US5403772A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
US5403772A
US5403772A US08/160,908 US16090893A US5403772A US 5403772 A US5403772 A US 5403772A US 16090893 A US16090893 A US 16090893A US 5403772 A US5403772 A US 5403772A
Authority
US
United States
Prior art keywords
semiconductor device
nitrogen
film
hydrogen
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/160,908
Inventor
Hongyong Zhang
Hideki Uochi
Toru Takayama
Takeshi Fukunaga
Yasuhiko Takemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP5204775A external-priority patent/JP2852853B2/en
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Assigned to SEMICONDUCTOR ENERGY LABORATORY CO., LTD. reassignment SEMICONDUCTOR ENERGY LABORATORY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUKUNAGA, TAKESHI, TAKAYAMA, TORU, TAKEMURA, YASUHIKO, UOCHI, HIDEKI, ZHANG, HONGYONG
Priority to US08/248,220 priority Critical patent/US5604360A/en
Priority to US08/341,106 priority patent/US5563426A/en
Publication of US5403772A publication Critical patent/US5403772A/en
Application granted granted Critical
Priority to US08/661,013 priority patent/US5888857A/en
Priority to US08/670,122 priority patent/US6413805B1/en
Priority to US08/688,229 priority patent/US6479331B1/en
Priority to US08/709,111 priority patent/US6140165A/en
Priority to US09/233,146 priority patent/US6323071B1/en
Priority to US09/439,997 priority patent/US6338991B1/en
Priority to US09/993,492 priority patent/US6806125B2/en
Priority to US10/254,546 priority patent/US6872605B2/en
Priority to US10/926,059 priority patent/US7622335B2/en
Priority to US12/579,642 priority patent/US8062935B2/en
Priority to US13/282,515 priority patent/US8278660B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02672Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using crystallisation enhancing elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1277Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using a crystallisation promoting species, e.g. local introduction of Ni catalyst
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0404Matrix technologies
    • G09G2300/0408Integration of the drivers onto the display substrate

Definitions

  • the present invention relates to a method for fabricating an integrated, circuit or more concretely to a semiconductor circuit having a matrix device (including an electro-optic display and semiconductor memory) having a matrix structure and a MOS or MIS (metal-insulator-semiconductor) type field effect element (hereinafter generally referred to as a MOS type element) as a switching element and characterized in its dynamic operation such as a liquid crystal display device and dynamic RAM (DRAM) and a driving circuit therefor or an integrated driving circuit like an image sensor.
  • a matrix device including an electro-optic display and semiconductor memory
  • MOS or MIS metal-insulator-semiconductor type field effect element
  • the present invention particularly relates to a device employing a thin film semiconductor element such as a thin film semiconductor transistor or the like which is formed on an insulating surface as a MOS type element and to a device having a thin film transistor whose active layer is formed by crystal silicon.
  • a crystalline silicon semiconductor thin film used for a thin film device such as a thin film insulated gate type field effect transistor (TFT) has been fabricated by crystallizing an amorphous silicon film formed by a plasma CVD or thermal CVD method within such an apparatus as an electric furnace for many hours of more than 24 hours at a temperature more than 600° C.
  • the many hours of heat treatment has been required in order to obtain sufficient characteristics such as a high field mobility and high reliability.
  • Coning 7059 Another problem lies in the temperature of the heat treatment.
  • substrates used for fabricating a TFT are roughly divided into those composed of pure silicon oxide such as silica glass and non-alkaline boro-silicated glass such as Coning No. 7059 (hereinafter referred to as Coning 7059).
  • the former has no problem in terms of temperature because it has an excellent heat resistance and can be handled in the same manner with the wafer process of normal semiconductor integrated circuits.
  • its cost is high and increases exponentially as the substrate area increases. Accordingly, it is used only for TFT integrated circuits having a relatively small area.
  • non-alkaline glass has a problem in terms of heat resistance, though its cost is sufficiently low as compare to that of silica glass. Because its strain point is generally around 550° to 650° C., or less than 600° C. in case of a readily available material, such problems as irreversible shrinkage and warp are caused on the substrate in a heat treatment at 600° C. and it is remarkable in such a substrate whose diagonal distance exceeds 10 cm. From above reasons, it has been considered to be indispensable to keep the heat treatment conditions under 550° C. and within 4 hours to reduce the cost in crystallizing silicon semiconductor films. It is then an object of the present invention to provide a semiconductor fabricating method that clears such conditions and a semiconductor device fabricating method using such a semiconductor.
  • a thin film insulated gate transistor or so-called a thin film transistor has been fervently studied. They are formed on a transparent insulating substrate to use to control each picture element and to drive its matrix in a display device such as a liquid crystal display having a matrix structure or to use as a driving circuit of an image sensor formed similarly on an insulating substrate. They are categorized as an amorphous silicon TFT or crystalline silicon (or called as polycrystalline silicon) TFT depending on a material and crystal state of a semiconductor used.
  • a crystalline silicon TFT is used also in a monocrystal silicon integrated circuit as a so-called SOI technology and it is used as a load transistor for example in a highly integrated SRAM. In this case, however, an amorphous silicon TFT is rarely used.
  • a field mobility of a semiconductor in an amorphous state is small and accordingly, it cannot be used for a TFT requiring a high speed operation. Furthermore, because a field mobility of P-type is remarkably small in an amorphous silicon, a P-channel type TFT (a TFT of PMOS) cannot be fabricated and accordingly, a complementary MOS circuit (CMOS) cannot be formed by combining with a N-channel type TFT (a TFT of NMOS).
  • CMOS complementary MOS circuit
  • a TFT formed by an amorphous semiconductor has an advantage that OFF current is small. Then it is utilized in the use in which a very high speed operation is not required, only one conductive type will do and a TFT having a high charge retaining ability is required such as transistors of an active matrix of a liquid crystal display having a small matrix scale.
  • amorphous silicon TFT for an advanced application such as a liquid crystal display having a large scale matrix. Further, it could not be used naturally for peripheral circuits of a display and for a driving circuit of an image sensor which require a high speed operation.
  • a crystalline semiconductor has a field mobility larger than that of the amorphous semiconductor and accordingly, a high speed operation is possible.
  • a large value as 300 cm 2 /Vs has been obtained as a field mobility in a TFT using a silicon film re-crystallized by laser annealing.
  • an operation speed of the MOS circuit on the monocrystal silicon is limited by a parasitic capacity between the substrate and wires, there is no such limit in terms of the TFT using crystallized silicon film because it is formed on the insulating substrate. Accordingly, a remarkable high speed operation is being expected to be achieved in such TFT.
  • CMOS circuit by the crystalline silicon because not only a NMOS TFT but also a PMOS TFT can be similarly obtained.
  • CMOS crystalline silicon TFT for example, among liquid crystal displays in an active matrix system, one having a so-called monolithic structure in which not only the active matrix section but also peripheral circuits (such as a driver) are constructed by a CMOS crystalline silicon TFT is known.
  • the TFT used in the aforementioned SRAM is what this point is noticed, wherein time PMOS is constructed by the TFT as a load transistor.
  • the crystalline silicon TFT has such an advantage that a parasitic capacity can be remarkably suppressed because the self-aligning process can be adopted.
  • a leak current of the crystalline silicon TFT when no voltage is applied to the gate is great as compare to that of the amorphous silicon TFT, and such countermeasures have been taken that an auxiliary capacity is provided to compensate the leak current and that two TFTs are connected in series to reduce the leak current when it is used in a liquid crystal display.
  • a method to form an amorphous silicon and to irradiate laser selectively on it to crystallize only a peripheral circuit has been proposed for forming the peripheral circuit of polysilicon TFTs having a high mobility monolithically on the same substrate while utilizing a high OFF resistance of the amorphous silicon TFT.
  • the present invention is intended to solve such difficult problems, but it is not desirable to complicate the process and to lower its yield or to increase its cost for that end.
  • What the present invention intends is to fabricate two kinds of TFTs, i.e. a TFT in which a high mobility is required and a TFT in which a leak current is required to be low, readily and discriminately while keeping mass-producibility and while minimizing changes of its process.
  • the reduced difference between the NMOS and PMOS allows to increase a degree of freedom in designing the circuit.
  • the present invention is suited for an active matrix circuit for displaying images by utilizing such materials which change transmittivity or reflectivity of light by an effect of electric field, by sandwiching those materials between electrodes facing to each other and by applying the electric field between those electrodes such as a liquid crystal display; a memory device for holding memory by storing charge in capacitors such as DRAM; a circuit having a dynamic circuit such as a dynamic shift register which drives the next circuit by capacitors of MOS structure portion of MOS transistors or other capacitors; and a circuit having a digital circuit and a circuit for controlling analog signal outputs such as a driving circuit of an image sensor.
  • the present invention is suited especially to a circuit in which dynamic circuits and static circuits are mixedly mounted.
  • the present invention is characterized in that a crystalline silicon film is obtained by forming island film, dots, particles, clusters or lines containing a material selected from the group consisting of nickel, iron, cobalt, ruthenium, rhodium, paradium, osmium, iridium, platinum, scandium, titanium, vanadium, chrome, manganese, copper, zinc, gold and silver and a combination thereof on or under the silicon film which is in an amorphous state or in a random crystal state (e.g.
  • a state in which portions having a good crystallinity and amorphous portions are mixed which can be said substantially as being in an amorphous state, and by annealing it at a temperature lower than a crystallization temperature in a mere heat treatment of normal amorphous silicon for a shorter time.
  • This annealing may be carried out in a hydrogen, oxygen or nitrogen atmosphere.
  • This annealing can be carried out by (1) heating for A hours in an atmosphere containing oxygen and then heating for B hours in an atmosphere containing hydrogen: (2) heating for C hours in an atmosphere containing oxygen and then heating for D hours in an atmosphere containing nitrogen: (3) heating for E hours in an atmosphere containing hydrogen and then heating for F hours in an atmosphere containing oxygen: (4) heating for G hours in an atmosphere containing hydrogen and then heating for H hours in an atmosphere containing nitrogen: (5) heating for I hours in an atmosphere containing nitrogen and then heating for J hours in an atmosphere containing oxygen: (6) heating for K hours in an atmosphere containing nitrogen and then heating for L hours in an atmosphere containing hydrogen: (7) heating for M hours in an atmosphere containing oxygen, heating for N hours in an atmosphere containing hydrogen and then heating for P hours in an atmosphere containing nitrogen: (8) heating for Q hours in an atmosphere containing oxygen, heating for E hours in an atmosphere containing nitrogen and then heating for S hours in an atmosphere containing hydrogen: (9) heating for T hours in an atmosphere containing hydrogen, heating for U hours in an atmosphere containing oxygen and then
  • nickel silicide NiSi x , 0.4 ⁇ 2.5
  • a lattice constant of nickel silicide is close to that of silicon crystal.
  • a potential of the block of this reaction is fully low and a reaction temperature is also low.
  • This reaction formula indicates that the reaction proceeds while converting amorphous silicon into crystal silicon by nickel. It was found that the reaction actually started at less than 580° C. and that the reaction could be observed even at 450° C. Though it is a matter of course, the higher the temperature, the faster the speed of the advancement of reaction was. The same effect was also recognized with other metal elements described above.
  • a crystal silicon region is expanded by forming a film, particle or cluster containing at least one of Ni, Fe, Co, Ru, Rh, Pd, Os, Ir, Pt, Sc, Ti, V, Cr, Mn, Cu, Zn, Au and Ag such as island, stripe, line, dot or film of nickel or other simple metal substances described above or their silicide as a starting point and by developing those metal elements from the point to surroundings along the reaction described above.
  • oxide is not preferable as a material containing those metal elements, because oxide is a stable compound and cannot start the aforementioned reaction.
  • the crystal silicon expanded from a specific point has a structure close to monocrystal with good continuity of crystallinity, though it differs from the conventional solid phase epitaxial growth, so that it is convenient in using for semiconductor devices such as a TFT.
  • an infinite number of crystallization starting points existed when a material containing the aforementioned metals for accelerating the crystallization such as nickel was provided homogeneously on a substrate and due to that, it was difficult to obtain a film having a good crystallinity.
  • the concentration of hydrogen within the crystal silicon of the present invention was typically more than 0.01 atomic percent and less than 5 atomic percent.
  • Ni, Fe, Co, Ru, Rh, Pd, Os, Ir, Pt, Sc, Ti, V, Cr, Mn, Cu, Zn, Au and Ag are used in the present invention, these materials are not generally preferable for silicon as a semiconductor material and it is necessary to remove them.
  • nickel because nickel silicide which reached the end of the crystallization as a result of the aforementioned reaction is easily resolved in hydrofluoric acid or hydrochloric acid or dilution of them, nickel can be reduced from the substrate by means of a treatment by those acids. Further, those metal elements can be positively reduced by treating at 400° to 600° C.
  • chlorine such as hydrogen chloride, various methane chlorides (CH 3 Cl, CH 2 Cl 2 , CHCl 3 ), various ethane chlorides (C 2 H 5 Cl, C 2 H 4 Cl 2 , C 2 H 3 Cl 3 , C 2 H 2 Cl 4 , C 2 HCl 5 ) or various ethylene chlorides (C 2 H 3 Cl, C 2 H 2 Cl 2 , C 2 HCl 3 ) after the end of the crystallization process.
  • trichloroethylene C 2 HCl 3
  • C 2 HCl 3 is a material which can be easily used.
  • a concentration of Ni, Fe, Co, Ru, Rh, Pd, Os, It, Pt, Sc, Ti, V, Cr, Mn, Cu, Zn, Au and Ag in the silicon film of the present invention was typically more than 0.005 atomic percent and less than 1 atomic percent.
  • the crystal silicon film fabricated according to the present invention for a semiconductor element such as a TFT, it is not preferable to provide the semiconductor element on the end of the crystallization (it is also a portion where the crystallization started from a plurality of starting points hit each other) because a large grain boundary (a portion where crystallinity is discontinued) exists and the concentration of metal elements which accelerate the crystallization such as nickel is high there as it is obvious from the description above. Accordingly, a pattern of a coating film containing the metal elements which become the starting point of the crystallization and accelerate it such as nickel and a pattern of the semiconductor element must be optimized in forming the semiconductor element utilizing the present invention.
  • a first method is to selectively form a film or the like of those metals before forming an amorphous silicon film and a second method is to selectively form a film or the like of those metals after forming the amorphous silicon film.
  • the first method can be implemented by using a normal photolithographic means or lift-off means.
  • the second method is complicated more or less. That is, if the film or the like of the metals which accelerate the crystallization is formed adhering to the amorphous silicon film, the metal and the amorphous silicon partially react each other producing silicide when forming the film. Therefore, it is necessary to fully etch such silicide layer when patterning after forming the metal film or the like.
  • the lift-off method is relatively easily carried out.
  • organic materials such as photoresist or non-organic materials such as silicon oxide or silicon nitride may be used as a masking material.
  • a processing temperature must be taken into consideration in selecting the masking material. Further, because a masking action differs depending on materials, a full attention needs to be paid on it.
  • a film of silicon oxide or silicon nitride formed by various CVD methods has many pinholes and the crystallization may advance from an unexpected section if the film is not fully thick.
  • patterning is implemented after forming the coating film using those masking materials to selectively expose the surface of amorphous silicon. Then the metal film or the like which accelerates the crystallization is formed.
  • the metal film or the like selectively formed is coated by the amorphous silicon film, it cannot be taken out later to adjust its amount.
  • the thickness of the metal film or the like is so thin as several to several tens angstrom, so that it is difficult to form the film with a good reproducibility.
  • the same also applies to the second method.
  • the metal film or the like which accelerate the crystallization exists on the surface in this method. That is, a fully thick metal film is formed and a heat treatment (pre-annealing) is implemented at a temperature lower than an annealing temperature before annealing to react a part of the amorphous silicon film and the metal film and to produce silicide. Then the metal film which did not react is etched.
  • pre-annealing pre-annealing
  • a thickness of the silicide layer obtained is determined by the temperature and time of the heat treatment (pre-annealing) and the thickness of the metal layer has almost nothing to do with it. Due to that, the very small amount of metal element introduced in the amorphous silicon film can be controlled.
  • the present invention also utilizes that there is a difference in degrees of crystallization when the surface of semiconductor is covered by a coating film (cover film) of silicon oxide or silicon nitride and when not covered when crystallizing a crystalline silicon TFT in a temperature at 450 ° to 1000° C. or preferably at 500° to 800° C. in an atmosphere containing oxygen, hydrogen or nitrogen.
  • atmosphere can be an atmosphere containing oxygen, atmosphere containing hydrogen, atmosphere containing nitrogen, atmosphere containing oxygen and hydrogen, atmosphere containing oxygen and nitrogen, atmosphere containing hydrogen and nitrogen or atmosphere containing oxygen, hydrogen and nitrogen.
  • the aforementioned crystallization can be carried out by (1) heating for A hours in the atmosphere containing oxygen and then heating for B hours in the atmosphere containing hydrogen: (2) heating for C hours in the atmosphere containing oxygen and then heating for D hours in the atmosphere containing nitrogen: (3) heating for E hours in the atmosphere containing hydrogen and then heating for F hours in the atmosphere containing oxygen: (4) heating for G hours in the atmosphere containing hydrogen and then heating for H hours in the atmosphere containing nitrogen: (5) heating for I hours in the atmosphere containing nitrogen and then heating for J hours in the atmosphere containing oxygen: (6) heating for K hours in the atmosphere containing nitrogen and then heating for L hours in the atmosphere containing hydrogen: (7) heating for M hours in the atmosphere containing oxygen, heating for N hours in the atmosphere containing hydrogen and then heating for P hours in the atmosphere containing nitrogen: (8) heating for Q hours in the atmosphere containing oxygen, heating for (9) hours in the atmosphere containing nitrogen and then heating for S hours in the atmosphere containing hydrogen: (9) heating for T hours in the atmosphere containing hydrogen, heating for U hours in the atmosphere containing
  • This characteristic is considered to be governed by the existence of hydrogen, oxygen or nitrogen within the atmosphere infiltrated to the active layer. This crystallization may be carried out by implementing it in nitrogen for example and then in hydrogen or oxygen.
  • TFTs having different characteristics may be formed on the same substrate in the same time and in the same process.
  • the former high mobility TFT can be used as a driving circuit of a matrix and the latter low leak current TFTs can be used as TFTs in the matrix portion.
  • a mobility in the NMOS can be relatively reduced as compare to that in the PMOS and a difference between the both can be almost eliminated in the optimum condition by not providing the cover film on the NMOS region and providing it on the PMOS region in the CMOS circuit.
  • the temperature of the thermal crystallization is an important parameter and the crystallinity of a TFT is determined by the temperature in the present invention.
  • the temperature of thermal annealing is restricted by a substrate and other materials.
  • a thermal annealing of up to 1100° C. is possible when silicon and silica are used as a substrate.
  • the annealing temperature When the annealing temperature is high, generally a growth of crystal of TFT advances, the mobility is increased and the leak current increases. Accordingly, the annealing temperature should be 450° to 1000° C. or preferably 500° to 800° C. in order to obtain TFTs having different characteristics on the same substrate like the present invention.
  • One such example of the present invention is that in a display section of an active matrix circuit of a liquid crystal display or the like, polysilicon TFTs are used as switching transistors and that no cover film is provided in the active matrix region when crystallizing an active layer and on the other hand the cover film is provided on the peripheral circuit region to turn the former into low leak current TFTs and the latter into high mobility TFTs.
  • FIG. 8(A) shows a conceptual drawing of a device having a display circuit section (active matrix) and a driving circuit (peripheral circuit) therefor as described above.
  • a display device is shown in which a data driver 101 and gate driver 102 are arranged, an active matrix 103 having TFTs is arranged in the middle and those driver sections and the active matrix are connected through gate lines 105 and data lines 106 on an insulating substrate 107.
  • the active matrix 103 is an aggregate of picture element cells 104 having a NMOS or PMOS TFT (PMOS in the figure).
  • a concentration of impurities such as oxygen, nitrogen and carbon in the active layer is desirable to be less than 10 18 cm -3 or preferably less than 10 17 cm -3 in order to obtain a high mobility.
  • a threshold voltage of the TFT was 0.5 to 2 V in the NMOS and -0.5 to -3 V in the PMOS for example and a mobility was 30 to 150 cm 2 /Vs in the NMOS and 20 to 100 cm 2 /Vs in the PMOS.
  • an auxiliary capacity could be reduced and further be totally eliminated in the active matrix section by using single or a plurality of elements in series having as low as about 1 pA of leak current with 1 V of drain voltage.
  • a second example of the present invention relates to a semiconductor memory.
  • a semiconductor memory device by means of monocrystal ICs has already reached to its limit in terms of speed. Although it is necessary to increase a current capacity of transistors in order to operate it in a higher speed, it causes a further increase of power consumption and it cannot but be dealt by increasing driving voltage so long as a capacity o:F capacitors cannot be increased further for a DRAM which carries out memory operations by storing charge in the capacitors.
  • a circuit arrangement of the DRAM is almost the same with that of the aforementioned liquid crystal display device in a case of 1 Tr/cell structure and in a DRAM having a structure other than that (for example 3 Tr/cell structure), no cover film is provided in a memory bit section when crystallizing an active layer and on the other hand, a cover film is provided on a region of a driving circuit because it is required to operate in fully high speed in the same manner with the case of the aforementioned liquid crystal display device to turn the former into low leak current TFTs and the later into high leak current TFTs.
  • the reference numeral (101) can be a column decoder, (102) a row decoder, (103) a memory elements section, (104) a unit memory bit, (105) bit lines, (106) word lines, and (107) an (insulating) substrate.
  • FIG. 8(B) shows an example of a one bit circuit of an image sensor, wherein a flip-flop circuit 108 and a buffer circuit 109 are normally constructed by a CMOS circuit and are required to respond in such high speed that they can follow up high speed pulses applied to a scan line.
  • a TFT 110 in a signal output stage plays a role of a dam that discharges a charge accumulated in a capacitor by a photodiode to a data line by receiving a signal from the shift register sections 108 and 109.
  • Such TFT 110 is required not only to respond in high speed but also to have less leak current. Accordingly, the region of the circuits 108 and 109 is crystallized by providing a cover film to turn it into a high mobility TFT and the region of the TFT 110 on the other hand is crystallized without providing cover film to turn it into a low leak current TFT in such a circuit.
  • silicon oxide, silicon nitride or silicon oxinitride may be used as the cover film.
  • the covering ability differs depending on a quality of film, typically the thickness must be more than 20 nm for a silicon oxide film and more than 10 nm for a silicon nitride film.
  • the thickness is desired to be 20 to 200 nm for both of the silicon oxide film and the silicon nitride film when considering mass-producibility and reliability.
  • FIGS. 1(A) to 1(C) are top views showing a process of the present embodiment (crystallization and arrangement of TFT);
  • FIGS. 2(A-1), 2(A-2) and 2(B) to 2(D) are section views showing the process of the embodiment (a selectively crystallizing process)
  • FIGS. 3(A) to 3(C) are section views showing the process of the embodiment (see a first embodiment);
  • FIGS. 4(A) to 4(C) are section views showing the process of the embodiment (see the first embodiment);
  • FIGS. 5(A) to 5(C) are section views showing the process of the embodiment (see a second embodiment);
  • FIGS. 6(A) to 6(C) are section views showing the process of the embodiment (see a third embodiment).
  • FIGS. 7(A) to 7(E) are section views showing the process of the embodiment (see a fourth embodiment).
  • FIG. 8(A) is a block diagram showing a case when the present invention is applied to an active matrix device
  • FIG. 8(B) is a circuit diagram of an exemplified circuit when the present invention is applied to a drive circuit of an image sensor;
  • FIGS. 9(A) to 9(C) are section views showing the process of the embodiment.
  • FIGS. 10(A) to 10(C) are section views showing the process of the embodiment.
  • FIGS. 11(A) to 11(D) are section views showing the process of the embodiment.
  • FIG. 2(A-1) shows the method wherein it is formed under the film
  • FIG. 2(A-2) shows the method wherein it is formed on the film.
  • the influence of the residual nickel may be suppressed by oxidizing nickel other than that of the island region by treating the substrate by oxygen plasma or ozone.
  • a ground silicon oxide film 1B with a thickness of 2000 angstrom was formed on a substrate 1A (Coning 7059) by a plasma CVD method.
  • the amorphous silicon film 1 was fabricated by a plasma CVD method or vacuum CVD method with a thickness of 200 to 3000 angstrom or preferably 500 to 1500 angstrom.
  • the amorphous silicon film was readily crystallized after removing hydrogen by annealing 0.1 to 2 hours at 350° to 450° C. to keep the hydrogen concentration within the film to less than 5 atomic percent.
  • the nickel film was accumulated up to a thickness of 50 to 1000 angstrom or preferably to 100 to 500 angstrom by sputtering and was patterned to form the island nickel regions 2 before forming the amorphous silicon film 1.
  • the nickel film was accumulated up to 50 to 1000 angstrom or preferably to 100 to 500 angstrom by sputtering and was patterned to form the island nickel regions 2 after forming the amorphous silicon film 1.
  • FIG. 1(A) shows this state seen from above.
  • Each of the island nickel is a square with a side of 2 micron and an interval therebetween was set at 5 to 50 micron or 20 micron for example.
  • a similar effect may be obtained by using nickel silicide instead of nickel.
  • a good result could be obtained when the substrate was heated up to 100° to 500° C. or preferably to 180° to 250° C. when the nickel was to be formed. It is because an adhesion of the ground silicon oxide film with the nickel film is improved and because nickel silicide is produced by the reaction of silicon oxide and nickel.
  • the same effect can be obtained by using silicon nitride, silicon carbide or silicon instead of silicon oxide.
  • FIG. 2(B) shows the intermediate state of this process wherein nickel advance from the island nickel regions 2 near the edge to the center as nickel silicide 3A and portions 3 where nickel had passed have become crystal silicon. Then as shown in FIG. 2(C), the crystallizations which started from the two island nickel films hit and the nickel silicide 3A remains in the middle, thereby ending the crystallization.
  • FIG. 1(B) shows the substrate in this state seen from above, wherein the nickel silicide 3A in FIG. 2(C) is an intercrystalline boundary 4.
  • the nickel silicide 3A in FIG. 2(C) is an intercrystalline boundary 4.
  • Crystal silicon can be obtained by the aforementioned process, but it is not desirable for nickel to diffuse within the semiconductor coating film from the nickel silicide 3A produced at this time. Accordingly, it is desirable to eliminate the region where nickel is highly concentrated by etching by hydrofluoric acid or hydrochloric acid. By the way, because an etching rate of the nickel and nickel silicide is fully large, the silicon film is not affected in the etching by means of hydrofluoric acid or hydrochloric acid. The regions where the growing point of nickel had been located were removed together in the same time.
  • FIG. 2(D) shows the state after the etching. The portion where there was the intercrystalline boundary turns out to be a groove 4A.
  • TFT semiconductor regions (active layer or the like) of a TFT so as to pinch this groove.
  • the TFT was arranged so that semiconductor regions 6 would not cross the intercrystalline boundary 4 as shown in FIG. 1(C). That is, the TFT was formed in a crystal growth region in the horizontal direction parallel to the substrate, not in the thickness direction of the coating film, by the action of nickel. Then, the growth direction of the crystal could be uniformly arranged and residual nickel could be minimized. As a result, a high TFT characteristics could be obtained.
  • gate wires 7 may cross the intercrystalline boundaries 4.
  • FIGS. 3 and 4 show examples of the method for fabricating a TFT using the crystal silicon obtained in the process described above.
  • the reference character X in the middle indicates the place where there was the groove 4A in FIG. 2.
  • island semiconductor regions 11a and 11b were formed by patterning the crystal silicon film 3 obtained in the process shown in FIG. 2.
  • a silicon oxide film 12 which functions as a gate insulating film was formed by such methods as RF plasma CVD, ECR plasma CVD or sputtering.
  • gate electrodes 13a and 13b were formed by forming a polycrystalline silicon film with a thickness of 3000 to 6000 angstrom in which 1 ⁇ 10 20 to 5 ⁇ 10 20 cm -3 of phosphorus is doped by a vacuum CVD method and then by patterning it (FIG. 3(A)).
  • impurity was doped by a plasma doping method.
  • phosphine PH 3
  • diborane B 2 H 6
  • the figure shows the N type TFT.
  • An acceleration voltage was 80 keV for phosphine and 65 keV for diborane.
  • the impurity was activated by annealing for four hours at 550° C. to form impurity regions 14a through 14d.
  • a method of using optical energy such as laser annealing or flash lamp annealing may be also used for the activation (FIG. 3(B)).
  • a silicon oxide film with a thickness of 5000 angstrom was deposited as an interlayer insulator 15 similarly to a case when TFT is normally fabricated, and contact holes were formed therethrough to form wires and electrodes 16a through 16d in source and drain regions (FIG. 3(C)).
  • the TFT (N channel type in the figure) was thus fabricated in the process described above.
  • the field effect mobility of the TFT obtained was 40 to 60 cm 2 /Vs in the N channel type and 30 to 50 cm 2 /Vs in the P channel type.
  • FIG. 4 shows a process how a TFT for aluminum gate was fabricated.
  • the reference character X in the middle indicates the place where there was the groove 4A in FIG. 2.
  • island semiconductor regions 21a and 21b were formed buy patterning the crystal silicon film 3 obtained in the process shown in FIG. 2.
  • a silicon oxide film 22 which functions as a gate insulating film was formed by such methods as RF plasma CVD, ECR plasma CVD or sputtering.
  • TEOS tetra-ethoxi-silane
  • oxygen as original gases.
  • an aluminum film (5000 angstrom thick) containing 1% of silicon was deposited by sputtering and was patterned to form gate wires and electrodes 23a and 23b.
  • anodic oxidation was implemented by setting platinum as a cathode and an aluminum wire as an anode and by flowing current therebetween.
  • the current was applied so that its voltage would increase 2V/min. initially and the voltage was fixed when it reached to 220 V.
  • the current was stopped when it became less than 10 microA/m 2 .
  • anode oxides 24a and 24b with a thickness of 2000 angstrom were formed as shown in FIG. 4(A).
  • impurity was doped by a plasma doping method.
  • phosphine PH 3
  • diborane B 2 H 6
  • the figure shows the N type TFT.
  • An acceleration voltage was 80 keV for phosphine and 65 keV for diborane.
  • the impurity was activated by annealing by laser to form impurity regions 25a through 25d.
  • the laser used was a KrF laser (wavelength: 248 nanometer) and five shots of laser lights having 250 to 300 mJ/cm 2 of energy density were irradiated (FIG. 4(B)).
  • a silicon oxide film with a thickness of 5000 angstrom was deposited as an interlayer insulator 26 similarly to the case when TFT is normally fabricated and contact holes were formed therethrough to form wires and electrodes 27a through 27d in source and drain regions (FIG. 4(C)).
  • the field effect mobility of the TFT obtained was 60 to 120 cm 2 /Vs in the N channel type and 50 to 90 cm 2 /Vs in the P channel type TFT.
  • a shift register fabricated by using this TFT operations at 6 MHz in 17 volts of drain voltage and at 11 MHz in 20 V were confirmed.
  • FIG. 5 shows a case when a TFT for an aluminum gate was fabricated similarly to that shown in FIG. 4.
  • the amorphous silicon was used as an active layer in this embodiment;
  • a ground silicon oxide film 32 was deposited on a substrate 31 and an amorphous silicon film 33 with a thickness of 2000 to 3000 angstrom was deposited further on that.
  • An adequate amount of P type or N type impurities may be mixed in the amorphous silicon film.
  • island nickel or nickel silicide coating film 34A and 34B were formed as described above and the amorphous silicon film was crystallized by growing laterally by annealing for 8 hours at 550° C. or for four hours at 600° C. in this state.
  • a coating film was formed by such substances as silicon nitride and silicon oxide as a gate insulating film 37.
  • a gate electrode 38 was formed by aluminum and an anodic oxidation was implemented in the same manner with the case of FIG. 4.
  • impurity was diffused by an ion doping method to form impurity regions 39A and 39B.
  • the TFT was completed by depositing further an interlayer insulator 40, by forming contact holes and forming metallic electrodes 41A and 41B at source and drain regions.
  • This TFT is characterized in that the semiconductor film at the source and drain portions is thick and that a resistance thereof is small. As a result, a resistance in the source and drain regions is reduced and the characteristics of the TFT is improved. Further, contact holes can be readily formed.
  • FIG. 6 shows a process when a CMOS type TFT was fabricated.
  • a ground silicon oxide film 52 was deposited on a substrate 51 and an amorphous silicon film 53 with a thickness of 1000 to 1500 angstrom was deposited further on that.
  • island nickel or nickel silicide coating film 54 was formed and annealing was implemented in this state at 550° C.
  • a silicon silicide region 55 moved in the direction of plane, not in the direction of thickness, of the coating film and the crystallization advances by this process.
  • the amorphous silicon film changed into crystal silicon as shown in FIG. 6(B) by four hours of annealing.
  • the silicon silicide regions 59A and 59B were driven away toward the edge along the advancement of the crystallization.
  • an island silicon region 56 was formed by patterning the crystal silicon film thus obtained as shown in FIG. 6(B).
  • a gate insulating film 57 and gate electrodes 58A and 58B were formed.
  • N type impurity regions 60A and P type impurity regions 60B were formed by diffusing an impurity by an ion doping method as shown in FIG. 6(C).
  • the doping can be carried out by using phosphorus as a N type impurity (doping gas is phosphine PH 3 ) and by doping across the whole surface by 60 to 110 kV of acceleration voltage and then after covering the region of the N channel type TFT by a photoresist, by using boron for example as a P type impurity (doping gas is diborane B 2 H 6 ) and by doping with 40 to 80 kV of acceleration voltage.
  • the source and drain region were activated by irradiating laser light similarly to the case in FIG. 4. Then the TFT was completed by depositing further an interlayer insulator 61, by forming contact holes and forming metallic electrodes 62A, 62B and 62C at the source and drain regions.
  • FIG. 7 shows the fourth embodiment.
  • the present embodiment relates to a method in which silicide is produced by reacting a nickel film with a portion of amorphous silicon film by a first heat treatment (pre-annealing) and the amorphous silicon is crystallized by annealing after removing a non-reactive nickel film.
  • a ground silicon oxide film 702 (thickness: 2000 angstrom) was formed on a substrate (Coning No. 7059) 701 by a sputtering method. Then a silicon film 703 with a thickness of 300 to 800 angstrom or 500 angstrom thick for example was formed. Further, a silicon oxide film 704 was formed by a plasma CVD method. This silicon oxide film 704 acts as a masking material and its thickness was preferred to be 500 to 2000 angstrom. If it is too thin, the crystallization advances from an unexpected location by pinholes and if it is too thick, it takes a time to form the film and is not suited for mass-production. Then it was set at 1000 angstrom here.
  • the silicon oxide film 704 was patterned by a known photolithographic process. Then a nickel film 705 (thickness: 500 angstrom) was formed by a sputtering method. The thickness of the nickel film 705 was preferred to be more than 100 angstrom (FIG. 7(A)).
  • a pre-annealing process For example, it was annealed for 20 minutes at 450° C.
  • a nickel silicide layer 708 was formed within the amorphous silicon. A thickness of this layer was determined by a temperature and time of the pre-annealing and the thickness of the nickel film 705 was almost nothing to do with it (FIG. 7(B)).
  • Nitric or hydrochloric solution was suitable for the etching.
  • the nickel silicide layer was barely etched during the etching of the nickel film by those etchants.
  • After removing the nickel film, it was annealed for 4 to 8 hours at 550° C. (a crystallizing annealing process).
  • a first method was to implement this process while remaining the masking material 704 as shown in FIG. 7(C). The crystallization advances as indicated by arrows in FIG. 7(C).
  • a second method was to anneal after removing all the masking material and exposing the silicon film.
  • a third method was to anneal after removing the masking material and after forming a new coating film 707 composed of silicon oxide or silicon nitride on the surface of silicon film as a protection film as shown in FIG. 7 (D).
  • the first method was simple, the surface of the masking material 704 reacted with nickel in the pre-annealing step, and became silicate in the crystallizing annealing process at a higher temperature, and became hard to be etched. That is, because an etching rate of the silicon film and masking material 704 becomes almost equal, the portion where the silicon film is exposed is also largely etched when the masking material is removed later, creating steps on the substrate.
  • the second method is very simple and etching can be easily carried out since the reaction of the masking material with nickel is mild before the crystallizing annealing process. However, because the silicon surface was wholly exposed when the crystallizing annealing was carried out, characteristics of TFT or the like fabricated later degraded.
  • the third method allowed to firmly obtain a good quality crystal silicon film, it was complicated because the number of processes was increased.
  • a fourth method which was an improved version of the third method, a method comprising steps of putting into a furnace in a state when the silicon surface is exposed, heating for about one hour at 500° to 550° C. initially in an oxygen flow to form a thin silicon oxide film with a thickness of 20 to 60 angstrom thick on the surface and switching to a nitrogen flow as it is was studied as a crystallizing annealing condition. According to this method, an oxide film was formed in the initial stage of the crystallization.
  • the crystal silicon film was thus obtained. Since then, the silicon film 703 was patterned while removing a portion where a value of concentration of nickel was high (a region where the origin of growth was located) and growth points (slanted portions at the end of the arrows in the figure) and while remaining only the region where the concentration of nickel was low. An island silicon region 708 which would be used for an active layer of the TFT was formed as described above. Then a gate insulating film 709 composed of silicon oxide with a thickness of 1200 angstrom was formed covering the region 708 by a plasma CVD method.
  • a gate electrode 710 and a wire 711 in a first layer were formed by a phosphorus doped silicon film with a thickness of 6000 angstrom and source/drain regions 712 were formed by injecting an impurity into the active layer 708 in a self-aligning manner using the gate electrode 710 as a mask. It was then effective for improving the crystallinity to irradiate visible or near infrared strong light. Further, a silicon oxide film with a thickness of 6000 angstrom was formed by a plasma CVD method as an interlayer insulator 713.
  • FIG. 9 shows the present embodiment.
  • a polysilicon TFT is formed in a peripheral circuit and an active matrix region of a TFT type liquid crystal display device.
  • a ground oxide film 121 was deposited into a thickness of 20 to 200 nm by a sputtering method on a glass substrate 120 having a heat resisting quality such as a silica glass. Further on that, an amorphous silicon film was deposited into a thickness of 30 to 50 nm by a plasma CVD method or vacuum CVD method using mono-silane or di-silane as an original material.
  • a concentration of oxygen or nitrogen in the amorphous silicon film should have been less than 10 18 cm -2 or preferably less than 10 17 cm -2 . The oxygen concentration was set to be less than 10 17 cm -2 in the present embodiment.
  • a silicon oxide film with a thickness of 100 to 150 nm or silicon nitride film with a thickness of 30 to 100 nm was formed on the amorphous silicon film by a sputtering method as a cover film. It was then patterned to leave a cover film 122 only in the peripheral circuit region. Then it was crystallized by leaving for 4 to 100 hours in an argon or nitrogen atmosphere (600° C.) containing 20 to 100 volume percent of oxygen or hydrogen. As a result, a crystallinity of a silicon film 123A in the peripheral circuit region was good and that of a silicon film 123B in the picture element region was not good.
  • FIG. 9(A) shows this state.
  • a gate oxide film 125 was formed by means of sputtering or the like. It can be formed by a plasma CVD method using TEOS (tetraethoxisilane) instead of the sputtering method. It is desirable to anneal for 0.5 to 3 hours at a temperature more than 650° C. during or after the formation when forming the film using TEOS.
  • TEOS tetraethoxisilane
  • a N-type silicon film with a thickness of 200 nm to 2 micron was formed by a LPCVD method and by patterning it, gate electrodes 126A through 126C were formed on each island region.
  • a metallic material having a relatively good heat resistance such as tantalum, chrome, titanium, tungsten and molybdenum may be used instead of the N-type silicon film.
  • an impurity was injected to the island silicon film of each TFT by an ion doping method in a self-aligning manner using the gate electrode section as a mask.
  • phosphorus was injected across the whole surface employing phosphine (PH 3 ) as a doping gas at first and after covering the right side of the island region 124A and the matrix region in the figure by a photoresist, boron was injected to the left side of the island region 124A employing diborane (B 2 H 6 ) as a doping gas.
  • the dosage of phosphorus was set to be 20 to 8 ⁇ 10 15 cm -2 and that of boron was 4 to 10 ⁇ 10 15 cm -2 so that the dosage of boron would exceed that of phosphorus.
  • a P-type region 127A and N-type regions 127B and 127C were thus created.
  • This process can be implemented by laser annealing. Because a thermal damage on the substrate is small when annealed by laser, a normal non-alkaline glass such as Coning 7059 can be used. Further, at that time, a material having an inferior heat resistance such as aluminum can be used as a material for the gate electrode.
  • the P-type region 127A and N-type regions 127B and 127C were created by the process described above. A sheet resistance of those regions was 200 to 800 ohm/sheet.
  • a silicon oxide film with a thickness of 300 to 1000 nm was formed across the whole surface by a sputtering method as an interlayer insulator 128.
  • This may be a silicon oxide film formed by a plasma CVD method.
  • a silicon oxide film having a good step coverage can be obtained by the plasma CVD method especially using TEOS as an original material.
  • FIG. 9(C) shows that an inverter circuit have been created by the NTFT and PTFT on the left side.
  • the wires 130A through 130E may be a multi-layered wire with aluminum based on chrome or titanium nitride in order to reduce a sheet resistance.
  • it was annealed for 0.5 to 2 hours at a temperature between 200° and 350° C. in hydrogen to reduce a dangling bond of the silicon active layer.
  • the peripheral circuit and the active matrix circuit could be integrally created.
  • a typical mobility was 80 cm 2 /Vs in the NMOS, 50 cm 2 /Vs in the PMOS in the peripheral circuit section and 5 to 30 cm 2 /Vs in the picture element TFT (NMOS).
  • FIG. 10 shows the present embodiment.
  • a difference of mobility of NMOS and PMOS is reduced in a CMOS circuit utilizing the present invention.
  • a ground oxide film 132 was deposited into a thickness of 20 to 200 nm by a sputtering method on a Coning 7059 substrate 131.
  • an amorphous silicon film was deposited into a thickness of 50 to 250 nm by a plasma CVD method or vacuum CVD method using mono-silane or di-silane as an original material.
  • a concentration of oxygen or nitrogen in the amorphous silicon film should have been less than 10 18 cm -2 or preferably less than 10 17 cm -2 .
  • the vacuum CVD method was suited for this purpose.
  • the oxygen concentration was set to be less than 10 17 cm -2 in the present embodiment.
  • a cover film 133 (a silicon oxide film with a thickness of 50 to 150 nm) was provided on the region of PMOS. Then it was crystallized by annealing for 4 to 100 hours at 600° C. in an argon or nitrogen atmosphere at 600° C. containing more than 50 percent of oxygen or hydrogen. As a result, although a crystallinity of a region 134A under the cover film was good, that of a region 134B where there was no cover film was not good. FIG. 10(A) shows this state.
  • the silicon film was patterned into a shape of island to form a PMOS region 135A and an NMOS region 135B as shown in FIG. 10(B). Then a silicon oxide film 125 with a thickness of 50 to 150 nm was formed by a sputtering method covering those island regions as a gate insulating film 136. Then an aluminum film was formed with a thickness of 200 nm to 2 micron by a sputtering method, and patterned to form a gate electrode. An anodic oxide film was formed on the upper and side surfaces of the gate electrode by feeding power to it in an electrolyte. Gate electrode sections 137A and 137B were formed on each island region by the process described above.
  • an impurity was injected to the island silicon film of each TFT by an ion doping method in a self-aligning manner using the gate electrode section as a mask.
  • phosphorus was injected across the whole surface employing phosphine (PH 3 ) as a doping gas at first and after covering only the island region 135B in the figure by a photoresist, boron was injected to the island region 135A employing diborane (B 2 H 6 ) as a doping gas.
  • the dosage of phosphorus was set to be 2 to 8 ⁇ 10 15 cm -2 and that of boron to be 4 to 10 ⁇ 10 15 cm -2 so that the dosage of boron would exceed that of phosphorus.
  • the crystallinity of the silicon film is broken by the doping process, it was possible to keep its sheet resistance around 1 kohm/sheet. However, if the sheet resistance of this degree is to much, the sheet resistance can be lowered by annealing further for 2 to 24 hours at 600° C. The same effect can be obtained by irradiating such a strong light as laser light.
  • a P-type region 138A and N-type regions 138B were thus created.
  • a sheet resistance of those regions was 200 to 800 ohm/sheet.
  • a silicon oxide film with a thickness of 300 to 1000 nm was formed across the whole surface by a sputtering method as an interlayer insulator 139.
  • This may be a silicon oxide film formed by a plasma CVD method.
  • a silicon oxide film having a good step coverage can be obtained by the plasma CVD method especially using TEOS as an original material.
  • FIG. 11 shows the present embodiment.
  • the present embodiment relates to a circuit in which a transistor and silicon resistance are combined. Silicon doped by impurity can be used as a protecting circuit of the transistor.
  • a ground oxide film 141 was deposited into a thickness of 20 to 200 nm by a sputtering method on a Coning 7059 substrate 140.
  • an amorphous silicon film 142 was deposited into a thickness of 100 to 250 nm by a plasma CVD method or vacuum CVD method using mono-silane or di-silane as an original material.
  • a concentration of oxygen or nitrogen in the amorphous silicon film should have been less than 10 18 cm -2 or preferably less than 10 17 cm -2 .
  • a cover film 143 of a silicon oxide film with a thickness of 20 to 200 nm was deposited and it was crystallized by annealing for 4 to 100 hours in an argon or nitrogen atmosphere at 600° C.
  • FIG. 11(A) shows this state.
  • the silicon film was patterned into a shape of island to form a transistor region 144A and a resistance region 144B as shown in FIG. 11(B). Then a silicon oxide film with a thickness of 50 to 150 nm was formed by a sputtering method covering those island regions as a gate insulating film 145. Then an aluminum film was formed with a thickness of 200 nm to 2 micron by a sputtering method, and patterned to form a gate electrode. An anode oxide film was formed on the upper and side surfaces of the gate electrode by feeding power to it in an electrolyte. Gate electrode section 146 was formed on each island region by tile process described above.
  • an impurity e.g. phosphorus
  • an impurity e.g. phosphorus
  • the dosage of phosphorus was 2 to 8 ⁇ 10 15 cm -2 .
  • Impurity regions 147A and 147B were created by the doping process described above. Since the same amount of impurity is being injected in those two impurity regions, they show the same resistivity when they are thermally annealed as they are. However, there is a such case for example when a higher resistance is demanded to the latter whereas a lower resistance is always demanded to the former. Then, a cover film 148 of a silicon oxide film with a thickness of 50 to 150 nm was formed only on the transistor region as shown in FIG. 11(C). It was then annealed for 4 to 20 hours at a temperature between 550 ° and 650° in an argon or nitrogen atmosphere containing more than 50 volume percent of oxygen or hydrogen.
  • Phosphine (PH 3 ) may be used instead of oxygen or hydrogen.
  • the annealing temperature is preferable to be less than 800° C. because if the annealing temperature is too high, phosphine is thermally decomposed and diffuses within the semiconductor, lowering the resistivity on the contrary.
  • Diborane (B 2 H 6 ) may be used when the impurity region of the resistance is P-type.
  • a sheet resistance of the impurity region of the transistor was 20 to 800 ohm/sheet, that of the impurity region of the resistance was 2 k to 100 kohm/sheet by the process above.
  • a silicon oxide film with a thickness of 300 to 1000 nm was formed across the whole surface by a sputtering method as an interlayer insulator 149.
  • This may be a silicon oxide film formed by a plasma CVD method.
  • a silicon oxide film having a good step coverage can be obtained by the plasma CVD method especially using TEOS as an original material.
  • the present invention is an epoch-making invention in a sense that it promotes the implementation of lower temperature and shorter time crystallization of amorphous silicon and provides an immeasurable benefit to the industry because facility, equipment and technique therefor are very common and are excellent for mass-production.
  • the same process can be applied to another metal element that accelerates the crystallization, i.e. any one of Fe, Co, Ru, Pd, Os, Ir, Pt, Sc, Ti, V, Cr, Mn, Cu, Zn, Au and Ag.
  • the present invention allows to reduce the number of the annealing furnaces to less than 1/6 of that because the annealing time can be shortened to four hours or less.
  • the improvement of productivity and the reduction of amount of investment on facility brought about by that will lead to the drop of substrate processing cost as well as to the drop of a cost of TFTs and thereby to the rise of new demand. Accordingly, the present invention is very beneficial to the industry and deserves to be patented.
  • the present invention solves the problem in the conventional fabrication process of crystalline silicon TFTs by such minimum modification of the crystallization condition of active layer of the TFTs that whether a cover film exists or not.
  • the present invention allowed to improve especially a reliability and performance of a dynamic circuit and of a device having such circuit.
  • crystalline silicon TFTs had low an ON/OFF ratio for such purpose as an active matrix of a liquid crystal display and was difficult in various ways to put it into practical use, such problems have been considered to be solved by the present invention.
  • the present invention will be effective, when implemented, in TFTs used as means for implementing a stereo-monocrystal semiconductor integrated circuit.
  • a memory elements section can be constructed by constructing a peripheral logic circuit by semiconductor circuits on a monocrystal semiconductor and by providing TFTs on that through the intermediary of an interlayer insulator.
  • the memory elements section can be a DRAM circuit using the TFTs of the present invention and its driving circuit is constructed by being CMOS-implemented to the monocrystal semiconductor circuit.
  • CMOS-implemented to the monocrystal semiconductor circuit when such circuit is used for a microprocessor, its area can be saved because the memory section is raised to the upstairs.
  • the present invention is considered to be a very beneficial invention to the industry.

