, Aug. 1977 On the Identification of Vehicle Longitudinal Dynamics , G. M. Takasaki & R. E. Fenton. *
IEEE Transactions on Automatic Control, vol. AC-22, No. 4, Aug. 1977 "On the Identification of Vehicle Longitudinal Dynamics", G. M. Takasaki & R. E. Fenton.
IEEE Transactions on Vehicular Technology , vol. VT 34, No. 4, Nov., 1985 On the Design of a Vehicle Longitudinal Controller, A. S. Hauksdottir & R. E. Fenton. *
IEEE Transactions on Vehicular Technology, vol. VT-34, No. 4, Nov., 1985 "On the Design of a Vehicle Longitudinal Controller," A. S. Hauksdottir & R. E. Fenton.

Cited By (213)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670953A (en) * 1994-03-15 1997-09-23 Nissan Motor Co., Ltd. Distance control apparatus for vehicle
US5611406A (en) * 1994-09-16 1997-03-18 Nikko Electric Industry Co., Ltd. Automatic guiding and tracking device
US5815825A (en) * 1995-03-14 1998-09-29 Toyota Jidosha Kabushiki Kaisha Vehicle guidance system
US5781119A (en) * 1995-03-14 1998-07-14 Toyota Jidosha Kabushiki Kaisha Vehicle guiding system
US5938707A (en) * 1995-08-23 1999-08-17 Toyota Jidosha Kabushiki Kaisha Automatic steering system for automatically changing a moving line
EP0762364A3 (en) * 1995-09-11 1997-09-17 Toyota Motor Co Ltd Platoon running control system
US5680122A (en) * 1995-09-11 1997-10-21 Toyota Jidosha Kabushiki Kaisha Platoon running control system
EP0762364A2 (en) * 1995-09-11 1997-03-12 Toyota Jidosha Kabushiki Kaisha Platoon running control system
US10011247B2 (en) 1996-03-27 2018-07-03 Gtj Ventures, Llc Control, monitoring and/or security apparatus and method
US10152876B2 (en) 1996-03-27 2018-12-11 Gtj Ventures, Llc Control, monitoring, and/or security apparatus and method
US5991674A (en) * 1996-05-02 1999-11-23 Chrysler Corporation Floor shifter linkage for robotic control of vehicle
US5865266A (en) * 1996-05-02 1999-02-02 Chrysler Corporation Steering wheel linkage for robotic system for automated durability road (ADR) facility
US5913945A (en) * 1996-05-02 1999-06-22 Daimlerchrysler Corporation Pedal linkage for robotic control of vehicle
US5821718A (en) * 1996-05-07 1998-10-13 Chrysler Corporation Robotic system for automated durability road (ADR) facility
US5627508A (en) * 1996-05-10 1997-05-06 The United States Of America As Represented By The Secretary Of The Navy Pilot vehicle which is useful for monitoring hazardous conditions on railroad tracks
US5623244A (en) * 1996-05-10 1997-04-22 The United States Of America As Represented By The Secretary Of The Navy Pilot vehicle which is useful for monitoring hazardous conditions on railroad tracks
US5742141A (en) * 1996-06-04 1998-04-21 Ford Motor Company Semi-autonomous parking control system for a vehicle providing tactile feedback to a vehicle operator
US6061613A (en) * 1996-09-03 2000-05-09 Chrysler Corporation Base station for automated durability road (ADR) facility
US5906647A (en) * 1996-09-03 1999-05-25 Chrysler Corporation Vehicle mounted guidance antenna for automated durability road (ADR) facility
US5908454A (en) * 1996-09-03 1999-06-01 Chrysler Corporation Operator interface for automated durability road (ADR) facility
US6141620A (en) * 1996-09-03 2000-10-31 Chrysler Corporation Vehicle control system for automated durability road (ADR) facility
US5867089A (en) * 1996-09-03 1999-02-02 Chrysler Corporation Base-to-remotely controlled vehicle communications for automated durability road (ADR) facility
US5938705A (en) * 1996-09-03 1999-08-17 Chrysler Corporation Vehicle controller (VCON) for automated durability road (ADR) facility
US6343247B2 (en) * 1997-09-01 2002-01-29 Honda Giken Kogyo Kabushiki Kaisha Automatic drive control system
