US5429803A - Liquid specimen container and attachable testing modules - Google Patents

Liquid specimen container and attachable testing modules Download PDF

Info

Publication number
US5429803A
US5429803A US07/686,934 US68693491A US5429803A US 5429803 A US5429803 A US 5429803A US 68693491 A US68693491 A US 68693491A US 5429803 A US5429803 A US 5429803A
Authority
US
United States
Prior art keywords
cup member
housing
luer lock
lid
biological fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/686,934
Inventor
Raouf A. Guirguis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SONABANK
La Mina Ltd
Lamina Inc
Original Assignee
Lamina Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lamina Inc filed Critical Lamina Inc
Assigned to LA MINA LTD. reassignment LA MINA LTD. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GUIRGUIS, RAOUF A.
Priority to US07/686,934 priority Critical patent/US5429803A/en
Priority to AU17814/92A priority patent/AU645689B2/en
Priority to EP92910927A priority patent/EP0535212B1/en
Priority to AT92910927T priority patent/ATE159588T1/en
Priority to CA002085741A priority patent/CA2085741C/en
Priority to JP51005992A priority patent/JP3244504B2/en
Priority to DE69222826T priority patent/DE69222826T2/en
Priority to PCT/US1992/003105 priority patent/WO1992018844A1/en
Priority to EP97106067A priority patent/EP0787987A3/en
Priority to US07/920,662 priority patent/US5301685A/en
Priority to US08/172,232 priority patent/US5471994A/en
Priority to US08/474,893 priority patent/US5849505A/en
Publication of US5429803A publication Critical patent/US5429803A/en
Application granted granted Critical
Priority to US08/905,833 priority patent/US6106483A/en
Priority to US09/210,815 priority patent/US6210909B1/en
Priority to US09/680,950 priority patent/US6509164B1/en
Priority to US09/680,949 priority patent/US6589749B1/en
Priority to US09/735,550 priority patent/USRE39457E1/en
Assigned to GENERAL ELECTRIC CAPITAL CORPORATION reassignment GENERAL ELECTRIC CAPITAL CORPORATION INTELLECTUAL PROPERTY SECURITY AGREEMENT Assignors: BRK BRANDS, INC., COLEMAN COMPANY, INC., THE, COLEMAN POWERMATE, INC., SUNBEAM PRODUCTS, INC., THALIA PRODUCTS, INC.
Assigned to SONABANK reassignment SONABANK ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BIOTECHPHARMA CORP.
Anticipated expiration legal-status Critical
Assigned to LUDWIG & ROBINSON PLLC reassignment LUDWIG & ROBINSON PLLC LIEN (SEE DOCUMENT FOR DETAILS). Assignors: BIOTECHPHARMA, LLC (AND AS SUCCESSOR IN INTEREST TO BIOTECHPHARMA CORP., LA MINA, LTD,, AND LA MINA, INC.), CONVERTING BIOPHILE LABORATORIES, INC., GUIRGUIS, RAOUF A.
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/0045Devices for taking samples of body liquids
    • A61B10/007Devices for taking samples of body liquids for taking urine samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/56Labware specially adapted for transferring fluids
    • B01L3/563Joints or fittings ; Separable fluid transfer means to transfer fluids between at least two containers, e.g. connectors
    • B01L3/5635Joints or fittings ; Separable fluid transfer means to transfer fluids between at least two containers, e.g. connectors connecting two containers face to face, e.g. comprising a filter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/041Connecting closures to device or container
    • B01L2300/042Caps; Plugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/046Function or devices integrated in the closure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0478Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure pistons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/81Packaged device or kit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/807Apparatus included in process claim, e.g. physical support structures
    • Y10S436/81Tube, bottle, or dipstick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/824Immunological separation techniques
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25125Digestion or removing interfering materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25375Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25375Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]
    • Y10T436/255Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.] including use of a solid sorbent, semipermeable membrane, or liquid extraction

Definitions

  • the present invention relates to a container used for collecting urine or other biological liquid specimens and for testing modules which can be removably attached to the container. After the biological liquid has been collected, the lid for the container is replaced and the container sealed by the patient or medical person handling the collection.
  • the present collection container allows for secondary collection of the urine specimen from along different fluid levels of the urine in the container without removing the lid, thereby allowing a specimen to be tested without contamination of the specimen from workers or materials outside the container. This transferring can be done without pouring or pipetting the collecting specimen. It can thus be seen that the present invention is directed to a medical and laboratory biological specimen collecting and testing apparatus.
  • the urine container together with attachable testing modules is used in diagnostic cytology in the area of clinical pathology in which diagnoses are made based upon a microscopic examination of cell and other biological samples taken from a body site.
  • the accuracy of the diagnosis depends both upon adequate patient sampling and culture or slide preparation procedures that result in optimally interpretable specimens.
  • U.S. Pat. No. 3,608,550 discloses a transfer needle assembly for transferring fluid from a fluid source to a fluid collection container.
  • the needle assembly includes a first cannula mounted on a support means which engages the collection container and is adapted to be connected at its forward end to the fluid source and at its rear end to the collection container.
