Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUS5402884 A
Type de publicationOctroi
Numéro de demandeUS 07/950,823
Date de publication4 avr. 1995
Date de dépôt24 sept. 1992
Date de priorité24 sept. 1992
État de paiement des fraisPayé
Autre référence de publicationUS5579919, US5850920
Numéro de publication07950823, 950823, US 5402884 A, US 5402884A, US-A-5402884, US5402884 A, US5402884A
InventeursByron L. Gilman, Karl J. F. Kroll
Cessionnaire d'origineSurviva Link Corporation
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Medical electrode packaging technology
US 5402884 A
Résumé
The invention provides a sealed package system for housing at least one medical electrode apparatus and for enabling the periodic testing thereof, comprising a thin, generally flat flexible envelope constructed and arranged to form an interior cavity for enclosing a conductive gel contact surface of an electrode apparatus, the envelope having at least one continuous layer of a homogeneous, non-conductive, polymeric material, the envelope further having first and second sides; and a structure for conducting current across the envelope to the interior cavity, the conductive structure being electrically connectible to the electrode conductive contact surface.
Images(4)
Previous page
Next page
Revendications(6)
That which is claimed is:
1. A sealed packaged medical electrode system for use with an electro-medical device and which permits easy periodic testing of electrode electrical viability without being opened, comprising:
(a.) a first disposable electrode for placement on a patient's body and connection to the electro-medical device, including:
i) a flat, thin, non-conductive base layer;
ii) a conductive semi-liquid gel layer disposed on a side of said base layer, said gel layer being for contact with a patient; and
iii) conductive connection means communicatively connected to said gel layer;
(b.) a second disposable electrode for placement on a patient's body and connection to the electro-medical device, including:
i) a flat, thin, non-conductive base layer;
ii) a conductive semi-liquid gel layer disposed on a side of said base layer, said gel layer being for contact with a patient; and
iii) conductive connection means communicatively connected to said gel layer;
(c.) a thin, generally flat flexible envelope constructed and arranged to form an interior cavity for enclosing said first and second electrodes, said envelope being constructed entirely of a non-gas permeable polymeric material, and
(d.) said first and second electrode connection means extending outwardly through said envelope, and said first and second electrode gel layers being oriented in a face to face relationship for electrical communication therebetween, so that current loop is formable between said first electrode connection means, said first electrode gel layer, said second electrode gel layer, and said second electrode connection means without opening said envelope.
2. The packaged electrode system of claim 1, wherein said first and second electrode connection means is an insulated wire, the conductive wire portion of which contacts said gel layer.
3. The packaged electrode system of claim 2, further comprising a resistive layer disposed between and contacting said gel layers, said resistive layer being constructed of a material having a predetermined resistance.
4. The packaged electrode system of claim 3, wherein said resistive layer further has a peripherally disposed non-conductive portion.
5. The packaged electrode system of claim 3, further comprising a conductive connection means communicatively connected to said resistive layer and extending outwardly through said envelope.
6. The packaged electrode system of claim 1, wherein said electrodes are defibrillation electrodes and wherein said electrode connection means conduct high voltage defibrillation currents.
Description
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a top view of one embodiment of the medical electrode system of the present invention;

FIG. 2 is a side view, partially in crossection, of the electrode of FIG. 1, and further showing a test apparatus therefor;

FIG. 3 is a top view of another embodiment of the electrode;

FIG. 4 is a side view of the electrode shown in FIG. 3;

FIG. 5 is a top view of another embodiment of the electrode;

FIG. 6 is a side view of the electrode shown in FIG. 5;

FIG. 7 is a top view of another embodiment of the electrode;

FIG. 8 is a side view of the electrode shown in FIG. 7;

FIG. 9 is a top view of another embodiment of the electrode;

FIG. 10 is a side view of the electrode shown in FIG. 9;

FIG. 11 is a top view of another embodiment of the electrode;

FIG. 12 is a side view of the electrode shown in FIG. 11;

FIG. 13 is a top view of another embodiment of the electrode;

FIG. 14 is a side view of the electrode shown in FIG. 13;

FIG. 15 is a detailed view of a snap-type connection;

FIG. 16 is a detailed view of a top member of the snap connection shown in FIG. 15;

FIG. 17 is a crossectional view of a resistive layer; and

FIG. 18 is a crossectional view of packaging material layers.

DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention provides an electrode system for use in the medical arts, particularly in cardiac defibrillation. The system includes cooperating electrode embodiments, packaging embodiments and test instrumentation. The system provides convenient, secure and sterile storage means for electrodes which are easy to manufacture and use. The system also provides a means of periodically testing the operability of the stored electrodes without destroying the packaging or electrodes, and without compromising the sterility of the materials. The teachings of this invention are applicable to electrodes used for either or both transmitting or receiving, although they are particularly beneficial for use in electrodes used in cardiac defibrillation, which electrodes require transfer of particularly high currents and voltages and a high confidence lead in readiness.

Referring to FIGS. 1 and 2 an embodiment of the packaged electrode system 10 is shown to comprise an electrode 11 and a package or enclosure 12. Also shown in FIG. 2 is a test apparatus 13. The electrode 11 is shown to comprise a non-conductive base or backing layer 14, a conductor or conductive layer 15, a lead 16, and a conductive contact layer 17. The base layer 14 is preferably constructed of a thin, flexible polymeric substance such as a urethane foam, or a polyester or polyolefin laminate which provides structural base and insulative properties. Although the base layer 14 is shown to have a surface area which is substantially coextensive with the surface of the contact layer 17, it alternatively may be slightly larger. In such larger configurations, the base layer 14 may have a pressure sensitive adhesive disposed on its patient contact side for increased adhesion to the patient body.

The conductive layer 15 is shown to be disposed on the first or patient side of base layer 14. It functions to transfer (disperse) current or voltage from the lead 16 (or to the lead in a sensing application) to the patient contact layer 17. Although the conductive layer 15 is shown to have a surface area which is smaller than that of the base layer 14 or contact layer 17, it may alternatively have a dimension which is larger than that shown, or even one which is coextensive with the base and contact layers 14 and 17. The conductive layer 15 is preferably a homogeneous, solid, thinly deposited metallic substance, or a conductive ink material. Alternatively, the conductive layer 15 may be formed of a flexible mesh material, a conductive adhesive or a deposited ink pattern. Flexible conductive ink compounds known in the art have a conductive filler of Gold, Silver, Aluminum or other conductive materials.

The lead 16 is preferably an insulated wire conductor which extends from a mating point with the conductive layer 15, through the base layer 14, and then has a freely movable end. Various alternatives of this lead 16 design exist and are useable consistent with the general teachings of the invention, including but not limited to uninsulated wire conductors and conductive strips or traces deposited between the contact layer 17 and the base 14 or conductive layers 15. Such a trace or strip may also extend just beyond the base layer 14 for connection with an ancillary connection means such as a wiring harness including conductive clip means.

The conductive contact layer 17 is preferably a thin layer of semi-liquid gel material. The gel maintains direct electrical contact with the skin, to reduce variations in conductance, and it permits such contact for long periods of time. The gel is a conductive, gelatinous compound which is also flexible for contoured adhesion to the body of a patient. The gel also preferably has a pressure sensitive, moisture resistant adhesive property. Compounds having these characteristics have been developed by Minnesota Mining and Manufacturing, Medtronic, and Lec Tec (Synkara ™), Corporations, all of Minnesota, U.S.A. Generally, these compounds have low resistivities. The contact layer 17 is for direct contact with the patient's body to transfer current or voltage thereto or therefrom. Overall, although the electrode 11 and its constituent elements are shown to have circular configurations, they may alternatively be formed in various other shapes such as rectangular or square patches.

The package structure 12 is shown to have an envelope-like structure formed of a substantially continuous thin, homogeneous layer 18 of a polymeric, preferably non-gas permeable, material. Alternatively, as shown in FIG. 18, the package 87 embodiment may have a pouch-like structure formed of a pair of thin, flat homogeneous layers 88 and 89 which are sealed or otherwise merged together at their peripheries or outer edges 90. And, although the package 12 is shown to have a rectangular configuration various other configurations and shapes are also useable consistent with the invention.