US6169940B1 (en) * 1997-09-03 2001-01-02 Honda Giken Kogyo Kabushiki Kaisha Automatic driving system
US9075136B1 (en) 1998-03-04 2015-07-07 Gtj Ventures, Llc Vehicle operator and/or occupant information apparatus and method
DE19824013A1 (en) * 1998-05-29 1999-12-09 Daimler Chrysler Ag Track-guided vehicle system
DE10017139B4 (en) * 1999-04-07 2007-01-04 Honda Giken Kogyo K.K. Illumination control device for an automatic follow-up driving system
DE10020742B4 (en) * 1999-04-27 2009-12-24 Honda Giken Kogyo K.K. Column drive control device
US6397149B1 (en) * 1999-05-07 2002-05-28 Honda Giken Kogyo Kabushiki Kaisha Processional travel control apparatus
DE10027168B4 (en) * 1999-05-31 2009-08-27 Honda Giken Kogyo K.K. Automatic following motion system
US6327219B1 (en) 1999-09-29 2001-12-04 Vi&T Group Method and system for directing a following device toward a movable object
US6553288B2 (en) 1999-11-10 2003-04-22 Fujitsu Limited Vehicle traveling control system and vehicle control device
EP1118573A1 (en) * 2000-01-20 2001-07-25 Inventio Ag Method for providing collision safety in a transport system with vehicles travelling on the same lane
WO2002023296A1 (en) * 2000-09-12 2002-03-21 Ainsworth, Inc. Method of and apparatus for guidance of automated vehicles
US10796268B2 (en) 2001-01-23 2020-10-06 Gtj Ventures, Llc Apparatus and method for providing shipment information
US6831572B2 (en) * 2002-01-29 2004-12-14 Ford Global Technologies, Llc Rear collision warning system
US10562492B2 (en) 2002-05-01 2020-02-18 Gtj Ventures, Llc Control, monitoring and/or security apparatus and method
US7274988B2 (en) * 2003-03-14 2007-09-25 Toyota Jidosha Kabushiki Kaisha Vehicular driving support apparatus and driving support method
US20040181339A1 (en) * 2003-03-14 2004-09-16 Yoshio Mukaiyama Vehicular driving support apparatus and driving support method
US7353089B1 (en) * 2004-04-13 2008-04-01 P.E.M. Technologies, Llc Method and system for a signal guided motorized vehicle
US20060161341A1 (en) * 2005-01-14 2006-07-20 Alcatel Navigation service
US7613563B2 (en) * 2005-01-14 2009-11-03 Alcatel Navigation service
US7831345B2 (en) * 2005-10-03 2010-11-09 Sandvik Mining And Construction Oy Method of driving plurality of mine vehicles in mine, and transport system
US20090118889A1 (en) * 2005-10-03 2009-05-07 Timo Heino Method of Driving Plurality of Mine Vehicles in Mine, and Transport System
AU2006298631B2 (en) * 2005-10-03 2011-11-24 Sandvik Mining And Construction Oy Method of driving plurality of mine vehicles in mine, and transport system
US20070242338A1 (en) * 2006-04-17 2007-10-18 James Roy Bradley System and Method for Vehicular Communications
US7961086B2 (en) 2006-04-17 2011-06-14 James Roy Bradley System and method for vehicular communications
US20080122606A1 (en) * 2006-04-17 2008-05-29 James Roy Bradley System and Method for Vehicular Communications
US20070242339A1 (en) * 2006-04-17 2007-10-18 James Roy Bradley System and Method for Vehicular Communications
US20080122607A1 (en) * 2006-04-17 2008-05-29 James Roy Bradley System and Method for Vehicular Communications
US20070242337A1 (en) * 2006-04-17 2007-10-18 Bradley James R System and Method for Vehicular Communications
EP1876297A3 (en) * 2006-04-28 2008-01-23 MOBA-Mobile Automation GmbH Device and method for determining the position of a road compactor with respect to a finisher
US20070255497A1 (en) * 2006-04-28 2007-11-01 Paul Harms Device and method for determining the position of a road roller relative to a road finisher
EP1876297A2 (en) * 2006-04-28 2008-01-09 MOBA-Mobile Automation GmbH Device and method for determining the position of a road compactor with respect to a finisher
