US5398659A - Fuel sender for motor vehicle fuel system - Google Patents

Fuel sender for motor vehicle fuel system Download PDF

Info

Publication number
US5398659A
US5398659A US08/168,243 US16824393A US5398659A US 5398659 A US5398659 A US 5398659A US 16824393 A US16824393 A US 16824393A US 5398659 A US5398659 A US 5398659A
Authority
US
United States
Prior art keywords
fuel
flow channel
reservoir
primary
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/168,243
Inventor
William S. Zimmerman
Wayne F. Harris
Ulf Sawert
Randall L. Dockery
Timothy F. Coha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Priority to US08/168,243 priority Critical patent/US5398659A/en
Assigned to GENERAL MOTORS CORPORATION reassignment GENERAL MOTORS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COHA, TIMOTHY FRANCIS, HARRIS, WAYNE FREDERICK, ZIMMERMAN, WILLIAM STUART, DOCKERY, RANDALL LEE, SAWERT, ULF
Priority to EP94203311A priority patent/EP0661440A1/en
Application granted granted Critical
Publication of US5398659A publication Critical patent/US5398659A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • F02M37/10Feeding by means of driven pumps electrically driven submerged in fuel, e.g. in reservoir
    • F02M37/106Feeding by means of driven pumps electrically driven submerged in fuel, e.g. in reservoir the pump being installed in a sub-tank