Abstract

A method for manufacturing a semiconductor device such as a thin film transistor using a crystal silicon film is provided. The crystal silicon film is obtained by selectively forming films, particles or clusters containing nickel, iron, cobalt, ruthenium, rhodium, paradium, osmium, iridium, platinum, scandium, titanium, vanadium, chrome, manganese, copper, zinc, gold, silver or silicide thereof in a form of island, line, stripe, dot or film on or under an amorphous silicon film and using them as a starting point, by advancing its crystallization by annealing at a temperature lower than a normal crystallization temperature of an amorphous silicon. A transistor whose leak current is low and a transistor in which a mobility is high are obtained in the same time in structuring a dynamic circuit having a thin film transistor by selectively forming a cover film on a semiconductor layer which is to become an active layer of the transistor and by thermally crystallizing it thereafter.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method for fabricating an integrated, circuit or more concretely to a semiconductor circuit having a matrix device (including an electro-optic display and semiconductor memory) having a matrix structure and a MOS or MIS (metal-insulator-semiconductor) type field effect element (hereinafter generally referred to as a MOS type element) as a switching element and characterized in its dynamic operation such as a liquid crystal display device and dynamic RAM (DRAM) and a driving circuit therefor or an integrated driving circuit like an image sensor. The present invention particularly relates to a device employing a thin film semiconductor element such as a thin film semiconductor transistor or the like which is formed on an insulating surface as a MOS type element and to a device having a thin film transistor whose active layer is formed by crystal silicon.
2. Description of the Related Art
Conventionally, a crystalline silicon semiconductor thin film used for a thin film device such as a thin film insulated gate type field effect transistor (TFT) has been fabricated by crystallizing an amorphous silicon film formed by a plasma CVD or thermal CVD method within such an apparatus as an electric furnace for many hours of more than 24 hours at a temperature more than 600° C. The many hours of heat treatment has been required in order to obtain sufficient characteristics such as a high field mobility and high reliability.
However, such conventional method has many problems. One of the problems is that its throughput is low and accordingly, a product cost becomes high. For example, if it takes 24 hours for the crystallization process and if it takes two minutes of processing time per sheet of substrate, 720 substrates must be processed in the same time. However, a tube furnace normally used can process 50 sheets of substrates at most in one time, and when only one apparatus (reaction tube) is used, it takes 30 minutes per sheet. That is, in order to process one sheet in 2 minutes, 15 reaction tubes must be used. It means that a scale of investment must be increased and that because the investment is greatly depreciated, it cannot but be reflected in the product cost.
Another problem lies in the temperature of the heat treatment. Normally, substrates used for fabricating a TFT are roughly divided into those composed of pure silicon oxide such as silica glass and non-alkaline boro-silicated glass such as Coning No. 7059 (hereinafter referred to as Coning 7059). Among them, the former has no problem in terms of temperature because it has an excellent heat resistance and can be handled in the same manner with the wafer process of normal semiconductor integrated circuits. However its cost is high and increases exponentially as the substrate area increases. Accordingly, it is used only for TFT integrated circuits having a relatively small area.
On the other hand, non-alkaline glass has a problem in terms of heat resistance, though its cost is sufficiently low as compare to that of silica glass. Because its strain point is generally around 550° to 650° C., or less than 600° C. in case of a readily available material, such problems as irreversible shrinkage and warp are caused on the substrate in a heat treatment at 600° C. and it is remarkable in such a substrate whose diagonal distance exceeds 10 cm. From above reasons, it has been considered to be indispensable to keep the heat treatment conditions under 550° C. and within 4 hours to reduce the cost in crystallizing silicon semiconductor films. It is then an object of the present invention to provide a semiconductor fabricating method that clears such conditions and a semiconductor device fabricating method using such a semiconductor.
Lately, a study on an insulated gate type semiconductor device having a thin film active layer (or called as an active region) has been conducted. Especially, a thin film insulated gate transistor or so-called a thin film transistor (TFT) has been fervently studied. They are formed on a transparent insulating substrate to use to control each picture element and to drive its matrix in a display device such as a liquid crystal display having a matrix structure or to use as a driving circuit of an image sensor formed similarly on an insulating substrate. They are categorized as an amorphous silicon TFT or crystalline silicon (or called as polycrystalline silicon) TFT depending on a material and crystal state of a semiconductor used.
Lately, a study to use a material which presents an intermediate state between crystalline silicon and amorphous is also being conducted. Although the intermediate state is being discussed, all those which reached to some crystal state by any thermal process (such as by annealing at a temperature more than 450° C. by irradiating strong energy such as laser light) shall be called as crystalline silicon in this specification.
A crystalline silicon TFT is used also in a monocrystal silicon integrated circuit as a so-called SOI technology and it is used as a load transistor for example in a highly integrated SRAM. In this case, however, an amorphous silicon TFT is rarely used.
Further, a very high speed operation is possible in a semiconductor circuit on an insulating substrate because there is no capacitive coupling between the substrate and wires, so that a technology to use it as a very high speed microprocessor or very high speed memory is being proposed.
Generally, a field mobility of a semiconductor in an amorphous state is small and accordingly, it cannot be used for a TFT requiring a high speed operation. Furthermore, because a field mobility of P-type is remarkably small in an amorphous silicon, a P-channel type TFT (a TFT of PMOS) cannot be fabricated and accordingly, a complementary MOS circuit (CMOS) cannot be formed by combining with a N-channel type TFT (a TFT of NMOS).
However, a TFT formed by an amorphous semiconductor has an advantage that OFF current is small. Then it is utilized in the use in which a very high speed operation is not required, only one conductive type will do and a TFT having a high charge retaining ability is required such as transistors of an active matrix of a liquid crystal display having a small matrix scale. However, it has been difficult to use the amorphous silicon TFT for an advanced application such as a liquid crystal display having a large scale matrix. Further, it could not be used naturally for peripheral circuits of a display and for a driving circuit of an image sensor which require a high speed operation.
On the other hand, a crystalline semiconductor has a field mobility larger than that of the amorphous semiconductor and accordingly, a high speed operation is possible. For example, such a large value as 300 cm2 /Vs has been obtained as a field mobility in a TFT using a silicon film re-crystallized by laser annealing. It is an extremely large value considering that a field mobility of a MOS transistor formed on a normal monocrystal silicon substrate is around 500 cm2 /Vs. Whereas an operation speed of the MOS circuit on the monocrystal silicon is limited by a parasitic capacity between the substrate and wires, there is no such limit in terms of the TFT using crystallized silicon film because it is formed on the insulating substrate. Accordingly, a remarkable high speed operation is being expected to be achieved in such TFT.
Further, it is possible to form a CMOS circuit by the crystalline silicon because not only a NMOS TFT but also a PMOS TFT can be similarly obtained. For example, among liquid crystal displays in an active matrix system, one having a so-called monolithic structure in which not only the active matrix section but also peripheral circuits (such as a driver) are constructed by a CMOS crystalline silicon TFT is known. The TFT used in the aforementioned SRAM is what this point is noticed, wherein time PMOS is constructed by the TFT as a load transistor.
Furthermore, whereas it is difficult to form a source/drain region by such a self-aligning process as those used in monocrystal IC technology in a normal amorphous TFT and a parasitic capacity caused by the geometrical overlap of a gate electrode and the source/drain region causes a problem, the crystalline silicon TFT has such an advantage that a parasitic capacity can be remarkably suppressed because the self-aligning process can be adopted.
However, a leak current of the crystalline silicon TFT when no voltage is applied to the gate (non-selection time) is great as compare to that of the amorphous silicon TFT, and such countermeasures have been taken that an auxiliary capacity is provided to compensate the leak current and that two TFTs are connected in series to reduce the leak current when it is used in a liquid crystal display.
For example, a method to form an amorphous silicon and to irradiate laser selectively on it to crystallize only a peripheral circuit has been proposed for forming the peripheral circuit of polysilicon TFTs having a high mobility monolithically on the same substrate while utilizing a high OFF resistance of the amorphous silicon TFT.
Presently, however, its yield is low due to a problem of reliability of the laser irradiating process (such as a bad homogeneity of the irradiated energy within the irradiated surface), so that a method to construct a matrix by amorphous silicon TFTs and to construct driving circuits by connecting monocrystal integrated circuits by a TAB method or the like is being adopted in the end. However, this method requires a more than 0.1 mm of pixel pitch from the physical restriction in the connection and its cost becomes high.
The present invention is intended to solve such difficult problems, but it is not desirable to complicate the process and to lower its yield or to increase its cost for that end. What the present invention intends is to fabricate two kinds of TFTs, i.e. a TFT in which a high mobility is required and a TFT in which a leak current is required to be low, readily and discriminately while keeping mass-producibility and while minimizing changes of its process.
Further, it is another object of the present invention to reduce a difference between the mobility of the NMOS and of the PMOS in the CMOS circuit. The reduced difference between the NMOS and PMOS allows to increase a degree of freedom in designing the circuit.
Semiconductor circuits to which the present invention is applied are not universal. That is, the present invention is suited for an active matrix circuit for displaying images by utilizing such materials which change transmittivity or reflectivity of light by an effect of electric field, by sandwiching those materials between electrodes facing to each other and by applying the electric field between those electrodes such as a liquid crystal display; a memory device for holding memory by storing charge in capacitors such as DRAM; a circuit having a dynamic circuit such as a dynamic shift register which drives the next circuit by capacitors of MOS structure portion of MOS transistors or other capacitors; and a circuit having a digital circuit and a circuit for controlling analog signal outputs such as a driving circuit of an image sensor. The present invention is suited especially to a circuit in which dynamic circuits and static circuits are mixedly mounted.
SUMMARY OF THE INVENTION
The present invention is characterized in that a crystalline silicon film is obtained by forming island film, dots, particles, clusters or lines containing a material selected from the group consisting of nickel, iron, cobalt, ruthenium, rhodium, paradium, osmium, iridium, platinum, scandium, titanium, vanadium, chrome, manganese, copper, zinc, gold and silver and a combination thereof on or under the silicon film which is in an amorphous state or in a random crystal state (e.g. a state in which portions having a good crystallinity and amorphous portions are mixed) which can be said substantially as being in an amorphous state, and by annealing it at a temperature lower than a crystallization temperature in a mere heat treatment of normal amorphous silicon for a shorter time. This annealing may be carried out in a hydrogen, oxygen or nitrogen atmosphere. This annealing can be carried out by (1) heating for A hours in an atmosphere containing oxygen and then heating for B hours in an atmosphere containing hydrogen: (2) heating for C hours in an atmosphere containing oxygen and then heating for D hours in an atmosphere containing nitrogen: (3) heating for E hours in an atmosphere containing hydrogen and then heating for F hours in an atmosphere containing oxygen: (4) heating for G hours in an atmosphere containing hydrogen and then heating for H hours in an atmosphere containing nitrogen: (5) heating for I hours in an atmosphere containing nitrogen and then heating for J hours in an atmosphere containing oxygen: (6) heating for K hours in an atmosphere containing nitrogen and then heating for L hours in an atmosphere containing hydrogen: (7) heating for M hours in an atmosphere containing oxygen, heating for N hours in an atmosphere containing hydrogen and then heating for P hours in an atmosphere containing nitrogen: (8) heating for Q hours in an atmosphere containing oxygen, heating for E hours in an atmosphere containing nitrogen and then heating for S hours in an atmosphere containing hydrogen: (9) heating for T hours in an atmosphere containing hydrogen, heating for U hours in an atmosphere containing oxygen and then heating for V hours in an atmosphere containing nitrogen: (10) heating for W hours in an atmosphere containing hydrogen, heating for X hours in an atmosphere containing nitrogen and then heating for Y hours in an atmosphere containing oxygen: (11) heating for Z hours in an atmosphere containing nitrogen, heating for A' hours in an atmosphere containing oxygen and then heating for B' hours in an atmosphere containing hydrogen: or (12) heating for C' hours in an atmosphere containing nitrogen, heating for D' hours in an atmosphere containing hydrogen and then heating for E' hours in an atmosphere containing oxygen.
Concerning to the crystallization of silicon film, a method to form a crystalline island film as a nucleus or seed crystal and to grow it epitaxially in solid phase (for example Japanese Patent Laid-Open No. 1-214110) has been proposed in the past. However, crystal barely grew under 600° C. of temperature by such method. Generally silicon undergoes a process when it transfers from an amorphous state to a crystal state that molecular chains in the amorphous state are parted and after putting the parted molecules into a state that they would not couple with other molecules again, molecules are recombined into a portion of a crystal in combination with some crystalline molecules. However, energy for parting the initial molecular chains and for keeping them in the state not to couple with other molecules is great in this process and it has been blocking the crystallization reaction. In order to supply this energy, it takes several minutes with about 1000° C. of temperature or several tens of hours with about 800° C. of temperature. Because the time exponentially depends on the temperature (=energy), an advancement of the crystallization reaction could not be observed almost at all at less than 800° C. or at 550° C. for example. The concept of epitaxial crystallization in solid phase also could not give any solution to this problem.
Then the inventor of the present invention thought of lowering the blocking energy in the aforementioned process by some catalytic action which is totally different from the concept of conventional solid phase crystallization. The inventor noticed on that nickel (Ni), iron (Fe), cobalt (Co), ruthenium (Ru), rhodium (Rh), paradium (Pd), osmium (Os), iridium (Ir), platinum (Pt), scandium (Sc), titanium(Ti), vanadium (V), chrome (Cr), manganese (Mn), copper (Cu), zinc (Zn), gold (Au) and silver (Ag) readily couple with silicon.
For example, the inventor noticed on that in a case of nickel, it readily turns out to be nickel silicide (NiSix, 0.4 ≦χ≦2.5) and a lattice constant of nickel silicide is close to that of silicon crystal. Then, when energy and other were simulated in a ternary system of crystal silicon--nickel silicide--amorphous silicon, it was found that amorphous silicon readily reacts at the boundary with the nickel silicide and that the following reaction is brought about:
amorphous silicon (silicon A)+nickel silicide (silicon B)→nickel silicide (silicon A)+crystal silicon (silicon B) (silicon A and B indicate positions of silicon)
A potential of the block of this reaction is fully low and a reaction temperature is also low. This reaction formula indicates that the reaction proceeds while converting amorphous silicon into crystal silicon by nickel. It was found that the reaction actually started at less than 580° C. and that the reaction could be observed even at 450° C. Though it is a matter of course, the higher the temperature, the faster the speed of the advancement of reaction was. The same effect was also recognized with other metal elements described above.
According to the present invention, a crystal silicon region is expanded by forming a film, particle or cluster containing at least one of Ni, Fe, Co, Ru, Rh, Pd, Os, Ir, Pt, Sc, Ti, V, Cr, Mn, Cu, Zn, Au and Ag such as island, stripe, line, dot or film of nickel or other simple metal substances described above or their silicide as a starting point and by developing those metal elements from the point to surroundings along the reaction described above. By the way,, oxide is not preferable as a material containing those metal elements, because oxide is a stable compound and cannot start the aforementioned reaction.
The crystal silicon expanded from a specific point has a structure close to monocrystal with good continuity of crystallinity, though it differs from the conventional solid phase epitaxial growth, so that it is convenient in using for semiconductor devices such as a TFT. However, an infinite number of crystallization starting points existed when a material containing the aforementioned metals for accelerating the crystallization such as nickel was provided homogeneously on a substrate and due to that, it was difficult to obtain a film having a good crystallinity.
A better result was obtained when a concentration of hydrogen was less in the amorphous silicon film as the starting material of this crystallization. However, because hydrogen was released as the crystallization advanced, no such a clear correlation was seen between a concentration of hydrogen within a silicon film obtained and that in the amorphous silicon film as the starting material. The concentration of hydrogen within the crystal silicon of the present invention was typically more than 0.01 atomic percent and less than 5 atomic percent.
Although Ni, Fe, Co, Ru, Rh, Pd, Os, Ir, Pt, Sc, Ti, V, Cr, Mn, Cu, Zn, Au and Ag are used in the present invention, these materials are not generally preferable for silicon as a semiconductor material and it is necessary to remove them. In terms of nickel, because nickel silicide which reached the end of the crystallization as a result of the aforementioned reaction is easily resolved in hydrofluoric acid or hydrochloric acid or dilution of them, nickel can be reduced from the substrate by means of a treatment by those acids. Further, those metal elements can be positively reduced by treating at 400° to 600° C. in an atmosphere containing chlorine such as hydrogen chloride, various methane chlorides (CH3 Cl, CH2 Cl2, CHCl3), various ethane chlorides (C2 H5 Cl, C2 H4 Cl2, C2 H3 Cl3, C2 H2 Cl4, C2 HCl5) or various ethylene chlorides (C2 H3 Cl, C2 H2 Cl2, C2 HCl3) after the end of the crystallization process. Especially, trichloroethylene (C2 HCl3) is a material which can be easily used. A concentration of Ni, Fe, Co, Ru, Rh, Pd, Os, It, Pt, Sc, Ti, V, Cr, Mn, Cu, Zn, Au and Ag in the silicon film of the present invention was typically more than 0.005 atomic percent and less than 1 atomic percent.
In using the crystal silicon film fabricated according to the present invention for a semiconductor element such as a TFT, it is not preferable to provide the semiconductor element on the end of the crystallization (it is also a portion where the crystallization started from a plurality of starting points hit each other) because a large grain boundary (a portion where crystallinity is discontinued) exists and the concentration of metal elements which accelerate the crystallization such as nickel is high there as it is obvious from the description above. Accordingly, a pattern of a coating film containing the metal elements which become the starting point of the crystallization and accelerate it such as nickel and a pattern of the semiconductor element must be optimized in forming the semiconductor element utilizing the present invention.
In the present invention, roughly there are two methods for patterning the metal elements which accelerate the crystallization. A first method is to selectively form a film or the like of those metals before forming an amorphous silicon film and a second method is to selectively form a film or the like of those metals after forming the amorphous silicon film.
The first method can be implemented by using a normal photolithographic means or lift-off means. The second method is complicated more or less. That is, if the film or the like of the metals which accelerate the crystallization is formed adhering to the amorphous silicon film, the metal and the amorphous silicon partially react each other producing silicide when forming the film. Therefore, it is necessary to fully etch such silicide layer when patterning after forming the metal film or the like.
In the second method, the lift-off method is relatively easily carried out. In this case, organic materials such as photoresist or non-organic materials such as silicon oxide or silicon nitride may be used as a masking material. A processing temperature must be taken into consideration in selecting the masking material. Further, because a masking action differs depending on materials, a full attention needs to be paid on it. Especially, a film of silicon oxide or silicon nitride formed by various CVD methods has many pinholes and the crystallization may advance from an unexpected section if the film is not fully thick.
Generally, patterning is implemented after forming the coating film using those masking materials to selectively expose the surface of amorphous silicon. Then the metal film or the like which accelerates the crystallization is formed.
What must be taken care of in the present invention is the concentration of metal elements within the silicon film. Although nothing is better than that its amount is small, it is also important for the amount to be always kept constant. It is because a considerable fluctuation in the degree of crystallization is brought about per lot in the manufacturing site if the amount of the metal element fluctuates significantly. It becomes more difficult to reduce the fluctuation of the amount especially when the amount of the metal element is required to be less.
In the first method, because the metal film or the like selectively formed is coated by the amorphous silicon film, it cannot be taken out later to adjust its amount. In terms of the amount of metal element required in the present invention, the thickness of the metal film or the like is so thin as several to several tens angstrom, so that it is difficult to form the film with a good reproducibility.
The same also applies to the second method. However, there is a room of improvement in the second method as compare to the first method because the metal film or the like which accelerate the crystallization exists on the surface in this method. That is, a fully thick metal film is formed and a heat treatment (pre-annealing) is implemented at a temperature lower than an annealing temperature before annealing to react a part of the amorphous silicon film and the metal film and to produce silicide. Then the metal film which did not react is etched. Although it depends on a metal used, there is no problem particularly in terms of Ni, Fe, Co, Ti and Cr because there is an etchant in which an etching rate of the metal film and the silicide is fully large.
In this case, a thickness of the silicide layer obtained is determined by the temperature and time of the heat treatment (pre-annealing) and the thickness of the metal layer has almost nothing to do with it. Due to that, the very small amount of metal element introduced in the amorphous silicon film can be controlled.
The present invention also utilizes that there is a difference in degrees of crystallization when the surface of semiconductor is covered by a coating film (cover film) of silicon oxide or silicon nitride and when not covered when crystallizing a crystalline silicon TFT in a temperature at 450 ° to 1000° C. or preferably at 500° to 800° C. in an atmosphere containing oxygen, hydrogen or nitrogen. Such atmosphere can be an atmosphere containing oxygen, atmosphere containing hydrogen, atmosphere containing nitrogen, atmosphere containing oxygen and hydrogen, atmosphere containing oxygen and nitrogen, atmosphere containing hydrogen and nitrogen or atmosphere containing oxygen, hydrogen and nitrogen. The aforementioned crystallization can be carried out by (1) heating for A hours in the atmosphere containing oxygen and then heating for B hours in the atmosphere containing hydrogen: (2) heating for C hours in the atmosphere containing oxygen and then heating for D hours in the atmosphere containing nitrogen: (3) heating for E hours in the atmosphere containing hydrogen and then heating for F hours in the atmosphere containing oxygen: (4) heating for G hours in the atmosphere containing hydrogen and then heating for H hours in the atmosphere containing nitrogen: (5) heating for I hours in the atmosphere containing nitrogen and then heating for J hours in the atmosphere containing oxygen: (6) heating for K hours in the atmosphere containing nitrogen and then heating for L hours in the atmosphere containing hydrogen: (7) heating for M hours in the atmosphere containing oxygen, heating for N hours in the atmosphere containing hydrogen and then heating for P hours in the atmosphere containing nitrogen: (8) heating for Q hours in the atmosphere containing oxygen, heating for (9) hours in the atmosphere containing nitrogen and then heating for S hours in the atmosphere containing hydrogen: (9) heating for T hours in the atmosphere containing hydrogen, heating for U hours in the atmosphere containing oxygen and then heating for V hours in the atmosphere containing nitrogen: (10) heating for W hours in this atmosphere containing hydrogen, heating for X hours in the atmosphere containing nitrogen and then heating for Y hours in the atmosphere containing oxygen: (11) heating for Z hours in the atmosphere containing nitrogen, heating for A' hours in the atmosphere containing oxygen and then heating for B' hours in the atmosphere containing hydrogen: or (12) heating for C' hours in the atmosphere containing nitrogen, heating for D' hours in the atmosphere containing hydrogen and then heating for E' hours in the atmosphere containing oxygen. It is particularly preferable (4) to heat for G hours in the atmosphere containing hydrogen and then to heat for H hours in the atmosphere containing nitrogen, (5) to heat for I hours (4 hours for example) in the atmosphere containing nitrogen and then to heat for J hours (1 hour for example) in the atmosphere containing oxygen, or (6) to heat for K hours (4 hours for example) in the atmosphere containing nitrogen and then to heat for L hours (1 hour for example) in the atmosphere containing hydrogen. Generally the crystallinity is good and as a natural consequence, a TFT having a high mobility can be obtained when the cover film exists. However, generally its leak current becomes significant. On the other hand, the one having no cover film has an advantage that the leak current is low, though the crystallinity is not good and its mobility is low because it turns out be amorphous state depending on temperature.
This characteristic is considered to be governed by the existence of hydrogen, oxygen or nitrogen within the atmosphere infiltrated to the active layer. This crystallization may be carried out by implementing it in nitrogen for example and then in hydrogen or oxygen. Thus TFTs having different characteristics may be formed on the same substrate in the same time and in the same process. For example, the former high mobility TFT can be used as a driving circuit of a matrix and the latter low leak current TFTs can be used as TFTs in the matrix portion.
Or a mobility in the NMOS can be relatively reduced as compare to that in the PMOS and a difference between the both can be almost eliminated in the optimum condition by not providing the cover film on the NMOS region and providing it on the PMOS region in the CMOS circuit.
The temperature of the thermal crystallization is an important parameter and the crystallinity of a TFT is determined by the temperature in the present invention. Generally, the temperature of thermal annealing is restricted by a substrate and other materials. As far as the restriction of a substrate material is concerned, a thermal annealing of up to 1100° C. is possible when silicon and silica are used as a substrate. However, it is desirable to anneal at less than 650° C. of temperature in a case of Coning 7059 glass which is a typical non-alkaline glass. However, it must be set considering characteristics required for each TFT, other than the substrate, in the present invention from the aforementioned reasons. When the annealing temperature is high, generally a growth of crystal of TFT advances, the mobility is increased and the leak current increases. Accordingly, the annealing temperature should be 450° to 1000° C. or preferably 500° to 800° C. in order to obtain TFTs having different characteristics on the same substrate like the present invention.
One such example of the present invention is that in a display section of an active matrix circuit of a liquid crystal display or the like, polysilicon TFTs are used as switching transistors and that no cover film is provided in the active matrix region when crystallizing an active layer and on the other hand the cover film is provided on the peripheral circuit region to turn the former into low leak current TFTs and the latter into high mobility TFTs.
FIG. 8(A) shows a conceptual drawing of a device having a display circuit section (active matrix) and a driving circuit (peripheral circuit) therefor as described above. In the figure, a display device is shown in which a data driver 101 and gate driver 102 are arranged, an active matrix 103 having TFTs is arranged in the middle and those driver sections and the active matrix are connected through gate lines 105 and data lines 106 on an insulating substrate 107. The active matrix 103 is an aggregate of picture element cells 104 having a NMOS or PMOS TFT (PMOS in the figure).
For a CMOS circuit of the driver section, a concentration of impurities such as oxygen, nitrogen and carbon in the active layer is desirable to be less than 1018 cm-3 or preferably less than 1017 cm-3 in order to obtain a high mobility. As a result, a threshold voltage of the TFT was 0.5 to 2 V in the NMOS and -0.5 to -3 V in the PMOS for example and a mobility was 30 to 150 cm2 /Vs in the NMOS and 20 to 100 cm2 /Vs in the PMOS.
On the other hand, an auxiliary capacity could be reduced and further be totally eliminated in the active matrix section by using single or a plurality of elements in series having as low as about 1 pA of leak current with 1 V of drain voltage.
A second example of the present invention relates to a semiconductor memory. A semiconductor memory device by means of monocrystal ICs has already reached to its limit in terms of speed. Although it is necessary to increase a current capacity of transistors in order to operate it in a higher speed, it causes a further increase of power consumption and it cannot but be dealt by increasing driving voltage so long as a capacity o:F capacitors cannot be increased further for a DRAM which carries out memory operations by storing charge in the capacitors.
One reason why it is said that monocrystal ICs have reached its speed limit is because a large loss is brought about by a capacity of the substrate and wires. It is possible to drive in fully high speed without increasing power consumption if an insulator is used for the substrate. From such a reason, an IC having a SOI (semiconductor on insulator) structure has been proposed.
A circuit arrangement of the DRAM is almost the same with that of the aforementioned liquid crystal display device in a case of 1 Tr/cell structure and in a DRAM having a structure other than that (for example 3 Tr/cell structure), no cover film is provided in a memory bit section when crystallizing an active layer and on the other hand, a cover film is provided on a region of a driving circuit because it is required to operate in fully high speed in the same manner with the case of the aforementioned liquid crystal display device to turn the former into low leak current TFTs and the later into high leak current TFTs.
The basic block structure of such semiconductor memory device is the same with that shown in FIG. 8A. For example, in the DRAM, the reference numeral (101) can be a column decoder, (102) a row decoder, (103) a memory elements section, (104) a unit memory bit, (105) bit lines, (106) word lines, and (107) an (insulating) substrate.
A third application example of the present invention is a driving circuit for an image sensor or the like. FIG. 8(B) shows an example of a one bit circuit of an image sensor, wherein a flip-flop circuit 108 and a buffer circuit 109 are normally constructed by a CMOS circuit and are required to respond in such high speed that they can follow up high speed pulses applied to a scan line. On the other hand, a TFT 110 in a signal output stage plays a role of a dam that discharges a charge accumulated in a capacitor by a photodiode to a data line by receiving a signal from the shift register sections 108 and 109.
Such TFT 110 is required not only to respond in high speed but also to have less leak current. Accordingly, the region of the circuits 108 and 109 is crystallized by providing a cover film to turn it into a high mobility TFT and the region of the TFT 110 on the other hand is crystallized without providing cover film to turn it into a low leak current TFT in such a circuit.
In the present invention, silicon oxide, silicon nitride or silicon oxinitride (SiNx Oy) may be used as the cover film. Although the thicker the cover film, the better the covering ability is, the thickness must be determined considering a massproducibility and covering ability thereof because it takes a time to form a thick film. Though the covering ability differs depending on a quality of film, typically the thickness must be more than 20 nm for a silicon oxide film and more than 10 nm for a silicon nitride film. The thickness is desired to be 20 to 200 nm for both of the silicon oxide film and the silicon nitride film when considering mass-producibility and reliability.
The above and other advantages of the present invention will become more apparent in the following description and the accompanying drawings in which like reference numerals refer to like parts throughout several views.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1(A) to 1(C) are top views showing a process of the present embodiment (crystallization and arrangement of TFT);
FIGS. 2(A-1), 2(A-2) and 2(B) to 2(D) are section views showing the process of the embodiment (a selectively crystallizing process)
FIGS. 3(A) to 3(C) are section views showing the process of the embodiment (see a first embodiment);
FIGS. 4(A) to 4(C) are section views showing the process of the embodiment (see the first embodiment);
FIGS. 5(A) to 5(C) are section views showing the process of the embodiment (see a second embodiment);
FIGS. 6(A) to 6(C) are section views showing the process of the embodiment (see a third embodiment);
FIGS. 7(A) to 7(E) are section views showing the process of the embodiment (see a fourth embodiment);
FIG. 8(A) is a block diagram showing a case when the present invention is applied to an active matrix device;
FIG. 8(B) is a circuit diagram of an exemplified circuit when the present invention is applied to a drive circuit of an image sensor;
FIGS. 9(A) to 9(C) are section views showing the process of the embodiment;
FIGS. 10(A) to 10(C) are section views showing the process of the embodiment; and
FIGS. 11(A) to 11(D) are section views showing the process of the embodiment.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
[First Embodiment ]
A method for fabricating a TFT using a crystal silicon film obtained by crystallizing an amorphous silicon film using a plurality of island nickel films formed on Coning 7059 glass substrate as starting points will be described in the present embodiment. There are two methods for forming the island nickel films depending on whether it is formed on or under the amorphous silicon film. FIG. 2(A-1) shows the method wherein it is formed under the film and FIG. 2(A-2) shows the method wherein it is formed on the film. What must be careful especially about the later is that because nickel is selectively etched after forming it on the whole surface of the amorphous silicon film in the process, nickel and amorphous silicon react each other and produce nickel silicide, though it is a small amount. Because a good crystalline silicon film which the present invention aims for cannot be obtained if this nickel silicide remains as it is, it is necessary to remove this nickel silicide fully by hydrochloric acid or hydrofluoric acid. Due to that, the amorphous silicon is thinned down from the initial state.
On the other hand, although no such problem is caused in the case of the former, it is desirable to completely remove the nickel film other than that of the island portion 2 by etching also in this case. The influence of the residual nickel may be suppressed by oxidizing nickel other than that of the island region by treating the substrate by oxygen plasma or ozone.
In either of the cases, a ground silicon oxide film 1B with a thickness of 2000 angstrom was formed on a substrate 1A (Coning 7059) by a plasma CVD method. The amorphous silicon film 1 was fabricated by a plasma CVD method or vacuum CVD method with a thickness of 200 to 3000 angstrom or preferably 500 to 1500 angstrom. The amorphous silicon film was readily crystallized after removing hydrogen by annealing 0.1 to 2 hours at 350° to 450° C. to keep the hydrogen concentration within the film to less than 5 atomic percent.
In the case of FIG. 2(A-1), the nickel film was accumulated up to a thickness of 50 to 1000 angstrom or preferably to 100 to 500 angstrom by sputtering and was patterned to form the island nickel regions 2 before forming the amorphous silicon film 1.
In the case of FIG. 2(A-2) on the other hand, the nickel film was accumulated up to 50 to 1000 angstrom or preferably to 100 to 500 angstrom by sputtering and was patterned to form the island nickel regions 2 after forming the amorphous silicon film 1. FIG. 1(A) shows this state seen from above.
Each of the island nickel is a square with a side of 2 micron and an interval therebetween was set at 5 to 50 micron or 20 micron for example. A similar effect may be obtained by using nickel silicide instead of nickel. A good result could be obtained when the substrate was heated up to 100° to 500° C. or preferably to 180° to 250° C. when the nickel was to be formed. It is because an adhesion of the ground silicon oxide film with the nickel film is improved and because nickel silicide is produced by the reaction of silicon oxide and nickel. The same effect can be obtained by using silicon nitride, silicon carbide or silicon instead of silicon oxide.
It was then annealed in a nitrogen atmosphere for 8 hours at 450° to 580° C. or at 550° C. for example. This annealing may be carried out in a mixed atmosphere of nitrogen and hydrogen. Or this annealing may be carried out in a hydrogen atmosphere for X1 hours and then in a nitrogen atmosphere for X2 hours. FIG. 2(B) shows the intermediate state of this process wherein nickel advance from the island nickel regions 2 near the edge to the center as nickel silicide 3A and portions 3 where nickel had passed have become crystal silicon. Then as shown in FIG. 2(C), the crystallizations which started from the two island nickel films hit and the nickel silicide 3A remains in the middle, thereby ending the crystallization.
FIG. 1(B) shows the substrate in this state seen from above, wherein the nickel silicide 3A in FIG. 2(C) is an intercrystalline boundary 4. When the annealing is continued, nickel moves along the intercrystalline boundary 4 and gathers an intermediate region 5 of those island nickel regions (though their original shape is not kept in this state).
Crystal silicon can be obtained by the aforementioned process, but it is not desirable for nickel to diffuse within the semiconductor coating film from the nickel silicide 3A produced at this time. Accordingly, it is desirable to eliminate the region where nickel is highly concentrated by etching by hydrofluoric acid or hydrochloric acid. By the way, because an etching rate of the nickel and nickel silicide is fully large, the silicon film is not affected in the etching by means of hydrofluoric acid or hydrochloric acid. The regions where the growing point of nickel had been located were removed together in the same time. FIG. 2(D) shows the state after the etching. The portion where there was the intercrystalline boundary turns out to be a groove 4A. It is not desirable to form semiconductor regions (active layer or the like) of a TFT so as to pinch this groove. The TFT was arranged so that semiconductor regions 6 would not cross the intercrystalline boundary 4 as shown in FIG. 1(C). That is, the TFT was formed in a crystal growth region in the horizontal direction parallel to the substrate, not in the thickness direction of the coating film, by the action of nickel. Then, the growth direction of the crystal could be uniformly arranged and residual nickel could be minimized. As a result, a high TFT characteristics could be obtained. On the other hand, gate wires 7 may cross the intercrystalline boundaries 4.
FIGS. 3 and 4 show examples of the method for fabricating a TFT using the crystal silicon obtained in the process described above. In FIG. 3(A), the reference character X in the middle indicates the place where there was the groove 4A in FIG. 2. As shown in the figure, it was arranged so that semiconductor regions of the TFT would not cross this X portion. That is, island semiconductor regions 11a and 11b were formed by patterning the crystal silicon film 3 obtained in the process shown in FIG. 2. Then a silicon oxide film 12 which functions as a gate insulating film was formed by such methods as RF plasma CVD, ECR plasma CVD or sputtering.
Further gate electrodes 13a and 13b were formed by forming a polycrystalline silicon film with a thickness of 3000 to 6000 angstrom in which 1×1020 to 5×1020 cm-3 of phosphorus is doped by a vacuum CVD method and then by patterning it (FIG. 3(A)).
Then impurity was doped by a plasma doping method. As a doping gas, phosphine (PH3) was used for an N type TFT and diborane (B2 H6) for a P type TFT. The figure shows the N type TFT. An acceleration voltage was 80 keV for phosphine and 65 keV for diborane. The impurity was activated by annealing for four hours at 550° C. to form impurity regions 14a through 14d. A method of using optical energy such as laser annealing or flash lamp annealing may be also used for the activation (FIG. 3(B)).
Finally, a silicon oxide film with a thickness of 5000 angstrom was deposited as an interlayer insulator 15 similarly to a case when TFT is normally fabricated, and contact holes were formed therethrough to form wires and electrodes 16a through 16d in source and drain regions (FIG. 3(C)).
The TFT (N channel type in the figure) was thus fabricated in the process described above. The field effect mobility of the TFT obtained was 40 to 60 cm2 /Vs in the N channel type and 30 to 50 cm2 /Vs in the P channel type.
FIG. 4 shows a process how a TFT for aluminum gate was fabricated. In FIG. 4(A), the reference character X in the middle indicates the place where there was the groove 4A in FIG. 2. As shown in the figure, it was arranged so that semiconductor regions of the TFT would not cross this X portion. That is, island semiconductor regions 21a and 21b were formed buy patterning the crystal silicon film 3 obtained in the process shown in FIG. 2. Then a silicon oxide film 22 which functions as a gate insulating film was formed by such methods as RF plasma CVD, ECR plasma CVD or sputtering. When the plasma CVD method was adopted, a preferable result could be obtained by using TEOS (tetra-ethoxi-silane) and oxygen as original gases. Then an aluminum film (5000 angstrom thick) containing 1% of silicon was deposited by sputtering and was patterned to form gate wires and electrodes 23a and 23b.
Next, the substrate was soaked into an ethylene glycol solution of 3% tartaric acid and anodic oxidation was implemented by setting platinum as a cathode and an aluminum wire as an anode and by flowing current therebetween. The current was applied so that its voltage would increase 2V/min. initially and the voltage was fixed when it reached to 220 V. The current was stopped when it became less than 10 microA/m2. As a result, anode oxides 24a and 24b with a thickness of 2000 angstrom were formed as shown in FIG. 4(A).
Then impurity was doped by a plasma doping method. As a doping gas, phosphine (PH3) was used for an N type TFT and diborane (B2 H6) for a P type TFT. The figure shows the N type TFT. An acceleration voltage was 80 keV for phosphine and 65 keV for diborane. The impurity was activated by annealing by laser to form impurity regions 25a through 25d. The laser used was a KrF laser (wavelength: 248 nanometer) and five shots of laser lights having 250 to 300 mJ/cm2 of energy density were irradiated (FIG. 4(B)).
Finally, a silicon oxide film with a thickness of 5000 angstrom was deposited as an interlayer insulator 26 similarly to the case when TFT is normally fabricated and contact holes were formed therethrough to form wires and electrodes 27a through 27d in source and drain regions (FIG. 4(C)).
The field effect mobility of the TFT obtained was 60 to 120 cm2 /Vs in the N channel type and 50 to 90 cm2 /Vs in the P channel type TFT. In a shift register fabricated by using this TFT, operations at 6 MHz in 17 volts of drain voltage and at 11 MHz in 20 V were confirmed.
[Second Embodiment]
FIG. 5 shows a case when a TFT for an aluminum gate was fabricated similarly to that shown in FIG. 4. However, the amorphous silicon was used as an active layer in this embodiment; As shown in FIG. 5(A), a ground silicon oxide film 32 was deposited on a substrate 31 and an amorphous silicon film 33 with a thickness of 2000 to 3000 angstrom was deposited further on that. An adequate amount of P type or N type impurities may be mixed in the amorphous silicon film. Then island nickel or nickel silicide coating film 34A and 34B were formed as described above and the amorphous silicon film was crystallized by growing laterally by annealing for 8 hours at 550° C. or for four hours at 600° C. in this state.
Then a crystal silicon film thus obtained was patterned as shown in FIG. 5(B). At this time, because the silicon film contained a large amount of nickel in the middle in the figure (the intermediate portion between the nickel or nickel silicide film 34A and 34B), the patterning was carried out so as to remove such portion and to form island silicon regions 35A and 35B. Then a substantially intrinsic amorphous silicon film 36 was deposited further on that.
After that, as shown in FIG. 5(C), a coating film was formed by such substances as silicon nitride and silicon oxide as a gate insulating film 37. A gate electrode 38 was formed by aluminum and an anodic oxidation was implemented in the same manner with the case of FIG. 4. Then impurity was diffused by an ion doping method to form impurity regions 39A and 39B. Then the TFT was completed by depositing further an interlayer insulator 40, by forming contact holes and forming metallic electrodes 41A and 41B at source and drain regions. This TFT is characterized in that the semiconductor film at the source and drain portions is thick and that a resistance thereof is small. As a result, a resistance in the source and drain regions is reduced and the characteristics of the TFT is improved. Further, contact holes can be readily formed.
[Third Embodiment]
FIG. 6 shows a process when a CMOS type TFT was fabricated. As shown in FIG. 6(A), a ground silicon oxide film 52 was deposited on a substrate 51 and an amorphous silicon film 53 with a thickness of 1000 to 1500 angstrom was deposited further on that. Then as described above, island nickel or nickel silicide coating film 54 was formed and annealing was implemented in this state at 550° C. A silicon silicide region 55 moved in the direction of plane, not in the direction of thickness, of the coating film and the crystallization advances by this process. The amorphous silicon film changed into crystal silicon as shown in FIG. 6(B) by four hours of annealing. The silicon silicide regions 59A and 59B were driven away toward the edge along the advancement of the crystallization.
Then an island silicon region 56 was formed by patterning the crystal silicon film thus obtained as shown in FIG. 6(B). Here, an attention must be paid on that nickel was highly concentrated in the both ends of the island region. After forming the island silicon region, a gate insulating film 57 and gate electrodes 58A and 58B were formed.
Then N type impurity regions 60A and P type impurity regions 60B were formed by diffusing an impurity by an ion doping method as shown in FIG. 6(C). At this time, the doping can be carried out by using phosphorus as a N type impurity (doping gas is phosphine PH3) and by doping across the whole surface by 60 to 110 kV of acceleration voltage and then after covering the region of the N channel type TFT by a photoresist, by using boron for example as a P type impurity (doping gas is diborane B2 H6) and by doping with 40 to 80 kV of acceleration voltage.
After the doping, the source and drain region were activated by irradiating laser light similarly to the case in FIG. 4. Then the TFT was completed by depositing further an interlayer insulator 61, by forming contact holes and forming metallic electrodes 62A, 62B and 62C at the source and drain regions.
[Fourth Embodiment]
FIG. 7 shows the fourth embodiment. The present embodiment relates to a method in which silicide is produced by reacting a nickel film with a portion of amorphous silicon film by a first heat treatment (pre-annealing) and the amorphous silicon is crystallized by annealing after removing a non-reactive nickel film.
A ground silicon oxide film 702 (thickness: 2000 angstrom) was formed on a substrate (Coning No. 7059) 701 by a sputtering method. Then a silicon film 703 with a thickness of 300 to 800 angstrom or 500 angstrom thick for example was formed. Further, a silicon oxide film 704 was formed by a plasma CVD method. This silicon oxide film 704 acts as a masking material and its thickness was preferred to be 500 to 2000 angstrom. If it is too thin, the crystallization advances from an unexpected location by pinholes and if it is too thick, it takes a time to form the film and is not suited for mass-production. Then it was set at 1000 angstrom here.
After that, the silicon oxide film 704 was patterned by a known photolithographic process. Then a nickel film 705 (thickness: 500 angstrom) was formed by a sputtering method. The thickness of the nickel film 705 was preferred to be more than 100 angstrom (FIG. 7(A)).
Then it was annealed for 10 to 60 minutes in a nitrogen atmosphere at 250° to 450° C. (a pre-annealing process). For example, it was annealed for 20 minutes at 450° C. As a result, a nickel silicide layer 708 was formed within the amorphous silicon. A thickness of this layer was determined by a temperature and time of the pre-annealing and the thickness of the nickel film 705 was almost nothing to do with it (FIG. 7(B)).
After that, the nickel film was etched. Nitric or hydrochloric solution was suitable for the etching. The nickel silicide layer was barely etched during the etching of the nickel film by those etchants. In the present embodiment, an etchant in which acetic acid was added into nitric acid as a buffer was used. The ratio set was: nitric acid: acetic acid: water=1:10:10. After removing the nickel film, it =was annealed for 4 to 8 hours at 550° C. (a crystallizing annealing process).
Several methods were tried in the crystallizing annealing process. A first method was to implement this process while remaining the masking material 704 as shown in FIG. 7(C). The crystallization advances as indicated by arrows in FIG. 7(C). A second method was to anneal after removing all the masking material and exposing the silicon film. A third method was to anneal after removing the masking material and after forming a new coating film 707 composed of silicon oxide or silicon nitride on the surface of silicon film as a protection film as shown in FIG. 7 (D).
Although the first method was simple, the surface of the masking material 704 reacted with nickel in the pre-annealing step, and became silicate in the crystallizing annealing process at a higher temperature, and became hard to be etched. That is, because an etching rate of the silicon film and masking material 704 becomes almost equal, the portion where the silicon film is exposed is also largely etched when the masking material is removed later, creating steps on the substrate.
The second method is very simple and etching can be easily carried out since the reaction of the masking material with nickel is mild before the crystallizing annealing process. However, because the silicon surface was wholly exposed when the crystallizing annealing was carried out, characteristics of TFT or the like fabricated later degraded.
Although the third method allowed to firmly obtain a good quality crystal silicon film, it was complicated because the number of processes was increased. As a fourth method which was an improved version of the third method, a method comprising steps of putting into a furnace in a state when the silicon surface is exposed, heating for about one hour at 500° to 550° C. initially in an oxygen flow to form a thin silicon oxide film with a thickness of 20 to 60 angstrom thick on the surface and switching to a nitrogen flow as it is was studied as a crystallizing annealing condition. According to this method, an oxide film was formed in the initial stage of the crystallization. And that only the neighbor of the nickel silicide layer had been crystallized in this oxidation stage and a region which would be used for the TFT later (right side portion in the figure) was not crystallized. Due to that, the surface of the silicon film at the region far from the nickel silicide layer 706 was very flat. The characteristics improved more than that of the second method and was almost equal with that of the third method.
The crystal silicon film was thus obtained. Since then, the silicon film 703 was patterned while removing a portion where a value of concentration of nickel was high (a region where the origin of growth was located) and growth points (slanted portions at the end of the arrows in the figure) and while remaining only the region where the concentration of nickel was low. An island silicon region 708 which would be used for an active layer of the TFT was formed as described above. Then a gate insulating film 709 composed of silicon oxide with a thickness of 1200 angstrom was formed covering the region 708 by a plasma CVD method. Further, a gate electrode 710 and a wire 711 in a first layer were formed by a phosphorus doped silicon film with a thickness of 6000 angstrom and source/drain regions 712 were formed by injecting an impurity into the active layer 708 in a self-aligning manner using the gate electrode 710 as a mask. It was then effective for improving the crystallinity to irradiate visible or near infrared strong light. Further, a silicon oxide film with a thickness of 6000 angstrom was formed by a plasma CVD method as an interlayer insulator 713. Finally, contact holes were created in this interlayer insulator and a wire 714 in a second layer, source/drain electrode and wires 715 were formed by an aluminum film with a thickness of 6000 angstrom. The TFT was completed by the process described above (FIG. 7(E)).
[Fifth Embodiment]
FIG. 9 shows the present embodiment. In the present embodiment, a polysilicon TFT is formed in a peripheral circuit and an active matrix region of a TFT type liquid crystal display device.
At first, a ground oxide film 121 was deposited into a thickness of 20 to 200 nm by a sputtering method on a glass substrate 120 having a heat resisting quality such as a silica glass. Further on that, an amorphous silicon film was deposited into a thickness of 30 to 50 nm by a plasma CVD method or vacuum CVD method using mono-silane or di-silane as an original material. Here, a concentration of oxygen or nitrogen in the amorphous silicon film should have been less than 1018 cm-2 or preferably less than 1017 cm-2. The oxygen concentration was set to be less than 1017 cm-2 in the present embodiment. A silicon oxide film with a thickness of 100 to 150 nm or silicon nitride film with a thickness of 30 to 100 nm was formed on the amorphous silicon film by a sputtering method as a cover film. It was then patterned to leave a cover film 122 only in the peripheral circuit region. Then it was crystallized by leaving for 4 to 100 hours in an argon or nitrogen atmosphere (600° C.) containing 20 to 100 volume percent of oxygen or hydrogen. As a result, a crystallinity of a silicon film 123A in the peripheral circuit region was good and that of a silicon film 123B in the picture element region was not good. FIG. 9(A) shows this state.
Next, the silicon film was patterned into a shape of island to form a peripheral circuit TFT region 124A and a picture element TFT region 124B as shown in FIG. 9(B). Then a gate oxide film 125 was formed by means of sputtering or the like. It can be formed by a plasma CVD method using TEOS (tetraethoxisilane) instead of the sputtering method. It is desirable to anneal for 0.5 to 3 hours at a temperature more than 650° C. during or after the formation when forming the film using TEOS.
After that, a N-type silicon film with a thickness of 200 nm to 2 micron was formed by a LPCVD method and by patterning it, gate electrodes 126A through 126C were formed on each island region. A metallic material having a relatively good heat resistance such as tantalum, chrome, titanium, tungsten and molybdenum may be used instead of the N-type silicon film.
Then, an impurity was injected to the island silicon film of each TFT by an ion doping method in a self-aligning manner using the gate electrode section as a mask. At this time, phosphorus was injected across the whole surface employing phosphine (PH3) as a doping gas at first and after covering the right side of the island region 124A and the matrix region in the figure by a photoresist, boron was injected to the left side of the island region 124A employing diborane (B2 H6) as a doping gas. The dosage of phosphorus was set to be 20 to 8×1015 cm-2 and that of boron was 4 to 10×1015 cm-2 so that the dosage of boron would exceed that of phosphorus. A P-type region 127A and N- type regions 127B and 127C were thus created.
It was activated by annealing for 2 to 24 hours at a temperature between 550° and 750° C. The thermal annealing was carried out for 24 hours at 600° C. In the present embodiment. This annealing process activated the region in which ions were injected.
This process can be implemented by laser annealing. Because a thermal damage on the substrate is small when annealed by laser, a normal non-alkaline glass such as Coning 7059 can be used. Further, at that time, a material having an inferior heat resistance such as aluminum can be used as a material for the gate electrode. The P-type region 127A and N- type regions 127B and 127C were created by the process described above. A sheet resistance of those regions was 200 to 800 ohm/sheet.
After that, a silicon oxide film with a thickness of 300 to 1000 nm was formed across the whole surface by a sputtering method as an interlayer insulator 128. This may be a silicon oxide film formed by a plasma CVD method. A silicon oxide film having a good step coverage can be obtained by the plasma CVD method especially using TEOS as an original material.
Then an ITO film was created by a sputtering method and was patterned to form a picture element electrode 129. Contact holes were created in source/drain (impurity regions) of the TFT to form wires 130A through 130E made of chrome or titanium nitride. FIG. 9(C) shows that an inverter circuit have been created by the NTFT and PTFT on the left side. The wires 130A through 130E may be a multi-layered wire with aluminum based on chrome or titanium nitride in order to reduce a sheet resistance. Finally, it was annealed for 0.5 to 2 hours at a temperature between 200° and 350° C. in hydrogen to reduce a dangling bond of the silicon active layer. The peripheral circuit and the active matrix circuit could be integrally created. In the present embodiment, a typical mobility was 80 cm2 /Vs in the NMOS, 50 cm2 /Vs in the PMOS in the peripheral circuit section and 5 to 30 cm2 /Vs in the picture element TFT (NMOS).
[Sixth Embodiment]
FIG. 10 shows the present embodiment. In the present embodiment, a difference of mobility of NMOS and PMOS is reduced in a CMOS circuit utilizing the present invention. At first, a ground oxide film 132 was deposited into a thickness of 20 to 200 nm by a sputtering method on a Coning 7059 substrate 131. Further on that, an amorphous silicon film was deposited into a thickness of 50 to 250 nm by a plasma CVD method or vacuum CVD method using mono-silane or di-silane as an original material. Here, a concentration of oxygen or nitrogen in the amorphous silicon film should have been less than 1018 cm-2 or preferably less than 1017 cm-2. The vacuum CVD method was suited for this purpose. The oxygen concentration was set to be less than 1017 cm-2 in the present embodiment.
A cover film 133 (a silicon oxide film with a thickness of 50 to 150 nm) was provided on the region of PMOS. Then it was crystallized by annealing for 4 to 100 hours at 600° C. in an argon or nitrogen atmosphere at 600° C. containing more than 50 percent of oxygen or hydrogen. As a result, although a crystallinity of a region 134A under the cover film was good, that of a region 134B where there was no cover film was not good. FIG. 10(A) shows this state.
Next, the silicon film was patterned into a shape of island to form a PMOS region 135A and an NMOS region 135B as shown in FIG. 10(B). Then a silicon oxide film 125 with a thickness of 50 to 150 nm was formed by a sputtering method covering those island regions as a gate insulating film 136. Then an aluminum film was formed with a thickness of 200 nm to 2 micron by a sputtering method, and patterned to form a gate electrode. An anodic oxide film was formed on the upper and side surfaces of the gate electrode by feeding power to it in an electrolyte. Gate electrode sections 137A and 137B were formed on each island region by the process described above.
Then, an impurity was injected to the island silicon film of each TFT by an ion doping method in a self-aligning manner using the gate electrode section as a mask. At this time, phosphorus was injected across the whole surface employing phosphine (PH3) as a doping gas at first and after covering only the island region 135B in the figure by a photoresist, boron was injected to the island region 135A employing diborane (B2 H6) as a doping gas. The dosage of phosphorus was set to be 2 to 8×1015 cm-2 and that of boron to be 4 to 10×1015 cm-2 so that the dosage of boron would exceed that of phosphorus.
Although the crystallinity of the silicon film is broken by the doping process, it was possible to keep its sheet resistance around 1 kohm/sheet. However, if the sheet resistance of this degree is to much, the sheet resistance can be lowered by annealing further for 2 to 24 hours at 600° C. The same effect can be obtained by irradiating such a strong light as laser light.
A P-type region 138A and N-type regions 138B were thus created. A sheet resistance of those regions was 200 to 800 ohm/sheet. Then a silicon oxide film with a thickness of 300 to 1000 nm was formed across the whole surface by a sputtering method as an interlayer insulator 139. This may be a silicon oxide film formed by a plasma CVD method. A silicon oxide film having a good step coverage can be obtained by the plasma CVD method especially using TEOS as an original material.
Then contact holes were created in source/drain (impurity regions) of the TFT to form aluminum wires 140A through 140D. Finally, it was annealed for 2 hours at a temperature between 250° and 350° C. in hydrogen to reduce a dangling bond of the silicon film. A typical mobility of the TFT obtained by the process above was 60 cm2 /Vs both in the PMOS and NMOS. When a shift resistor was, fabricated using the process of the present embodiment, an operation of more than 10 MHz with 20 V of drain voltage was confirmed.
[Seventh Embodiment]
FIG. 11 shows the present embodiment. The present embodiment relates to a circuit in which a transistor and silicon resistance are combined. Silicon doped by impurity can be used as a protecting circuit of the transistor. At first, a ground oxide film 141 was deposited into a thickness of 20 to 200 nm by a sputtering method on a Coning 7059 substrate 140. Further on that, an amorphous silicon film 142 was deposited into a thickness of 100 to 250 nm by a plasma CVD method or vacuum CVD method using mono-silane or di-silane as an original material. Here, a concentration of oxygen or nitrogen in the amorphous silicon film should have been less than 1018 cm-2 or preferably less than 1017 cm-2.
A cover film 143 of a silicon oxide film with a thickness of 20 to 200 nm was deposited and it was crystallized by annealing for 4 to 100 hours in an argon or nitrogen atmosphere at 600° C. FIG. 11(A) shows this state.
Next, the silicon film was patterned into a shape of island to form a transistor region 144A and a resistance region 144B as shown in FIG. 11(B). Then a silicon oxide film with a thickness of 50 to 150 nm was formed by a sputtering method covering those island regions as a gate insulating film 145. Then an aluminum film was formed with a thickness of 200 nm to 2 micron by a sputtering method, and patterned to form a gate electrode. An anode oxide film was formed on the upper and side surfaces of the gate electrode by feeding power to it in an electrolyte. Gate electrode section 146 was formed on each island region by tile process described above.
Then, an impurity, e.g. phosphorus, was injected to the island silicon film of each TFT by an ion doping method in a self-aligning manner using the gate electrode section as a mask. The dosage of phosphorus was 2 to 8×1015 cm-2.
Impurity regions 147A and 147B were created by the doping process described above. Since the same amount of impurity is being injected in those two impurity regions, they show the same resistivity when they are thermally annealed as they are. However, there is a such case for example when a higher resistance is demanded to the latter whereas a lower resistance is always demanded to the former. Then, a cover film 148 of a silicon oxide film with a thickness of 50 to 150 nm was formed only on the transistor region as shown in FIG. 11(C). It was then annealed for 4 to 20 hours at a temperature between 550 ° and 650° in an argon or nitrogen atmosphere containing more than 50 volume percent of oxygen or hydrogen. Phosphine (PH3) may be used instead of oxygen or hydrogen. However, the annealing temperature is preferable to be less than 800° C. because if the annealing temperature is too high, phosphine is thermally decomposed and diffuses within the semiconductor, lowering the resistivity on the contrary. Diborane (B2 H6) may be used when the impurity region of the resistance is P-type.
While a sheet resistance of the impurity region of the transistor was 20 to 800 ohm/sheet, that of the impurity region of the resistance was 2 k to 100 kohm/sheet by the process above. Then a silicon oxide film with a thickness of 300 to 1000 nm was formed across the whole surface by a sputtering method as an interlayer insulator 149. This may be a silicon oxide film formed by a plasma CVD method. A silicon oxide film having a good step coverage can be obtained by the plasma CVD method especially using TEOS as an original material.
Then contact holes were created in source/drain (impurity regions) of the TFT to form aluminum wires 150A through 150C. Finally, it was annealed for 0.5 to 2 hours at a temperature between 250° to 350° C. in hydrogen to reduce a dangling bond of the silicon film. A sheet resistance of the regions which had the same thickness and to which the same amount of impurity was injected could be differentiated by the process described above.
As described above, the present invention is an epoch-making invention in a sense that it promotes the implementation of lower temperature and shorter time crystallization of amorphous silicon and provides an immeasurable benefit to the industry because facility, equipment and technique therefor are very common and are excellent for mass-production. Although the explanation has been made centering on nickel in the aforementioned embodiments, the same process can be applied to another metal element that accelerates the crystallization, i.e. any one of Fe, Co, Ru, Pd, Os, Ir, Pt, Sc, Ti, V, Cr, Mn, Cu, Zn, Au and Ag.
For example, assuming that it takes two minutes to treat one sheet of substrate, while 15 annealing furnaces were necessary in the conventional solid phase growing method because at least 24 hours of annealing was necessary, the present invention allows to reduce the number of the annealing furnaces to less than 1/6 of that because the annealing time can be shortened to four hours or less. The improvement of productivity and the reduction of amount of investment on facility brought about by that will lead to the drop of substrate processing cost as well as to the drop of a cost of TFTs and thereby to the rise of new demand. Accordingly, the present invention is very beneficial to the industry and deserves to be patented.
Further, the present invention solves the problem in the conventional fabrication process of crystalline silicon TFTs by such minimum modification of the crystallization condition of active layer of the TFTs that whether a cover film exists or not.
The present invention allowed to improve especially a reliability and performance of a dynamic circuit and of a device having such circuit. Conventionally, although crystalline silicon TFTs had low an ON/OFF ratio for such purpose as an active matrix of a liquid crystal display and was difficult in various ways to put it into practical use, such problems have been considered to be solved by the present invention. Although not shown in the embodiments, it will be apparent that the present invention will be effective, when implemented, in TFTs used as means for implementing a stereo-monocrystal semiconductor integrated circuit.
For example, a memory elements section can be constructed by constructing a peripheral logic circuit by semiconductor circuits on a monocrystal semiconductor and by providing TFTs on that through the intermediary of an interlayer insulator. In this case, the memory elements section can be a DRAM circuit using the TFTs of the present invention and its driving circuit is constructed by being CMOS-implemented to the monocrystal semiconductor circuit. Furthermore, when such circuit is used for a microprocessor, its area can be saved because the memory section is raised to the upstairs. Thus the present invention is considered to be a very beneficial invention to the industry.
While the present invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form and details can be made therein without departing from the spirit and scope of the invention.