The package further comprises a pair of conductive connectors 19 and 20 which are separated a predetermined distance from one another for contact with separate areas of the contact layer 17 of the enclosed electrode 11. The connectors 19 and 20 are conductive areas which are shown to have a unitary construction with the package layer 18. The contacts 19 and 20 may alternatively be formed of thin layer strips of conductive material, or a printed conductive ink, disposed on the interior side of the package layer 18, extending from contact nodes to peripheral contact areas on the exterior of the package 18. Yet another snap-type embodiment 79 is shown in FIGS. 15 and 16 including a connective member 80 disposed on one side of the base layer 18, and a current dispersion member 81 disposed on the opposite side and being connected to the upper member 80 via an aperture in the base 18. The upper member 80 is shown to have a base 82 and a mating notch 83 for coupling the lower member 81.

Referring to FIG. 2, the system 10 of the present invention also comprises a test apparatus 13. The test apparatus 13 includes a current source 23, preferably a battery, test circuitry 24, preferably including measurement components and status indication components such as an analog meter, LCD digital display or light emitting diodes, and connectors 21 and 22 for coupling with the package 12 connectors 19 and 20. In use, the test apparatus 13 is connected to the package connectors 19 and 20. The test circuitry 24 is then activated to form a closed current loop to determine whether continuity exists with respect to the enclosed electrode 11, thereby indicating whether the electrode 11 is still functional. Additionally, a load 86 formed of for example a conductive and semi-conductive material layers 85 and 86, may be added to the current loop as for example is shown in FIG. 17, for purposes of measuring the magnitude of current flow for more precise measurement of electrode 11 condition.

In the case of the electrode system embodiment 10, a current loop is formed including the connector 19, the gel of the contact layer 17 (along a substantially horizontal plane), and the connector 20 which is located at a remote location on the contact layer 14 with respect to the connector 19. Current conducts easily in fresh, semi-liquid gel of the contact layer 17. In contrast, no current conducts, or current conduction is attenuated, in stale, dried gel. This is indicative of the need to dispose of the stored electrode without using it. And, this condition is determinable without the need to open the package 12 and thereby risk compromising the freshness or sterility of a viable electrode 11.

Referring to FIGS. 3 and 4, another embodiment of the packaged electrode system 30 is shown to comprise an electrode 31 and a package or enclosure 32. The electrode 31 is shown to comprise a non-conductive base layer 33, and a conductive gel layer 36. A conductive snap-type connector having a connection member 35 disposed on one side and a current dispersion member 34 disposed on the second side is also shown. The package 32 is shown to have at least one body layer 37 with a pair of contacts 38 and 39 disposed at predetermined locations to electrically connect with the gel layer 36 and contact 35. In a test mode, a current loop is formed between the connector 39, gel layer 36, connector portions 34 and 35 and connector 38.

Referring to FIGS. 5 and 6, another embodiment of the packaged electrode system 45 is shown to comprise an electrode 46 and an enclosure 47. The electrode 46 is shown to comprise a non-conductive base layer 48, a conductive gel layer 55, and a pair of separate conductive layers 49 and 50, each of which are shown to have a lead 51 and 52 extending therefrom and terminating in a connective node 53 and 54. The lead pair 51 and 52 (and layer pair 49 and 50) provide a redundant circuit path for increased reliability of use in emergency settings. The package 47 is shown to have at least one body layer 56 with a pair of contacts 57 and 58 disposed at predetermined locations to electrically couple with connective nodes 53 and 54. In a test mode, a current loop is formed between a connector 57 or 58, it's respective connective node 53 or 54 and lead 51 or 52, and its respective conductive layer 49 or 50. In a properly functioning electrode 46, current conducts through the gel 55 from one conductive layer 49 to the other 50, and then back to the test apparatus through the above-mentioned path.

Referring to FIGS. 7 and 8, another embodiment of the packaged electrode system 64 is shown to comprise an electrode 65 and a unitary package 66. The electrode 65 is shown to comprise a non-conductive base layer 67, and a conductive gel layer 70. A snap-type connector with members 68 and 69 electrically couples the gel layer 70.