Definitions

  • This invention relates to motor vehicle fuel systems.
  • the fuel system of a vehicle equipped with a diesel engine often includes a fuel pump mounted on the engine, a fuel tank, and hoses, pipes and the like, both external and internal to the fuel tank, defining a suction circuit between the tank and an inlet of the fuel pump. Surplus fuel is returned to the tank through a return circuit.
  • the remote end of the suction circuit in the fuel tank is simply a vertically supported pipe the bottom of which is covered by a screen made of strands of a synthetic fabric such as nylon or polyester woven such that the screen is permeable to diesel fuel when fully submerged, impermeable to fuel vapor when partially submerged, and generally impermeable to water when fully or partially submerged.
  • a differential pressure actuated bypass valve opens when the fuel pump induces inordinately high vacuum in the suction circuit due to blockage of the screen, e.g. by wax in the diesel fuel forming on the screen under cold weather conditions.
  • the remote end of the suction circuit terminates at a so-called "fuel sender" the characterizing feature of which is a reservoir at the bottom of the fuel tank which aggregates enough fuel around the screen to prevent momentary starvation of the fuel pump when fuel sloshes back and forth in the tank.
  • the reservoir is simply a gravity filled container surrounding the screen.
  • the reservoir is a sealed container surrounding an unscreened end of the aforesaid vertically supported pipe.
  • a fuel sender according to this invention is an improvement over the aforesaid gravity filled fuel sender and the aforesaid sealed fuel sender.
  • This invention is a new and improved fuel sender at a remote or terminal end of a suction circuit of a fuel system of a motor vehicle.
  • the fuel sender according to this invention includes an unsealed reservoir replenished by return fuel from a return fuel circuit of the fuel system and a junction chamber in the reservoir communicating with the terminal end of the suction circuit and with each of a primary flow channel and a secondary flow channel.
  • the primary flow channel terminates at a primary screen in the fuel tank outside the reservoir.
  • the secondary flow channel terminates at a secondary screen inside the reservoir.
  • the secondary flow channel is restricted relative to the primary flow channel so that vacuum in the suction circuit induces flow in the primary channel in preference to flow in the secondary channel.
  • the primary screen defines a blockage at the end of the primary flow channel so that vacuum in the suction circuit induces flow in the secondary flow channel from the reservoir.
  • the secondary screen is flexible and actuates a differential pressure responsive bypass valve to connect the secondary flow channel directly to the reservoir when both the primary and the secondary screens are blocked.
  • preferential flow in the primary flow channel is induced by a zone of restricted cross sectional flow area in the secondary flow channel and/or by the secondary screen obstructing flow to a greater degree than the primary screen.
  • the primary screen may have a small fabric patch near the bottom of the fuel tank which is highly permeable to water.
  • FIG. 1 is a fragmentary, partially broken-away view of a fuel system of a motor vehicle including a fuel sender according to this invention
  • FIG. 2 is a fragmentary, partially broken-away, perspective view of a fuel sender according to this invention
  • FIG. 3 is a sectional view in elevation of a fuel sender according to this invention.
  • FIG. 4 is an enlarged view of a portion of FIG. 3.
  • a fuel tank 10 of a motor vehicle includes a bottom panel 12 and a top panel 14.
  • a fuel sender 16 is disposed in the fuel tank and includes a molded, cup-shaped plastic container or reservoir 18, a molded plastic cap 20 for the reservoir, a molded plastic cover 22 in an access opening in the top panel 14 of the fuel tank, and a plurality of tubular struts 24 each surrounded by a corresponding one of a plurality of springs 26.
  • the plastic cap 20 is generally disc-shaped and fits somewhat loosely within the cylindrical wall of the reservoir.
  • the cap has a plurality of integral, flexible arms, only a single arm 28 being visible in FIG. 3.
  • Each flexible arm has a tang 30 thereon which snaps into a corresponding notch 32 in the reservoir for retention.
  • each strut 24 is rigidly connected to the cover 22.
  • the lower end of each strut is slidably received in a socket, not shown, in the plastic cap 20.
  • the springs 26 bias the cap and the reservoir against the bottom panel 12 of the fuel tank.
  • a float controlled transducer 34 is mounted on a metal bracket 36 on the reservoir 18 and provides an electrical signal through a wiring harness 38 corresponding to the level of the surface of the pool of diesel fuel in the tank relative to the bottom panel 12 of the tank.
  • the plastic cap 20 has a disc-shaped web 40 perpendicular to a longitudinal centerline 42 of the reservoir, a tubular wall 44 symmetric about the centerline 42, and a cup-shaped connecting wall 46 connecting the web and the tubular wall.
  • the cap closes the top of the reservoir 18 and cooperates therewith in defining a return fuel chamber 48 in the reservoir.
  • the return fuel chamber is vented to the fuel tank through clearances between the cap and the reservoir and through a plurality of apertures 50 in the connecting wall 46.
  • the tubular wall 44 has an upper end 52 outside the return fuel chamber 48 and a lower end 54 inside the return fuel chamber.
  • a barbed fluid connector 56 is rigidly attached to the tubular wall 44 at the upper end thereof.
  • a tube 58 aligned on the centerline 42 of the reservoir inside the tubular wall 44 is press fitted in a bore 60 in a bottom wall 62 of the reservoir.
  • the tube 58 has an open bottom end 64 and terminates at an open top end 66 below the connector 56.
  • a primary screen 68 in the fuel tank outside the reservoir is disposed below the bottom wall 62 and adjacent a support 70 on the reservoir which is pressed against the bottom panel 12 of the fuel tank by the springs 26.