  • a second cannula is mounted on the support means and is adapted to be connected at its forward end to the fluid source and at its rear end to the atmosphere allowing fluid to be transferred from a fluid source to a collection container by atmospheric pressure when the volume within the collection container is sufficiently increased.
  • FIG. 2 is a cross-sectional exploded schematic view of a chromatographic capsule for antigen capture being mounted to the luer lock of the collection container of FIG. 1 and operated by a syringe;
  • FIG. 3 is a cross-sectional schematic view of the chromatographic capsule for antigen capture connected to the collection container of FIG. 1 with fluid being withdrawn from the container into the syringe barrel for antigen capture;
  • FIG. 1 The preferred embodiment and best mode of the invention is shown in FIG. 1 and assembled in FIG. 2 and relates to a urine collection cup 10 in which urine or other biological liquid specimens may be collected.
  • the patient or supervising medical personnel places a lid 14 on the cup housing 16.
  • the cup housing 16 is provided with an external threaded surface 12.
  • the lid 14 has a housing 20 which is molded with a downwardly directed cylindrical extended skirt or flange 22 which is threaded 24 on its inner surface 23 for threading onto the external threaded surface 12 of cup housing 16.
  • the lid housing 20 defines a well 26 in which is seated an intregally molded threaded luer lock 28.
  • the luer lock 28 is provided with a throughgoing bore 29 leading to a hollow tube 30 which is preferably integrally molded or separately secured to the other side of the lid housing with its lumen 31 being axially aligned with the bore 29 of the luer lock.
  • the tube 30 has a series of perforations 32 extending along its length and an open end 34 which allow different fluid layers to be simultaneously tested when the urine or biological fluid is withdrawn from the cup. If desired, as shown in FIG. 2, a filter 36 of large pore size can be mounted in the open end 34 to provide for filtration of larger urinary sediments in the urine or biological liquid 100.
  • the beads container housing 42 with treatment filter 45 mounted therein preferably has a filter particle size of 5 microns but can range from 1-5 microns or any size which is suitable to allow fluid flow with antigens to pass therethrough but also prevent the passage of beads 60.
  • Each end 47 and 49 of the bead container capsule 40 is fitted with a threaded projection which is adapted to fit onto a luer lock 62 of a 30 cc syringe 64, manufactured by Becton Dickinson & Co. It should be noted that any pump type device could be used in place of the syringe as for example an autovial spunglass filter manufactured by Genex Corporation.
  • the syringe 64 has a barrel 66, piston 68 and piston head 69. While the bead capsule 40 can be used for any body fluid it is primarily designed for use in collecting concentrated urine antigen samples for use in testing for the presence of various kinds of cancer in the body to determine the presence and stage of the cancer.
  • the beads 60 are preferably visible (above 10 micron in diameter) so that their flow into the syringe (see FIG. 4) and back to the capsule 40 (see FIG. 5) can be visually observed to make sure of maximum bead contact with the urine.
  • Antibodies are immobilized (covalently bound) on the beads 60 as is well known in the art and are designed to have binding sites which have a high affinity for the epitopes of the cancer antigens carried in the urine.
  • volume of beads 60 is important and the beads should not be greater then the volume of the capsule chamber 44 so that the syringe neck will not become jammed.
  • Actigel-ALD does not cross link proteins therefore allowing proteins to retain high bioactivity after their immobilization.
  • Actigel-ALO SUPER FLOW also available from Sterogene Bioseparation Inc. permits a linear flow rate of up to 3000 cm/h which would fit nicely with the flow rates in the apparatus (approx 10-100 cm/min).
  • This buffering agent adjusts the urine pH.
  • the buffer solution can be added to the collection container 10 by directly adding it from the syringe 64 prior to withdrawing the urine into the syringe or simply adding it to the collection container 10 from another container.
  • the specific antigen is present in the urine testing sample 100 the antigen reacts with the antibody to form antigen-antibody complexes.
  • the complexed antigen-antibody carried by beads 60 remains in the housing chamber 44 as is clearly shown in FIG. 5. If there is an absence of the antigen in the specimen sample 100 the antibody will remain unoccupied.
  • a cytology/microbiology container 70 is also provided for alternate use with the collection container. Both the cytology container 10 and antigen beads container capsule 40 are each adapted to be removably mounted to a syringe 64 which is of standard construction.
  • the nipple 88 is provided with an end flange which is adapted to be threaded into the threaded luer lock 62 of the syringe 64 and defines a throughgoing bore 89 which leads into chamber 80 defined by an inner inclined wall 72 of the male member.
  • the inner wall 72 has a cylindrical exterior surface 79 and is spaced from the inner surface of outer wall 85 to define a channel 77.
  • An annular step or membrane seat 73 is cut into the inner surface of wall 72 to hold filter membrane 84.
  • the base 91 is provided with a threaded luer lock 99 on its exterior surface and defines a throughgoing bore 97 with a frustro conical proximal end which leads to membrane 84 and chamber 80.
  • nipple 88 of the cytology/microbiology container is fitted with a threaded projection which is adapted to fit onto the luer lock 62 of a 30 cc syringe 64, manufactured by Becton Dickinson & Co.