The package 66 is shown to have at least one body layer 71 which is coupled to the electrode 65 base layer 67 at tear-away perforated lines 73. A connector 72 is shown disposed for contact with the electrode 65 gel layer 70. In a test mode, a current loop is formed between the connector 72, the gel layer 70, and the connector members 68 and 69.

Referring to FIGS. 9 and 10, another embodiment of the packaged electrode system 97 is shown to comprise an electrode 98 and a package. The electrode 98 is shown to comprise a non-conductive base layer 101, a conductive gel layer 102, and a lead 104 having a conductor 105 and an insulator 106, which is shown to be embedded directly in the gel layer 102. Alternatively, the lead may be connected to a conductive current dispersion layer (not shown). A conductive test strip 103 is also shown to be adhered to the surface of the gel 102 at a location remote from the lead 104 for test purposes, and which is designed to release from the gel 102 upon removal of the package layer 99.

The package is shown to have a pair of layers 99 and 100 which overlap to form an interior cavity 107 and are sealingly connected at their peripheries 108. In a test mode, a current loop is formed between the lead 104, the gel layer 102 and the test strip 103, which like the lead 104 is shown extended through the package periphery 108 for contact with an external test apparatus.

Referring to FIGS. 11 and 12, another embodiment of the packaged electrode system 114 is shown to comprise an electrode 115 and an enclosure. The electrode 115 is shown to comprise a non-conductive base layer 117, and a conductive adhesive gel layer 118 which is connected to a snap-type connection node 121 or the like, and an associated lead 120. The package is shown to comprise a single top layer of non-conductive material 116 which is laminated or adhesively mated to the electrode base layer 117. In use the gel layer 118 is removable from the package layer 116. A test strip 119 is disposed on the interior of the package, adhesively connected to the gel layer 118, and extending to the package exterior. In a test mode, a current loop is formed between the lead 120, node 121, gel layer 118 and the test strip 119.

Referring to FIGS. 13 and 14, another embodiment of the packaged electrode system 127 is shown to comprise a pair of electrodes 128 and 129 and a package. The electrodes 128 and 129 are shown to comprise non-conductive base layers 130 and 133, and conductive gel layers 131 and 134. Leads 132 and 135 extend from the respective gel layers 131 and 134. The package is shown to have a pair of overlapping layers 142 and 143 which are sealed at their peripheries 141 to form an enclosure 140 housing the electrodes 128 and 129. Importantly, the electrodes 128 and 129 are oriented with their respective gel layers 131 and 134 mating with a resistive layer 137 (and an optional separator layer 136) formed of a conductive/resistive material as known in the art. A conductive lead 139 or strip extends from the resistive layer through the package periphery 141, as do the electrode leads 132 and 135.

In a test mode, a current loop is formed between, for example, a lead 132, a gel layer 131, the resistive layer 137, and the remaining gel layer 134 and lead 135. The circuit can be altered to include the lead 139.

As many changes are possible to the embodiments of this invention utilizing the teachings thereof, the descriptions above, and the accompanying drawings should be interpreted in the illustrative and not the limited sense.

BACKGROUND OF THE INVENTION

This invention relates to electro-medical apparatus and methods and particularly to packaging structures for medical electrode apparatus. The packaging structures are particularly useful for housing medical electrodes prior to use. And, the packaging structures have features that will allow the stored medical electrodes to be periodically tested during storage.

In the past, various electrode devices and/or methods, including packaging schemes have been used and proposed. However, these devices are generally complex, inefficient to use and have significant shortcomings. Specifically, most electrodes and packaging structures therefor, do not provide the ability to test for readiness after, typically, long periods of storage without compromising the sterility and performance of the electrode.

Despite the need for an electrode device, and packaging therefor, in the art which overcomes the limitations and problems of the prior art, none insofar as is known has been proposed or developed. Accordingly, it is an object of the present invention to provide an electrode system which is relatively simple to manufacture and to use, which is effective at delivering high currents and voltages for use in cardiac defibrillation, which is stable and has a long shelf life, and which permits periodic testing of electrode viability and/or functionality without degrading electrode quality.