US8798904B2 (en) 2006-04-28 2014-08-05 Moba-Mobile Automation Ag Device and method for determining the position of a road roller relative to a road finisher
WO2008008404A3 (en) * 2006-07-12 2008-03-13 Lucent Technologies Inc Radio communications for vehicle speed adjustment
CN101523463B (en) * 2006-07-12 2014-06-04 阿尔卡特朗讯 Radio communications for vehicle speed adjustment
US7474231B2 (en) 2006-07-12 2009-01-06 Alcatel-Lucent Usa Inc. Radio communications for vehicle speed adjustment
DE102006040879B4 (en) * 2006-08-31 2019-04-11 Bayerische Motoren Werke Aktiengesellschaft Parking and reversing aid
US11004152B2 (en) 2007-05-10 2021-05-11 Allstate Insurance Company Route risk mitigation
US10229462B2 (en) 2007-05-10 2019-03-12 Allstate Insurance Company Route risk mitigation
US10096038B2 (en) 2007-05-10 2018-10-09 Allstate Insurance Company Road segment safety rating system
US9996883B2 (en) 2007-05-10 2018-06-12 Allstate Insurance Company System for risk mitigation based on road geometry and weather factors
US9932033B2 (en) 2007-05-10 2018-04-03 Allstate Insurance Company Route risk mitigation
US9865019B2 (en) 2007-05-10 2018-01-09 Allstate Insurance Company Route risk mitigation
US10872380B2 (en) 2007-05-10 2020-12-22 Allstate Insurance Company Route risk mitigation
US11847667B2 (en) 2007-05-10 2023-12-19 Allstate Insurance Company Road segment safety rating system
US11565695B2 (en) 2007-05-10 2023-01-31 Arity International Limited Route risk mitigation
US11037247B2 (en) 2007-05-10 2021-06-15 Allstate Insurance Company Route risk mitigation
US10037580B2 (en) 2007-05-10 2018-07-31 Allstate Insurance Company Route risk mitigation
US10157422B2 (en) 2007-05-10 2018-12-18 Allstate Insurance Company Road segment safety rating
US10074139B2 (en) 2007-05-10 2018-09-11 Allstate Insurance Company Route risk mitigation
US10037578B2 (en) 2007-05-10 2018-07-31 Allstate Insurance Company Route risk mitigation
US10037579B2 (en) 2007-05-10 2018-07-31 Allstate Insurance Company Route risk mitigation
US11087405B2 (en) 2007-05-10 2021-08-10 Allstate Insurance Company System for risk mitigation based on road geometry and weather factors
US11062341B2 (en) 2007-05-10 2021-07-13 Allstate Insurance Company Road segment safety rating system
US8170756B2 (en) * 2007-08-30 2012-05-01 Caterpillar Inc. Excavating system utilizing machine-to-machine communication
US20090062993A1 (en) * 2007-08-30 2009-03-05 Caterpillar Inc. Excavating system utilizing machine-to-machine communication
US20090062974A1 (en) * 2007-09-03 2009-03-05 Junichi Tamamoto Autonomous Mobile Robot System
US8620530B2 (en) * 2008-02-29 2013-12-31 Caterpillar Inc. System for controlling a multimachine caravan
US20120101662A1 (en) * 2008-02-29 2012-04-26 Caterpillar Inc. System for controlling a multimachine caravan
US8285456B2 (en) * 2008-02-29 2012-10-09 Caterpillar Inc. System for controlling a multimachine caravan
US20090222186A1 (en) * 2008-02-29 2009-09-03 Jeffrey Edward Jensen System for controlling a multimachine caravan
DE102010063993B4 (en) * 2010-12-22 2015-01-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for weakening and / or strengthening a vehicle association
DE102010063993A1 (en) * 2010-12-22 2012-06-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for weakening or separating vehicle combination of two individual vehicles, involves shifting remote acting coupling between two individual vehicles from coupling function to separation function
US11334092B2 (en) 2011-07-06 2022-05-17 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US10520581B2 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Sensor fusion for autonomous or partially autonomous vehicle control