  • any pump type device could be used in place of the syringe 64 as for example an autovial spunglass filter manufactured by Genex Corporation.
  • the syringe 64 has a barrel 66 with associated luer lock 62, piston 68 and piston head 69. While the cytology/microbiology container 70 can be used for any body fluid it is primarily designed for use with concentrated dialysis fluid and urine and for collecting associated sediments and/or bacteria for use in testing for various kinds of disease.
  • the male member 74 of the cytology/microbiology container 70 can contain a nitrocellulose membrane filter 84a with a filter size of 13 mm diameter and a porosity of approximately 0.45 microns for bacteria entrapment as shown in FIG. 11 or in the case of cell cytology, a polycarbonate filter 84, as shown in FIG. 10.
  • the polycarbonate filter 84 has a five-micron pore size to trap the polymorphnuclear leukocytes or even lymphocytes which are seven and one half microns in size.
  • cytology specimens collected for cytological examinations using special containers. These containers usually contain a preservative solution for preserving the cytology specimen during shipment from the collection site to the cytology laboratory. Furthermore, cytology specimens collected from the body cavities using a swab, smear, flush or brush are also preserved in special containers with fixatives prior to transferring cells onto the slide or membrane for staining or examination.
  • the most widely used stain for visualization of cellular changes in cytology is the Papanicolaou staining procedure.
  • This stain which is used for both gynecologic and non-gynecologic applications, is basically composed of blue nuclear and orange, red and green cytoplasmic counterstains.
  • the nuclear stain demonstrates the chromatin patterns associated with normal and abnormal cells, while the cytoplasmic stains help to indicate cell origin.
  • the success of this procedure can be attributed to the ability to observe a number of factors, including definition of nuclear detail and cell differentiation.
  • This staining procedure also results in a multicolor preparation that is very pleasing to the eye, possibly reducing eye strain.
  • the collection cup 10, syringe 64, antigen capture capsule 40 and cytology/microbiology container can be provided in kit form for easy use by the testing person in the desired mix and match combination.

Abstract

A biological fluid collection container comprising a cup member, a lid assembly removably mounted to the cup member having a housing with a downwardly extending cylindrical skirt, a luer lock with a throughgoing bore extending from one side of the lid housing. A hollow tube extends from the other side of the lid housing adjacent the luer lock and is axially aligned with the throughgoing bore of the luer lock. The hollow tube is provided with a plurality of throughgoing holes leading into its lumen along its surface to provide for a sampling along various liquid level layers of the biological fluid specimen collected in the cup member so that when the biological fluid specimen is removed from the cup member a representative sampling is obtained.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a container used for collecting urine or other biological liquid specimens and for testing modules which can be removably attached to the container. After the biological liquid has been collected, the lid for the container is replaced and the container sealed by the patient or medical person handling the collection. The present collection container allows for secondary collection of the urine specimen from along different fluid levels of the urine in the container without removing the lid, thereby allowing a specimen to be tested without contamination of the specimen from workers or materials outside the container. This transferring can be done without pouring or pipetting the collecting specimen. It can thus be seen that the present invention is directed to a medical and laboratory biological specimen collecting and testing apparatus. The urine container together with attachable testing modules is used in diagnostic cytology in the area of clinical pathology in which diagnoses are made based upon a microscopic examination of cell and other biological samples taken from a body site. The accuracy of the diagnosis depends both upon adequate patient sampling and culture or slide preparation procedures that result in optimally interpretable specimens.
It is known that prompt processing of urine traditionally has been recommended to ensure accuracy of quantitative culture results, urinalysis and microscopy. This is important in making slides, in that fresh cells stick to the glass slide much better than cells from preserved urine, allowing a smoother cell spread onto the glass body. However, delays in processing and care of both inpatient and outpatient settings and refrigeration is often neglected. One solution to the delay problem is the use of chemical preservation of the urine and this preservation system has been used in the field. The presence of liquid preservative in the urine specimen raises the specific gravity of the specimen to unmeasurable levels and limits the potential usefulness of the urine for various types of traditional quantitative analysis, such as slide microscopy.
A number of urine or other biological liquid specimen containers have been developed allowing liquid biological specimens to be tested without removing the lid of the urine or biological fluid container.
U.S. Pat. No. 2,953,132 discloses a parenteral solution bottle with an inwardly projecting tube and a rubber stopper and an associated dispenser bottle which is adapted to introduce the medication into the parenteral solution bottle.
U.S. Pat. No. 3,066,671 discloses a disposable additive container provided with a cover formed with a shaft guiding sleeve. The shaft guiding sleeve receives an infusion holder and an additive container.
U.S. Pat. No. 3,608,550 discloses a transfer needle assembly for transferring fluid from a fluid source to a fluid collection container. The needle assembly includes a first cannula mounted on a support means which engages the collection container and is adapted to be connected at its forward end to the fluid source and at its rear end to the collection container. A second cannula is mounted on the support means and is adapted to be connected at its forward end to the fluid source and at its rear end to the atmosphere allowing fluid to be transferred from a fluid source to a collection container by atmospheric pressure when the volume within the collection container is sufficiently increased.