Claims (27)

What is claimed is:
1. A method for manufacturing a semiconductor device comprising:
selectively forming on a substrate a substance containing a material having a catalytic action;
forming on said substrate a silicon film substantially in an amorphous state in contact with said substance; and
annealing said substrate in an atmosphere comprising at least one of oxygen, nitrogen and hydrogen,
wherein crystallization of said silicon film is caused in said annealing with said catalytic action.
2. The method for manufacturing a semiconductor device according to claim 1 wherein said catalytic action functions to crystallize said silicon film substantially in the amorphous state readily at a low temperature.
3. The method for manufacturing a semiconductor device according to claim 1 wherein said semiconductor device is an electro-optical device, a thin film transistor or an integrated circuit.
4. The method for manufacturing a semiconductor device according to claim 2 wherein the crystallized silicon film comprises a part of an active region of a thin film transistor.
5. A method for manufacturing a semiconductor device comprising:
a first step of selectively forming on a substrate a substance containing a material selected from the group consisting of nickel, iron, cobalt, ruthenium, rhodium, paradium, osmium, iridium, platinum, scandium, titanium, vanadium, chrome, manganese, copper, zinc, gold and silver and a combination thereof;
a second step of forming a silicon film substantially in an amorphous state after the first step;
a third step of annealing the substrate in an atmosphere comprising at least one of oxygen, nitrogen and hydrogen; and
a fourth step of patterning said silicon film into a shape of island.
6. The method for manufacturing a semiconductor device according to claim 5 wherein crystal is grown selectively in the lateral direction from a region where the substance is located in a width of 20 to 200 micron by said annealing.
7. The method for manufacturing a semiconductor device according to claim 5 wherein said atmosphere is changed with time from one of oxygen, nitrogen and hydrogen to another one of oxygen, nitrogen and hydrogen during said third step.
8. The method for manufacturing a semiconductor device according to claim 5 wherein said semiconductor device is an electro-optical device, a thin film transistor or an integrated circuit.
9. A method for manufacturing a semiconductor device comprising:
a first step of forming a silicon film substantially in an amorphous state on a substrate;
a second step of selectively forming a substance containing a material selected from the group consisting of nickel, iron, cobalt, ruthenium, rhodium, paradium, osmium, iridium, platinum, scandium, titanium, vanadium, chrome, manganese, copper, zinc, gold and silver and a combination thereof after the first step;
a third step of annealing the substrate in an atmosphere comprising at least one of oxygen, nitrogen and hydrogen; and
a fourth step of patterning said silicon film into a shape of island.
10. The method for manufacturing a semiconductor device according to claim 9 further comprising a step of treating the substrate by an acid containing hydrofluoric acid or hydrochloric acid after the third step.
11. The method for manufacturing a semiconductor device according to claim 9 wherein crystal is grown selectively in the lateral direction from a region where the substance is located in a width of 20 to 200 micron by said annealing.
12. The method for manufacturing a semiconductor device according to claim 9 wherein said atmosphere is changed with time from one of oxygen, nitrogen and hydrogen to another one of oxygen, nitrogen and hydrogen during said third step.
13. The method for manufacturing a semiconductor device according to claim 9 wherein said semiconductor device is an electro-optical device, a thin film transistor or an integrated circuit.
14. A method for manufacturing a semiconductor device comprising:
a first step of forming a silicon film substantially in an amorphous state on a substrate;
a second step of forming a mask coating film into a thickness which exhibits a masking action;
a third step of patterning said mask coating film to expose a surface of said silicon film;
a fourth step of forming a coating film containing a material selected from the group consisting of nickel, iron, cobalt, ruthenium, rhodium, paradium, osmium, iridium, platinum, scandium, titanium, vanadium, chrome, manganese, copper, zinc, gold and silver and a combination thereof;
a fifth step of thermally annealing the substrate after the fourth step to react the coating film formed in the fourth step with the silicon film to produce a silicide layer;
a sixth step of removing the coating film formed in the fourth step; and
a seventh step of annealing the substrate in an atmosphere comprising at least one of oxygen, nitrogen and hydrogen to crystallize the silicon film adjacent to said silicide layer in the lateral direction.
15. The method for manufacturing a semiconductor device according to claim 14 wherein said atmosphere is changed with time from one of oxygen, nitrogen and hydrogen to another one of oxygen, nitrogen and hydrogen during said seventh step.
16. The method for manufacturing a semiconductor device according to claim 14 wherein said semiconductor device is an electro-optical device, a thin film transistor or an integrated circuit.
17. The method for manufacturing a semiconductor device according to claim 14 wherein the crystallized silicon film comprises a part of an active region of a thin film transistor.
18. A method for manufacturing a semiconductor device comprising:
a first step of selectively forming on a substrate a substance containing a material selected from the group consisting of nickel, iron, cobalt, ruthenium, rhodium, paradium, osmium, iridium, platinum, scandium, titanium, vanadium, chrome, manganese, copper, zinc, gold and silver and a combination thereof;
a second step of forming a silicon film substantially in an amorphous state after the first step;
a third step of annealing the substrate in an atmosphere comprising at least one of oxygen, nitrogen and hydrogen; and
a fourth step of etching and removing a part of said silicon film on a region where the substance has been selectively formed in the first step.
19. The method for manufacturing a semiconductor device according to claim 18 wherein said atmosphere is changed with time from one of oxygen, nitrogen and hydrogen to another one of oxygen, nitrogen and hydrogen during said third step.
20. A method for manufacturing a semiconductor device comprising:
forming a semiconductor coating film on a substrate;
selectively forming a cover film on said semiconductor coating film;
crystallizing said semiconductor coating film by heating in an atmosphere comprising at least one of hydrogen, oxygen and nitrogen;
forming a gate insulating film on said semiconductor coating film;
forming a gate electrode on said gate insulating film; and
diffusing impurity element within said semiconductor coating film employing said gate electrode as a mask.
21. The method for manufacturing a semiconductor device according to claim 20 wherein said crystallization is carried out by heating in a mixed atmosphere of hydrogen and nitrogen; by heating for T1 hours in a nitrogen atmosphere and then heating for T2 hours in an oxygen or hydrogen atmosphere; or by heating for T3 hours in an atmosphere containing hydrogen and then heating for T4 hours in an atmosphere containing nitrogen.
22. A method for manufacturing a matrix type device comprising:
forming a semiconductor coating film on a substrate;
selectively forming a cover film only on a region of a driving circuit of said matrix device among said semiconductor coating film; and
crystallizing said semiconductor coating film by heating in an atmosphere comprising at least one of hydrogen, oxygen and nitrogen.
23. The method for manufacturing a matrix type device according to claim 22 wherein said crystallization is carried out by heating in a mixed atmosphere of hydrogen and nitrogen; by heating for T1 hours in a nitrogen atmosphere and then heating for T2 hours in an oxygen or hydrogen atmosphere; or by heating for T3 hours in an atmosphere containing hydrogen and then heating for T4 hours in an atmosphere containing nitrogen.
24. A method for manufacturing a CMOS type device comprising:
forming a semiconductor coating film on a substrate;
selectively forming a cover film only on a region of a driving circuit of a PMOS device among said semiconductor coating film; and
crystallizing said semiconductor coating film by heating in an atmosphere comprising at least one of hydrogen, oxygen and nitrogen.
25. The method for manufacturing a CMOS type device according to claim 24 wherein said crystallization is carried out by heating in a mixed atmosphere of hydrogen and nitrogen; by heating for T1 hours in a nitrogen atmosphere and then heating for T2 hours in an oxygen or hydrogen atmosphere; or by heating for T3 hours in an atmosphere containing hydrogen and then heating for T4 hours in an atmosphere containing nitrogen.
26. The method for manufacturing a semiconductor device according to claim 18 wherein said semiconductor device is an electro-optical device, a thin film transistor or an integrated circuit.
27. The method for manufacturing a semiconductor device according to claim 20 wherein said semiconductor device is an electro-optical device, a thin film transistor or an integrated circuit.
US08/160,908 1992-12-04 1993-12-03 Method for manufacturing semiconductor device Expired - Lifetime US5403772A (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
US08/248,220 US5604360A (en) 1992-12-04 1994-05-24 Semiconductor device including a plurality of thin film transistors at least some of which have a crystalline silicon film crystal-grown substantially in parallel to the surface of a substrate for the transistor
US08/341,106 US5563426A (en) 1992-12-04 1994-11-18 Thin film transistor
US08/661,013 US5888857A (en) 1992-12-04 1996-06-10 Semiconductor device and method for manufacturing the same
US08/670,122 US6413805B1 (en) 1993-03-12 1996-06-25 Semiconductor device forming method
US08/688,229 US6479331B1 (en) 1993-06-30 1996-07-29 Method of fabricating a semiconductor device
US08/709,111 US6140165A (en) 1993-03-12 1996-09-06 Semiconductor device forming method
US09/233,146 US6323071B1 (en) 1992-12-04 1999-01-19 Method for forming a semiconductor device
US09/439,997 US6338991B1 (en) 1992-12-04 1999-11-15 Semiconductor device and method for manufacturing the same
US09/993,492 US6806125B2 (en) 1992-12-04 2001-11-27 Method of manufacturing a thin film transistor device
US10/254,546 US6872605B2 (en) 1992-12-04 2002-09-26 Semiconductor device and method of fabricating the same
US10/926,059 US7622335B2 (en) 1992-12-04 2004-08-26 Method for manufacturing a thin film transistor device
US12/579,642 US8062935B2 (en) 1992-12-04 2009-10-15 Semiconductor device and method for manufacturing the same
US13/282,515 US8278660B2 (en) 1992-12-04 2011-10-27 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP35054592 1992-12-04
JP4-350545 1992-12-04
JP5204775A JP2852853B2 (en) 1993-07-27 1993-07-27 Method for manufacturing semiconductor device
JP5-204775 1993-07-27
JP29894493 1993-11-04