  • a metal ferrule 72 attached to the screen 68 is press fitted onto an annular boss 74 on the bottom wall 62 of the reservoir around the bottom end of the tube 58. Fuel in the fuel tank 10 is thus forced to traverse the primary screen 68 before entering the bottom end of tube 58.
  • the primary screen 68 is made of synthetic material, such as nylon, woven in plain weave such that the primary screen is permeable to liquid fuel but generally impermeable to water. In addition, when partially submerged in liquid fuel, the wicking characteristic of the woven fabric renders the screen impermeable to fuel vapor and/or air.
  • the primary screen 68 may include a metal filter 76 or, alternatively, a small fabric patch, not shown, through which any water collecting at the bottom of the fuel tank may be drawn into the tube 58.
  • a generally flat or pancake-like secondary strainer 78 of the fuel sender 16 is disposed in the return fuel chamber 48 of the reservoir and includes an upper ply 80 and a lower ply 82, each symmetric about the centerline 42 and sealed to each other around the periphery of the secondary strainer.
  • a plastic spring seat 84 is attached to the upper ply 80 and a cup-shaped metal ferrule 86 is attached to the plastic spring seat. The metal ferrule is press fitted onto the lower end 54 of the tubular wall 44 whereby the secondary strainer is mounted on the tubular wall in flow communication with an annulus 88, FIGS. 3-4, defined between the tubular wall 44 and the tube 58 therein.
  • the secondary screen 78 is made of synthetic material, such as nylon, woven in plain weave such that the secondary screen is permeable to liquid fuel but generally impermeable to water. In addition, when partially submerged in liquid fuel, the wicking characteristic of the woven fabric renders the secondary screen impermeable to fuel vapor and/or air.
  • a differential pressure responsive bypass valve 90 of the fuel sender 16 includes a circular, elastomeric valve seat 92 on the bottom wall 62 of the reservoir around the tube 58 and an annular plastic valve element 94 attached to the lower ply 82 of the secondary strainer and having an annular bead 98 thereon facing the valve seat.
  • a spring 100 inside the secondary strainer between the spring seat 84 and the valve element 94 biases the valve element to a closed position, FIGS. 3-4, wherein the bead 98 is pressed against the valve seat.
  • the valve element 94 has an open position, not shown, in which the spring 100 is compressed and the valve element vertically separated from the valve seat. In the open position of the valve element, diesel fuel flows directly from the return fuel chamber 48 into the annulus 88.
  • a flexible hose 102 is attached to the barbed connector 56 outside the return fuel chamber and to an inside end of a first connector 104 on the plastic cover 22.
  • An outside end 106 of the first connector 104 receives a hose, not shown, which defines the aforesaid remote or terminal end of the suction circuit of the fuel system of the vehicle.
  • An inlet of a fuel injection pump, not shown, remote from the fuel tank 10 defines the opposite end of the suction circuit.
  • a second connector 108 on the cover 22 communicates through conventional conduit means, not shown, with the aforesaid return flow circuit of the fuel system of the vehicle. As described in U.S. Pat. No. 4,945,884, issued Aug. 7, 1990 and assigned to the assignee of this invention, return flow directed to the second connector 108 is conducted through the cover 22 and through one of the struts 24 into the return fuel chamber 48.
  • a junction chamber 110 is defined in the reservoir 18 in the tubular wall 44 between the top end 66 of the tube 58 and the connector 56.
  • the junction chamber communicates with the suction circuit of the fuel system through the connector 56.
  • a primary flow channel of the fuel sender 16 from the fuel tank to the junction chamber 110 includes the tube 58 and the primary screen 68.
  • a secondary flow channel of the fuel sender 16 from the return fuel chamber 48 to the junction chamber 110 includes the annulus 88 and the secondary screen 78.
  • the secondary flow channel is more flow restricted due to the reduced flow area of the annular gap between the top end 66 of the tube 58 and the connector 56 and/or because the secondary screen 78 is designed to obstruct flow to a predetermined greater degree than the primary screen 68 through material selection, weave selection, and/or number of fabric plies in each screen.
  • the fuel sender 16 operates as follows. When the fuel tank is not almost empty, e.g. the primary screen 68 is fully submerged in fuel, and the fuel pump is on, vacuum in the suction circuit induces fuel flow into the junction chamber through the primary flow channel in preference to the secondary flow channel. Concurrently, surplus fuel from the engine is deposited in the return fuel chamber 48 of the reservoir 18. When the return fuel chamber is full, return fuel overflows into the fuel tank through the apertures 50 and the clearances between the cap 20 and the reservoir.
  • return fuel tends to heat the fuel in the return fuel chamber 48 and in the fuel tank to a temperature sufficient to liquify the wax formed on the primary and secondary screens.
  • the spring 100 returns the bypass valve element 94 to its closed position and fuel flow proceeds through the primary flow channel in preference to the secondary flow channel.
  • fuel in the tank may slosh to one side of the tank, leaving the primary screen only partially submerged.
  • the primary screen defines a blockage in the primary flow channel and the vacuum induced in the suction circuit immediately induces fuel flow in the secondary flow channel from the return fuel chamber so that the fuel pump is not starved.
  • the primary strainer is resubmerged after the turn is completed, the blockage defined by the primary screen disappears and the relative restrictions in the primary and secondary flow channels initiates flow in the primary flow channel in preference to the secondary flow channel.