US10520952B1 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US10514706B2 (en) 2011-07-06 2019-12-24 Peloton Technology, Inc. Gap measurement for vehicle convoying
US10474166B2 (en) 2011-07-06 2019-11-12 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US10234871B2 (en) 2011-07-06 2019-03-19 Peloton Technology, Inc. Distributed safety monitors for automated vehicles
US10732645B2 (en) 2011-07-06 2020-08-04 Peloton Technology, Inc. Methods and systems for semi-autonomous vehicular convoys
US11360485B2 (en) 2011-07-06 2022-06-14 Peloton Technology, Inc. Gap measurement for vehicle convoying
US20130041567A1 (en) * 2011-08-10 2013-02-14 Denso Corporation Travel support apparatus and travel support system
US9539989B2 (en) * 2011-08-10 2017-01-10 Denso Corporation Travel support apparatus and travel support system
EP2637012B1 (en) * 2012-03-07 2017-01-11 Audi Ag Method for testing the functionality of a driver assistance system installed in a test vehicle
US9459180B2 (en) 2012-03-07 2016-10-04 Audi Ag Method for testing the operability of a driver assistance system installed in a test vehicle
CN103308318A (en) * 2012-03-07 2013-09-18 奥迪股份公司 Method for testing the functionality of a driver assistance system installed in a test vehicle
US11294396B2 (en) 2013-03-15 2022-04-05 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US10414407B1 (en) 2013-05-29 2019-09-17 Allstate Insurance Company Driving analysis using vehicle-to-vehicle communication
US9623876B1 (en) 2013-05-29 2017-04-18 Allstate Insurance Company Driving analysis using vehicle-to-vehicle communication
US9147353B1 (en) 2013-05-29 2015-09-29 Allstate Insurance Company Driving analysis using vehicle-to-vehicle communication
US10546441B2 (en) 2013-06-04 2020-01-28 Raymond Anthony Joao Control, monitoring, and/or security, apparatus and method for premises, vehicles, and/or articles
US10096067B1 (en) 2014-01-24 2018-10-09 Allstate Insurance Company Reward system related to a vehicle-to-vehicle communication system
US10740850B1 (en) 2014-01-24 2020-08-11 Allstate Insurance Company Reward system related to a vehicle-to-vehicle communication system
US10664918B1 (en) 2014-01-24 2020-05-26 Allstate Insurance Company Insurance system related to a vehicle-to-vehicle communication system
US10733673B1 (en) 2014-01-24 2020-08-04 Allstate Insurance Company Reward system related to a vehicle-to-vehicle communication system
US9355423B1 (en) 2014-01-24 2016-05-31 Allstate Insurance Company Reward system related to a vehicle-to-vehicle communication system
US11551309B1 (en) 2014-01-24 2023-01-10 Allstate Insurance Company Reward system related to a vehicle-to-vehicle communication system
US9390451B1 (en) 2014-01-24 2016-07-12 Allstate Insurance Company Insurance system related to a vehicle-to-vehicle communication system
US11295391B1 (en) 2014-01-24 2022-04-05 Allstate Insurance Company Reward system related to a vehicle-to-vehicle communication system
US10956983B1 (en) 2014-02-19 2021-03-23 Allstate Insurance Company Insurance system for analysis of autonomous driving
US9940676B1 (en) 2014-02-19 2018-04-10 Allstate Insurance Company Insurance system for analysis of autonomous driving
US10803525B1 (en) 2014-02-19 2020-10-13 Allstate Insurance Company Determining a property of an insurance policy based on the autonomous features of a vehicle
US10796369B1 (en) 2014-02-19 2020-10-06 Allstate Insurance Company Determining a property of an insurance policy based on the level of autonomy of a vehicle