Related Child Applications (5)

Application Number Title Priority Date Filing Date
US20888094A Continuation-In-Part 1993-03-12 1994-03-11
US08/248,220 Continuation-In-Part US5604360A (en) 1992-12-04 1994-05-24 Semiconductor device including a plurality of thin film transistors at least some of which have a crystalline silicon film crystal-grown substantially in parallel to the surface of a substrate for the transistor
US08/266,712 Continuation-In-Part US5403762A (en) 1992-12-04 1994-06-28 Method of fabricating a TFT
US08/341,106 Division US5563426A (en) 1992-12-04 1994-11-18 Thin film transistor
US36574394A Division 1992-12-04 1994-12-29

Publications (1)

Publication Number Publication Date
US5403772A true US5403772A (en) 1995-04-04

Family

ID=27328405

Family Applications (3)

Application Number Title Priority Date Filing Date
US08/160,908 Expired - Lifetime US5403772A (en) 1992-12-04 1993-12-03 Method for manufacturing semiconductor device
US08/341,106 Expired - Lifetime US5563426A (en) 1992-12-04 1994-11-18 Thin film transistor
US08/661,013 Expired - Lifetime US5888857A (en) 1992-12-04 1996-06-10 Semiconductor device and method for manufacturing the same

Family Applications After (2)

Application Number Title Priority Date Filing Date
US08/341,106 Expired - Lifetime US5563426A (en) 1992-12-04 1994-11-18 Thin film transistor
US08/661,013 Expired - Lifetime US5888857A (en) 1992-12-04 1996-06-10 Semiconductor device and method for manufacturing the same

Country Status (4)

Country Link
US (3) US5403772A (en)
KR (1) KR970004450B1 (en)
CN (6) CN1052570C (en)
TW (1) TW226478B (en)

Cited By (261)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488000A (en) * 1993-06-22 1996-01-30 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor using a nickel silicide layer to promote crystallization of the amorphous silicon layer
US5492843A (en) * 1993-07-31 1996-02-20 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device and method of processing substrate
US5529937A (en) * 1993-07-27 1996-06-25 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating thin film transistor
US5536676A (en) * 1995-04-03 1996-07-16 National Science Council Low temperature formation of silicided shallow junctions by ion implantation into thin silicon films
US5541119A (en) * 1993-07-08 1996-07-30 Nec Corporation Manufacturing method of active circuit elements integrated type liquid crystal display
US5550070A (en) * 1993-12-27 1996-08-27 Sharp Kabushiki Kaisha Method for producing crystalline semiconductor film having reduced concentration of catalyst elements for crystallization and semiconductor device having the same
US5569936A (en) * 1993-03-12 1996-10-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device employing crystallization catalyst
US5578854A (en) * 1995-08-11 1996-11-26 International Business Machines Corporation Vertical load resistor SRAM cell
US5580792A (en) * 1993-03-12 1996-12-03 Semiconductor Energy Laboratory Co., Ltd. Method of removing a catalyst substance from the channel region of a TFT after crystallization
US5585291A (en) * 1993-12-02 1996-12-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device containing a crystallization promoting material
US5589406A (en) * 1993-07-30 1996-12-31 Ag Technology Co., Ltd. Method of making TFT display
US5604360A (en) * 1992-12-04 1997-02-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a plurality of thin film transistors at least some of which have a crystalline silicon film crystal-grown substantially in parallel to the surface of a substrate for the transistor
US5605846A (en) * 1994-02-23 1997-02-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US5614733A (en) * 1993-03-12 1997-03-25 Semiconductor Energy Laboratory Co., Inc. Semiconductor device having crystalline thin film transistors
US5619044A (en) * 1994-04-15 1997-04-08 Sharp Kabushiki Kaisha Semiconductor device formed with seed crystals on a layer thereof
US5624873A (en) * 1993-11-12 1997-04-29 The Penn State Research Foundation Enhanced crystallization of amorphous films
US5637515A (en) * 1993-08-12 1997-06-10 Semiconductor Energy Laboratory Co., Ltd. Method of making thin film transistor using lateral crystallization
US5643826A (en) * 1993-10-29 1997-07-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US5654203A (en) * 1993-12-02 1997-08-05 Semiconductor Energy Laboratory, Co., Ltd. Method for manufacturing a thin film transistor using catalyst elements to promote crystallization
US5693541A (en) * 1994-08-26 1997-12-02 Semiconductor Energy Laboratory Co., Ltd Method for manufacturing a semiconductor device using a silicon nitride mask
US5696388A (en) * 1993-08-10 1997-12-09 Semiconductor Energy Laboratory Co., Ltd. Thin film transistors for the peripheral circuit portion and the pixel portion
US5696003A (en) * 1993-12-20 1997-12-09 Sharp Kabushiki Kaisha Method for fabricating a semiconductor device using a catalyst introduction region
US5705829A (en) * 1993-12-22 1998-01-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device formed using a catalyst element capable of promoting crystallization
US5712191A (en) * 1994-09-16 1998-01-27 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US5719033A (en) * 1995-06-28 1998-02-17 Motorola, Inc. Thin film transistor bio/chemical sensor
US5744824A (en) * 1994-06-15 1998-04-28 Sharp Kabushiki Kaisha Semiconductor device method for producing the same and liquid crystal display including the same
US5744822A (en) * 1993-03-22 1998-04-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device/circuit having at least partially crystallized semiconductor layer
US5748268A (en) * 1995-03-30 1998-05-05 Kaiser Aerospace & Electronics Co. Quasi-tiled active matrix display
US5773847A (en) * 1994-06-07 1998-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an active layer with separate layers where one of the layers acts as crystal nuclei for the other
US5814540A (en) * 1993-03-05 1998-09-29 Semiconductor Energy Laboratory Co., Ltd. Method for producing a transistor
US5824573A (en) * 1993-05-26 1998-10-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US5830784A (en) * 1993-05-26 1998-11-03 Semiconductor Energy Laboratory Company, Ltd. Method for producing a semiconductor device including doping with a group IV element
US5837614A (en) * 1993-02-19 1998-11-17 Semiconductor Energy Laboratory Co., Ltd. Insulating film and method of producing semiconductor device
US5851862A (en) * 1994-03-11 1998-12-22 Semiconductor Energy Laboratory Co., Ltd. Method of crystallizing a silicon film
US5851860A (en) * 1994-07-15 1998-12-22 Sharp Kabushiki Kaisha Semiconductor device and method for producing the same
US5858823A (en) * 1994-08-29 1999-01-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor circuit for electro-optical device and method of manufacturing the same
US5869362A (en) * 1993-12-02 1999-02-09 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US5869363A (en) * 1995-12-15 1999-02-09 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US5879977A (en) * 1993-02-15 1999-03-09 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating a thin film transistor semiconductor device
US5886366A (en) * 1994-08-31 1999-03-23 Semiconductor Energy Laboratory Co., Ltd. Thin film type monolithic semiconductor device
US5888857A (en) * 1992-12-04 1999-03-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US5888858A (en) * 1996-01-20 1999-03-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US5897347A (en) * 1993-02-15 1999-04-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor, semiconductor device, and method for fabricating the same
US5897345A (en) * 1994-05-31 1999-04-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
US5904770A (en) * 1994-02-03 1999-05-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US5915174A (en) * 1994-09-30 1999-06-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for producing the same
US5923968A (en) * 1994-09-15 1999-07-13 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US5922125A (en) * 1995-12-12 1999-07-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US5930658A (en) * 1996-11-26 1999-07-27 Advanced Micro Devices, Inc. Oxidized oxygen-doped amorphous silicon ultrathin gate oxide structures
US5940693A (en) * 1997-07-15 1999-08-17 Sharp Laboratories Of America, Inc. Selective silicide thin-film transistor and method for same
US5946560A (en) * 1993-03-22 1999-08-31 Semiconductor Energy Laboratory Co., Ltd. Transistor and method of forming the same
US5946562A (en) * 1996-07-24 1999-08-31 International Business Machines Corporation Polysilicon thin film transistors with laser-induced solid phase crystallized polysilicon channel
US5950078A (en) * 1997-09-19 1999-09-07 Sharp Laboratories Of America, Inc. Rapid thermal annealing with absorptive layers for thin film transistors on transparent substrates
US5961743A (en) * 1995-03-27 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Thin-film photoelectric conversion device and a method of manufacturing the same
US5962871A (en) * 1993-05-26 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US5966594A (en) * 1993-07-27 1999-10-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US5972105A (en) * 1994-09-15 1999-10-26 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device
US5985740A (en) * 1996-01-19 1999-11-16 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device including reduction of a catalyst
US5986286A (en) * 1995-01-28 1999-11-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a method of manufacturing the same
US5994172A (en) * 1994-07-01 1999-11-30 Semiconductor Energy Laboratory., Ltd. Method for producing semiconductor device
US6010924A (en) * 1993-08-20 2000-01-04 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating a thin film transistor
US6013544A (en) * 1995-03-13 2000-01-11 Sharp Kabushiki Kaisha Method for fabricating a semiconductor device
US6037610A (en) * 1993-05-26 2000-03-14 Semiconductor Energy Laboratory Co., Ltd. Transistor and semiconductor device having columnar crystals
US6063654A (en) * 1996-02-20 2000-05-16 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor involving laser treatment
US6066518A (en) * 1997-07-22 2000-05-23 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor devices using a crystallization promoting material
US6072193A (en) * 1997-05-30 2000-06-06 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor and semiconductor device using thin-film transistors
US6077731A (en) * 1996-01-19 2000-06-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US6087679A (en) * 1997-07-23 2000-07-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and semiconductor device
US6090646A (en) * 1993-05-26 2000-07-18 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US6093934A (en) * 1996-01-19 2000-07-25 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having grain boundaries with segregated oxygen and halogen elements
US6093937A (en) * 1996-02-23 2000-07-25 Semiconductor Energy Laboratory Co. Ltd. Semiconductor thin film, semiconductor device and manufacturing method thereof
US6096581A (en) * 1994-03-09 2000-08-01 Semiconductor Energy Laboratory Co., Ltd. Method for operating an active matrix display device with limited variation in threshold voltages
US6097037A (en) * 1997-11-12 2000-08-01 Joo; Seung-Ki Thin film transistor having a continuous crystallized layer including the channel and portions of source and drain regions
US6100562A (en) * 1996-03-17 2000-08-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6104547A (en) * 1997-04-09 2000-08-15 Canon Kabushiki Kaisha Zoom lens and optical apparatus having the same
US6124155A (en) * 1991-06-19 2000-09-26 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and thin film transistor and method for forming the same
US6133620A (en) * 1995-05-26 2000-10-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
US6133119A (en) * 1996-07-08 2000-10-17 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method manufacturing same
US6140165A (en) * 1993-03-12 2000-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device forming method
US6140166A (en) * 1996-12-27 2000-10-31 Semicondutor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor and method for manufacturing semiconductor device
WO2000067327A1 (en) * 1999-05-05 2000-11-09 E Ink Corporation Minimally-patterned semiconductor devices for display applications
US6150246A (en) * 1996-03-07 2000-11-21 3C Semiconductor Corporation Method of making Os and W/WC/TiC ohmic and rectifying contacts on SiC
US6156627A (en) * 1994-04-13 2000-12-05 Semiconductor Energy Laboratory Co., Ltd. Method of promoting crystallization of an amorphous semiconductor film using organic metal CVD
US6156590A (en) * 1997-06-17 2000-12-05 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US6168980B1 (en) 1992-08-27 2001-01-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6171890B1 (en) * 1993-07-27 2001-01-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US6180439B1 (en) 1996-01-26 2001-01-30 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device
US6188085B1 (en) * 1993-06-10 2001-02-13 Mitsubishi Denki Kabushiki Kaisha Thin film transistor and a method of manufacturing thereof
US6194254B1 (en) * 1993-08-27 2001-02-27 Semiconductor Energy Laboratories Co., Ltd. Semiconductor device and method for manufacturing the same
US6194255B1 (en) * 1994-06-14 2001-02-27 Semiconductor Energy Laboratry Co. Ltd Method for manufacturing thin-film transistors
US6197626B1 (en) 1997-02-26 2001-03-06 Semiconductor Energy Laboratory Co. Method for fabricating semiconductor device
US6204101B1 (en) 1995-12-15 2001-03-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US6211535B1 (en) * 1994-11-26 2001-04-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6218702B1 (en) 1995-12-09 2001-04-17 Semiconductor Energy Laboratory, Co. Ltd. Microcrystal silicon film and its manufacturing method, and photoelectric conversion device and its manufacturing method
US6221702B1 (en) 1998-02-10 2001-04-24 Lg. Philips Lcd Co., Ltd. Method of fabricating thin film transistor
US6232205B1 (en) 1997-07-22 2001-05-15 Semiconductor Energy Laboratory Co., Ltd. Method for producing a semiconductor device
US6242289B1 (en) 1995-09-08 2001-06-05 Semiconductor Energy Laboratories Co., Ltd. Method for producing semiconductor device
US6242290B1 (en) 1997-07-14 2001-06-05 Semiconductor Energy Laboratory Co., Ltd. Method of forming a TFT by adding a metal to a silicon film promoting crystallization, forming a mask, forming another silicon layer with group XV elements, and gettering the metal through opening in the mask
US6243155B1 (en) * 1997-10-20 2001-06-05 Semiconductor Energy Laboratory Co., Ltd. Electronic display device having an active matrix display panel
US6261875B1 (en) 1993-03-12 2001-07-17 Semiconductor Energy Laboratory Co., Ltd. Transistor and process for fabricating the same
US6294815B1 (en) 1997-08-26 2001-09-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6297080B1 (en) * 1998-11-09 2001-10-02 Lg. Philips Lcd Co. Ltd. Method of crystallizing a silicon film and a method of manufacturing a liquid crystal display apparatus
US20010026835A1 (en) * 2000-03-21 2001-10-04 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6300659B1 (en) 1994-09-30 2001-10-09 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor and fabrication method for same
US6303495B2 (en) 1997-03-13 2001-10-16 Mitsubishi Denki Kabushiki Kaisha Method of forming thin copper film and semiconductor device with thin copper film
US6303963B1 (en) 1998-12-03 2001-10-16 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and semiconductor circuit
US6303415B1 (en) 1997-06-10 2001-10-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
US6307214B1 (en) 1997-06-06 2001-10-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and semiconductor device
US20010036692A1 (en) * 1998-07-17 2001-11-01 Shunpei Yamazaki Crystalline semiconductor thin film, method of fabricating the same, semiconductor device and method of fabricating the same
US6312979B1 (en) 1998-04-28 2001-11-06 Lg.Philips Lcd Co., Ltd. Method of crystallizing an amorphous silicon layer
US6323071B1 (en) * 1992-12-04 2001-11-27 Semiconductor Energy Laboratory Co., Ltd. Method for forming a semiconductor device
US6323070B1 (en) * 1996-02-26 2001-11-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US20010045559A1 (en) * 1993-02-15 2001-11-29 Shunpei Yamazaki Semiconductor device and method of fabricating the same
US6326226B1 (en) 1997-07-15 2001-12-04 Lg. Philips Lcd Co., Ltd. Method of crystallizing an amorphous film
US6331718B1 (en) * 1996-12-30 2001-12-18 Semiconductor Energy Laboratory Co., Ltd. Thin film circuit with improved carrier mobility
US6331475B1 (en) * 1995-01-12 2001-12-18 Semiconductor Energy Laboratory Co., Ltd. Method and manufacturing semiconductor device
US6337229B1 (en) * 1994-12-16 2002-01-08 Semiconductor Energy Laboratory Co., Ltd. Method of making crystal silicon semiconductor and thin film transistor
US6342409B1 (en) 1999-05-21 2002-01-29 Lg. Philips Lcd Co., Ltd. Polysilicon thin film transistor and method of manufacturing the same
US20020011983A1 (en) * 1996-12-27 2002-01-31 Semiconductor Energy Laboratory, A Japan Corporation Semiconductor device
US6348367B1 (en) * 1993-12-02 2002-02-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US6388291B1 (en) 1994-04-29 2002-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit and method for forming the same
US6388272B1 (en) 1996-03-07 2002-05-14 Caldus Semiconductor, Inc. W/WC/TAC ohmic and rectifying contacts on SiC
US6392785B1 (en) 1997-08-28 2002-05-21 E Ink Corporation Non-spherical cavity electrophoretic displays and materials for making the same
US6399454B1 (en) 1997-07-14 2002-06-04 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor film and method of manufacturing a semiconductor device
US6410412B1 (en) * 1999-09-16 2002-06-25 Sony Corporation Methods for fabricating memory devices
US20020098628A1 (en) * 2001-01-19 2002-07-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US6433363B1 (en) 1997-02-24 2002-08-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US6432756B1 (en) * 1997-07-24 2002-08-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabricating method thereof
US20020125480A1 (en) * 2001-02-09 2002-09-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20020134981A1 (en) * 2001-01-29 2002-09-26 Osamu Nakamura Semiconductor device and manufacturing method of the same
US6465287B1 (en) 1996-01-27 2002-10-15 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device using a metal catalyst and high temperature crystallization
US20020151120A1 (en) * 2001-02-16 2002-10-17 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US20020155706A1 (en) * 2001-03-09 2002-10-24 Semiconductor Energy Laboratory Co. Ltd. Method of manufacturing a semiconductor device
US6473072B1 (en) 1998-05-12 2002-10-29 E Ink Corporation Microencapsulated electrophoretic electrostatically-addressed media for drawing device applications
US6475840B1 (en) * 1993-06-12 2002-11-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6478263B1 (en) 1997-01-17 2002-11-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US6479331B1 (en) * 1993-06-30 2002-11-12 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a semiconductor device
US6489189B2 (en) * 1996-01-23 2002-12-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor thin film
US6495857B2 (en) * 1995-07-27 2002-12-17 Semiconductor Energy Laboratory Co., Ltd. Thin film transister semiconductor devices
US20020197760A1 (en) * 1993-10-26 2002-12-26 Semiconductor Energy Laboratory Co., Ltd. Substrate processing apparatus and method and a manufacturing method of a thin film semiconductor device
US6501094B1 (en) 1997-06-11 2002-12-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a bottom gate type thin film transistor
US6500736B2 (en) * 2000-12-29 2002-12-31 Lg.Philips Lcd Co., Ltd. Crystallization method of amorphous silicon
US20030020844A1 (en) * 2001-07-27 2003-01-30 Albert Jonathan D. Microencapsulated electrophoretic display with integrated driver
US6515299B1 (en) 1997-08-26 2003-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with rod like crystals and a recessed insulation layer
US6518102B1 (en) 1995-03-27 2003-02-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing transistor semiconductor devices with step of annealing to getter metal with phosphorous
US6524662B2 (en) 1998-07-10 2003-02-25 Jin Jang Method of crystallizing amorphous silicon layer and crystallizing apparatus thereof
US6528820B1 (en) 1996-01-19 2003-03-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
US6537864B1 (en) * 1999-10-19 2003-03-25 Sanyo Electric Co., Ltd. Method of fabricating a thin film transistor using electromagnetic wave heating of an amorphous semiconductor film
US20030057419A1 (en) * 1999-03-02 2003-03-27 Satoshi Murakami Semiconductor device comprising a thin film transistor and method of manufacuring the same
US6541793B2 (en) 1997-05-30 2003-04-01 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor and semiconductor device using thin-film transistors
US6548331B2 (en) * 2000-12-01 2003-04-15 Pt Plus Co. Ltd. Method for fabricating thin film transistor including crystalline silicon active layer
US6559477B2 (en) * 2000-09-29 2003-05-06 Kabushiki Kaisha Toshiba Flat panel display device and method for manufacturing the same
US6558986B1 (en) 1998-09-03 2003-05-06 Lg.Philips Lcd Co., Ltd Method of crystallizing amorphous silicon thin film and method of fabricating polysilicon thin film transistor using the crystallization method
US6559036B1 (en) 1998-08-07 2003-05-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US6566687B2 (en) 2001-01-18 2003-05-20 International Business Machines Corporation Metal induced self-aligned crystallization of Si layer for TFT
US20030094611A1 (en) * 2001-11-14 2003-05-22 Semiconductor Energy Laboratory Co., Ltd Semiconductor device and method of fabricating the same
US6586346B1 (en) 1990-02-06 2003-07-01 Semiconductor Energy Lab Method of forming an oxide film
US6596573B2 (en) 2000-10-31 2003-07-22 Pt Plus Co. Ltd. Thin film transistor including polycrystalline active layer and method for fabricating the same
US20030153999A1 (en) * 2001-11-30 2003-08-14 Semiconductor Energy Laboratory Co., Ltd. Program for controlling laser apparatus and recording medium for recording program for controlling laser apparatus and capable of being read out by computer
US6613619B2 (en) * 1994-12-16 2003-09-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for producing the same
US20030171837A1 (en) * 2001-11-22 2003-09-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor fabricating apparatus
US20030193069A1 (en) * 2002-04-11 2003-10-16 Samsung Sdi, Co., Ltd. Thin film transistor and organic electroluminescent device using the same
US6635900B1 (en) 1995-06-01 2003-10-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film having a single-crystal like region with no grain boundary
US20030201450A1 (en) * 1998-05-15 2003-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20030219932A1 (en) * 2001-11-28 2003-11-27 Atsuo Isobe Method of manufacturing a semiconductor device
US20030217620A1 (en) * 2002-04-08 2003-11-27 Council Scientific And Industrial Research Process for the production of neodymium-iron-boron permanent magnet alloy powder
US20030224550A1 (en) * 2001-12-21 2003-12-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
US20030228723A1 (en) * 2001-12-11 2003-12-11 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and method of manufacturing a semiconductor device
US20030235971A1 (en) * 2001-11-30 2003-12-25 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for a semiconductor device
US6670640B1 (en) 1994-09-15 2003-12-30 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US6683333B2 (en) 2000-07-14 2004-01-27 E Ink Corporation Fabrication of electronic circuit elements using unpatterned semiconductor layers
US6693044B1 (en) 1998-01-12 2004-02-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US6692996B2 (en) * 2000-11-11 2004-02-17 Pt Plus Co., Ltd. Method for crystallizing silicon layer
US6696324B2 (en) * 1999-12-31 2004-02-24 Samsung Electronics Co., Ltd. Contact structures of wirings and methods for manufacturing the same, and thin film transistor array panels including the same and methods for manufacturing the same
US6700133B1 (en) 1994-03-11 2004-03-02 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US20040054031A1 (en) * 1996-07-19 2004-03-18 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US6713330B1 (en) 1993-06-22 2004-03-30 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor
US20040072393A1 (en) * 1998-07-17 2004-04-15 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US20040072411A1 (en) * 2001-12-28 2004-04-15 Munehiro Azami Method for manufacturing semiconductor device
US6723590B1 (en) 1994-03-09 2004-04-20 Semiconductor Energy Laboratory Co., Ltd. Method for laser-processing semiconductor device
US6727121B2 (en) * 2001-01-20 2004-04-27 Seung Ji Koo Method for crystallizing a silicon layer and fabricating a TFT using the same
US6733584B1 (en) * 1996-12-27 2004-05-11 Semiconductor Energy Laboratory Co., Ltd. Method of forming crystalline silicon film
US20040101997A1 (en) * 2002-11-22 2004-05-27 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating thin film transistor
US6744069B1 (en) 1996-01-19 2004-06-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US20040121530A1 (en) * 2001-01-30 2004-06-24 Semiconductor Energy Laboratory Co., Ltd. Process for producing a photoelectric conversion device
US20040124419A1 (en) * 2000-01-28 2004-07-01 Semiconductor Energy Laboratory Co., Ltd., A Japan Corporation Semiconductor device and its manufacturing method
US20040142543A1 (en) * 1994-08-26 2004-07-22 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a semiconductor device utilizing a catalyst material solution
US6777254B1 (en) * 1999-07-06 2004-08-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US20040164296A1 (en) * 2001-02-28 2004-08-26 Semiconductor Energy Laboratory Co., Ltd., A Japan Corporation Semiconductor device and manufacturing method thereof
US6784034B1 (en) 1998-10-13 2004-08-31 Lg. Philips Lcd Co., Ltd. Method for fabricating a thin film transistor
US6787806B1 (en) 1996-02-23 2004-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and method of manufacturing the same and semiconductor device and method of manufacturing the same
US6798023B1 (en) 1993-12-02 2004-09-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising first insulating film, second insulating film comprising organic resin on the first insulating film, and pixel electrode over the second insulating film
US6808968B2 (en) 2001-02-16 2004-10-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6825068B2 (en) 2000-04-18 2004-11-30 E Ink Corporation Process for fabricating thin film transistors
US6830617B1 (en) 1995-08-02 2004-12-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
EP1326282A3 (en) * 2001-12-19 2004-12-15 Samsung SDI Co. Ltd. Thin film transistor with multiple gates
US20040253797A1 (en) * 2003-06-12 2004-12-16 Industrial Technology Research Institute Heating plate crystallization method
US20050009257A1 (en) * 2001-03-26 2005-01-13 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US20050009309A1 (en) * 1995-11-10 2005-01-13 Semiconductor Energy Laboratory Co., Ltd., A Japan Corporation Plasma CVD method
US6858480B2 (en) 2001-01-18 2005-02-22 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US20050040400A1 (en) * 1999-12-14 2005-02-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20050040402A1 (en) * 1994-02-23 2005-02-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20050041005A1 (en) * 1994-08-19 2005-02-24 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device and fabrication method thereof
US20050052391A1 (en) * 1991-06-14 2005-03-10 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
US6867085B2 (en) * 1996-08-13 2005-03-15 Semiconductor Energy Laboratory Co., Ltd. Insulated gate semiconductor device and method of manufacturing the same
US6875628B1 (en) * 1993-05-26 2005-04-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method of the same
US20050092998A1 (en) * 1999-02-12 2005-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and method of forming the same
US20050095758A1 (en) * 2001-12-19 2005-05-05 Samsung Sdi Co., Ltd. CMOS thin film transistor
US6893503B1 (en) 1997-03-27 2005-05-17 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6900851B2 (en) 2002-02-08 2005-05-31 E Ink Corporation Electro-optic displays and optical systems for addressing such displays
US6919235B1 (en) 1998-08-05 2005-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having semiconductor circuit comprising semiconductor element, and method for manufacturing same
US20050167672A1 (en) * 1997-02-24 2005-08-04 Semiconductor Energy Laboratory Co., Ltd., A Japan Corporation Semiconductor thin film and semiconductor device
US6933182B1 (en) 1995-04-20 2005-08-23 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device and manufacturing system thereof
US20050194594A1 (en) * 1998-02-25 2005-09-08 Semiconductor Energy Laboratory Co., Ltd. Projection TV
US20050253178A1 (en) * 2004-04-23 2005-11-17 Semiconductor Energy Laboratory Co., Ltd. Thin film integrated circuit and method for manufacturing the same, CPU, memory, electronic card and electronic device
US6975355B1 (en) 2000-02-22 2005-12-13 Pixim, Inc. Multiple sampling via a time-indexed method to achieve wide dynamic ranges
US6974763B1 (en) 1994-04-13 2005-12-13 Semiconductor Energy Laboratory Co., Ltd. Method of forming semiconductor device by crystallizing amorphous silicon and forming crystallization promoting material in the same chamber
EP1612852A1 (en) * 2004-06-30 2006-01-04 Samsung SDI Co., Ltd. Thin film transistor having no grain boundary and method for fabricating the same
US20060024925A1 (en) * 2001-08-30 2006-02-02 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor film, method of manufacturing the same, and semiconductor device
US6997985B1 (en) 1993-02-15 2006-02-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor, semiconductor device, and method for fabricating the same
US7026193B1 (en) * 1996-12-30 2006-04-11 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device having TFTs with uniform characteristics
US7030412B1 (en) 1999-05-05 2006-04-18 E Ink Corporation Minimally-patterned semiconductor devices for display applications
US20060091398A1 (en) * 2004-11-04 2006-05-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20060096523A1 (en) * 2004-11-10 2006-05-11 Myerson Allan S Method for producing crystals and screening crystallization conditions
US7046282B1 (en) 1997-09-20 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Image sensor and image sensor integrated type active matrix type display device
US7045444B2 (en) 2000-12-19 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device that includes selectively adding a noble gas element
US7052943B2 (en) 2001-03-16 2006-05-30 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US20060115948A1 (en) * 2004-11-26 2006-06-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US7056381B1 (en) 1996-01-26 2006-06-06 Semiconductor Energy Laboratory Co., Ltd. Fabrication method of semiconductor device
US7075002B1 (en) 1995-03-27 2006-07-11 Semiconductor Energy Laboratory Company, Ltd. Thin-film photoelectric conversion device and a method of manufacturing the same
US20060157860A1 (en) * 2002-03-29 2006-07-20 Wai Chien M Semiconductor constructions
US20060194380A1 (en) * 2005-02-25 2006-08-31 Yi-Cheng Chen Method for fabricating asymmetric semiconductor device
US20060197088A1 (en) * 2005-03-07 2006-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
US7122450B2 (en) 2001-03-16 2006-10-17 Semiconductor Energy Laboratory Co., Ltd. Process for manufacturing a semiconductor device
US20060267153A1 (en) * 2005-05-31 2006-11-30 Semiconductor Energy Laboratory Co., Ltd. Microstructure and manufacturing method of the same
US20060270238A1 (en) * 2005-05-27 2006-11-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20060278876A1 (en) * 1998-07-15 2006-12-14 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US20060284183A1 (en) * 2005-06-17 2006-12-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20070052757A1 (en) * 1996-07-19 2007-03-08 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US20070087488A1 (en) * 2005-10-18 2007-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20070097021A1 (en) * 1998-02-25 2007-05-03 Semiconductor Energy Laboratory Co., Ltd. Information processing device
US7294535B1 (en) 1998-07-15 2007-11-13 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US20080099793A1 (en) * 2006-10-13 2008-05-01 David Fattal Photodiode module and apparatus including multiple photodiode modules
US20080136028A1 (en) * 2002-03-29 2008-06-12 Wai Chien M Semiconductor constructions comprising a layer of metal over a substrate
US20080150027A1 (en) * 2006-12-20 2008-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US20080213984A1 (en) * 2007-03-02 2008-09-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US7465679B1 (en) 1993-02-19 2008-12-16 Semiconductor Energy Laboratory Co., Ltd. Insulating film and method of producing semiconductor device
US20090020763A1 (en) * 2006-05-30 2009-01-22 Chunghwa Picture Tubes, Ltd. Poly silicon layer and structure for forming the same
US20090315030A1 (en) * 2008-06-24 2009-12-24 Applied Materials, Inc. Methods for forming an amorphous silicon film in display devices
US20100163874A1 (en) * 2008-12-24 2010-07-01 Semiconductor Energy Laboratory Co., Ltd. Driver circuit and semiconductor device
US7812351B2 (en) 1996-02-23 2010-10-12 Semiconductor Energy Laboratory Co., Ltd. Thin film semiconductor device and its manufacturing method
US7893435B2 (en) 2000-04-18 2011-02-22 E Ink Corporation Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough
US7943968B1 (en) 1996-12-24 2011-05-17 Semiconductor Energy Laboratory Co., Ltd. Charge transfer semiconductor device and manufacturing method thereof
US20110169009A1 (en) * 2010-01-14 2011-07-14 Samsung Mobile Display Co. Ltd. Organic light emitting diode display and method for manufacturing the same
CN102150273A (en) * 2008-10-02 2011-08-10 夏普株式会社 Display panel and display device using the same
US8436359B2 (en) 2006-07-21 2013-05-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20130126883A1 (en) * 1999-06-22 2013-05-23 Semiconductor Energy Laboratory Co., Ltd. Wiring Material, Semiconductor Device Provided with a Wiring Using the Wiring Material and Method of Manufacturing Thereof
US8981374B2 (en) 2013-01-30 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
GB2489682B (en) * 2011-03-30 2015-11-04 Pragmatic Printing Ltd Electronic device and its method of manufacture
US9257452B2 (en) 2010-12-28 2016-02-09 Semiconductor Energy Laboratory Co., Ltd. Portable semiconductor device including transistor with oxide semiconductor layer
US9494830B2 (en) 2013-06-05 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Sequential circuit and semiconductor device