Abstract

Fuel sender at a remote or terminal end of a suction circuit of a fuel system of a motor vehicle. The fuel sender includes an unsealed reservoir in a fuel tank of the vehicle replenished by return fuel from a return fuel circuit of the fuel system and a junction chamber in the reservoir communicating with the terminal end of the suction circuit and with each of a primary flow channel and a secondary flow channel. The primary flow channel terminates at a primary screen in the fuel tank outside the reservoir. The secondary flow channel terminates at a secondary screen inside the reservoir. The secondary flow channel is restricted relative to the primary flow channel so that vacuum in the suction circuit induces flow in the primary flow channel in preference to flow in the secondary channel. Under low fuel conditions, the primary flow channel is blocked and vacuum in the suction circuit induces flow in the secondary flow channel from the reservoir. The secondary screen is flexible and actuates a differential pressure responsive bypass valve to connect the secondary flow channel directly to the reservoir when both the primary and the secondary screens are blocked.

Description

FIELD OF THE INVENTION
This invention relates to motor vehicle fuel systems.
BACKGROUND OF THE INVENTION
The fuel system of a vehicle equipped with a diesel engine often includes a fuel pump mounted on the engine, a fuel tank, and hoses, pipes and the like, both external and internal to the fuel tank, defining a suction circuit between the tank and an inlet of the fuel pump. Surplus fuel is returned to the tank through a return circuit. In many such fuel systems, the remote end of the suction circuit in the fuel tank is simply a vertically supported pipe the bottom of which is covered by a screen made of strands of a synthetic fabric such as nylon or polyester woven such that the screen is permeable to diesel fuel when fully submerged, impermeable to fuel vapor when partially submerged, and generally impermeable to water when fully or partially submerged. A differential pressure actuated bypass valve opens when the fuel pump induces inordinately high vacuum in the suction circuit due to blockage of the screen, e.g. by wax in the diesel fuel forming on the screen under cold weather conditions. In more advanced systems, the remote end of the suction circuit terminates at a so-called "fuel sender" the characterizing feature of which is a reservoir at the bottom of the fuel tank which aggregates enough fuel around the screen to prevent momentary starvation of the fuel pump when fuel sloshes back and forth in the tank. In some fuel senders, the reservoir is simply a gravity filled container surrounding the screen. In another fuel sender, the reservoir is a sealed container surrounding an unscreened end of the aforesaid vertically supported pipe. The reservoir in the latter fuel sender is replenished by new fuel from the fuel tank through a screen over an inlet port in the bottom of the reservoir and also by return fuel emptying into the sealed reservoir through a float controlled valve and seal. A fuel sender according to this invention is an improvement over the aforesaid gravity filled fuel sender and the aforesaid sealed fuel sender.
SUMMARY OF THE INVENTION
This invention is a new and improved fuel sender at a remote or terminal end of a suction circuit of a fuel system of a motor vehicle. The fuel sender according to this invention includes an unsealed reservoir replenished by return fuel from a return fuel circuit of the fuel system and a junction chamber in the reservoir communicating with the terminal end of the suction circuit and with each of a primary flow channel and a secondary flow channel. The primary flow channel terminates at a primary screen in the fuel tank outside the reservoir. The secondary flow channel terminates at a secondary screen inside the reservoir. The secondary flow channel is restricted relative to the primary flow channel so that vacuum in the suction circuit induces flow in the primary channel in preference to flow in the secondary channel. Under low fuel conditions, the primary screen defines a blockage at the end of the primary flow channel so that vacuum in the suction circuit induces flow in the secondary flow channel from the reservoir. The secondary screen is flexible and actuates a differential pressure responsive bypass valve to connect the secondary flow channel directly to the reservoir when both the primary and the secondary screens are blocked. In a preferred embodiment, preferential flow in the primary flow channel is induced by a zone of restricted cross sectional flow area in the secondary flow channel and/or by the secondary screen obstructing flow to a greater degree than the primary screen. For purging water from the fuel tank, the primary screen may have a small fabric patch near the bottom of the fuel tank which is highly permeable to water.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a fragmentary, partially broken-away view of a fuel system of a motor vehicle including a fuel sender according to this invention;
FIG. 2 is a fragmentary, partially broken-away, perspective view of a fuel sender according to this invention;
FIG. 3 is a sectional view in elevation of a fuel sender according to this invention; and
FIG. 4 is an enlarged view of a portion of FIG. 3.
DESCRIPTION OF A PREFERRED EMBODIMENT
Referring to FIGS. 1-2, a fuel tank 10 of a motor vehicle, not shown, includes a bottom panel 12 and a top panel 14. A fuel sender 16 according to this invention is disposed in the fuel tank and includes a molded, cup-shaped plastic container or reservoir 18, a molded plastic cap 20 for the reservoir, a molded plastic cover 22 in an access opening in the top panel 14 of the fuel tank, and a plurality of tubular struts 24 each surrounded by a corresponding one of a plurality of springs 26.
As seen best in FIGS. 2-3, the plastic cap 20 is generally disc-shaped and fits somewhat loosely within the cylindrical wall of the reservoir. The cap has a plurality of integral, flexible arms, only a single arm 28 being visible in FIG. 3. Each flexible arm has a tang 30 thereon which snaps into a corresponding notch 32 in the reservoir for retention.
The upper end of each strut 24 is rigidly connected to the cover 22. The lower end of each strut is slidably received in a socket, not shown, in the plastic cap 20. The springs 26 bias the cap and the reservoir against the bottom panel 12 of the fuel tank. A float controlled transducer 34 is mounted on a metal bracket 36 on the reservoir 18 and provides an electrical signal through a wiring harness 38 corresponding to the level of the surface of the pool of diesel fuel in the tank relative to the bottom panel 12 of the tank.
As seen best in FIG. 3, the plastic cap 20 has a disc-shaped web 40 perpendicular to a longitudinal centerline 42 of the reservoir, a tubular wall 44 symmetric about the centerline 42, and a cup-shaped connecting wall 46 connecting the web and the tubular wall. The cap closes the top of the reservoir 18 and cooperates therewith in defining a return fuel chamber 48 in the reservoir. The return fuel chamber is vented to the fuel tank through clearances between the cap and the reservoir and through a plurality of apertures 50 in the connecting wall 46. The tubular wall 44 has an upper end 52 outside the return fuel chamber 48 and a lower end 54 inside the return fuel chamber. A barbed fluid connector 56 is rigidly attached to the tubular wall 44 at the upper end thereof.