US10783586B1 (en) 2014-02-19 2020-09-22 Allstate Insurance Company Determining a property of an insurance policy based on the density of vehicles
US10783587B1 (en) 2014-02-19 2020-09-22 Allstate Insurance Company Determining a driver score based on the driver's response to autonomous features of a vehicle
US11865985B2 (en) 2014-06-30 2024-01-09 Raymond Anthony Joao Battery power management apparatus and method
US9551993B2 (en) 2014-08-04 2017-01-24 Cummins, Inc. Apparatus and method for grouping vehicles for cooperative driving
US9182764B1 (en) * 2014-08-04 2015-11-10 Cummins, Inc. Apparatus and method for grouping vehicles for cooperative driving
US9851722B2 (en) 2014-08-04 2017-12-26 Cummins Inc. Apparatus and method for grouping vehicles for cooperative driving
US10358326B2 (en) 2015-03-06 2019-07-23 Walmart Apollo, Llc Shopping facility assistance systems, devices and methods
US10138100B2 (en) 2015-03-06 2018-11-27 Walmart Apollo, Llc Recharging apparatus and method
US10287149B2 (en) 2015-03-06 2019-05-14 Walmart Apollo, Llc Assignment of a motorized personal assistance apparatus
US10071892B2 (en) 2015-03-06 2018-09-11 Walmart Apollo, Llc Apparatus and method of obtaining location information of a motorized transport unit
US10315897B2 (en) 2015-03-06 2019-06-11 Walmart Apollo, Llc Systems, devices and methods for determining item availability in a shopping space
US10336592B2 (en) 2015-03-06 2019-07-02 Walmart Apollo, Llc Shopping facility assistance systems, devices, and methods to facilitate returning items to their respective departments
US10346794B2 (en) 2015-03-06 2019-07-09 Walmart Apollo, Llc Item monitoring system and method
US10130232B2 (en) 2015-03-06 2018-11-20 Walmart Apollo, Llc Shopping facility assistance systems, devices and methods
US10351400B2 (en) 2015-03-06 2019-07-16 Walmart Apollo, Llc Apparatus and method of obtaining location information of a motorized transport unit
US10351399B2 (en) 2015-03-06 2019-07-16 Walmart Apollo, Llc Systems, devices and methods of controlling motorized transport units in fulfilling product orders
US10081525B2 (en) 2015-03-06 2018-09-25 Walmart Apollo, Llc Shopping facility assistance systems, devices and methods to address ground and weather conditions
US11840814B2 (en) 2015-03-06 2023-12-12 Walmart Apollo, Llc Overriding control of motorized transport unit systems, devices and methods
US11761160B2 (en) 2015-03-06 2023-09-19 Walmart Apollo, Llc Apparatus and method of monitoring product placement within a shopping facility
US10435279B2 (en) 2015-03-06 2019-10-08 Walmart Apollo, Llc Shopping space route guidance systems, devices and methods
US11679969B2 (en) 2015-03-06 2023-06-20 Walmart Apollo, Llc Shopping facility assistance systems, devices and methods
US10815104B2 (en) 2015-03-06 2020-10-27 Walmart Apollo, Llc Recharging apparatus and method
US10486951B2 (en) 2015-03-06 2019-11-26 Walmart Apollo, Llc Trash can monitoring systems and methods
US10508010B2 (en) 2015-03-06 2019-12-17 Walmart Apollo, Llc Shopping facility discarded item sorting systems, devices and methods
US9908760B2 (en) 2015-03-06 2018-03-06 Wal-Mart Stores, Inc. Shopping facility assistance systems, devices and methods to drive movable item containers
US9896315B2 (en) 2015-03-06 2018-02-20 Wal-Mart Stores, Inc. Systems, devices and methods of controlling motorized transport units in fulfilling product orders
US9875502B2 (en) 2015-03-06 2018-01-23 Wal-Mart Stores, Inc. Shopping facility assistance systems, devices, and methods to identify security and safety anomalies
US10280054B2 (en) 2015-03-06 2019-05-07 Walmart Apollo, Llc Shopping facility assistance systems, devices and methods