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008078A (en) 1990-07-24 1999-12-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
JP3450376B2 (en) * 1993-06-12 2003-09-22 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US6867432B1 (en) * 1994-06-09 2005-03-15 Semiconductor Energy Lab Semiconductor device having SiOxNy gate insulating film
JP3418647B2 (en) * 1994-12-09 2003-06-23 株式会社半導体エネルギー研究所 Semiconductor device manufacturing method and crystal growth promoter
US5986311A (en) * 1997-05-19 1999-11-16 Citizen Watch Company, Ltd. Semiconductor device having recrystallized source/drain regions
GB9617885D0 (en) * 1996-08-28 1996-10-09 Philips Electronics Nv Electronic device manufacture
JPH10135137A (en) * 1996-10-31 1998-05-22 Semiconductor Energy Lab Co Ltd Method of forming crystalline semiconductor
JPH10228248A (en) * 1996-12-09 1998-08-25 Semiconductor Energy Lab Co Ltd Active matrix display device and its manufacture
KR20000016452A (en) 1997-04-22 2000-03-25 모리시타 요이찌 Drive circuit for active matrix liquid crystal display
JP4831850B2 (en) * 1997-07-08 2011-12-07 株式会社半導体エネルギー研究所 Method for manufacturing thin film transistor
KR100269312B1 (en) * 1997-10-14 2000-10-16 윤종용 Method for crystallization of silicon film and fabricating method for thin film transistor-liquid crystal display using the same
JP4090569B2 (en) 1997-12-08 2008-05-28 株式会社半導体エネルギー研究所 Semiconductor device, liquid crystal display device, and EL display device
JP2000039628A (en) * 1998-05-16 2000-02-08 Semiconductor Energy Lab Co Ltd Semiconductor display device
US6346437B1 (en) * 1998-07-16 2002-02-12 Sharp Laboratories Of America, Inc. Single crystal TFT from continuous transition metal delivery method
US6537461B1 (en) 2000-04-24 2003-03-25 Hitachi, Ltd. Process for treating solid surface and substrate surface
KR100524622B1 (en) * 1999-04-03 2005-11-01 엘지.필립스 엘시디 주식회사 Thin film transistor having poly silicon active layer and a method of fabricating the same
US6617561B1 (en) * 2000-03-09 2003-09-09 General Electric Company Low noise and high yield data line structure for imager
GB0006958D0 (en) * 2000-03-23 2000-05-10 Koninkl Philips Electronics Nv Method of manufacturing a transistor
US6514785B1 (en) * 2000-06-09 2003-02-04 Taiwan Semiconductor Manufacturing Company CMOS image sensor n-type pin-diode structure
JP3961240B2 (en) * 2001-06-28 2007-08-22 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP3961310B2 (en) * 2002-02-21 2007-08-22 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP4329312B2 (en) * 2002-07-02 2009-09-09 株式会社日立製作所 Thin film semiconductor device, manufacturing method thereof, and image display device
US6861338B2 (en) * 2002-08-22 2005-03-01 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and method of manufacturing the same
US6888219B2 (en) * 2002-08-29 2005-05-03 Honeywell International, Inc. Integrated structure with microwave components
KR100501700B1 (en) * 2002-12-16 2005-07-18 삼성에스디아이 주식회사 Thin film transistor having ldd/offset structure
JP2004296491A (en) * 2003-03-25 2004-10-21 Sanyo Electric Co Ltd Semiconductor device
US20050124129A1 (en) * 2003-10-10 2005-06-09 Takayuki Ito Method of fabrication of silicon-gate MIS transistor
JP2005228819A (en) * 2004-02-10 2005-08-25 Mitsubishi Electric Corp Semiconductor device
KR100600874B1 (en) 2004-06-09 2006-07-14 삼성에스디아이 주식회사 Thin Film Transitor and Method of fabricating thereof
KR100666564B1 (en) * 2004-08-04 2007-01-09 삼성에스디아이 주식회사 Method for fabricating thin film transistor
US20060049464A1 (en) 2004-09-03 2006-03-09 Rao G R Mohan Semiconductor devices with graded dopant regions
US7453065B2 (en) * 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
CN1332881C (en) * 2005-06-23 2007-08-22 复旦大学 Synthesis of nanometer single-crystal silica line
JP4680850B2 (en) 2005-11-16 2011-05-11 三星モバイルディスプレイ株式會社 Thin film transistor and manufacturing method thereof
US7439594B2 (en) * 2006-03-16 2008-10-21 Micron Technology, Inc. Stacked non-volatile memory with silicon carbide-based amorphous silicon thin film transistors
US8013445B2 (en) * 2008-02-29 2011-09-06 Taiwan Semiconductor Manufacturing Co., Ltd. Low resistance high reliability contact via and metal line structure for semiconductor device
CN101976649A (en) * 2010-09-08 2011-02-16 四川虹视显示技术有限公司 Preparation method of OLED panel polycrystalline silicon
CN102013400A (en) * 2010-10-27 2011-04-13 四川虹视显示技术有限公司 Method for producing low-temperature polysilicon thin film transistor with crystallized bottom metals
US11387342B1 (en) * 2020-12-18 2022-07-12 International Business Machines Corporation Multi threshold voltage for nanosheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727044A (en) * 1984-05-18 1988-02-23 Semiconductor Energy Laboratory Co., Ltd. Method of making a thin film transistor with laser recrystallized source and drain
US5147826A (en) * 1990-08-06 1992-09-15 The Pennsylvania Research Corporation Low temperature crystallization and pattering of amorphous silicon films
US5313076A (en) * 1991-03-18 1994-05-17 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and semiconductor device including a laser crystallized semiconductor

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840820A (en) * 1981-09-03 1983-03-09 Nec Corp Formation of silicon single crystal film
JPS60136304A (en) * 1983-12-26 1985-07-19 Hitachi Ltd Manufacture of semiconductor single crystal film
JPH0614540B2 (en) * 1984-09-04 1994-02-23 工業技術院長 Method for manufacturing semiconductor thin film crystal layer
EP0178447B1 (en) * 1984-10-09 1993-02-17 Fujitsu Limited A manufacturing method of an integrated circuit based on semiconductor-on-insulator technology
CA1239706A (en) * 1984-11-26 1988-07-26 Hisao Hayashi Method of forming a thin semiconductor film
JPH0677100B2 (en) * 1985-01-19 1994-09-28 ミノルタカメラ株式会社 Illumination optical system for focus detection
JPH0236056B2 (en) * 1985-04-10 1990-08-15 Kogyo Gijutsuin HANDOTAISOCHINOSEIZOHOHO
JPS61253855A (en) * 1985-05-07 1986-11-11 Hitachi Ltd Semiconductor device
CN85103942B (en) * 1985-05-16 1988-03-16 中国科学院上海冶金所 Laser-heating recrystallization method to polycrystalline silicon on the insulated layer
CA1279861C (en) * 1986-05-12 1991-02-05 Karl T. Chuang Catalyst assembly
JPS62298151A (en) * 1986-06-18 1987-12-25 Hitachi Ltd Manufacture of semiconductor integrated circuit device
JPH02140915A (en) * 1988-11-22 1990-05-30 Seiko Epson Corp Manufacture of semiconductor device
JP2880175B2 (en) * 1988-11-30 1999-04-05 株式会社日立製作所 Laser annealing method and thin film semiconductor device
DE69033153T2 (en) * 1989-03-31 1999-11-11 Canon Kk Method for producing a semiconductor thin film and semiconductor thin film produced therewith
EP0419693A1 (en) * 1989-09-25 1991-04-03 Siemens Aktiengesellschaft Process for passivating crystal defects in a polycrystalline silicon material
DE69107101T2 (en) * 1990-02-06 1995-05-24 Semiconductor Energy Lab Method of making an oxide film.
US5254208A (en) * 1990-07-24 1993-10-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
JPH0492413A (en) * 1990-08-08 1992-03-25 Canon Inc Growth of crystal thin film
JPH04152640A (en) * 1990-10-17 1992-05-26 Semiconductor Energy Lab Co Ltd Manufacture of insulated-gate type semiconductor device
EP0499979A3 (en) * 1991-02-16 1993-06-09 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
JPH05182923A (en) * 1991-05-28 1993-07-23 Semiconductor Energy Lab Co Ltd Laser annealing method
JPH0513442A (en) * 1991-07-03 1993-01-22 Ricoh Co Ltd Semiconductor substrate
TW226478B (en) * 1992-12-04 1994-07-11 Semiconductor Energy Res Co Ltd Semiconductor device and method for manufacturing the same
US5604360A (en) * 1992-12-04 1997-02-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a plurality of thin film transistors at least some of which have a crystalline silicon film crystal-grown substantially in parallel to the surface of a substrate for the transistor
JPH06296023A (en) * 1993-02-10 1994-10-21 Semiconductor Energy Lab Co Ltd Thin-film semiconductor device and manufacture thereof
EP1119053B1 (en) * 1993-02-15 2011-11-02 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating TFT semiconductor device
US5275851A (en) * 1993-03-03 1994-01-04 The Penn State Research Foundation Low temperature crystallization and patterning of amorphous silicon films on electrically insulating substrates
JP3193803B2 (en) * 1993-03-12 2001-07-30 株式会社半導体エネルギー研究所 Manufacturing method of semiconductor element
TW278219B (en) * 1993-03-12 1996-06-11 Handotai Energy Kenkyusho Kk
US5624851A (en) * 1993-03-12 1997-04-29 Semiconductor Energy Laboratory Co., Ltd. Process of fabricating a semiconductor device in which one portion of an amorphous silicon film is thermally crystallized and another portion is laser crystallized
TW241377B (en) * 1993-03-12 1995-02-21 Semiconductor Energy Res Co Ltd
KR100203982B1 (en) * 1993-03-12 1999-06-15 야마자끼 순페이 Semiconductor device and manufacturing method thereof
US5501989A (en) * 1993-03-22 1996-03-26 Semiconductor Energy Laboratory Co., Ltd. Method of making semiconductor device/circuit having at least partially crystallized semiconductor layer
US5481121A (en) * 1993-05-26 1996-01-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having improved crystal orientation
US5488000A (en) * 1993-06-22 1996-01-30 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor using a nickel silicide layer to promote crystallization of the amorphous silicon layer
US5663077A (en) * 1993-07-27 1997-09-02 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor in which the gate insulator comprises two oxide films
TW369686B (en) * 1993-07-27 1999-09-11 Semiconductor Energy Lab Corp Semiconductor device and process for fabricating the same
US5492843A (en) * 1993-07-31 1996-02-20 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device and method of processing substrate
JP2975973B2 (en) * 1993-08-10 1999-11-10 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
JP2762215B2 (en) * 1993-08-12 1998-06-04 株式会社半導体エネルギー研究所 Method for manufacturing thin film transistor and semiconductor device
JP2814049B2 (en) * 1993-08-27 1998-10-22 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
TW264575B (en) * 1993-10-29 1995-12-01 Handotai Energy Kenkyusho Kk
JP3562590B2 (en) * 1993-12-01 2004-09-08 株式会社半導体エネルギー研究所 Semiconductor device manufacturing method
US5612250A (en) * 1993-12-01 1997-03-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device using a catalyst
JP2860869B2 (en) * 1993-12-02 1999-02-24 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
US5654203A (en) * 1993-12-02 1997-08-05 Semiconductor Energy Laboratory, Co., Ltd. Method for manufacturing a thin film transistor using catalyst elements to promote crystallization
KR100319332B1 (en) * 1993-12-22 2002-04-22 야마자끼 순페이 Semiconductor device and electro-optical device
JP3378078B2 (en) * 1994-02-23 2003-02-17 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JPH07335906A (en) * 1994-06-14 1995-12-22 Semiconductor Energy Lab Co Ltd Thin film semiconductor device and fabrication thereof
JP3072000B2 (en) * 1994-06-23 2000-07-31 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US5712191A (en) * 1994-09-16 1998-01-27 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
JP3942651B2 (en) * 1994-10-07 2007-07-11 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP3486240B2 (en) * 1994-10-20 2004-01-13 株式会社半導体エネルギー研究所 Semiconductor device
US5756364A (en) * 1994-11-29 1998-05-26 Semiconductor Energy Laboratory Co., Ltd. Laser processing method of semiconductor device using a catalyst
TW355845B (en) * 1995-03-27 1999-04-11 Semiconductor Energy Lab Co Ltd Semiconductor device and a method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727044A (en) * 1984-05-18 1988-02-23 Semiconductor Energy Laboratory Co., Ltd. Method of making a thin film transistor with laser recrystallized source and drain
US5147826A (en) * 1990-08-06 1992-09-15 The Pennsylvania Research Corporation Low temperature crystallization and pattering of amorphous silicon films
US5313076A (en) * 1991-03-18 1994-05-17 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and semiconductor device including a laser crystallized semiconductor