As seen best in FIGS. 3--4, a tube 58 aligned on the centerline 42 of the reservoir inside the tubular wall 44 is press fitted in a bore 60 in a bottom wall 62 of the reservoir. The tube 58 has an open bottom end 64 and terminates at an open top end 66 below the connector 56. A primary screen 68 in the fuel tank outside the reservoir is disposed below the bottom wall 62 and adjacent a support 70 on the reservoir which is pressed against the bottom panel 12 of the fuel tank by the springs 26. A metal ferrule 72 attached to the screen 68 is press fitted onto an annular boss 74 on the bottom wall 62 of the reservoir around the bottom end of the tube 58. Fuel in the fuel tank 10 is thus forced to traverse the primary screen 68 before entering the bottom end of tube 58.
The primary screen 68 is made of synthetic material, such as nylon, woven in plain weave such that the primary screen is permeable to liquid fuel but generally impermeable to water. In addition, when partially submerged in liquid fuel, the wicking characteristic of the woven fabric renders the screen impermeable to fuel vapor and/or air. For purging water from the fuel tank, the primary screen 68 may include a metal filter 76 or, alternatively, a small fabric patch, not shown, through which any water collecting at the bottom of the fuel tank may be drawn into the tube 58.
A generally flat or pancake-like secondary strainer 78 of the fuel sender 16 is disposed in the return fuel chamber 48 of the reservoir and includes an upper ply 80 and a lower ply 82, each symmetric about the centerline 42 and sealed to each other around the periphery of the secondary strainer. A plastic spring seat 84 is attached to the upper ply 80 and a cup-shaped metal ferrule 86 is attached to the plastic spring seat. The metal ferrule is press fitted onto the lower end 54 of the tubular wall 44 whereby the secondary strainer is mounted on the tubular wall in flow communication with an annulus 88, FIGS. 3-4, defined between the tubular wall 44 and the tube 58 therein.
The secondary screen 78 is made of synthetic material, such as nylon, woven in plain weave such that the secondary screen is permeable to liquid fuel but generally impermeable to water. In addition, when partially submerged in liquid fuel, the wicking characteristic of the woven fabric renders the secondary screen impermeable to fuel vapor and/or air.
As seen best in FIG. 4, a differential pressure responsive bypass valve 90 of the fuel sender 16 includes a circular, elastomeric valve seat 92 on the bottom wall 62 of the reservoir around the tube 58 and an annular plastic valve element 94 attached to the lower ply 82 of the secondary strainer and having an annular bead 98 thereon facing the valve seat. A spring 100 inside the secondary strainer between the spring seat 84 and the valve element 94 biases the valve element to a closed position, FIGS. 3-4, wherein the bead 98 is pressed against the valve seat. In the closed position of the valve element, all diesel fuel flowing from the return fuel chamber 48 into the annulus 88 must traverse the secondary screen 78. The valve element 94 has an open position, not shown, in which the spring 100 is compressed and the valve element vertically separated from the valve seat. In the open position of the valve element, diesel fuel flows directly from the return fuel chamber 48 into the annulus 88.
As seen best in FIGS. 2--3, a flexible hose 102 is attached to the barbed connector 56 outside the return fuel chamber and to an inside end of a first connector 104 on the plastic cover 22. An outside end 106 of the first connector 104 receives a hose, not shown, which defines the aforesaid remote or terminal end of the suction circuit of the fuel system of the vehicle. An inlet of a fuel injection pump, not shown, remote from the fuel tank 10 defines the opposite end of the suction circuit.
A second connector 108 on the cover 22 communicates through conventional conduit means, not shown, with the aforesaid return flow circuit of the fuel system of the vehicle. As described in U.S. Pat. No. 4,945,884, issued Aug. 7, 1990 and assigned to the assignee of this invention, return flow directed to the second connector 108 is conducted through the cover 22 and through one of the struts 24 into the return fuel chamber 48.
Referring to FIG. 3, a junction chamber 110 is defined in the reservoir 18 in the tubular wall 44 between the top end 66 of the tube 58 and the connector 56. The junction chamber communicates with the suction circuit of the fuel system through the connector 56. A primary flow channel of the fuel sender 16 from the fuel tank to the junction chamber 110 includes the tube 58 and the primary screen 68. A secondary flow channel of the fuel sender 16 from the return fuel chamber 48 to the junction chamber 110 includes the annulus 88 and the secondary screen 78. Relative to the primary flow channel, the secondary flow channel is more flow restricted due to the reduced flow area of the annular gap between the top end 66 of the tube 58 and the connector 56 and/or because the secondary screen 78 is designed to obstruct flow to a predetermined greater degree than the primary screen 68 through material selection, weave selection, and/or number of fabric plies in each screen.
The fuel sender 16 operates as follows. When the fuel tank is not almost empty, e.g. the primary screen 68 is fully submerged in fuel, and the fuel pump is on, vacuum in the suction circuit induces fuel flow into the junction chamber through the primary flow channel in preference to the secondary flow channel. Concurrently, surplus fuel from the engine is deposited in the return fuel chamber 48 of the reservoir 18. When the return fuel chamber is full, return fuel overflows into the fuel tank through the apertures 50 and the clearances between the cap 20 and the reservoir.
If, after a period of idleness under cold weather conditions, wax from the diesel fuel forms on and blocks both the primary and secondary screens 68,78, then the onset of vacuum in the suction circuit corresponding to the fuel pump being turned on induces an inordinately high vacuum in the junction chamber 110 and in each of the primary and secondary flow channels. The high vacuum, in turn, induces an inordinately high pressure difference across the lower ply 82 of the secondary screen 78 which strokes the bypass valve element 94 from its closed position to its open position, whereupon fuel flows around the secondary screen and directly into the secondary flow channel.
Within a short duration after engine start, return fuel tends to heat the fuel in the return fuel chamber 48 and in the fuel tank to a temperature sufficient to liquify the wax formed on the primary and secondary screens. In that circumstance, the spring 100 returns the bypass valve element 94 to its closed position and fuel flow proceeds through the primary flow channel in preference to the secondary flow channel.
Under low fuel conditions with the primary and secondary screens unblocked, fuel flow switches between the primary and the secondary flow channels in accordance with exposure of the primary screen 68 to vapor in the fuel tank. For example, in a turn, fuel in the tank may slosh to one side of the tank, leaving the primary screen only partially submerged. In that circumstance, the primary screen defines a blockage in the primary flow channel and the vacuum induced in the suction circuit immediately induces fuel flow in the secondary flow channel from the return fuel chamber so that the fuel pump is not starved. When the primary strainer is resubmerged after the turn is completed, the blockage defined by the primary screen disappears and the relative restrictions in the primary and secondary flow channels initiates flow in the primary flow channel in preference to the secondary flow channel.
While this invention has been described in terms of a preferred embodiment thereof, it will be appreciated that other forms could readily be adapted by one skilled in the art. Accordingly, the scope of this invention is to be considered limited only by the following claims.