SUMMARY OF THE INVENTION

The present invention provides a prepackaged electrode system, comprising:

a. at least one electrode, comprising:

i) a thin non-conductive base layer having first and second sides;

ii) a first conductive layer disposed on the first side of the base layer and having connection means associated therewith; and

iii) a second conductive layer for contact with a patient disposed on the first side of the base layer and in contact with the first conductive layer; and

b. a sealed electrode package, comprising:

i) a flexible envelope constructed and arranged to form an interior cavity for enclosing the second conductive layer of the electrode, the envelope having at least one continuous layer of a non-conductive material; and

ii) means to conduct current across the envelope to the interior cavity, the means to conduct being electrically connectible to the electrode second conductive layer.

In one embodiment of the electrode system, the electrode conductive layer connection means comprises a conductive lead extending from the first conductive layer, wherein the second conductive layer comprises a gel material, and wherein the package envelope further comprises first and second generally flat sides, the means to conduct current comprising first and second structures disposed on the first side of the envelope, whereby a current loop is formable between the first and second package current conduction means structures through the electrode second conductive layer gel.

In another embodiment of the electrode system, the electrode conductive layer connection means comprises a snap-type connector having conductive current dispersement means disposed on the first side of the base layer and conductive connection means disposed on the second side of the base layer, the current dispersement means and the connection means being communicatively connected via an aperture in the base layer, wherein the second conductive layer comprises a gel material, and wherein the package envelope further comprises first and second generally flat sides, the means to conduct current comprising a first structure disposed on the first side of the envelope and a second structure disposed on the second side of the envelope, whereby a current loop is formable between the first and second package current conduction means structures through the electrode second conductive layer gel, the snap-type connector current dispersement means, and the snap-type connection means.

In another embodiment of the electrode system, the first conductive layer comprises first and second members each having a predetermined surface area and being spacially separated a predetermined distance from one another on the base layer first side, each the member having a conductive lead attached thereto, wherein the second conductive layer comprises a gel material, and wherein the package envelope further has first and second generally flat sides, the means to conduct current comprising first and second separate structures disposed on the first side of the envelope, whereby a current loop is formable between the first and second package current conduction means structures through the electrode current conduction means first member, via its respective the lead, the second conductive layer gel, the electrode current conduction means second member, and its respective the lead.

And in another embodiment of the electrode system, the electrode conductive layer connection means comprises a snap-type connector having conductive current dispersement means disposed on the first side of the base layer and conductive connection means disposed on the second side of the base layer, the current dispersement means and the connection means being communicatively connected via an aperture in the base layer, wherein the second conductive layer comprises a gel material, and wherein the package means to conduct current comprises a single structure which is oriented for connection with the second conductive layer gel of the electrode, whereby a current loop is formable between the package means to conduct, the second conductive layer gel, the snap connector current dispersement means, and the snap connector connection means.

In another embodiment of the electrode system, the electrode conductive layer connection means comprises a conductive lead wherein the second conductive layer comprises a gel material, and wherein the package envelope further comprises first and second generally flat sides, the means to conduct current comprising a conductive strip disposed on the interior of the envelope and extending through the layer periphery joinder area, whereby a current loop is formable between the conductive strip the electrode second conductive layer gel, and the conductive lead.

In another embodiment of the electrode system, the electrode conductive layer connection means comprises a snap-type connector having conductive current dispersement means disposed on the first side of the base layer and conductive connection means disposed on the second side of the base layer, the current dispersement means and the connection means being communicatively connected via an aperture in the base layer, wherein the second conductive layer comprises a gel material, and wherein the package means to conduct current comprises a conductive strip which is connected with the second conductive layer gel of the electrode, whereby a current loop is formable between the conductive strip, the second conductive layer gel, the snap connector current dispersement means, and the snap connector connection means.

In another embodiment of the electrode system, there are two electrodes, each the electrode conductive layer connection means comprising a conductive lead and each the second conductive layer comprising a gel material, the electrode system further comprising a conductive/resistive separator disposed between the second conductive gel layers of the respective electrodes, and wherein the package means to conduct comprises conductive lead means connected to the conductive separator, whereby a current loop is formable between the electrode lead and the package lead means.