US10071893B2 (en) 2015-03-06 2018-09-11 Walmart Apollo, Llc Shopping facility assistance system and method to retrieve in-store abandoned mobile item containers
US9875503B2 (en) 2015-03-06 2018-01-23 Wal-Mart Stores, Inc. Method and apparatus for transporting a plurality of stacked motorized transport units
US9994434B2 (en) 2015-03-06 2018-06-12 Wal-Mart Stores, Inc. Overriding control of motorize transport unit systems, devices and methods
US10570000B2 (en) 2015-03-06 2020-02-25 Walmart Apollo, Llc Shopping facility assistance object detection systems, devices and methods
US10597270B2 (en) 2015-03-06 2020-03-24 Walmart Apollo, Llc Shopping facility track system and method of routing motorized transport units
US10071891B2 (en) 2015-03-06 2018-09-11 Walmart Apollo, Llc Systems, devices, and methods for providing passenger transport
US10611614B2 (en) 2015-03-06 2020-04-07 Walmart Apollo, Llc Shopping facility assistance systems, devices and methods to drive movable item containers
US10633231B2 (en) 2015-03-06 2020-04-28 Walmart Apollo, Llc Apparatus and method of monitoring product placement within a shopping facility
US10239740B2 (en) 2015-03-06 2019-03-26 Walmart Apollo, Llc Shopping facility assistance system and method having a motorized transport unit that selectively leads or follows a user within a shopping facility
US10669140B2 (en) 2015-03-06 2020-06-02 Walmart Apollo, Llc Shopping facility assistance systems, devices and methods to detect and handle incorrectly placed items
US9801517B2 (en) 2015-03-06 2017-10-31 Wal-Mart Stores, Inc. Shopping facility assistance object detection systems, devices and methods
US10239738B2 (en) 2015-03-06 2019-03-26 Walmart Apollo, Llc Apparatus and method of monitoring product placement within a shopping facility
US10239739B2 (en) 2015-03-06 2019-03-26 Walmart Apollo, Llc Motorized transport unit worker support systems and methods
US10875752B2 (en) 2015-03-06 2020-12-29 Walmart Apollo, Llc Systems, devices and methods of providing customer support in locating products
US9534906B2 (en) 2015-03-06 2017-01-03 Wal-Mart Stores, Inc. Shopping space mapping systems, devices and methods
US10189692B2 (en) 2015-03-06 2019-01-29 Walmart Apollo, Llc Systems, devices and methods for restoring shopping space conditions
US11046562B2 (en) 2015-03-06 2021-06-29 Walmart Apollo, Llc Shopping facility assistance systems, devices and methods
US11034563B2 (en) 2015-03-06 2021-06-15 Walmart Apollo, Llc Apparatus and method of monitoring product placement within a shopping facility
US9757002B2 (en) 2015-03-06 2017-09-12 Wal-Mart Stores, Inc. Shopping facility assistance systems, devices and methods that employ voice input
US10189691B2 (en) 2015-03-06 2019-01-29 Walmart Apollo, Llc Shopping facility track system and method of routing motorized transport units
US20160274228A1 (en) * 2015-03-19 2016-09-22 Delphi Technologies, Inc. Radar object detection system
US9910151B2 (en) * 2015-03-19 2018-03-06 Delphi Technologies, Inc. Radar object detection system
US20170168503A1 (en) * 2015-12-11 2017-06-15 Avishtech, Llc Autonomous vehicle towing system and method
EP3387505A4 (en) * 2015-12-11 2019-07-10 Avishtech, LLC Autonomous vehicle towing system and method
US10007271B2 (en) * 2015-12-11 2018-06-26 Avishtech, Llc Autonomous vehicle towing system and method
WO2017100626A1 (en) 2015-12-11 2017-06-15 Avishtech, Llc Autonomous vehicle towing system and method
US11860642B2 (en) 2015-12-11 2024-01-02 Avishtech, Inc. Autonomous vehicle towing system and method
US10983531B2 (en) 2015-12-11 2021-04-20 Avishtech, Llc Autonomous vehicle towing system and method
CN108885454B (en) * 2015-12-11 2023-02-17 艾维施科技有限责任公司 Autonomous vehicle traction system and method