Claims (6)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. In a motor vehicle fuel system including a fuel tank, a fuel pump remote from said fuel tank, a suction circuit connected to an inlet of said fuel pump so that a vacuum is induced in said suction circuit when said fuel pump is on, and a return circuit for returning surplus fuel said fuel tank,
a fuel sender comprising:
a reservoir in said fuel tank having a cap thereon cooperating with said reservoir in defining a return fuel chamber in said reservoir,
means connecting said return circuit to said return fuel chamber so that said surplus fuel is deposited first in said return fuel chamber,
means defining a junction chamber in said reservoir,
means connecting said junction chamber to said suction circuit,
means defining a primary flow channel between said fuel tank and said junction chamber including a primary screen outside said reservoir,
means defining a secondary flow channel between said return fuel chamber and said junction chamber including a secondary screen in said return fuel chamber, and
means operative to effect a predetermined flow restriction in said primary flow channel and a predetermined flow restriction in said secondary flow channel, said predetermined flow restriction in said secondary flow channel exceeding said flow restriction in said primary flow channel so that the vacuum in said suction circuit induces fluid flow in said primary flow channel from said fuel tank to said junction chamber in preference to fuel flow in said secondary flow channel.
2. The fuel sender recited in claim 1 further including:
a differential pressure responsive bypass valve between said return fuel chamber and said secondary flow channel operative when blockage of said primary screen and said secondary screen induces an inordinately high vacuum in each of said secondary flow channel and said primary flow channel to effect direct communication between said return fuel chamber and said secondary flow channel.
3. The fuel sender recited in claim 2 wherein:
said means defining said primary and said secondary flow channels includes
a tubular wall on said cap aligned on a vertical centerline of said reservoir and having an upper end closed by said cap and a lower end connected to said secondary screen,
a fluid connector on said cap open to said tubular wall at said upper end thereof and connected to said suction circuit, and
a tube rigidly connected to and aligned on said vertical centerline of said reservoir inside said tubular wall having an open bottom end communicating with said primary screen outside said reservoir and an open top end spaced from said connector and cooperating with said tubular wall in defining an annulus therebetween communicating with said secondary screen,
said junction chamber being defined inside said tubular wall between said connector and said top end of said tube,
said primary flow channel including said tube and said primary screen, and
said secondary flow channel including said annulus and said secondary screen.
4. The fuel sender recited in claim 3 wherein:
said secondary screen is symmetric about said vertical centerline of said reservoir and includes
a generally disc-shaped upper ply connected to said lower end of said tubular wall, and
a generally disc-shaped lower ply sealed to said upper ply around the periphery of each of said upper and said lower plies.
5. The fuel sender recited in claim 4 wherein said bypass valve includes
means defining a valve seat on a bottom wall of said reservoir symmetric about said vertical centerline of said reservoir,
means defining a valve element on said lower ply of said secondary screen symmetric about said vertical centerline of said reservoir having a closed position engaging said valve seat and an open position remote from said valve seat, and
a spring means biasing said valve element to said closed position.
6. The fuel sender recited in claim 5 wherein said spring means biasing said valve element to said closed position includes:
a spring seat rigidly connected to said lower end of said tubular wall, and
a spring between said spring seat and said valve element.
US08/168,243 1993-12-17 1993-12-17 Fuel sender for motor vehicle fuel system Expired - Fee Related US5398659A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/168,243 US5398659A (en) 1993-12-17 1993-12-17 Fuel sender for motor vehicle fuel system
EP94203311A EP0661440A1 (en) 1993-12-17 1994-11-14 Fuel sender for motor vehicle fuel system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/168,243 US5398659A (en) 1993-12-17 1993-12-17 Fuel sender for motor vehicle fuel system