U.S. Pat. No. 3,904,482 discloses an apparatus and method for the collection, cultivation and identification of microorganisms obtained from body fluids. The apparatus includes an evacuated tube containing a culture medium, an inert gaseous atmosphere and a vent-cap assembly. The tube containing the culture medium is fitted with a stopper for introduction of body fluid by means of a cannula and, after growth of the organisms, transfer of the cultured medium is completed for subculturing or identification procedures.
U.S. Pat. No. 4,024,857 discloses a micro device for collecting blood from an individual or other blood source into a blood sampler cup. The cup has a removable vented truncated cone shaped top with a capillary tube passing through a well formed in the top proximate to the inside wall of the cup to deliver blood directly from the blood source to the cup.
U.S. Pat. No. 4,116,066 discloses a device for the collection of a liquid, such as urine comprising an open ended urine collection container provided with a hollow cannula attached to its bottom. The cannula is slotted near its base, and serves as the conduit through which liquid may be transferred from the container to an evacuated tube. When the stopper of the evacuated tube is punctured by the cannula, the pressure difference causes liquid deposited in the container to be drawn through the slot into the hollow cannula and into the tube.
Another attempt to solve this problem is seen in U.S. Pat. No. 4,300,404, in which a container is developed having a liquid container with a snap fit lid. The lid is provided with a cannula which extends into the lower end of the container and which projects through the lid at its upper end so as to be able to pierce the stopper of an air-evacuated tubular container. The container is also provided with a depressed bottom to assure the maximum collection of fluids and the lid is provided with a recess to accommodate the air-evacuated tube.
SUMMARY OF THE INVENTION
The present invention is directed to a liquid collection container having a skirted lid which is adapted to be screwed over the container and a hollow tube connected to the container lid and axially aligned with the bore of an integrally formed luer lock. The tube extends down into the container and is provided with an open end and a series of perforations extending up the length of the tube and communicating with the tube lumen so that different levels of urine or biological fluid maintained in the container can be simultaneously withdrawn from the container by the use of a standard syringe and if desired through a quantitative measuring container for cytology/microbiology applications or through a chromatographic capsule for antigen capture and diagnosis.
It is thus the object of the invention to collect urine or other fluids for use in testing and to protect the fluid from outside contamination and to allow easy transport of the fluid.
In the accompanying drawings, there is shown an illustrative embodiment of the invention from which these and other of the objectives, novel features and advantages will be readily apparent.
DESCRIPTION OF THE DRAWINGS
FIG. 1 is an exploded cross-sectional schematic view of the inventive collection container;
FIG. 2 is a cross-sectional exploded schematic view of a chromatographic capsule for antigen capture being mounted to the luer lock of the collection container of FIG. 1 and operated by a syringe;
FIG. 3 is a cross-sectional schematic view of the chromatographic capsule for antigen capture connected to the collection container of FIG. 1 with fluid being withdrawn from the container into the syringe barrel for antigen capture;
FIG. 4 is a schematic cross-sectional sequential view of the assembly shown in FIG. 3 shown drawing fluid through the chromatographic capsule into the syringe;
FIG. 5 is a schematic cross-sectional sequential view of the assembly shown in FIG. 4 in which fluid is pumped back into the collection container after antigen capture;
FIG. 6 is a schematic cross-sectional view of the chromatographic capsule used with the urine collection container showing exploded end plugs which can be used to hold the antigen beads in the capsule;
FIG. 7 is an alternate embodiment of the collection container using a female luer lock modification;
FIG. 8 is a schematic exploded cross sectional view of a cytology/microbiology container being attached to the female luer lock embodiment of FIG. 7;
FIG. 9 is a schematic cross sectional sequential view of a cytology/microbiology container attached to the female luer lock embodiment and a syringe;
FIG. 10 is a cross-sectional view of a removed male member from the cytology container being placed on the side for cytology examination; and
FIG. 11 is a cross-sectional view of a microbiology container with collection container removed, eluting a bacteriological sample into a microbiological culture tray.
DETAILED DESCRIPTION OF THE INVENTION
The preferred embodiment and best mode of the invention is shown in FIG. 1 and assembled in FIG. 2 and relates to a urine collection cup 10 in which urine or other biological liquid specimens may be collected. After collection, the patient or supervising medical personnel places a lid 14 on the cup housing 16. The cup housing 16 is provided with an external threaded surface 12. The lid 14 has a housing 20 which is molded with a downwardly directed cylindrical extended skirt or flange 22 which is threaded 24 on its inner surface 23 for threading onto the external threaded surface 12 of cup housing 16. The lid housing 20 defines a well 26 in which is seated an intregally molded threaded luer lock 28. The luer lock 28 is provided with a throughgoing bore 29 leading to a hollow tube 30 which is preferably integrally molded or separately secured to the other side of the lid housing with its lumen 31 being axially aligned with the bore 29 of the luer lock. The tube 30 has a series of perforations 32 extending along its length and an open end 34 which allow different fluid layers to be simultaneously tested when the urine or biological fluid is withdrawn from the cup. If desired, as shown in FIG. 2, a filter 36 of large pore size can be mounted in the open end 34 to provide for filtration of larger urinary sediments in the urine or biological liquid 100.