These and other benefits of this invention will become clear from the following description by reference to the drawings.

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US3086652 *26 juil. 196123 avr. 1963Western Electric CoHandling cards for components
US3265945 *27 oct. 19649 août 1966Sprague Electric CoPackaged capacitor and method of making the same
US3585275 *19 févr. 197015 juin 1971Gillemot George WKit and method for encapsulating conductor splice connections
US3602216 *16 sept. 196931 août 1971United Aircraft CorpPaste dispensing body electrode
US3685645 *17 août 197022 août 1972Physio Control CorpDefibrillation electrode pad and package therefor
US3701346 *4 janv. 197131 oct. 1972Bionetics IncMedical electrode
US3830229 *9 août 197220 août 1974Johnson JDisposable body electrodes
US3961623 *17 janv. 19758 juin 1976Medical Research Laboratories, Inc.Method of using a disposable electrode pad
US4034854 *16 juil. 197612 juil. 1977M I Systems, Inc.Electrode package
US4423732 *12 févr. 19813 janv. 1984Cordis CorporationSterile connector system for packaged pacer
US4439810 *17 août 198227 mars 1984Marcon Electronics Co., Ltd.Electric capacitor with enclosure structure consisting of plastic laminated film
US4487313 *11 avr. 198311 déc. 1984William C. Heller, Jr.Enclosed moist pad assembly with removable cover
US4779630 *18 sept. 198725 oct. 1988Katecho, Inc.Defibrillator pad assembly and method for using same
FR2483215A3 * Titre non disponible
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
US5579919 *27 mars 19953 déc. 1996Survivalink CorporationMedical electrode packaging technology
US5617853 *6 juin 19958 avr. 1997Heartstream, Inc.Defibrillator electrode system using a flexible substrate and having electrode test features
US5645571 *8 août 19958 juil. 1997Survivalink CorporationAutomated external defibrillator with lid activated self-test system
US5697955 *10 mai 199616 déc. 1997Survivalink CorporationDefibrillator electrodes and date code detector circuit
US5700281 *17 juin 199623 déc. 1997Survivalink CorporationStage and state monitoring automated external defibrillator
US5749902 *22 mai 199612 mai 1998Survivalink CorporationRecorded data correction method and apparatus for isolated clock systems
US5792190 *17 nov. 199711 août 1998Survivalink CorporationAutomated external defibrillator operator interface
US5797969 *9 janv. 199725 août 1998Survivalink CorporationOne button lid activated automatic external defibrillator
US5800685 *28 oct. 19961 sept. 1998Cardiotronics Systems, Inc.Electrically conductive adhesive hydrogels
US5817151 *4 juin 19966 oct. 1998Survivalink CorporationCircuit detectable packaged medical electrodes
US5827184 *29 déc. 199527 oct. 1998Minnesota Mining And Manufacturing CompanySelf-packaging bioelectrodes
US5836942 *4 avr. 199617 nov. 1998Minnesota Mining And Manufacturing CompanyBiomedical electrode with lossy dielectric properties
US5879374 *10 mai 19949 mars 1999Heartstream, Inc.External defibrillator with automatic self-testing prior to use
US5899925 *7 août 19974 mai 1999Heartstream, Inc.Method and apparatus for aperiodic self-testing of a defibrillator
US5919212 *26 nov. 19976 juil. 1999Survivalink CorporationWatchdog timer for automated external defibrillator
US5984102 *2 mars 199816 nov. 1999Survivalink CorporationMedical electrode packaging technology
US5999493 *13 mai 19967 déc. 1999Survivalink CorporationSynchronization method and apparatus for isolated clock system