US10885592B2 (en) 2016-02-02 2021-01-05 Allstate Insurance Company Subjective route risk mapping and mitigation
US10269075B2 (en) 2016-02-02 2019-04-23 Allstate Insurance Company Subjective route risk mapping and mitigation
US10017322B2 (en) 2016-04-01 2018-07-10 Wal-Mart Stores, Inc. Systems and methods for moving pallets via unmanned motorized unit-guided forklifts
US10214400B2 (en) 2016-04-01 2019-02-26 Walmart Apollo, Llc Systems and methods for moving pallets via unmanned motorized unit-guided forklifts
US9672734B1 (en) * 2016-04-08 2017-06-06 Sivalogeswaran Ratnasingam Traffic aware lane determination for human driver and autonomous vehicle driving system
US10921822B2 (en) 2016-08-22 2021-02-16 Peloton Technology, Inc. Automated vehicle control system architecture
US10906544B2 (en) 2016-08-22 2021-02-02 Peloton Technology, Inc. Dynamic gap control for automated driving
US10369998B2 (en) 2016-08-22 2019-08-06 Peloton Technology, Inc. Dynamic gap control for automated driving
US10597074B2 (en) 2016-08-26 2020-03-24 Crown Equipment Corporation Materials handling vehicle obstacle scanning tools
US11447377B2 (en) 2016-08-26 2022-09-20 Crown Equipment Corporation Multi-field scanning tools in materials handling vehicles
US11914394B2 (en) 2016-08-26 2024-02-27 Crown Equipment Corporation Materials handling vehicle path validation and dynamic path modification
US10775805B2 (en) 2016-08-26 2020-09-15 Crown Equipment Limited Materials handling vehicle path validation and dynamic path modification
US11294393B2 (en) 2016-08-26 2022-04-05 Crown Equipment Corporation Materials handling vehicle path validation and dynamic path modification
US10800640B2 (en) 2016-08-26 2020-10-13 Crown Equipment Corporation Multi-field scanning tools in materials handling vehicles
US11110957B2 (en) 2016-08-26 2021-09-07 Crown Equipment Corporation Materials handling vehicle obstacle scanning tools
US10450001B2 (en) 2016-08-26 2019-10-22 Crown Equipment Corporation Materials handling vehicle obstacle scanning tools
US20170010621A1 (en) * 2016-09-20 2017-01-12 Caterpillar Paving Products Inc. Paving collision avoidance system
US10185329B2 (en) * 2016-10-24 2019-01-22 GM Global Technology Operations LLC Methods and systems for vehicle-to-vehicle communication
US10843091B1 (en) 2016-11-02 2020-11-24 Brandon Paul Amusement park attractions, amusement karts, and magnetic assemblies
US11369890B2 (en) 2016-11-02 2022-06-28 Brandon Paul Amusement park attractions, amusement karts, and magnetic assemblies
US20190064839A1 (en) * 2017-08-28 2019-02-28 Toyota Research Institute, Inc. Trajectory plan modification for an autonomous vehicle operation in a heterogeneous vehicle environment
US10545505B2 (en) * 2017-08-28 2020-01-28 Toyota Research Institute, Inc Trajectory plan modification for an autonomous vehicle operation in a heterogeneous vehicle environment
DE102018120723B4 (en) 2017-08-28 2023-12-21 Toyota Research Institute, Inc. Trajectory plan modification for autonomous vehicle operation in a heterogeneous vehicle environment
US11156999B2 (en) * 2017-11-21 2021-10-26 TT & G Co., Ltd. Golf cart system capable of autonomous driving based on accurate location information and method of controlling golf cart using the system
US20190155274A1 (en) * 2017-11-21 2019-05-23 TT & G Co., Ltd. Golf cart system capable of autonomous driving based on accurate location information and method of controlling golf cart using the system
US11364885B2 (en) 2018-01-18 2022-06-21 Vieletech Inc. Smart trailer controller
US11420695B2 (en) 2018-01-31 2022-08-23 Vieletech Inc. Semi-autonomous trailer hauler