An adapter bead container capsule 40 as seen in FIGS. 2 and 6 is selected to be mounted to the lid luer lock 28. The capsule housing 42 defines a chamber 44 in which is mounted a filter 45 for antigen beads capture. The housing 42 has hollow nipple end members which define an inlet bore 46 which is axially aligned with luer lock bore 29 of the lid and an outlet bore 48 which will be axially aligned with the luer lock bore of syringe 64. End plugs 43 as shown in FIG. 6 seal the capsule 40 after fluid has been passed through the bead chamber to deposit antigen on the beads.
The beads container housing 42 with treatment filter 45 mounted therein preferably has a filter particle size of 5 microns but can range from 1-5 microns or any size which is suitable to allow fluid flow with antigens to pass therethrough but also prevent the passage of beads 60. Each end 47 and 49 of the bead container capsule 40 is fitted with a threaded projection which is adapted to fit onto a luer lock 62 of a 30 cc syringe 64, manufactured by Becton Dickinson & Co. It should be noted that any pump type device could be used in place of the syringe as for example an autovial spunglass filter manufactured by Genex Corporation. The syringe 64 has a barrel 66, piston 68 and piston head 69. While the bead capsule 40 can be used for any body fluid it is primarily designed for use in collecting concentrated urine antigen samples for use in testing for the presence of various kinds of cancer in the body to determine the presence and stage of the cancer.
As shown in FIGS. 2 through 5 the beads container capsule 40 is constructed of polystyrene. The capsule housing 42 defines a urine entrance port 46 and exit port 48. The chamber 44 of the beads container capsule 40 contains a filter 45 and a bed of beads 60 with immobilized antibodies positioned on the syringe side of the filter.
The beads 60 are preferably visible (above 10 micron in diameter) so that their flow into the syringe (see FIG. 4) and back to the capsule 40 (see FIG. 5) can be visually observed to make sure of maximum bead contact with the urine. Antibodies are immobilized (covalently bound) on the beads 60 as is well known in the art and are designed to have binding sites which have a high affinity for the epitopes of the cancer antigens carried in the urine.
It should be noted that the volume of beads 60 is important and the beads should not be greater then the volume of the capsule chamber 44 so that the syringe neck will not become jammed.
The principle of affinity chromatography requires that a successful separation of a biospecific ligand is available and that it can be chemically immobilized to a chromatographic bed material, the matrix. Numbers of methods well known in the art have been used to couple or immobilize antibodies to a variety of activated resins. Examples of immobilization techniques which exhibit variable linkage are those formed by the reaction of the reactive groups on the support with amino, thiol, hydroxyl, and carboxyl groups on the protein ligand. The selection of the ligand is influenced by two factors. First, the ligand should exhibit specific and reversible binding affinity for the substance to be purified and secondly it should have chemically modifiable groups which allow it to be attached to the matrix without destroying its binding activity. (Examples of such are Protein G Sepharose manufactured by Pharmacia, Hydrazide AvidGel Ax manufactured by BioProbe International, and Actigel-ALD manufactured by Sterogene Bioseparation Inc.)
An advantage to the use of Actigel-ALD is that it does not cross link proteins therefore allowing proteins to retain high bioactivity after their immobilization. Actigel-ALO SUPER FLOW also available from Sterogene Bioseparation Inc. permits a linear flow rate of up to 3000 cm/h which would fit nicely with the flow rates in the apparatus (approx 10-100 cm/min).
The resin bead material 60 with matrix and primary ligand (in this case immobilized antibody) having had flow contact with the filtered urine in buffered form from the addition of 10 ml of 200 mM Tris buffer pH 7.8 manufactured by Pharmacia captures through antigen-antibody reaction with or immune reaction the specific ligand component carried by the urine namely, the non complexed antigen. This buffering agent adjusts the urine pH. The buffer solution can be added to the collection container 10 by directly adding it from the syringe 64 prior to withdrawing the urine into the syringe or simply adding it to the collection container 10 from another container. When the specific antigen is present in the urine testing sample 100 the antigen reacts with the antibody to form antigen-antibody complexes. The complexed antigen-antibody carried by beads 60 remains in the housing chamber 44 as is clearly shown in FIG. 5. If there is an absence of the antigen in the specimen sample 100 the antibody will remain unoccupied.
Testing is presently done by using 0.2-0.5 ml aliquots of urine. The present high affinity beads 60 can capture the antigen present in 100 ml or even more of the sample, depending on the frequency of filling and emptying the syringe 64. This will result in 500× fold increase in the amount of antigen being captured by the beads. Preferably the syringe barrel 66 is filled with urine (see FIG. 4) allowing the beads to move freely into the barrel of the syringe for maximum fluid contact and mixing. The syringe is emptied and refilled a number of times for maximum concentration so that 1,000× antigen concentrations from that previously obtainable can be obtained.