Cited By (681)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6960812B2 (en) 1990-02-06 2005-11-01 Semiconductor Energy Laboratory Co., Ltd. Method of forming an oxide film
US7301211B2 (en) 1990-02-06 2007-11-27 Semiconductor Energy Laboratory Co. Ltd. Method of forming an oxide film
US6586346B1 (en) 1990-02-06 2003-07-01 Semiconductor Energy Lab Method of forming an oxide film
US20040043628A1 (en) * 1990-02-06 2004-03-04 Semiconductor Energy Laboratory Co., Ltd. Method of forming an oxide film
US20050052391A1 (en) * 1991-06-14 2005-03-10 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
US6797548B2 (en) 1991-06-19 2004-09-28 Semiconductor Energy Laboratory Co., Inc. Electro-optical device and thin film transistor and method for forming the same
US20050017243A1 (en) * 1991-06-19 2005-01-27 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and thin film transistor and method for forming the same
US6847064B2 (en) 1991-06-19 2005-01-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a thin film transistor
US6124155A (en) * 1991-06-19 2000-09-26 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and thin film transistor and method for forming the same
US6335213B1 (en) 1991-06-19 2002-01-01 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and thin film transistor and method for forming the same
US20080044962A1 (en) * 1991-06-19 2008-02-21 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and thin film transistor and method for forming the same
US6166399A (en) * 1991-06-19 2000-12-26 Semiconductor Energy Laboratory Co., Ltd. Active matrix device including thin film transistors
US7507991B2 (en) 1991-06-19 2009-03-24 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and thin film transistor and method for forming the same
US6756258B2 (en) 1991-06-19 2004-06-29 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7923311B2 (en) 1991-06-19 2011-04-12 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and thin film transistor and method for forming the same
US20110101362A1 (en) * 1991-06-19 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and thin film transistor and method for forming the same
US7416907B2 (en) 1992-08-27 2008-08-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US20050110091A1 (en) * 1992-08-27 2005-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6168980B1 (en) 1992-08-27 2001-01-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US7329906B2 (en) 1992-08-27 2008-02-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US20050003568A1 (en) * 1992-08-27 2005-01-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6872605B2 (en) 1992-12-04 2005-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US20050020006A1 (en) * 1992-12-04 2005-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US5888857A (en) * 1992-12-04 1999-03-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6323071B1 (en) * 1992-12-04 2001-11-27 Semiconductor Energy Laboratory Co., Ltd. Method for forming a semiconductor device
US20030036222A1 (en) * 1992-12-04 2003-02-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6806125B2 (en) * 1992-12-04 2004-10-19 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor device
US7622335B2 (en) 1992-12-04 2009-11-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film transistor device
US20020037609A1 (en) * 1992-12-04 2002-03-28 Hongyong Zhang Semiconductor device and method for manufacturing the same
US5604360A (en) * 1992-12-04 1997-02-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a plurality of thin film transistors at least some of which have a crystalline silicon film crystal-grown substantially in parallel to the surface of a substrate for the transistor
US8278660B2 (en) 1992-12-04 2012-10-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8062935B2 (en) 1992-12-04 2011-11-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6338991B1 (en) * 1992-12-04 2002-01-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6084247A (en) * 1993-02-15 2000-07-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a catalyst enhanced crystallized layer
US5879977A (en) * 1993-02-15 1999-03-09 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating a thin film transistor semiconductor device
US6997985B1 (en) 1993-02-15 2006-02-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor, semiconductor device, and method for fabricating the same
US20010045559A1 (en) * 1993-02-15 2001-11-29 Shunpei Yamazaki Semiconductor device and method of fabricating the same
US7952097B2 (en) * 1993-02-15 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6451638B1 (en) 1993-02-15 2002-09-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor and process for fabricating the same
US5956579A (en) * 1993-02-15 1999-09-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor, semiconductor device, and method for fabricating the same
US6110770A (en) * 1993-02-15 2000-08-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor and process for fabricating the same
US5897347A (en) * 1993-02-15 1999-04-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor, semiconductor device, and method for fabricating the same
US5837614A (en) * 1993-02-19 1998-11-17 Semiconductor Energy Laboratory Co., Ltd. Insulating film and method of producing semiconductor device
US7465679B1 (en) 1993-02-19 2008-12-16 Semiconductor Energy Laboratory Co., Ltd. Insulating film and method of producing semiconductor device
US6025630A (en) * 1993-02-19 2000-02-15 Semiconductor Energy Laboratory Co., Ltd. Insulating film formed using an organic silane and method of producing semiconductor device
US5866932A (en) * 1993-02-19 1999-02-02 Semiconductor Energy Laboratory Co., Ltd. Insulating film formed using an organic silane and method of producing semiconductor device
US5814540A (en) * 1993-03-05 1998-09-29 Semiconductor Energy Laboratory Co., Ltd. Method for producing a transistor
US7943930B2 (en) 1993-03-12 2011-05-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device forming method
US6987283B2 (en) * 1993-03-12 2006-01-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device structure
US5580792A (en) * 1993-03-12 1996-12-03 Semiconductor Energy Laboratory Co., Ltd. Method of removing a catalyst substance from the channel region of a TFT after crystallization
US5595923A (en) * 1993-03-12 1997-01-21 Semiconductor Energy Laboratory Co., Ltd. Method of forming a thin film transistor
US6413805B1 (en) 1993-03-12 2002-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device forming method
US6939749B2 (en) 1993-03-12 2005-09-06 Semiconductor Energy Laboratory Co., Ltd Method of manufacturing a semiconductor device that includes heating the gate insulating film
US5614733A (en) * 1993-03-12 1997-03-25 Semiconductor Energy Laboratory Co., Inc. Semiconductor device having crystalline thin film transistors
US5569936A (en) * 1993-03-12 1996-10-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device employing crystallization catalyst
US6261875B1 (en) 1993-03-12 2001-07-17 Semiconductor Energy Laboratory Co., Ltd. Transistor and process for fabricating the same
US6140165A (en) * 1993-03-12 2000-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device forming method
US6642073B1 (en) 1993-03-12 2003-11-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor circuit and method of fabricating the same
US6541313B2 (en) 1993-03-12 2003-04-01 Semiconductor Energy Laboratory Co., Ltd. Transistor and process for fabricating the same
US5783468A (en) * 1993-03-12 1998-07-21 Semiconductor Energy Laboratory Co. Ltd. Semiconductor circuit and method of fabricating the same
US7391051B2 (en) 1993-03-12 2008-06-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device forming method
US6028326A (en) * 1993-03-22 2000-02-22 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor including a catalytic element for promoting crystallization of a semiconductor film
US5744822A (en) * 1993-03-22 1998-04-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device/circuit having at least partially crystallized semiconductor layer
US5946560A (en) * 1993-03-22 1999-08-31 Semiconductor Energy Laboratory Co., Ltd. Transistor and method of forming the same
US6346486B2 (en) 1993-03-22 2002-02-12 Semiconductor Energy Laboratory Co., Ltd. Transistor device and method of forming the same
US6608325B1 (en) 1993-05-26 2003-08-19 Semiconductor Energy Laboratory Co., Ltd. Transistor and semiconductor device having columnar crystals
US6337231B1 (en) 1993-05-26 2002-01-08 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US6875628B1 (en) * 1993-05-26 2005-04-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method of the same
US6924506B2 (en) 1993-05-26 2005-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having channel formation region comprising silicon and containing a group IV element
US6765229B2 (en) * 1993-05-26 2004-07-20 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US5962871A (en) * 1993-05-26 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US6160279A (en) * 1993-05-26 2000-12-12 Semiconductor Energy Laboratory Co., Ltd. Method for producing a semiconductor device including doping with a catalyst that is a group IV element
US6037610A (en) * 1993-05-26 2000-03-14 Semiconductor Energy Laboratory Co., Ltd. Transistor and semiconductor device having columnar crystals
US6090646A (en) * 1993-05-26 2000-07-18 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US5824573A (en) * 1993-05-26 1998-10-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US5830784A (en) * 1993-05-26 1998-11-03 Semiconductor Energy Laboratory Company, Ltd. Method for producing a semiconductor device including doping with a group IV element
US6188085B1 (en) * 1993-06-10 2001-02-13 Mitsubishi Denki Kabushiki Kaisha Thin film transistor and a method of manufacturing thereof
US6255146B1 (en) 1993-06-10 2001-07-03 Mitsubishi Denki Kabushiki Kaisha Thin film transistor and a method of manufacturing thereof
US6475840B1 (en) * 1993-06-12 2002-11-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6319761B1 (en) 1993-06-22 2001-11-20 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor
US6713330B1 (en) 1993-06-22 2004-03-30 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor
US5488000A (en) * 1993-06-22 1996-01-30 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor using a nickel silicide layer to promote crystallization of the amorphous silicon layer
US20050153488A1 (en) * 1993-06-30 2005-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US7238558B2 (en) 1993-06-30 2007-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6479331B1 (en) * 1993-06-30 2002-11-12 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a semiconductor device
US5541119A (en) * 1993-07-08 1996-07-30 Nec Corporation Manufacturing method of active circuit elements integrated type liquid crystal display
US6924213B2 (en) 1993-07-27 2005-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
US20030022467A1 (en) * 1993-07-27 2003-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device for fabricating the same
US6465284B2 (en) 1993-07-27 2002-10-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6210997B1 (en) 1993-07-27 2001-04-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6455401B1 (en) 1993-07-27 2002-09-24 Semiconductor Energy Laboratory Co., Ltd. Methodology for producing thin film semiconductor devices by crystallizing an amorphous film with crystallization promoting material, patterning the crystallized film, and then increasing the crystallinity with an irradiation
US6599359B2 (en) 1993-07-27 2003-07-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US20050245053A1 (en) * 1993-07-27 2005-11-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
US6077758A (en) * 1993-07-27 2000-06-20 Semiconductor Energy Laboratory Co., Ltd. Method of crystallizing thin films when manufacturing semiconductor devices
US5529937A (en) * 1993-07-27 1996-06-25 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating thin film transistor
US7056775B2 (en) 1993-07-27 2006-06-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
US6171890B1 (en) * 1993-07-27 2001-01-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US5966594A (en) * 1993-07-27 1999-10-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US5589406A (en) * 1993-07-30 1996-12-31 Ag Technology Co., Ltd. Method of making TFT display
US5837619A (en) * 1993-07-31 1998-11-17 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device and method of processing substrate
US5492843A (en) * 1993-07-31 1996-02-20 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device and method of processing substrate
US5696388A (en) * 1993-08-10 1997-12-09 Semiconductor Energy Laboratory Co., Ltd. Thin film transistors for the peripheral circuit portion and the pixel portion
US5637515A (en) * 1993-08-12 1997-06-10 Semiconductor Energy Laboratory Co., Ltd. Method of making thin film transistor using lateral crystallization
US20080145983A1 (en) * 1993-08-20 2008-06-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
US6010924A (en) * 1993-08-20 2000-01-04 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating a thin film transistor
US20050009262A1 (en) * 1993-08-20 2005-01-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
US6841432B1 (en) 1993-08-20 2005-01-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
US7354811B2 (en) 1993-08-20 2008-04-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
US7585715B2 (en) 1993-08-20 2009-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
US7045819B2 (en) 1993-08-27 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7410849B2 (en) 1993-08-27 2008-08-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8133770B2 (en) 1993-08-27 2012-03-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7875508B2 (en) 1993-08-27 2011-01-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6194254B1 (en) * 1993-08-27 2001-02-27 Semiconductor Energy Laboratories Co., Ltd. Semiconductor device and method for manufacturing the same
US6482686B1 (en) * 1993-08-27 2002-11-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US20070173046A1 (en) * 1993-10-26 2007-07-26 Semiconductor Energy Laboratory Co., Ltd. Substrate processing apparatus and method and a manufacturing method of a thin film semiconductor device
US20090029509A1 (en) * 1993-10-26 2009-01-29 Semiconductor Energy Laboratory Co., Ltd. Substrate processing apparatus and method and a manufacturing method of a thin film semiconductor device
US7691692B2 (en) 1993-10-26 2010-04-06 Semiconductor Energy Laboratory Co., Ltd. Substrate processing apparatus and a manufacturing method of a thin film semiconductor device
US7271082B2 (en) * 1993-10-26 2007-09-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US8304350B2 (en) 1993-10-26 2012-11-06 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US20100144077A1 (en) * 1993-10-26 2010-06-10 Semiconductor Energy Laboratory Co., Ltd. Substrate processing apparatus and method and a manufacturing method of a thin film semiconductor device
US7452794B2 (en) 1993-10-26 2008-11-18 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of a thin film semiconductor device
US20020197760A1 (en) * 1993-10-26 2002-12-26 Semiconductor Energy Laboratory Co., Ltd. Substrate processing apparatus and method and a manufacturing method of a thin film semiconductor device
US7998844B2 (en) 1993-10-29 2011-08-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US6285042B1 (en) * 1993-10-29 2001-09-04 Semiconductor Energy Laboratory Co., Ltd. Active Matry Display
US20060131583A1 (en) * 1993-10-29 2006-06-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US20090035923A1 (en) * 1993-10-29 2009-02-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US6335541B1 (en) 1993-10-29 2002-01-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film transistor with crystal orientation
US6998639B2 (en) 1993-10-29 2006-02-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US5643826A (en) * 1993-10-29 1997-07-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US5624873A (en) * 1993-11-12 1997-04-29 The Penn State Research Foundation Enhanced crystallization of amorphous films
US5869362A (en) * 1993-12-02 1999-02-09 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US6348367B1 (en) * 1993-12-02 2002-02-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US6798023B1 (en) 1993-12-02 2004-09-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising first insulating film, second insulating film comprising organic resin on the first insulating film, and pixel electrode over the second insulating film
US5585291A (en) * 1993-12-02 1996-12-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device containing a crystallization promoting material
US5654203A (en) * 1993-12-02 1997-08-05 Semiconductor Energy Laboratory, Co., Ltd. Method for manufacturing a thin film transistor using catalyst elements to promote crystallization
US7141461B2 (en) 1993-12-02 2006-11-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US20040235225A1 (en) * 1993-12-02 2004-11-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US5696003A (en) * 1993-12-20 1997-12-09 Sharp Kabushiki Kaisha Method for fabricating a semiconductor device using a catalyst introduction region
US5821562A (en) * 1993-12-20 1998-10-13 Sharp Kabushiki Kaisha Semiconductor device formed within asymetrically-shaped seed crystal region
US20040232491A1 (en) * 1993-12-22 2004-11-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7700421B2 (en) 1993-12-22 2010-04-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6624445B2 (en) 1993-12-22 2003-09-23 Semiconductor Energy Laboratory Co., Ltd Semiconductor device and method of manufacturing the same
US20080286950A1 (en) * 1993-12-22 2008-11-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US5705829A (en) * 1993-12-22 1998-01-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device formed using a catalyst element capable of promoting crystallization
US7402471B2 (en) 1993-12-22 2008-07-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6955954B2 (en) 1993-12-22 2005-10-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20060068569A1 (en) * 1993-12-22 2006-03-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US5550070A (en) * 1993-12-27 1996-08-27 Sharp Kabushiki Kaisha Method for producing crystalline semiconductor film having reduced concentration of catalyst elements for crystallization and semiconductor device having the same
US5904770A (en) * 1994-02-03 1999-05-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6232156B1 (en) 1994-02-03 2001-05-15 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6417031B2 (en) 1994-02-03 2002-07-09 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7749819B2 (en) 1994-02-23 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20050040402A1 (en) * 1994-02-23 2005-02-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7235828B2 (en) 1994-02-23 2007-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with residual nickel from crystallization of semiconductor film
US20080020554A1 (en) * 1994-02-23 2008-01-24 Hisashi Ohtani Method for manufacturing semiconductor device
US6884698B1 (en) * 1994-02-23 2005-04-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device with crystallization of amorphous silicon
US5605846A (en) * 1994-02-23 1997-02-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US6723590B1 (en) 1994-03-09 2004-04-20 Semiconductor Energy Laboratory Co., Ltd. Method for laser-processing semiconductor device
US7504288B1 (en) 1994-03-09 2009-03-17 Semiconductor Energy Laboratory Co., Ltd. Method for laser-processing semiconductor device
US6096581A (en) * 1994-03-09 2000-08-01 Semiconductor Energy Laboratory Co., Ltd. Method for operating an active matrix display device with limited variation in threshold voltages
US6509212B1 (en) 1994-03-09 2003-01-21 Semiconductor Energy Laboratory Co., Ltd. Method for laser-processing semiconductor device
US5851862A (en) * 1994-03-11 1998-12-22 Semiconductor Energy Laboratory Co., Ltd. Method of crystallizing a silicon film
US6700133B1 (en) 1994-03-11 2004-03-02 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US6133583A (en) * 1994-03-11 2000-10-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for producing the same
US6156627A (en) * 1994-04-13 2000-12-05 Semiconductor Energy Laboratory Co., Ltd. Method of promoting crystallization of an amorphous semiconductor film using organic metal CVD
US6974763B1 (en) 1994-04-13 2005-12-13 Semiconductor Energy Laboratory Co., Ltd. Method of forming semiconductor device by crystallizing amorphous silicon and forming crystallization promoting material in the same chamber
US5837569A (en) * 1994-04-15 1998-11-17 Sharp Kabushiki Kaisha Semiconductor device and method for producing the same
US5619044A (en) * 1994-04-15 1997-04-08 Sharp Kabushiki Kaisha Semiconductor device formed with seed crystals on a layer thereof
US6388291B1 (en) 1994-04-29 2002-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit and method for forming the same
US6433361B1 (en) * 1994-04-29 2002-08-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit and method for forming the same
US6462403B1 (en) 1994-05-31 2002-10-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising thin film transistors having a passivation film formed thereon
US5897345A (en) * 1994-05-31 1999-04-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
US6048780A (en) * 1994-06-07 2000-04-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method for the same
US5773847A (en) * 1994-06-07 1998-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an active layer with separate layers where one of the layers acts as crystal nuclei for the other
US6194255B1 (en) * 1994-06-14 2001-02-27 Semiconductor Energy Laboratry Co. Ltd Method for manufacturing thin-film transistors
US6743667B2 (en) 1994-06-14 2004-06-01 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing an active matrix type device
US5744824A (en) * 1994-06-15 1998-04-28 Sharp Kabushiki Kaisha Semiconductor device method for producing the same and liquid crystal display including the same
US5994172A (en) * 1994-07-01 1999-11-30 Semiconductor Energy Laboratory., Ltd. Method for producing semiconductor device
US5851860A (en) * 1994-07-15 1998-12-22 Sharp Kabushiki Kaisha Semiconductor device and method for producing the same
US20050041005A1 (en) * 1994-08-19 2005-02-24 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device and fabrication method thereof
US7557377B2 (en) 1994-08-19 2009-07-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having thin film transistor
US20060175612A1 (en) * 1994-08-19 2006-08-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US8450743B2 (en) 1994-08-19 2013-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having parallel thin film transistors
US20090261359A1 (en) * 1994-08-19 2009-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US7550765B2 (en) 1994-08-19 2009-06-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US7186601B2 (en) 1994-08-26 2007-03-06 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a semiconductor device utilizing a catalyst material solution
US5693541A (en) * 1994-08-26 1997-12-02 Semiconductor Energy Laboratory Co., Ltd Method for manufacturing a semiconductor device using a silicon nitride mask
US20040142543A1 (en) * 1994-08-26 2004-07-22 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a semiconductor device utilizing a catalyst material solution
US5858823A (en) * 1994-08-29 1999-01-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor circuit for electro-optical device and method of manufacturing the same
US6169292B1 (en) 1994-08-31 2001-01-02 Semiconductor Energy Laboratory Co., Ltd. Thin film type monolithic semiconductor device
US6613613B2 (en) 1994-08-31 2003-09-02 Semiconductor Energy Laboratory Co., Ltd. Thin film type monolithic semiconductor device
US5886366A (en) * 1994-08-31 1999-03-23 Semiconductor Energy Laboratory Co., Ltd. Thin film type monolithic semiconductor device
US6670640B1 (en) 1994-09-15 2003-12-30 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US5923968A (en) * 1994-09-15 1999-07-13 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US5972105A (en) * 1994-09-15 1999-10-26 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device
US5937282A (en) * 1994-09-16 1999-08-10 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US5712191A (en) * 1994-09-16 1998-01-27 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US7229861B2 (en) 1994-09-16 2007-06-12 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
CN100419950C (en) * 1994-09-16 2008-09-17 株式会社半导体能源研究所 Method for producing semiconductor device
US6479329B2 (en) 1994-09-16 2002-11-12 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US6316789B1 (en) 1994-09-30 2001-11-13 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device and method for producing the same
US6300659B1 (en) 1994-09-30 2001-10-09 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor and fabrication method for same
US5915174A (en) * 1994-09-30 1999-06-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for producing the same
US6211535B1 (en) * 1994-11-26 2001-04-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6337229B1 (en) * 1994-12-16 2002-01-08 Semiconductor Energy Laboratory Co., Ltd. Method of making crystal silicon semiconductor and thin film transistor
US6613619B2 (en) * 1994-12-16 2003-09-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for producing the same
US6331475B1 (en) * 1995-01-12 2001-12-18 Semiconductor Energy Laboratory Co., Ltd. Method and manufacturing semiconductor device
US5986286A (en) * 1995-01-28 1999-11-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a method of manufacturing the same
US6013544A (en) * 1995-03-13 2000-01-11 Sharp Kabushiki Kaisha Method for fabricating a semiconductor device
US6855580B2 (en) 1995-03-27 2005-02-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US5961743A (en) * 1995-03-27 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Thin-film photoelectric conversion device and a method of manufacturing the same
US6518102B1 (en) 1995-03-27 2003-02-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing transistor semiconductor devices with step of annealing to getter metal with phosphorous
US7075002B1 (en) 1995-03-27 2006-07-11 Semiconductor Energy Laboratory Company, Ltd. Thin-film photoelectric conversion device and a method of manufacturing the same
US20060213550A1 (en) * 1995-03-27 2006-09-28 Semiconductor Energy Laboratory Co., Ltd. Thin-film photoelectric conversion device and a method of manufacturing the same
US20030134459A1 (en) * 1995-03-27 2003-07-17 Semiconductor Energy Laboratory Co. Ltd., A Japan Corporation Semiconductor device and manufacturing method thereof
US5748268A (en) * 1995-03-30 1998-05-05 Kaiser Aerospace & Electronics Co. Quasi-tiled active matrix display
US5536676A (en) * 1995-04-03 1996-07-16 National Science Council Low temperature formation of silicided shallow junctions by ion implantation into thin silicon films
US6933182B1 (en) 1995-04-20 2005-08-23 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device and manufacturing system thereof
US20050208714A1 (en) * 1995-04-20 2005-09-22 Semiconductor Energy Laboratory Co., Ltd., A Japan Corporation Method of manufacturing a semiconductor device and manufacturing system thereof
US7569440B2 (en) 1995-04-20 2009-08-04 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device and manufacturing system thereof
US6133620A (en) * 1995-05-26 2000-10-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
US6635900B1 (en) 1995-06-01 2003-10-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film having a single-crystal like region with no grain boundary
US5719033A (en) * 1995-06-28 1998-02-17 Motorola, Inc. Thin film transistor bio/chemical sensor
US6495857B2 (en) * 1995-07-27 2002-12-17 Semiconductor Energy Laboratory Co., Ltd. Thin film transister semiconductor devices
US7837792B2 (en) 1995-08-02 2010-11-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20050037554A1 (en) * 1995-08-02 2005-02-17 Semiconductor Energy Laboratory Co.,Ltd., A Japan Corporation Method for manufacturing semiconductor device
US6830617B1 (en) 1995-08-02 2004-12-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US5578854A (en) * 1995-08-11 1996-11-26 International Business Machines Corporation Vertical load resistor SRAM cell
US6242289B1 (en) 1995-09-08 2001-06-05 Semiconductor Energy Laboratories Co., Ltd. Method for producing semiconductor device
US20050009309A1 (en) * 1995-11-10 2005-01-13 Semiconductor Energy Laboratory Co., Ltd., A Japan Corporation Plasma CVD method
US7071128B2 (en) * 1995-11-10 2006-07-04 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD method
US7452829B2 (en) 1995-11-10 2008-11-18 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD method
US6589822B1 (en) 1995-12-09 2003-07-08 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for top-gate type and bottom-gate type thin film transistors
US6218702B1 (en) 1995-12-09 2001-04-17 Semiconductor Energy Laboratory, Co. Ltd. Microcrystal silicon film and its manufacturing method, and photoelectric conversion device and its manufacturing method
US20010022364A1 (en) * 1995-12-12 2001-09-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US5922125A (en) * 1995-12-12 1999-07-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7569433B2 (en) * 1995-12-12 2009-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US6225645B1 (en) 1995-12-12 2001-05-01 Semiconductor Energy Laboratory Cp., Ltd. Semiconductor device and method of manufacturing the same
US6204101B1 (en) 1995-12-15 2001-03-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US5869363A (en) * 1995-12-15 1999-02-09 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US6077731A (en) * 1996-01-19 2000-06-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US7679087B2 (en) 1996-01-19 2010-03-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor active region of TFTs having radial crystal grains through the whole area of the region
US6744069B1 (en) 1996-01-19 2004-06-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US5985740A (en) * 1996-01-19 1999-11-16 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device including reduction of a catalyst
US7427780B2 (en) 1996-01-19 2008-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
US6528820B1 (en) 1996-01-19 2003-03-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
US20040108503A1 (en) * 1996-01-19 2004-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
US6093934A (en) * 1996-01-19 2000-07-25 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having grain boundaries with segregated oxygen and halogen elements
US6316810B1 (en) 1996-01-19 2001-11-13 Semiconductor Energy Laboratory Co., Ltd. Display switch with double layered gate insulation and resinous interlayer dielectric
US7709837B2 (en) 1996-01-19 2010-05-04 Semiconductor Energy Laboratory Co., Ltd Semiconductor device and its manufacturing method
CN1881595B (en) * 1996-01-19 2012-02-08 株式会社半导体能源研究所 Semiconductor device and its manufacturing method
CN1881594B (en) * 1996-01-19 2012-02-08 株式会社半导体能源研究所 Semiconductor device and its manufacturing method
US20030098458A1 (en) * 1996-01-19 2003-05-29 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device and its manufacturing method
US7456056B2 (en) 1996-01-19 2008-11-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US6504174B1 (en) 1996-01-19 2003-01-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US6528358B1 (en) 1996-01-19 2003-03-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US7173282B2 (en) 1996-01-19 2007-02-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a crystalline semiconductor film
US20050056843A1 (en) * 1996-01-19 2005-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US7078727B2 (en) 1996-01-19 2006-07-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US6225152B1 (en) 1996-01-20 2001-05-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US5888858A (en) * 1996-01-20 1999-03-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US6541315B2 (en) 1996-01-20 2003-04-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US6489189B2 (en) * 1996-01-23 2002-12-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor thin film
US20060148218A1 (en) * 1996-01-23 2006-07-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor thin film
US7553716B2 (en) 1996-01-23 2009-06-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor thin film
US20030092225A1 (en) * 1996-01-23 2003-05-15 Semiconductor Energy Laboratory Co. Ltd., A Japanese Corporation Method for manufacturing a semiconductor thin film
US6991976B2 (en) * 1996-01-23 2006-01-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor thin film
US7141491B2 (en) 1996-01-26 2006-11-28 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device
US20060099780A1 (en) * 1996-01-26 2006-05-11 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device
US20060236920A1 (en) * 1996-01-26 2006-10-26 Semiconductor Energy Laboratory Co., Ltd. Fabrication method of semiconductor device
US7037811B1 (en) 1996-01-26 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device
US7056381B1 (en) 1996-01-26 2006-06-06 Semiconductor Energy Laboratory Co., Ltd. Fabrication method of semiconductor device
US7422630B2 (en) 1996-01-26 2008-09-09 Semiconductor Energy Laboratory Co., Ltd. Fabrication method of semiconductor device
US6180439B1 (en) 1996-01-26 2001-01-30 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device
US6465287B1 (en) 1996-01-27 2002-10-15 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device using a metal catalyst and high temperature crystallization
US6063654A (en) * 1996-02-20 2000-05-16 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor involving laser treatment
US7812351B2 (en) 1996-02-23 2010-10-12 Semiconductor Energy Laboratory Co., Ltd. Thin film semiconductor device and its manufacturing method
US6093937A (en) * 1996-02-23 2000-07-25 Semiconductor Energy Laboratory Co. Ltd. Semiconductor thin film, semiconductor device and manufacturing method thereof
US7372073B2 (en) 1996-02-23 2008-05-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film, semiconductor device and manufacturing method thereof
US7172929B2 (en) 1996-02-23 2007-02-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and method of manufacturing the same and semiconductor device and method of manufacturing the same
US8008693B2 (en) 1996-02-23 2011-08-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and method of manufacturing the same and semiconductor device and method of manufacturing the same
US6787806B1 (en) 1996-02-23 2004-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and method of manufacturing the same and semiconductor device and method of manufacturing the same
US20060258069A1 (en) * 1996-02-23 2006-11-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film, semiconductor device and manufacturing method thereof
US6323072B1 (en) 1996-02-23 2001-11-27 Semiconductor Energy Laboratory Co., Ltd. Method for forming semiconductor thin film
CN100355044C (en) * 1996-02-23 2007-12-12 株式会社半导体能源研究所 Semiconductor thin film, Semiconductor device and mfg. method thereof
US20020053672A1 (en) * 1996-02-23 2002-05-09 Semiconductor Energy Laboratory Co., Ltd., A Japanese Corporation Semiconductor thin film, semiconductor device and manufacturing method thereof
US7091519B2 (en) 1996-02-23 2006-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film, semiconductor device and manufacturing method thereof
US20040206958A1 (en) * 1996-02-23 2004-10-21 Semiconductor Energy Laboratory Co., Ltd., A Japan Corporation Semiconductor thin film and method of manufacturing the same and semiconductor device and method of manufacturing the same
US6376862B1 (en) 1996-02-26 2002-04-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US6323070B1 (en) * 1996-02-26 2001-11-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US6150246A (en) * 1996-03-07 2000-11-21 3C Semiconductor Corporation Method of making Os and W/WC/TiC ohmic and rectifying contacts on SiC
US6388272B1 (en) 1996-03-07 2002-05-14 Caldus Semiconductor, Inc. W/WC/TAC ohmic and rectifying contacts on SiC
US7135741B1 (en) 1996-03-17 2006-11-14 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6100562A (en) * 1996-03-17 2000-08-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6133119A (en) * 1996-07-08 2000-10-17 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method manufacturing same
US6624049B1 (en) 1996-07-08 2003-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US20070052757A1 (en) * 1996-07-19 2007-03-08 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US20070057908A1 (en) * 1996-07-19 2007-03-15 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US20040054031A1 (en) * 1996-07-19 2004-03-18 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US7148128B2 (en) 1996-07-19 2006-12-12 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US8035886B2 (en) 1996-07-19 2011-10-11 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US5946562A (en) * 1996-07-24 1999-08-31 International Business Machines Corporation Polysilicon thin film transistors with laser-induced solid phase crystallized polysilicon channel
US6867085B2 (en) * 1996-08-13 2005-03-15 Semiconductor Energy Laboratory Co., Ltd. Insulated gate semiconductor device and method of manufacturing the same
US5930658A (en) * 1996-11-26 1999-07-27 Advanced Micro Devices, Inc. Oxidized oxygen-doped amorphous silicon ultrathin gate oxide structures
US7943968B1 (en) 1996-12-24 2011-05-17 Semiconductor Energy Laboratory Co., Ltd. Charge transfer semiconductor device and manufacturing method thereof
US20020011983A1 (en) * 1996-12-27 2002-01-31 Semiconductor Energy Laboratory, A Japan Corporation Semiconductor device
US7256760B2 (en) 1996-12-27 2007-08-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6733584B1 (en) * 1996-12-27 2004-05-11 Semiconductor Energy Laboratory Co., Ltd. Method of forming crystalline silicon film
US6627486B1 (en) 1996-12-27 2003-09-30 Semiconductor Energy Laboratory Co. Ltd. Method for manufacturing semiconductor and method for manufacturing semiconductor device
US7612376B2 (en) 1996-12-27 2009-11-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20070034876A1 (en) * 1996-12-27 2007-02-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6140166A (en) * 1996-12-27 2000-10-31 Semicondutor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor and method for manufacturing semiconductor device
US20040135174A1 (en) * 1996-12-30 2004-07-15 Semiconductor Energy Laboratory Co., Ltd, A Japan Corporation Thin film circuit
US7759681B2 (en) 1996-12-30 2010-07-20 Semiconductor Energy Laboratory Co., Ltd. Thin film circuit
US20060267018A1 (en) * 1996-12-30 2006-11-30 Semiconductor Energy Laboratory Co., Ltd. Thin film circuit
US6331718B1 (en) * 1996-12-30 2001-12-18 Semiconductor Energy Laboratory Co., Ltd. Thin film circuit with improved carrier mobility
US7026193B1 (en) * 1996-12-30 2006-04-11 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device having TFTs with uniform characteristics
US6677611B2 (en) * 1996-12-30 2004-01-13 Semiconductor Energy Laboratory Co., Ltd. Thin film circuit
US6478263B1 (en) 1997-01-17 2002-11-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US6433363B1 (en) 1997-02-24 2002-08-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20050167672A1 (en) * 1997-02-24 2005-08-04 Semiconductor Energy Laboratory Co., Ltd., A Japan Corporation Semiconductor thin film and semiconductor device
US8193533B2 (en) 1997-02-24 2012-06-05 Semiconductor Energy Laboratory Co., Ltd. Display device having thin film transistors
US6197626B1 (en) 1997-02-26 2001-03-06 Semiconductor Energy Laboratory Co. Method for fabricating semiconductor device
US6448118B2 (en) 1997-02-26 2002-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film manufacturing with selective introduction of crystallization promoting material
US6303495B2 (en) 1997-03-13 2001-10-16 Mitsubishi Denki Kabushiki Kaisha Method of forming thin copper film and semiconductor device with thin copper film
US6893503B1 (en) 1997-03-27 2005-05-17 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6104547A (en) * 1997-04-09 2000-08-15 Canon Kabushiki Kaisha Zoom lens and optical apparatus having the same
US6541793B2 (en) 1997-05-30 2003-04-01 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor and semiconductor device using thin-film transistors
US6072193A (en) * 1997-05-30 2000-06-06 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor and semiconductor device using thin-film transistors
US6307214B1 (en) 1997-06-06 2001-10-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and semiconductor device
US7371667B2 (en) 1997-06-10 2008-05-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
US6303415B1 (en) 1997-06-10 2001-10-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
US7868360B2 (en) 1997-06-10 2011-01-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with heat-resistant gate
US20050045950A1 (en) * 1997-06-10 2005-03-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
US20070034913A1 (en) * 1997-06-10 2007-02-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
US7157753B2 (en) 1997-06-10 2007-01-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
US7081646B2 (en) 1997-06-10 2006-07-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
US20090026507A1 (en) * 1997-06-10 2009-01-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
US6501094B1 (en) 1997-06-11 2002-12-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a bottom gate type thin film transistor
US20050012096A1 (en) * 1997-06-11 2005-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for producing it
US7192817B2 (en) 1997-06-11 2007-03-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US7675060B2 (en) 1997-06-11 2010-03-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for producing it
US6791111B2 (en) 1997-06-11 2004-09-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20070138468A1 (en) * 1997-06-11 2007-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for producing it