US10899323B2 (en) 2018-07-08 2021-01-26 Peloton Technology, Inc. Devices, systems, and methods for vehicle braking
US20200021961A1 (en) * 2018-07-10 2020-01-16 Cavh Llc Vehicle on-board unit for connected and automated vehicle systems
US10762791B2 (en) 2018-10-29 2020-09-01 Peloton Technology, Inc. Systems and methods for managing communications between vehicles
US11341856B2 (en) 2018-10-29 2022-05-24 Peloton Technology, Inc. Systems and methods for managing communications between vehicles
US11427196B2 (en) 2019-04-15 2022-08-30 Peloton Technology, Inc. Systems and methods for managing tractor-trailers
US11623624B2 (en) * 2020-02-28 2023-04-11 Bendix Commercial Vehicle Systems Llc System and method for brake signal detection
US20210269006A1 (en) * 2020-02-28 2021-09-02 Bendix Commercial Vehicle Systems Llc System and method for brake signal detection
US11797896B2 (en) 2020-11-30 2023-10-24 At&T Intellectual Property I, L.P. Autonomous aerial vehicle assisted viewing location selection for event venue
US11726475B2 (en) 2020-11-30 2023-08-15 At&T Intellectual Property I, L.P. Autonomous aerial vehicle airspace claiming and announcing
US11443518B2 (en) 2020-11-30 2022-09-13 At&T Intellectual Property I, L.P. Uncrewed aerial vehicle shared environment privacy and security
US11760227B2 (en) 2021-02-15 2023-09-19 Raymond Anthony Joao Battery power management apparatus and method
US20220379960A1 (en) * 2021-05-26 2022-12-01 Ford Global Technologies, Llc Systems and methods for providing steering assistance when parking during electrified vehicle towing events
US11945502B2 (en) * 2021-05-26 2024-04-02 Ford Global Technologies, Llc Systems and methods for providing steering assistance when parking during electrified vehicle towing events

Also Published As

Publication number Publication date
EP0652543B1 (en) 2001-07-04
EP0652543A1 (en) 1995-05-10

Similar Documents

Publication Publication Date Title
US5295551A (en) System for the cooperative driving of two or more vehicles
RU2659371C1 (en) Device and method of traffic control
RU2660158C1 (en) Device and method of traffic control
JPH07200991A (en) Cooperative operation system of two or more vehicles
JP2969175B1 (en) Main Line Traffic Flow Prediction Method for Merging Control System of Driving Support Road System
US5485381A (en) Navigation system for land vehicles
CN110989569B (en) Vehicle running control method and related equipment
EP1737695B1 (en) Assistance system for motor vehicles
US20060095195A1 (en) Vehicle operation control device
KR20210131467A (en) Detecting and responding to propulsion and steering system errors for autonomous vehicles
CN110473416B (en) Vehicle control device
JP2011528833A (en) Automated public and personal transport systems
JP6867483B2 (en) Vehicle control unit
JP7268433B2 (en) vehicle controller
CN110341708B (en) Automatic driving control method and system for blind area
JP7339960B2 (en) Using Discomfort for Autonomous Vehicle Speed Planning
EP4082855A1 (en) Driving assistance device
US20230202533A1 (en) Narrow width personal transportation system
CN114555445A (en) Method for automatically assisting a motor vehicle for driving at an exit of a main road
JP2002157685A (en) Vehicle travel control system
EP4306382A1 (en) Planning trajectories for controlling autonomous vehicles
JP7467323B2 (en) Driving support method and driving support device
US20230227065A1 (en) Managing maneuvers for autonomous vehicles in certain situations
WO2023089835A1 (en) Vehicle travel assistance method and vehicle travel assistance device
CN1102785C (en) Wireless traffic and vehicle signal indication system

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20020322