The capsule 40 is removed from luer lock 62 of syringe 64 and ports 46 and 48 are closed with plugs 43 as shown in FIG. 6 to provide a capsule filled with concentrated specimen sample that can be shipped. Furthermore the specimen life of the buffered specimen is 6 months or longer under ordinary storage conditions after washing the beads with preservative solution e.g. 0.01% Sodium Agide (Bacteriostatic agents).
Upon receipt of the specimens the container is placed on a syringe containing an eluting buffer which release the antigens from the antibody on the beads providing a concentrated antigen sample for testing purposes.
A cytology/microbiology container 70 is also provided for alternate use with the collection container. Both the cytology container 10 and antigen beads container capsule 40 are each adapted to be removably mounted to a syringe 64 which is of standard construction.
The cytology/microbiology container 70 as more clearly shown in FIGS. 8-11 is alternately mounted to syringe luer lock 62 and the female luer lock 27 of collection cup 110 shown in FIG. 7. Each cytology/microbiology container is easily opened and is constructed with a simple two-piece construction comprising a male filter membrane carrying member 74 and a female connector member 76 screwed onto the male member. The male filter membrane member 74 is provided with an outer cylindrical wall 85 having a threaded external surface 71, a base 86 which extends past the cylindrical wall 85 to form a lip 87, and a male nipple 88 which extends outward from the base in an opposite direction from wall 85. The nipple 88 is provided with an end flange which is adapted to be threaded into the threaded luer lock 62 of the syringe 64 and defines a throughgoing bore 89 which leads into chamber 80 defined by an inner inclined wall 72 of the male member. The inner wall 72 has a cylindrical exterior surface 79 and is spaced from the inner surface of outer wall 85 to define a channel 77. An annular step or membrane seat 73 is cut into the inner surface of wall 72 to hold filter membrane 84. An annular channel 75 is cut into the surface of stepped end 78 of the inner wall 72 allowing the stepped end to fit over locking prongs 94 extending from the female member thus holding the male and female members in a sealed relationship while providing a safety stop for the filter membrane 84.
The female connector member 76 has an outer cylindrical housing 90 with a base 91. The housing is threaded on its inner surface 92 for engagement with the threaded external surface 71 of wall 85. The planar end wall 93 of housing 90 abuts against the outwardly extending flange or lip 87 when the male and female members are screwed together. The female connector base inner surface, which in combination with the inner wall surface of housing 90 defines the interior configuration of the female member, is concentrically stepped so that the outer step 96 abuts against the end of walls 85 and 72 and an inner step 98 abuts against filter membrane 84 and the distal stepped portion 79 of stepped end 78. The base 91 is provided with a threaded luer lock 99 on its exterior surface and defines a throughgoing bore 97 with a frustro conical proximal end which leads to membrane 84 and chamber 80. As previously noted, nipple 88 of the cytology/microbiology container is fitted with a threaded projection which is adapted to fit onto the luer lock 62 of a 30 cc syringe 64, manufactured by Becton Dickinson & Co. It should be noted that any pump type device could be used in place of the syringe 64 as for example an autovial spunglass filter manufactured by Genex Corporation. The syringe 64 has a barrel 66 with associated luer lock 62, piston 68 and piston head 69. While the cytology/microbiology container 70 can be used for any body fluid it is primarily designed for use with concentrated dialysis fluid and urine and for collecting associated sediments and/or bacteria for use in testing for various kinds of disease.
The male member 74 of the cytology/microbiology container 70 can contain a nitrocellulose membrane filter 84a with a filter size of 13 mm diameter and a porosity of approximately 0.45 microns for bacteria entrapment as shown in FIG. 11 or in the case of cell cytology, a polycarbonate filter 84, as shown in FIG. 10. The polycarbonate filter 84 has a five-micron pore size to trap the polymorphnuclear leukocytes or even lymphocytes which are seven and one half microns in size.
It should be noted that various composition filters can be used and interchanged. One membrane filter that can be used for fluid screening is LEUCOSORB, a leucocyte retention medium manufactured by Pall BioSupport Division of Pall Corporation. Other membranes manufactured and sold by the Pall Corporation are BIODYNE A, an unmodified nylon with surface chemistry 50% amine and 50% carboxyl group with an isoelectric point of pH 6.5; BIODYNE B, a surface-modified nylon with surface chemistry characterized by a high density of strong cationic quarternary groups (the zeta potential is positive to pH>10); BIODYNE C, a surface-modified nylon with surface chemistry characterized by a high density of anionic carboxyl groups (the zeta potential is negative to pH>3; an LOPRODYNE, a low protein binding nylon 66 membrane with a tightly controlled microporous structure with high voids volume for rapid, efficient throughput of liquids and absolute retention of microparticles designed for cell separation and bacterial cell immunoassays. Fifty milliliters of dialysate will be pulled from container 10 through the desired filter membrane 84 or 84a depending upon the analysis into syringe 64. After the requisite amount of dialysate has been passed through the filter membrane, the cytology/microbiology container 70 and associated filter membrane is removed. The polycarbonate membrane 84 is placed on a glass slide 120 as shown in FIG. 10 and stained with a modified Wrights stain for cytologic determination.