Publications (1)

Publication Number Publication Date
US5398659A true US5398659A (en) 1995-03-21

Family

ID=22610700

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/168,243 Expired - Fee Related US5398659A (en) 1993-12-17 1993-12-17 Fuel sender for motor vehicle fuel system

Country Status (2)

Country Link
US (1) US5398659A (en)
EP (1) EP0661440A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642719A (en) * 1995-09-11 1997-07-01 Ford Motor Company Automotive fuel delivery module with fuel level actuated reservoir
US5873348A (en) * 1996-10-07 1999-02-23 Freightliner Corporation Fuel recirculation and warming system and method
US6203286B1 (en) * 1999-01-14 2001-03-20 Pierburg Ag Electric fuel pump which is self-filling at low fuel levels in a fuel tank
US6675778B1 (en) 2002-08-27 2004-01-13 Visteon Global Technologies, Inc. Fuel sender assembly
US6783336B2 (en) 2002-06-28 2004-08-31 Visteon Global Technologies, Inc. Fuel sender assembly
US20070125344A1 (en) * 2005-10-14 2007-06-07 Troxler John E Fuel delivery module
US20110166891A1 (en) * 2001-08-03 2011-07-07 Robert Mark Zerhusen Hospital bed computer system with pharmacy interaction
US8372278B1 (en) * 2012-03-21 2013-02-12 GM Global Technology Operations LLC Liquid fuel strainer assembly
US9683874B2 (en) 2015-01-26 2017-06-20 Texas Lfp, Llc Universal mounting head construction for liquid level transducers and the like
US10267276B2 (en) * 2009-12-04 2019-04-23 Aisan Kogyo Kabushiki Kaisha Filtering device
US10436161B2 (en) * 2013-05-23 2019-10-08 Coavis Strainer and fuel pump module having the same
USD923056S1 (en) * 2018-02-22 2021-06-22 Carter Fuel Systems Llc Fuel pump assembly
US11073118B2 (en) * 2015-12-17 2021-07-27 Denso Corporation Fuel pump and fuel pump module
US11230186B2 (en) * 2018-05-30 2022-01-25 Röchling Automotive SE & Co. KG Motor vehicle tank subassembly and withdrawal module having a porous conveying body
US11291936B2 (en) * 2019-09-25 2022-04-05 Coavis Strainer for fuel pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2768777B1 (en) * 1997-09-25 1999-12-10 Marwal Systems IMPROVED PUMPING DEVICE FOR GASOIL TANK ON MOTOR VEHICLE

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3023905A (en) * 1959-10-23 1962-03-06 Gen Motors Corp Combined strainer and fuel tank "empty" signaling device
US3108065A (en) * 1959-09-29 1963-10-22 Gen Motors Corp Fuel tank strainer
US3275145A (en) * 1962-12-17 1966-09-27 Security Nat Bank Of Long Isla Filter for check valve
US4303513A (en) * 1981-01-21 1981-12-01 General Motors Corporation Dual pick-up fuel strainer assembly
US4304664A (en) * 1980-05-05 1981-12-08 General Motors Corporation Fuel strainer assembly
US4340023A (en) * 1980-06-23 1982-07-20 General Motors Corporation Fuel supply and return system with bypass valve and water pumpout
US4574728A (en) * 1984-06-07 1986-03-11 Purolator Technologies Inc. Filter differential pressure impending and bypass indicator
US4747388A (en) * 1986-11-07 1988-05-31 Walbro Corporation In-tank fuel reservoir and filter diaphragm
US4869225A (en) * 1987-10-26 1989-09-26 Nippondenso Co., Ltd. Fuel supply device for vehicles
US4935128A (en) * 1988-06-06 1990-06-19 Custom Chrome, Inc. Motorcycle engine lubricating oil filter apparatus
US4945884A (en) * 1989-10-24 1990-08-07 General Motors Corporation Modular fuel delivery system
US4971017A (en) * 1988-08-13 1990-11-20 Robert Bosch Gmbh Arrangement for supplying fuel from a supply tank to internal combustion engine of power vehicle
US5160037A (en) * 1991-03-07 1992-11-03 Lecour Edward M Filter assembly having by-pass system
US5170764A (en) * 1991-12-23 1992-12-15 Walbro Corporation Fuel pump pick-up system
US5195494A (en) * 1992-02-27 1993-03-23 Walbro Corporation Fuel delivery system with outlet pressure regulation
US5237977A (en) * 1992-11-16 1993-08-24 Walbro Corporation Attitude and lateral force activated valve

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5080077A (en) * 1990-06-01 1992-01-14 General Motors Corporation Modular fuel delivery system
US5146901A (en) * 1992-02-03 1992-09-15 General Motors Corporation Vapor suppressing fuel handling system
US5253628A (en) * 1992-07-09 1993-10-19 Ford Motor Company Internal combustion engine fuel pickup and reservoir
US5218942A (en) * 1992-11-30 1993-06-15 General Motors Corporation Modular fuel sender for motor vehicle