US6156590A (en) * 1997-06-17 2000-12-05 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US6544826B1 (en) 1997-06-17 2003-04-08 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US6399454B1 (en) 1997-07-14 2002-06-04 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor film and method of manufacturing a semiconductor device
US6664144B2 (en) 1997-07-14 2003-12-16 Semiconductor Energy Laboratory Co., Ltd. Method of forming a semiconductor device using a group XV element for gettering by means of infrared light
US6962837B2 (en) 1997-07-14 2005-11-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor film and method of manufacturing a semiconductor device
US20030036225A1 (en) * 1997-07-14 2003-02-20 Setsuo Nakajima Method of forming a semiconductor device with gettering a group xv element by means of infrared light
US7026197B2 (en) 1997-07-14 2006-04-11 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device
US6242290B1 (en) 1997-07-14 2001-06-05 Semiconductor Energy Laboratory Co., Ltd. Method of forming a TFT by adding a metal to a silicon film promoting crystallization, forming a mask, forming another silicon layer with group XV elements, and gettering the metal through opening in the mask
US7129120B2 (en) 1997-07-14 2006-10-31 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor film and method of manufacturing a semiconductor device by transferring crystallization promoting material in the first semiconductor film to the second semiconductor film through a barrier film
US20060057786A1 (en) * 1997-07-14 2006-03-16 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor film and method of manufacturing a semiconductor device
US5940693A (en) * 1997-07-15 1999-08-17 Sharp Laboratories Of America, Inc. Selective silicide thin-film transistor and method for same
US6326226B1 (en) 1997-07-15 2001-12-04 Lg. Philips Lcd Co., Ltd. Method of crystallizing an amorphous film
US6368904B1 (en) 1997-07-22 2002-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US6066518A (en) * 1997-07-22 2000-05-23 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor devices using a crystallization promoting material
US6551907B2 (en) 1997-07-22 2003-04-22 Semiconductor Energy Laboratory Co., Ltd. Metal-gettering method used in the manufacture of crystalline-Si TFT
US6232205B1 (en) 1997-07-22 2001-05-15 Semiconductor Energy Laboratory Co., Ltd. Method for producing a semiconductor device
US6087679A (en) * 1997-07-23 2000-07-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and semiconductor device
US20030102480A1 (en) * 1997-07-23 2003-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and semiconductor device
US7928438B2 (en) 1997-07-23 2011-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and semiconductor device
US20080087894A1 (en) * 1997-07-23 2008-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and semiconductor device
US20050092997A1 (en) * 1997-07-23 2005-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and semiconductor device
US6822262B2 (en) 1997-07-23 2004-11-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and semiconductor device
US20100295046A1 (en) * 1997-07-23 2010-11-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and semiconductor device
US8384084B2 (en) 1997-07-23 2013-02-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and semiconductor device
US7297978B2 (en) 1997-07-23 2007-11-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and semiconductor device
US6495886B1 (en) 1997-07-23 2002-12-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and semiconductor device
US20040058486A1 (en) * 1997-07-24 2004-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabricating method thereof
US6432756B1 (en) * 1997-07-24 2002-08-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabricating method thereof
US6974732B2 (en) 1997-07-24 2005-12-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device method of manufacturing
US6326249B1 (en) 1997-08-26 2001-12-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for producing same
US6515299B1 (en) 1997-08-26 2003-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with rod like crystals and a recessed insulation layer
KR100633265B1 (en) * 1997-08-26 2007-05-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US6635929B2 (en) 1997-08-26 2003-10-21 Semiconductor Energy Laboratory Co., Ltd. Uniform thin film semiconductor device
US7307007B2 (en) 1997-08-26 2007-12-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6720575B2 (en) 1997-08-26 2004-04-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with a semiconductor layer over a surface having a recess pitch no smaller than 0.3 microns
US20040132233A1 (en) * 1997-08-26 2004-07-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20060172471A1 (en) * 1997-08-26 2006-08-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7022590B2 (en) 1997-08-26 2006-04-04 Semiconductor Energy Laboratory Co., Ltd Method for forming a semiconductor device using crystals of crystal growth
US6294815B1 (en) 1997-08-26 2001-09-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6392785B1 (en) 1997-08-28 2002-05-21 E Ink Corporation Non-spherical cavity electrophoretic displays and materials for making the same
US5950078A (en) * 1997-09-19 1999-09-07 Sharp Laboratories Of America, Inc. Rapid thermal annealing with absorptive layers for thin film transistors on transparent substrates
US7046282B1 (en) 1997-09-20 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Image sensor and image sensor integrated type active matrix type display device
US7286173B2 (en) 1997-09-20 2007-10-23 Semiconductor Energy Laboratory Co., Ltd. Image sensor and image sensor integrated type active matrix type display device
US7791117B2 (en) 1997-09-20 2010-09-07 Semiconductor Energy Laboratory Co., Ltd. Image sensor and image sensor integrated type active matrix type display device
US8564035B2 (en) 1997-09-20 2013-10-22 Semiconductor Energy Laboratory Co., Ltd. Image sensor and image sensor integrated type active matrix type display device
US20100321357A1 (en) * 1997-09-20 2010-12-23 Semiconductor Energy Laboratory Co., Ltd. Image Sensor and Image Sensor Integrated Type Active Matrix Type Display Device
US20050202609A1 (en) * 1997-10-20 2005-09-15 Semiconductor Energy Laboratory Co., Ltd. Integral-type liquid crystal panel with image sensor function
US6864950B2 (en) 1997-10-20 2005-03-08 Semiconductor Energy Laboratory Co., Ltd. Electronic device with active matrix type display panel and image sensor function
US7265811B2 (en) 1997-10-20 2007-09-04 Semiconductor Energy Laboratory Co., Ltd. Integral-type liquid crystal panel with image sensor function
US7525615B2 (en) 1997-10-20 2009-04-28 Semiconductor Energy Laboratory Co., Ltd. Integral-type liquid crystal panel with image sensor function and pixel electrode overlapping photoelectric conversion element
US7859621B2 (en) 1997-10-20 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Integral-type liquid crystal panel with image sensor function
US20060203139A1 (en) * 1997-10-20 2006-09-14 Semiconductor Energy Laboratory Co., Ltd. Integral-type liquid crystal panel with image sensor function
US20090207332A1 (en) * 1997-10-20 2009-08-20 Semiconductor Energy Laboratory Co., Ltd. Integral-type liquid crystal panel with image sensor function
US20080006828A1 (en) * 1997-10-20 2008-01-10 Semiconductor Energy Laboratory Co., Ltd. Integral-type liquid crystal panel with image sensor function
US7042548B2 (en) 1997-10-20 2006-05-09 Semiconductor Energy Laboratory Co., Ltd. Image sensor having thin film transistor and photoelectric conversion element
US6462806B2 (en) * 1997-10-20 2002-10-08 Semiconductor Energy Laboratory Co., Ltd. Electronic device having an active matrix display panel
US6243155B1 (en) * 1997-10-20 2001-06-05 Semiconductor Energy Laboratory Co., Ltd. Electronic display device having an active matrix display panel
US6097037A (en) * 1997-11-12 2000-08-01 Joo; Seung-Ki Thin film transistor having a continuous crystallized layer including the channel and portions of source and drain regions
US6693044B1 (en) 1998-01-12 2004-02-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US6221702B1 (en) 1998-02-10 2001-04-24 Lg. Philips Lcd Co., Ltd. Method of fabricating thin film transistor
US6511871B2 (en) 1998-02-10 2003-01-28 L.G. Philips Lcd Co., Ltd Method of fabricating thin film transistor
US7425743B2 (en) 1998-02-25 2008-09-16 Semiconductor Energy Laboratory Co., Ltd. Projection television set
US20050194594A1 (en) * 1998-02-25 2005-09-08 Semiconductor Energy Laboratory Co., Ltd. Projection TV
US8605010B2 (en) 1998-02-25 2013-12-10 Semiconductor Energy Laboratory Co., Ltd. Information processing device
US20070097021A1 (en) * 1998-02-25 2007-05-03 Semiconductor Energy Laboratory Co., Ltd. Information processing device
US6312979B1 (en) 1998-04-28 2001-11-06 Lg.Philips Lcd Co., Ltd. Method of crystallizing an amorphous silicon layer
US6738050B2 (en) 1998-05-12 2004-05-18 E Ink Corporation Microencapsulated electrophoretic electrostatically addressed media for drawing device applications
US6473072B1 (en) 1998-05-12 2002-10-29 E Ink Corporation Microencapsulated electrophoretic electrostatically-addressed media for drawing device applications
US7180092B2 (en) 1998-05-15 2007-02-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20030201450A1 (en) * 1998-05-15 2003-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6524662B2 (en) 1998-07-10 2003-02-25 Jin Jang Method of crystallizing amorphous silicon layer and crystallizing apparatus thereof
US20100038716A1 (en) * 1998-07-15 2010-02-18 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US20060278876A1 (en) * 1998-07-15 2006-12-14 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US8809133B2 (en) 1998-07-15 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US7153729B1 (en) * 1998-07-15 2006-12-26 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US8143625B2 (en) 1998-07-15 2012-03-27 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US7294535B1 (en) 1998-07-15 2007-11-13 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US7667235B2 (en) 1998-07-15 2010-02-23 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US7192813B2 (en) 1998-07-17 2007-03-20 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US20060051907A1 (en) * 1998-07-17 2006-03-09 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US20070120189A1 (en) * 1998-07-17 2007-05-31 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US20010036692A1 (en) * 1998-07-17 2001-11-01 Shunpei Yamazaki Crystalline semiconductor thin film, method of fabricating the same, semiconductor device and method of fabricating the same
US7619253B2 (en) 1998-07-17 2009-11-17 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US7282398B2 (en) 1998-07-17 2007-10-16 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device and method of fabricating the same
US7084016B1 (en) 1998-07-17 2006-08-01 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US20040072393A1 (en) * 1998-07-17 2004-04-15 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US6911698B2 (en) 1998-07-17 2005-06-28 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US6919235B1 (en) 1998-08-05 2005-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having semiconductor circuit comprising semiconductor element, and method for manufacturing same
US7186600B2 (en) 1998-08-07 2007-03-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7847294B2 (en) 1998-08-07 2010-12-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US6559036B1 (en) 1998-08-07 2003-05-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US6558986B1 (en) 1998-09-03 2003-05-06 Lg.Philips Lcd Co., Ltd Method of crystallizing amorphous silicon thin film and method of fabricating polysilicon thin film transistor using the crystallization method
US6784034B1 (en) 1998-10-13 2004-08-31 Lg. Philips Lcd Co., Ltd. Method for fabricating a thin film transistor
US6297080B1 (en) * 1998-11-09 2001-10-02 Lg. Philips Lcd Co. Ltd. Method of crystallizing a silicon film and a method of manufacturing a liquid crystal display apparatus
US20030155616A1 (en) * 1998-12-03 2003-08-21 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and semiconductor circuit
US7462517B2 (en) 1998-12-03 2008-12-09 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and semiconductor circuit
US6545320B2 (en) 1998-12-03 2003-04-08 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and semiconductor device
US6303963B1 (en) 1998-12-03 2001-10-16 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and semiconductor circuit
US20060134840A1 (en) * 1998-12-03 2006-06-22 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and semiconductor circuit
US7011995B2 (en) 1998-12-03 2006-03-14 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and semiconductor circuit
US9097953B2 (en) 1999-02-12 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and method of forming the same
US20050092998A1 (en) * 1999-02-12 2005-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and method of forming the same
US8445962B2 (en) 1999-03-02 2013-05-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US8847316B2 (en) 1999-03-02 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US20110095312A1 (en) * 1999-03-02 2011-04-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device and Method of Manufacturing the Same
US7821065B2 (en) 1999-03-02 2010-10-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a thin film transistor comprising a semiconductor thin film and method of manufacturing the same
US9153604B2 (en) 1999-03-02 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US20030057419A1 (en) * 1999-03-02 2003-03-27 Satoshi Murakami Semiconductor device comprising a thin film transistor and method of manufacuring the same
US7030412B1 (en) 1999-05-05 2006-04-18 E Ink Corporation Minimally-patterned semiconductor devices for display applications
WO2000067327A1 (en) * 1999-05-05 2000-11-09 E Ink Corporation Minimally-patterned semiconductor devices for display applications
US6342409B1 (en) 1999-05-21 2002-01-29 Lg. Philips Lcd Co., Ltd. Polysilicon thin film transistor and method of manufacturing the same
US9660159B2 (en) * 1999-06-22 2017-05-23 Semiconductor Energy Laboratory Co., Ltd. Wiring material, semiconductor device provided with a wiring using the wiring material and method of manufacturing thereof
US20130126883A1 (en) * 1999-06-22 2013-05-23 Semiconductor Energy Laboratory Co., Ltd. Wiring Material, Semiconductor Device Provided with a Wiring Using the Wiring Material and Method of Manufacturing Thereof
US8530896B2 (en) 1999-07-06 2013-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a pixel unit including an auxiliary capacitor
US20040222467A1 (en) * 1999-07-06 2004-11-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US9343570B2 (en) 1999-07-06 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US7569854B2 (en) 1999-07-06 2009-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US8859353B2 (en) 1999-07-06 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US9786787B2 (en) 1999-07-06 2017-10-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US20090290082A1 (en) * 1999-07-06 2009-11-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device and Fabrication Method Thereof
US6777254B1 (en) * 1999-07-06 2004-08-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US6410412B1 (en) * 1999-09-16 2002-06-25 Sony Corporation Methods for fabricating memory devices
US6537864B1 (en) * 1999-10-19 2003-03-25 Sanyo Electric Co., Ltd. Method of fabricating a thin film transistor using electromagnetic wave heating of an amorphous semiconductor film
US7851797B2 (en) * 1999-12-14 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Display device including a color filter or color filters over a pixel portion and a driving circuit for driving the pixel portion
US20050040400A1 (en) * 1999-12-14 2005-02-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20040140575A1 (en) * 1999-12-31 2004-07-22 Hong Mun-Pyo Contact structure of a wiring and a thin film transistor array panel including the same
US20080293241A1 (en) * 1999-12-31 2008-11-27 Mun Pyo Hong Contact structures of wirings and methods for manufacturing the same, and thin film transistor array panels including the same and methods for manufacturing the same
US6696324B2 (en) * 1999-12-31 2004-02-24 Samsung Electronics Co., Ltd. Contact structures of wirings and methods for manufacturing the same, and thin film transistor array panels including the same and methods for manufacturing the same
US7507996B2 (en) 1999-12-31 2009-03-24 Samsung Electronics Co., Ltd. Contact structure of a wiring and a thin film transistor array panel including the same
US7129522B2 (en) 2000-01-28 2006-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US7635866B2 (en) 2000-01-28 2009-12-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US6780687B2 (en) 2000-01-28 2004-08-24 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device having a heat absorbing layer
US20070051957A1 (en) * 2000-01-28 2007-03-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US20040124419A1 (en) * 2000-01-28 2004-07-01 Semiconductor Energy Laboratory Co., Ltd., A Japan Corporation Semiconductor device and its manufacturing method
US6975355B1 (en) 2000-02-22 2005-12-13 Pixim, Inc. Multiple sampling via a time-indexed method to achieve wide dynamic ranges
US7384832B2 (en) 2000-03-21 2008-06-10 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US20010026835A1 (en) * 2000-03-21 2001-10-04 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6872607B2 (en) 2000-03-21 2005-03-29 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7229864B2 (en) 2000-03-21 2007-06-12 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US20070218608A1 (en) * 2000-03-21 2007-09-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US20050095761A1 (en) * 2000-03-21 2005-05-05 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6825068B2 (en) 2000-04-18 2004-11-30 E Ink Corporation Process for fabricating thin film transistors
US20050067656A1 (en) * 2000-04-18 2005-03-31 E Ink Corporation Process for fabricating thin film transistors
US7365394B2 (en) 2000-04-18 2008-04-29 E Ink Corporation Process for fabricating thin film transistors
US20110140744A1 (en) * 2000-04-18 2011-06-16 E Ink Corporation Flexible electronic circuits and displays
US7893435B2 (en) 2000-04-18 2011-02-22 E Ink Corporation Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough
US6683333B2 (en) 2000-07-14 2004-01-27 E Ink Corporation Fabrication of electronic circuit elements using unpatterned semiconductor layers
US6559477B2 (en) * 2000-09-29 2003-05-06 Kabushiki Kaisha Toshiba Flat panel display device and method for manufacturing the same
US20040046171A1 (en) * 2000-10-31 2004-03-11 Pt Plus Co. Ltd., A Korean Corporation Thin film transistor including polycrystalline active layer and method for fabricating the same
US6596573B2 (en) 2000-10-31 2003-07-22 Pt Plus Co. Ltd. Thin film transistor including polycrystalline active layer and method for fabricating the same
US6692996B2 (en) * 2000-11-11 2004-02-17 Pt Plus Co., Ltd. Method for crystallizing silicon layer
US6548331B2 (en) * 2000-12-01 2003-04-15 Pt Plus Co. Ltd. Method for fabricating thin film transistor including crystalline silicon active layer
US7821005B2 (en) 2000-12-19 2010-10-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device and semiconductor device
US7045444B2 (en) 2000-12-19 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device that includes selectively adding a noble gas element
US20060255370A1 (en) * 2000-12-19 2006-11-16 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device and semiconductor device
US6500736B2 (en) * 2000-12-29 2002-12-31 Lg.Philips Lcd Co., Ltd. Crystallization method of amorphous silicon
US20060270128A1 (en) * 2001-01-18 2006-11-30 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US7605029B2 (en) 2001-01-18 2009-10-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US6566687B2 (en) 2001-01-18 2003-05-20 International Business Machines Corporation Metal induced self-aligned crystallization of Si layer for TFT
US6858480B2 (en) 2001-01-18 2005-02-22 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US7033871B2 (en) 2001-01-18 2006-04-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US6913956B2 (en) 2001-01-19 2005-07-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7501671B2 (en) 2001-01-19 2009-03-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US20020098628A1 (en) * 2001-01-19 2002-07-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US20040222425A1 (en) * 2001-01-19 2004-11-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US20070187761A1 (en) * 2001-01-19 2007-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7198992B2 (en) 2001-01-19 2007-04-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device comprising doping steps using gate electrodes and resists as masks
US6727121B2 (en) * 2001-01-20 2004-04-27 Seung Ji Koo Method for crystallizing a silicon layer and fabricating a TFT using the same
US7115453B2 (en) 2001-01-29 2006-10-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
US20020134981A1 (en) * 2001-01-29 2002-09-26 Osamu Nakamura Semiconductor device and manufacturing method of the same
US7534670B2 (en) 2001-01-29 2009-05-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
US20050227422A1 (en) * 2001-01-29 2005-10-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
US20070166959A1 (en) * 2001-01-30 2007-07-19 Semiconductor Energy Laboratory Co., Ltd. Process for producing a photoelectric conversion device
US20040121530A1 (en) * 2001-01-30 2004-06-24 Semiconductor Energy Laboratory Co., Ltd. Process for producing a photoelectric conversion device
US7195990B2 (en) 2001-01-30 2007-03-27 Semiconductor Energy Laboratory Co., Ltd. Process for producing a photoelectric conversion device that includes using a gettering process
US7736960B2 (en) 2001-01-30 2010-06-15 Semiconductor Energy Laboratory Co., Ltd. Process for producing a photoelectric conversion device
US20020125480A1 (en) * 2001-02-09 2002-09-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7141822B2 (en) 2001-02-09 2006-11-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6808968B2 (en) 2001-02-16 2004-10-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US20020151120A1 (en) * 2001-02-16 2002-10-17 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7306982B2 (en) 2001-02-16 2007-12-11 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7538011B2 (en) 2001-02-16 2009-05-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7316947B2 (en) 2001-02-16 2008-01-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US20050032336A1 (en) * 2001-02-16 2005-02-10 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6984550B2 (en) 2001-02-28 2006-01-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20090035922A1 (en) * 2001-02-28 2009-02-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9330940B2 (en) 2001-02-28 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8053339B2 (en) 2001-02-28 2011-11-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20050092996A1 (en) * 2001-02-28 2005-05-05 Semiconductor Energy Laboratory Co., Ltd., A Japan Corporation Semiconductor device and manufacturing method thereof
US20040164296A1 (en) * 2001-02-28 2004-08-26 Semiconductor Energy Laboratory Co., Ltd., A Japan Corporation Semiconductor device and manufacturing method thereof
US7405115B2 (en) 2001-02-28 2008-07-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8735889B2 (en) 2001-02-28 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US6830994B2 (en) 2001-03-09 2004-12-14 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device having a crystallized semiconductor film
US20020155706A1 (en) * 2001-03-09 2002-10-24 Semiconductor Energy Laboratory Co. Ltd. Method of manufacturing a semiconductor device
US7485553B2 (en) 2001-03-16 2009-02-03 Semiconductor Energy Laboratory Co., Ltd. Process for manufacturing a semiconductor device
US7052943B2 (en) 2001-03-16 2006-05-30 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7122450B2 (en) 2001-03-16 2006-10-17 Semiconductor Energy Laboratory Co., Ltd. Process for manufacturing a semiconductor device
US7202119B2 (en) 2001-03-26 2007-04-10 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US20050009257A1 (en) * 2001-03-26 2005-01-13 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US6967640B2 (en) 2001-07-27 2005-11-22 E Ink Corporation Microencapsulated electrophoretic display with integrated driver
US20050134554A1 (en) * 2001-07-27 2005-06-23 E Ink Corporation Microencapsulated electrophoretic display with integrated driver
US7382363B2 (en) 2001-07-27 2008-06-03 E Ink Corporation Microencapsulated electrophoretic display with integrated driver
US20030020844A1 (en) * 2001-07-27 2003-01-30 Albert Jonathan D. Microencapsulated electrophoretic display with integrated driver
US7960296B2 (en) 2001-08-30 2011-06-14 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor film, method of manufacturing the same, and semiconductor device
US7452791B2 (en) 2001-08-30 2008-11-18 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor film, method of manufacturing the same, and semiconductor device
US20060024925A1 (en) * 2001-08-30 2006-02-02 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor film, method of manufacturing the same, and semiconductor device
US20070228374A1 (en) * 2001-11-14 2007-10-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US8043905B2 (en) 2001-11-14 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US7238557B2 (en) * 2001-11-14 2007-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US20110034009A1 (en) * 2001-11-14 2011-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US7834356B2 (en) 2001-11-14 2010-11-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US20030094611A1 (en) * 2001-11-14 2003-05-22 Semiconductor Energy Laboratory Co., Ltd Semiconductor device and method of fabricating the same
US7050878B2 (en) 2001-11-22 2006-05-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductror fabricating apparatus
US20030171837A1 (en) * 2001-11-22 2003-09-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor fabricating apparatus
US7439115B2 (en) 2001-11-22 2008-10-21 Semiconductor Eneregy Laboratory Co., Ltd. Semiconductor fabricating apparatus
US20050208710A1 (en) * 2001-11-28 2005-09-22 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6890840B2 (en) 2001-11-28 2005-05-10 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device, utilizing a laser beam for crystallization
US20030219932A1 (en) * 2001-11-28 2003-11-27 Atsuo Isobe Method of manufacturing a semiconductor device
US7449376B2 (en) 2001-11-28 2008-11-11 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7133737B2 (en) 2001-11-30 2006-11-07 Semiconductor Energy Laboratory Co., Ltd. Program for controlling laser apparatus and recording medium for recording program for controlling laser apparatus and capable of being read out by computer
US7588974B2 (en) 2001-11-30 2009-09-15 Semiconductor Energy Laboratory Co., Ltd. Program for controlling laser apparatus and recording medium for recording program for controlling laser apparatus and capable of being read out by computer
US20030153999A1 (en) * 2001-11-30 2003-08-14 Semiconductor Energy Laboratory Co., Ltd. Program for controlling laser apparatus and recording medium for recording program for controlling laser apparatus and capable of being read out by computer
US20080009120A1 (en) * 2001-11-30 2008-01-10 Semiconductor Energy Laboratory Co., Ltd. Program for controlling laser apparatus and recording medium for recording program for controlling laser apparatus and capable of being read out by computer
US20060079041A1 (en) * 2001-11-30 2006-04-13 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for a semiconductor device
US8338216B2 (en) 2001-11-30 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Program for controlling laser apparatus and recording medium for recording program for controlling laser apparatus and capable of being read out by computer
US6979605B2 (en) 2001-11-30 2005-12-27 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for a semiconductor device using a marker on an amorphous semiconductor film to selectively crystallize a region with a laser light
US7510920B2 (en) 2001-11-30 2009-03-31 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for a thin film transistor that uses a pulse oscillation laser crystallize an amorphous semiconductor film
US20030235971A1 (en) * 2001-11-30 2003-12-25 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for a semiconductor device
US7214573B2 (en) 2001-12-11 2007-05-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device that includes patterning sub-islands
US7560397B2 (en) 2001-12-11 2009-07-14 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and method of manufacturing a semiconductor device
US20070190810A1 (en) * 2001-12-11 2007-08-16 Shunpei Yamazaki Laser irradiation method and method of manufacturing a semiconductor device
US20030228723A1 (en) * 2001-12-11 2003-12-11 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and method of manufacturing a semiconductor device
US7112475B2 (en) 2001-12-19 2006-09-26 Samsung Sdi Co., Ltd. Method of fabricating a thin film transistor with multiple gates using metal induced lateral crystallization
US7235435B2 (en) * 2001-12-19 2007-06-26 Samsung Sdi Co., Ltd. Method for fabricating thin film transistor with multiple gates using metal induced lateral crystallization
US20050095753A1 (en) * 2001-12-19 2005-05-05 Woo-Young So Thin film transistor with multiple gates using metal induced lateral crystallization and method of fabricating the same
EP1326282A3 (en) * 2001-12-19 2004-12-15 Samsung SDI Co. Ltd. Thin film transistor with multiple gates
US7294537B2 (en) 2001-12-19 2007-11-13 Samsung Sdi Co., Ltd. Method of fabricating thin film transistor with multiple gates using super grain silicon crystallization
US7208352B2 (en) 2001-12-19 2007-04-24 Samsung Sdi Co., Ltd. Method of fabricating a thin film transistor with multiple gates using metal induced lateral crystallization
US20050095758A1 (en) * 2001-12-19 2005-05-05 Samsung Sdi Co., Ltd. CMOS thin film transistor
US20050158920A1 (en) * 2001-12-19 2005-07-21 Woo-Young So Thin film transistor with multiple gates using super grain silicon crystallization
US20050158928A1 (en) * 2001-12-19 2005-07-21 Woo-Young So Method of fabricating thin film transistor with multiple gates using super grain silicon crystallization
US6933526B2 (en) 2001-12-19 2005-08-23 Samsung Sdi Co., Ltd. CMOS thin film transistor
US20050191799A1 (en) * 2001-12-19 2005-09-01 Samsung Sdi Co., Ltd. Thin film transistor with multiple gates using metal induced lateral crystallization and method of fabricating the same
US20050191798A1 (en) * 2001-12-19 2005-09-01 Samsung Sdi Co., Ltd. Thin film transistor with multiple gates using metal induced lateral crystallization and method of fabricating the same
US20040253772A1 (en) * 2001-12-19 2004-12-16 Samsung Sdi Co., Ltd. Thin film transistor with multiple gates using metal induced lateral crystalization and method of fabricating the same
US7211475B2 (en) 2001-12-19 2007-05-01 Samsung Sdi Co., Ltd. CMOS thin film transistor
US7381990B2 (en) 2001-12-19 2008-06-03 Samsung Sdi Co., Ltd. Thin film transistor with multiple gates fabricated using super grain silicon crystallization
US7001802B2 (en) 2001-12-19 2006-02-21 Samsung Sdi Co., Ltd. Thin film transistor with multiple gates using metal induced lateral crystalization and method of fabricating the same
US7235434B2 (en) 2001-12-19 2007-06-26 Samsung Sdi Co., Ltd. Thin film transistor with multiple gates using metal induced lateral crystallization and method of fabricating the same
US20050093065A1 (en) * 2001-12-19 2005-05-05 Woo-Young So Method for fabricating thin film transistor with multiple gates using metal induced lateral crystallization
US6797550B2 (en) 2001-12-21 2004-09-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
US20030224550A1 (en) * 2001-12-21 2003-12-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
US7319055B2 (en) 2001-12-21 2008-01-15 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a semiconductor device utilizing crystallization of semiconductor region with laser beam
US7129121B2 (en) 2001-12-28 2006-10-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20040072411A1 (en) * 2001-12-28 2004-04-15 Munehiro Azami Method for manufacturing semiconductor device
US20050245007A1 (en) * 2001-12-28 2005-11-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US6911358B2 (en) 2001-12-28 2005-06-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7635883B2 (en) 2001-12-28 2009-12-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US6900851B2 (en) 2002-02-08 2005-05-31 E Ink Corporation Electro-optic displays and optical systems for addressing such displays
US20080136028A1 (en) * 2002-03-29 2008-06-12 Wai Chien M Semiconductor constructions comprising a layer of metal over a substrate
US20060157860A1 (en) * 2002-03-29 2006-07-20 Wai Chien M Semiconductor constructions
US7341947B2 (en) 2002-03-29 2008-03-11 Micron Technology, Inc. Methods of forming metal-containing films over surfaces of semiconductor substrates
US20070190781A1 (en) * 2002-03-29 2007-08-16 Micron Technology, Inc. Methods of forming metal-containing films over surfaces of semiconductor substrates
US7400043B2 (en) 2002-03-29 2008-07-15 Micron Technology, Inc. Semiconductor constructions
US7423345B2 (en) * 2002-03-29 2008-09-09 Micron Technology, Inc. Semiconductor constructions comprising a layer of metal over a substrate
US20030217620A1 (en) * 2002-04-08 2003-11-27 Council Scientific And Industrial Research Process for the production of neodymium-iron-boron permanent magnet alloy powder
US20030193069A1 (en) * 2002-04-11 2003-10-16 Samsung Sdi, Co., Ltd. Thin film transistor and organic electroluminescent device using the same
US7374976B2 (en) 2002-11-22 2008-05-20 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating thin film transistor
US20040101997A1 (en) * 2002-11-22 2004-05-27 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating thin film transistor
US20040253797A1 (en) * 2003-06-12 2004-12-16 Industrial Technology Research Institute Heating plate crystallization method
US6977206B2 (en) * 2003-06-12 2005-12-20 Industrial Technology Research Institute Heating plate crystallization method
US7923778B2 (en) 2004-04-23 2011-04-12 Semiconductor Energy Laboratory Co., Ltd. Thin film integrated circuit and method for manufacturing the same, CPU, memory, electronic card and electronic device
US7288480B2 (en) 2004-04-23 2007-10-30 Semiconductor Energy Laboratory Co., Ltd. Thin film integrated circuit and method for manufacturing the same, CPU, memory, electronic card and electronic device
US20050253178A1 (en) * 2004-04-23 2005-11-17 Semiconductor Energy Laboratory Co., Ltd. Thin film integrated circuit and method for manufacturing the same, CPU, memory, electronic card and electronic device
US20110020990A1 (en) * 2004-06-30 2011-01-27 Samsung Mobile Display Co., Ltd. Thin film transistor and method for fabricating the same
US7935586B2 (en) 2004-06-30 2011-05-03 Samsung Mobile Display Co., Ltd. Thin film transistor and method for fabricating the same
US7838352B2 (en) 2004-06-30 2010-11-23 Samsung Mobile Display Co., Ltd. Thin film transistor and method for fabricating the same
US20060003503A1 (en) * 2004-06-30 2006-01-05 Tae-Hoon Yang Thin film transistor and method for fabricating the same
EP1612852A1 (en) * 2004-06-30 2006-01-04 Samsung SDI Co., Ltd. Thin film transistor having no grain boundary and method for fabricating the same
US20060263956A1 (en) * 2004-06-30 2006-11-23 Samsung Sdi Co., Ltd. Thin film transistor and method for fabricating the same
US20060091398A1 (en) * 2004-11-04 2006-05-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8008140B2 (en) 2004-11-04 2011-08-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device including hat-shaped electrode
US7329319B2 (en) * 2004-11-10 2008-02-12 Illinois Institute Of Technology Method for producing crystals and screening crystallization conditions
US20060096523A1 (en) * 2004-11-10 2006-05-11 Myerson Allan S Method for producing crystals and screening crystallization conditions
US20060213425A1 (en) * 2004-11-10 2006-09-28 Myerson Allan S Method for screening crystallization conditions using multifunctional substrates
US7329592B2 (en) * 2004-11-10 2008-02-12 Illinois Institute Of Technology Method for screening crystallization conditions using multifunctional substrates
US8338238B2 (en) 2004-11-26 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US7838346B2 (en) 2004-11-26 2010-11-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US20110065250A1 (en) * 2004-11-26 2011-03-17 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8053290B2 (en) 2004-11-26 2011-11-08 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US20090286376A1 (en) * 2004-11-26 2009-11-19 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US7575959B2 (en) 2004-11-26 2009-08-18 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US20060115948A1 (en) * 2004-11-26 2006-06-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US7279387B2 (en) * 2005-02-25 2007-10-09 United Microelectronics Corp. Method for fabricating asymmetric semiconductor device
US20060194380A1 (en) * 2005-02-25 2006-08-31 Yi-Cheng Chen Method for fabricating asymmetric semiconductor device
US20060197088A1 (en) * 2005-03-07 2006-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
US20060270238A1 (en) * 2005-05-27 2006-11-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8455287B2 (en) 2005-05-27 2013-06-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device including microstructure
US7560789B2 (en) 2005-05-27 2009-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20090242896A1 (en) * 2005-05-27 2009-10-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8008737B2 (en) 2005-05-27 2011-08-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20060267153A1 (en) * 2005-05-31 2006-11-30 Semiconductor Energy Laboratory Co., Ltd. Microstructure and manufacturing method of the same
US7683429B2 (en) 2005-05-31 2010-03-23 Semiconductor Energy Laboratory Co., Ltd. Microstructure and manufacturing method of the same
US7776665B2 (en) 2005-06-17 2010-08-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20060284183A1 (en) * 2005-06-17 2006-12-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7642612B2 (en) 2005-06-17 2010-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20100207253A1 (en) * 2005-10-18 2010-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7709309B2 (en) * 2005-10-18 2010-05-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20070087488A1 (en) * 2005-10-18 2007-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8058709B2 (en) 2005-10-18 2011-11-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20090020763A1 (en) * 2006-05-30 2009-01-22 Chunghwa Picture Tubes, Ltd. Poly silicon layer and structure for forming the same
US8436359B2 (en) 2006-07-21 2013-05-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20080099793A1 (en) * 2006-10-13 2008-05-01 David Fattal Photodiode module and apparatus including multiple photodiode modules
US20080150027A1 (en) * 2006-12-20 2008-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7705358B2 (en) 2006-12-20 2010-04-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US20080213984A1 (en) * 2007-03-02 2008-09-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US7972943B2 (en) 2007-03-02 2011-07-05 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US20090315030A1 (en) * 2008-06-24 2009-12-24 Applied Materials, Inc. Methods for forming an amorphous silicon film in display devices
US7955890B2 (en) * 2008-06-24 2011-06-07 Applied Materials, Inc. Methods for forming an amorphous silicon film in display devices
CN102150273A (en) * 2008-10-02 2011-08-10 夏普株式会社 Display panel and display device using the same
US9941310B2 (en) 2008-12-24 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Driver circuit with oxide semiconductor layers having varying hydrogen concentrations
US20100163874A1 (en) * 2008-12-24 2010-07-01 Semiconductor Energy Laboratory Co., Ltd. Driver circuit and semiconductor device
US9443888B2 (en) 2008-12-24 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device including transistor and resistor incorporating hydrogen in oxide semiconductor
US9202827B2 (en) 2008-12-24 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Driver circuit and semiconductor device
US20110169009A1 (en) * 2010-01-14 2011-07-14 Samsung Mobile Display Co. Ltd. Organic light emitting diode display and method for manufacturing the same
US9257452B2 (en) 2010-12-28 2016-02-09 Semiconductor Energy Laboratory Co., Ltd. Portable semiconductor device including transistor with oxide semiconductor layer
GB2489682B (en) * 2011-03-30 2015-11-04 Pragmatic Printing Ltd Electronic device and its method of manufacture
US9530649B2 (en) 2011-03-30 2016-12-27 Pragmatic Printing Ltd. Semiconductor electronic devices and methods of manufacture thereof
US9978600B2 (en) 2011-03-30 2018-05-22 Pragmatic Printing Ltd. Semiconductor electronic devices and methods of manufacture thereof
US9331108B2 (en) 2013-01-30 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9659977B2 (en) 2013-01-30 2017-05-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9177969B2 (en) 2013-01-30 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9917116B2 (en) 2013-01-30 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8981374B2 (en) 2013-01-30 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9494830B2 (en) 2013-06-05 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Sequential circuit and semiconductor device
US9939692B2 (en) 2013-06-05 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Sequential circuit and semiconductor device