US6048640 *27 mai 199811 avr. 2000Katecho, Inc.Electrode package and method for sealing same
US6075369 *10 juil. 199613 juin 2000HeartstreamDefibrillator system condition indicator with an electrode interface
US6101413 *21 juil. 19988 août 2000Survivalink CorporationCircuit detectable pediatric defibrillation electrodes
US6115638 *14 sept. 19985 sept. 2000Survivalink CorporationMedical electrode with conductive release liner
US629269715 févr. 200018 sept. 2001Medtronic, Inc.Testing sterile packaged components of an implantable medical device prior to chronic implantation
US669419314 sept. 200117 févr. 2004Koninklijke Philips Electronics N.V.Medical electrode and release liner configurations facilitating packaged electrode characterization
US680027814 févr. 20005 oct. 2004Ballard Medical Products, Inc.Inherently antimicrobial quaternary amine hydrogel wound dressings
US704555918 déc. 200316 mai 2006Kimberly-Clark Worldwide, Inc.Electrically conductive adhesive hydrogels with solubilizer
US7171265 *20 sept. 200130 janv. 2007Harbinger Medical, Inc.Apparatus and method for detecting lead adequacy and quality
US766860416 juin 200423 févr. 2010Conmed CorporationPackaging for medical pads and electrodes
US781641223 févr. 200719 oct. 2010Conmed CorporationElectrically conductive hydrogels
US7848824 *21 sept. 20057 déc. 2010Heartsine Technologies LimitedSealed medical electrode package
US788178526 mars 20081 févr. 2011Cardiac Science CorporationMethod and apparatus for defrosting a defibrillation electrode
US82604147 janv. 20114 sept. 2012Cardiac Science CorporationMethod and apparatus for defrosting a defibrillation electrode
US826043827 avr. 20074 sept. 2012Tyco Healthcare Group LpElectrode pad packaging systems and methods
US85774625 juil. 20065 nov. 2013Zoll Medical CorporationCondition sensor for medical device package
US859481227 juil. 201226 nov. 2013Covidien LpElectrode pad packaging systems and methods
US861370826 juil. 201124 déc. 2013Cardiac Science CorporationAmbulatory electrocardiographic monitor with jumpered sensing electrode
US861370926 juil. 201124 déc. 2013Cardiac Science CorporationAmbulatory electrocardiographic monitor for providing ease of use in women
US861529515 mars 201024 déc. 2013Cardiothrive, Inc.External defibrillator
US86262776 août 20127 janv. 2014Cardiac Science CorporationComputer-implemented electrocardiographic data processor with time stamp correlation
USRE3925031 oct. 199729 août 2006Zoll Medical CorporationElectrode package
USRE4047125 sept. 200226 août 2008Cardiac Science, Inc.AED with force sensor
USRE430502 mai 200527 déc. 2011Koninklijke Philips Electronics N.V.Medical electrode and release liner configurations facilitating packaged electrode characterization
CN100518854C3 déc. 200329 juil. 2009梅特拉克斯有限公司Electrode pack
DE19634523B4 *27 août 199624 févr. 2005Robert Bosch GmbhVerfahren zur Herstellung einer Anordnung von elektrischen und/oder optoelektronischen Bauteilen in einer gasdichten Verpackung und eine entsprechende Anordnung
EP0756878A2 *31 juil. 19965 févr. 1997Survivalink CorporationAutomated external defribillator
EP1637181A1 *2 août 199622 mars 2006Cardiac Science, Inc.Automated external defibrillator
EP2040799A2 *3 juil. 20071 avr. 2009Zoll Medical CorporationCondition sensor for medical device package
EP2105162A226 mars 200930 sept. 2009Cardiac Science CorporationMethod and apparatus for defrosting a defibrillation electrode
EP2408521A2 *15 mars 201025 janv. 2012Cardio Thrive, IncExternal defibrillator