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3108065A (en) * 1959-09-29 1963-10-22 Gen Motors Corp Fuel tank strainer
US3023905A (en) * 1959-10-23 1962-03-06 Gen Motors Corp Combined strainer and fuel tank "empty" signaling device
US3275145A (en) * 1962-12-17 1966-09-27 Security Nat Bank Of Long Isla Filter for check valve
US4304664A (en) * 1980-05-05 1981-12-08 General Motors Corporation Fuel strainer assembly
US4340023A (en) * 1980-06-23 1982-07-20 General Motors Corporation Fuel supply and return system with bypass valve and water pumpout
US4303513A (en) * 1981-01-21 1981-12-01 General Motors Corporation Dual pick-up fuel strainer assembly
US4574728A (en) * 1984-06-07 1986-03-11 Purolator Technologies Inc. Filter differential pressure impending and bypass indicator
US4747388A (en) * 1986-11-07 1988-05-31 Walbro Corporation In-tank fuel reservoir and filter diaphragm
US4869225A (en) * 1987-10-26 1989-09-26 Nippondenso Co., Ltd. Fuel supply device for vehicles
US4935128A (en) * 1988-06-06 1990-06-19 Custom Chrome, Inc. Motorcycle engine lubricating oil filter apparatus
US4971017A (en) * 1988-08-13 1990-11-20 Robert Bosch Gmbh Arrangement for supplying fuel from a supply tank to internal combustion engine of power vehicle
US4945884A (en) * 1989-10-24 1990-08-07 General Motors Corporation Modular fuel delivery system
US5160037A (en) * 1991-03-07 1992-11-03 Lecour Edward M Filter assembly having by-pass system
US5170764A (en) * 1991-12-23 1992-12-15 Walbro Corporation Fuel pump pick-up system
US5195494A (en) * 1992-02-27 1993-03-23 Walbro Corporation Fuel delivery system with outlet pressure regulation
US5237977A (en) * 1992-11-16 1993-08-24 Walbro Corporation Attitude and lateral force activated valve

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642719A (en) * 1995-09-11 1997-07-01 Ford Motor Company Automotive fuel delivery module with fuel level actuated reservoir
US5873348A (en) * 1996-10-07 1999-02-23 Freightliner Corporation Fuel recirculation and warming system and method
US6203286B1 (en) * 1999-01-14 2001-03-20 Pierburg Ag Electric fuel pump which is self-filling at low fuel levels in a fuel tank
US20110166891A1 (en) * 2001-08-03 2011-07-07 Robert Mark Zerhusen Hospital bed computer system with pharmacy interaction
US6783336B2 (en) 2002-06-28 2004-08-31 Visteon Global Technologies, Inc. Fuel sender assembly
US6675778B1 (en) 2002-08-27 2004-01-13 Visteon Global Technologies, Inc. Fuel sender assembly
US20070125344A1 (en) * 2005-10-14 2007-06-07 Troxler John E Fuel delivery module
US7523745B2 (en) 2005-10-14 2009-04-28 Federal Mogul Worldwide, Inc. Fuel delivery module
US10267276B2 (en) * 2009-12-04 2019-04-23 Aisan Kogyo Kabushiki Kaisha Filtering device
US8372278B1 (en) * 2012-03-21 2013-02-12 GM Global Technology Operations LLC Liquid fuel strainer assembly
US10436161B2 (en) * 2013-05-23 2019-10-08 Coavis Strainer and fuel pump module having the same
US9683874B2 (en) 2015-01-26 2017-06-20 Texas Lfp, Llc Universal mounting head construction for liquid level transducers and the like
US11073118B2 (en) * 2015-12-17 2021-07-27 Denso Corporation Fuel pump and fuel pump module
USD923056S1 (en) * 2018-02-22 2021-06-22 Carter Fuel Systems Llc Fuel pump assembly
US11230186B2 (en) * 2018-05-30 2022-01-25 Röchling Automotive SE & Co. KG Motor vehicle tank subassembly and withdrawal module having a porous conveying body
US11291936B2 (en) * 2019-09-25 2022-04-05 Coavis Strainer for fuel pump

Also Published As

Publication number Publication date
EP0661440A1 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
US5398659A (en) Fuel sender for motor vehicle fuel system
US5218942A (en) Modular fuel sender for motor vehicle
US4503885A (en) Engine fuel supply system
CA1278473C (en) In-tank fuel reservoir and filter diaphragm
EP0314068B1 (en) Fuel supply device for vehicles
US7854837B2 (en) Filter cartridge with pressure relief valve
US4309155A (en) Vehicle fuel tank having vented internal fuel pump
EP0471008B1 (en) Reserve fuel system
US6213726B1 (en) Fuel pump module
US4807582A (en) Reserve fuel shut-off valve
US4304664A (en) Fuel strainer assembly
US6155238A (en) Fuel pressure regulator and fuel filter module
US4831990A (en) In-tank fuel reservoir with reservoir fuel level control
US4893647A (en) In-tank fuel reservoir with reservoir fuel level control
US3023905A (en) Combined strainer and fuel tank "empty" signaling device
WO2002070295A2 (en) Liquid fuel trap
US4853123A (en) Completely sealed fuel filter and method of making same
US5186152A (en) Automotive fuel system
US6425379B2 (en) Evaporative emission control system
US4212600A (en) Vehicle fuel tank having vented internal fuel pump
US7150269B2 (en) Fuel pump module having a fuel filter water drain
EP0743445B1 (en) Fuel strainer
US6176133B1 (en) Fuel sending unit having a fuel filter combined with a fuel float
US6058964A (en) Multi-level fuel pickup
US6230691B1 (en) Secondary fuel pump assembly for a fuel tank

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL MOTORS CORPORATION, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZIMMERMAN, WILLIAM STUART;HARRIS, WAYNE FREDERICK;SAWERT, ULF;AND OTHERS;REEL/FRAME:006826/0313;SIGNING DATES FROM 19940104 TO 19940110

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Expired due to failure to pay maintenance fee

Effective date: 20030321

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362