Also Published As

Publication number Publication date
CN1091943C (en) 2002-10-02
CN1299331C (en) 2007-02-07
US5888857A (en) 1999-03-30
CN1052570C (en) 2000-05-17
CN1348199A (en) 2002-05-08
CN1090426A (en) 1994-08-03
CN1285611A (en) 2001-02-28
CN100437907C (en) 2008-11-26
TW226478B (en) 1994-07-11
CN1152792A (en) 1997-06-25
US5563426A (en) 1996-10-08
CN1658389A (en) 2005-08-24
KR970004450B1 (en) 1997-03-27
CN1658389B (en) 2010-12-29
CN1149634C (en) 2004-05-12
CN1599030A (en) 2005-03-23

Similar Documents

Publication Publication Date Title
US5403772A (en) Method for manufacturing semiconductor device
US6323071B1 (en) Method for forming a semiconductor device
US5569936A (en) Semiconductor device employing crystallization catalyst
US5619044A (en) Semiconductor device formed with seed crystals on a layer thereof
US6465284B2 (en) Semiconductor device and method for manufacturing the same
KR100191091B1 (en) Thin film transistor and its fabrication method
JPH086053A (en) Liquid crystal display device
JPH0758339A (en) Semiconductor device and its production
JP2000174289A (en) Semiconductor device and its manufacture
JP3241515B2 (en) Method for manufacturing semiconductor device
JP3514891B2 (en) Semiconductor device and manufacturing method thereof
JPH0818055A (en) Semiconductor integrated circuit and its manufacture
JP3753845B2 (en) Method for manufacturing semiconductor device
JP3942701B2 (en) Method for manufacturing display device
JPH0832074A (en) Semiconductor device and manufacture thereof
JP4014169B2 (en) Method for manufacturing semiconductor device
JP3796097B2 (en) Method for manufacturing semiconductor device
JP2002334995A (en) Manufacturing method of semiconductor device
KR100493804B1 (en) Method of forming crystaline silicon film
JP3535463B2 (en) Method for manufacturing semiconductor circuit
JPH0730122A (en) Production of polycrystalline silicon thin-film transistor
CN1877800A (en) Semiconductor device and method for manufacturing the same
JPH1098195A (en) Manufacture of thin-film semiconductor device for display
JPH10199806A (en) Manufacture of crystalline silicon film
JPH11330488A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEMICONDUCTOR ENERGY LABORATORY CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, HONGYONG;UOCHI, HIDEKI;TAKAYAMA, TORU;AND OTHERS;REEL/FRAME:006798/0382

Effective date: 19931125

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 12