WO1997024156A1 *26 avr. 199610 juil. 1997Minnesota Mining & MfgSelf-packaging bioelectrodes
WO1997037719A1 *8 août 199616 oct. 1997Minnesota Mining & MfgBiomedical electrode with lossy dielectric properties
WO1997043000A18 mai 199720 nov. 1997Survivalink CorpDefibrillator electrode circuitry
WO2004058345A13 déc. 200315 juil. 2004Juergen BucherElectrode pack
WO2005032648A1 *7 sept. 200414 avr. 2005Eric JonsenApparatus and method for packaging an electrode
WO2007127266A2 *27 avr. 20078 nov. 2007Scott BurnesElectrode pad packaging systems and methods
WO2008089186A1 *15 janv. 200824 juil. 2008Kortman John CurtisCover with circuit
Classifications
Classification aux États-Unis206/701, 206/438
Classification internationaleA61N1/18, A61N1/04
Classification coopérativeA61N1/18, A61N1/046, A61N1/0472, A61N2001/37294, A61N1/048
Classification européenneA61N1/04E1S, A61N1/04E2, A61N1/18
Événements juridiques
DateCodeÉvénementDescription
1 févr. 2013ASAssignment
Owner name: DBS BANK LTD., BANGALORE BRANCH, INDIA
Free format text: SECURITY AGREEMENT;ASSIGNOR:CARDIAC SCIENCE CORPORATION;REEL/FRAME:029733/0340
Effective date: 20121228
1 déc. 2012ASAssignment
Owner name: CARDIAC SCIENCE CORPORATION, WASHINGTON
Effective date: 20121012
Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:029389/0937
8 juin 2010ASAssignment
Free format text: SECURITY AGREEMENT;ASSIGNOR:CARDIAC SCIENCE, INC.;REEL/FRAME:24492/931
Owner name: SILICON VALLEY BANK,CALIFORNIA
Effective date: 20100607
Owner name: SILICON VALLEY BANK, CALIFORNIA
Free format text: SECURITY AGREEMENT;ASSIGNOR:CARDIAC SCIENCE, INC.;REEL/FRAME:024492/0931
22 sept. 2006FPAYFee payment
Year of fee payment: 12
15 sept. 2006ASAssignment
Owner name: CARDIAC SCIENCE CORPORATION, WASHINGTON
Free format text: MERGER;ASSIGNOR:CARDIAC SCIENCE, INC.;REEL/FRAME:018247/0784
Effective date: 20060224
7 oct. 2005ASAssignment
Owner name: CARDIAC SCIENCE OPERATING COMPANY, WASHINGTON
Free format text: MERGER;ASSIGNOR:CARDIAC SCIENCE, INC.;REEL/FRAME:016621/0720
Effective date: 20050831
23 sept. 2002ASAssignment
Owner name: CARDIAC SCIENCE, INC., MINNESOTA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SURVIVALINK CORPORATION;REEL/FRAME:013280/0068
Effective date: 20020718
Owner name: CARDIAC SCIENCE, INC. 5420 FELTL ROADMINNEAPOLIS,
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SURVIVALINK CORPORATION /AR;REEL/FRAME:013280/0068
19 sept. 2002FPAYFee payment
Year of fee payment: 8
26 juil. 2002ASAssignment
Owner name: HSBC BANK, USA, NEW YORK
Free format text: SECURITY AGREEMENT;ASSIGNOR:CARDIAC SCIENCE, INC.;REEL/FRAME:013146/0001
Effective date: 20020530
Owner name: HSBC BANK, USA FIFTH AVENUE 452 NEW YORK NEW YORK
Owner name: HSBC BANK, USA FIFTH AVENUE 452NEW YORK, NEW YORK,
Free format text: SECURITY AGREEMENT;ASSIGNOR:CARDIAC SCIENCE, INC. /AR;REEL/FRAME:013146/0001
11 sept. 1998FPAYFee payment
Year of fee payment: 4
9 juil. 1997ASAssignment
Owner name: NORWEST BUSINESS CREDIT, INC., MINNESOTA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SURVIVALINK CORPORATION;REEL/FRAME:008621/0321
Effective date: 19970514
7 juil. 1997ASAssignment
Owner name: NORWEST BUSINESS CREDIT, INC., MINNESOTA
Free format text: SECURITY AGREEMENT;ASSIGNOR:SURVIVALINK CORPORATION;REEL/FRAME:008587/0665
Effective date: 19970514
15 janv. 1993ASAssignment
Owner name: SURVIVA-LINK CORPORATION, MINNESOTA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:GILMAN, BYRON L.;KROLL, KARL J.F.;REEL/FRAME:006325/0322;SIGNING DATES FROM 19921230 TO 19930107