Thus, the method of transferring cells to a slide is that of membrane filtration (filtration of fluid specimens through membrane filters to increase cell recovery). This particular technique provides the critical feature that the cells are evenly deposited over the slide with minimal overlap as this will allow clear observation and optimal diagnostic accuracy.
It should be noted that the process of transferring or collecting cells onto a slide or membrane is largely affected by preserving or fixing the cytology specimen in the body fluid, secretions or smears.
Currently, body fluid samples are collected for cytological examinations using special containers. These containers usually contain a preservative solution for preserving the cytology specimen during shipment from the collection site to the cytology laboratory. Furthermore, cytology specimens collected from the body cavities using a swab, smear, flush or brush are also preserved in special containers with fixatives prior to transferring cells onto the slide or membrane for staining or examination.
It has been found by the present inventor that the recovery (yield) as well as the quality of the cytology preparations from fresh body fluid specimens is superior when compared to routine cytology preparations that were prepared when the same samples were preserved. This is probably due to the fact that fresh cells stick better to glass and/or membranes than those preserved in alcohol or other preservatives.
The inventive apparatus also allows for isolation and collection of fresh cells and/or microorganisms from the body fluids to perform DNA probing and chromosomal analysis once the cells are hemolysed by the proper buffer.
The most widely used stain for visualization of cellular changes in cytology is the Papanicolaou staining procedure. This stain, which is used for both gynecologic and non-gynecologic applications, is basically composed of blue nuclear and orange, red and green cytoplasmic counterstains. The nuclear stain demonstrates the chromatin patterns associated with normal and abnormal cells, while the cytoplasmic stains help to indicate cell origin. The success of this procedure can be attributed to the ability to observe a number of factors, including definition of nuclear detail and cell differentiation. This staining procedure also results in a multicolor preparation that is very pleasing to the eye, possibly reducing eye strain.
Since cellular detail is dependent on fixation, it is extremely important that cells be fixed immediately after being deposited on the slide. Too long a delay between preparation and fixation exposes the cells to air drying, which is detrimental to the cellular structure. Moreover, air drying artifact can adversely affect the subsequent staining results. (An exception is when the cells are stained with Wright-Giemsa, where air drying is used as the fixation step.)
New methodologies such as immunocytochemistry and image analysis require preparations that are reproducible, fast, biohazard-free and inexpensive. Different cell preparation techniques of the present invention address the issues of non-uniform cell densities, uneven cell distribution and air drying artifact. These preparations have resulted in an even distribution of cells that have superior morphology, which has improved light microscopic visualization and has allowed for the use of image cytometry instruments.
The effectiveness of transferring the cells from the filter to the slide has proved to be very high without differential cell loss. (Microscopic examination showed that the cell distribution was the same on the slide as on the filter.)
This procedure has many advantages for conventional cytology. The cells are in a predetermined area allowing for significant timesaving when screening the slide. Such problems as cells lying outside the coverslip or on the frosted end are eliminated. Because cells are lying in a single layer, they are almost always in a one focal plane when using a 10× objective--the objective most often used for the lower power screening of a slide. Even with a 40× objective, most cells are in focus. This eliminates frequent refocusing and saves time.
The minimal cell overlap achieved in this process ensures that all cells and cell groups can easily be examined with little chance for diagnostic cells to be obscured by clumps of overlapping cells or debris. Moreover, because the process takes place in the cytology laboratory, slide preparation and fixation are controlled by laboratory personnel and quality assurance is easily implemented.
Multiple specimens can be made from a single patient sample. Additional slides for other stain applications can be easily prepared. Human papilloma virus testing, for example, by newer methods such as immunocytochemistry or in-situ hybridization can be performed on the additional slides. As oncogene products or other immunocytochemical tests are developed, more slides may be necessary. The different fixations that these tests may need can easily be incorporated into the procedure since the preparation does not require the slides to be fixed in only one way.
This same slide preparation procedure can be used for virtually all forms of cytology. Furthermore, the use of completely contained disposable components addresses biohazard concerns. Ultimately, the enhanced presentation of cells, yielding improved cytologic interpretation, may expand the role of cytology by providing more consistent and reliable patient diagnosis.
In bacteria testing the filter 84a while shown in FIG. 11 to be eluted and cultured in a standard petri dish 130 is preferably used for culturing with a Qualture device not shown but readily obtainable to determine the presence of specific bacteria colonies. The Qualture device is a plastic capsule containing a filter membrane and four nutrient pads of dehydrated, selective media.
The Qualture technique is more sensitive than the agar plate method and more rapid in determining a presumptive diagnosis. The device screens, isolates and presumptively diagnoses bacterial isolates in one step most often in 4-6 hours. Tests have demonstrated that recovery from fifty milliliters of fluid is excellent and sensitive.
Thus it can be seen that the collection cup 10, syringe 64, antigen capture capsule 40 and cytology/microbiology container can be provided in kit form for easy use by the testing person in the desired mix and match combination.
In the foregoing description, the invention has been described with reference to a particular preferred embodiment, although it is to be understood that specific details shown are merely illustrative, and the invention may be carried out in other ways without departing from the true spirit and scope of the following claims:

Claims (15)

What is claimed is:
1. A biological fluid collection container comprising a cup member, a lid assembly removably mounted to said cup member to form a fluid chamber, said lid assembly comprising a housing with a downwardly extending cylindrical skirt which engages said cup member, locking means extending from one side of said lid housing outside said fluid chamber, said locking means defining a throughgoing bore, a hollow tube extending from an opposite side of said lid housing adjacent said locking means inside said cup member, said tube lumen being axially aligned with the throughgoing bore of said locking means, said hollow tube being provided with a plurality of throughgoing holes leading into its lumen along the length of its surface to provide for a simultaneous sampling along various liquid level layers of the biological fluid specimen collected in the cup member.
2. A collection container as claimed in claim 1 wherein said cup member is threaded on its upper outside surface and is adapted to be threaded to thread means formed on the inside surface of said cylindrical skirt.
3. A collection container as claimed in claim 1 wherein said hollow tube is open ended.
4. A collection container as claimed in claim 1 wherein said hollow tube has filter means mounted therein which screens large particulate matter from the fluid passing through the tube.
5. A collection container as claimed in claim 1 wherein said locking means is a luer lock.
6. A collection container as claimed in claim 1 wherein said locking means is a nipple member.
7. A collection container as claimed in claim 1 wherein said lid housing defines a well in which said locking means is mounted.
8. A biological fluid collection container comprising a cup member, a lid assembly removably mounted to said cup member, said lid assembly comprising a housing with a downwardly extending cylindrical skirt and defining a central well, luer lock means mounted in said well and extending upward from said well outside of said cup member, said luer lock means defining a throughgoing bore, a hollow tube axially aligned with the throughgoing bore of said luer lock extending into said cup member, said hollow tube being provided with a plurality of throughgoing holes leading into its lumen along its longitudinal surface to provide for a constant fluid sampling along various liquid level layers of the biological fluid specimen collected in the cup member.
9. A biological fluid collection container as claimed in claim 8 including filter means mounted in said hollow tube.
10. An assembly for collecting molecular specimens from a biological fluid sample comprising a cup member, a lid assembly removably mounted to said cup member to form a cup member interior, said lid assembly comprising a housing with connector means adapted to receive and connect a specimen collection unit, luer lock means extending outside said cup member interior from one side of said lid housing, said luer lock means defining a throughgoing bore, a hollow tube extending inside said cup member interior from the other side of said lid housing adjacent said luer lock and axially aligned with the throughgoing bore of said luer lock, said hollow tube being provided with a plurality of throughgoing holes leading into its lumen along its surface to provide for a sampling along various liquid level layers of the biological fluid specimen collected in the cup member, said specimen collection unit being removably mounted to said luer lock means of said cup member lid, said specimen collection unit comprising a housing defining at least one chamber, bead means with covalently bound antibody means positioned in one of said at least one chambers for the capture of specified antigen carried in the biological fluid sample; and a filter means housed in said specimen collection unit chamber to prevent flow of bead means with covalently bonded antibody means carried by biological fluid sample into said cup member while allowing flow of said bead means into a pump means removably mounted to said specimen collection unit housing.
11. An assembly as claimed in claim 10 including a pump means mounted to said specimen collection unit housing.
12. An assembly as claimed in claim 11 wherein said pump means is a syringe.
13. A testing apparatus for collecting cytology or bacterial specimens from a biological fluid comprising a pump means, a specimen collection housing defining a chamber with an inlet and outlet means adapted to be removably mounted to said pump means, said specimen collection housing outlet means communicating with said pump means, a filter means mounted to said housing in said chamber which allows said biological fluid to flow therethrough and a cup member removably mounted to said specimen collection housing, a lid means removably mounted to said cup member forming a fluid chamber, said lid means comprising a housing defining a well with hollow luer lock means positioned in the well of said lid housing and extending outside of said fluid chamber, said luer lock means defining a throughgoing bore which communicates with an aperture defined in said lid housing, a hollow tube axially aligned with the throughgoing bore of said luer lock extending away from said luer lock means into said fluid chamber, said hollow tube being provided with a plurality of throughgoing holes leading into its lumen along its surface to provide for a sampling along the length of various liquid level layers of the biological fluid specimen collected in the cup member.
14. A testing apparatus as claimed in claim 13 wherein said filter means has a pore size of 0.45 microns.
15. A testing apparatus as claimed in claim 13 wherein said filter means has a pore size of 5 microns.
US07/686,934 1989-01-10 1991-04-18 Liquid specimen container and attachable testing modules Expired - Fee Related US5429803A (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
US07/686,934 US5429803A (en) 1991-04-18 1991-04-18 Liquid specimen container and attachable testing modules
AU17814/92A AU645689B2 (en) 1991-04-18 1992-04-20 Liquid specimen container and attachable testing modules
EP92910927A EP0535212B1 (en) 1991-04-18 1992-04-20 Liquid specimen container and attachable testing modules
AT92910927T ATE159588T1 (en) 1991-04-18 1992-04-20 CONTAINERS FOR LIQUID SAMPLES AND ATTACHABLE TEST MODULES
CA002085741A CA2085741C (en) 1991-04-18 1992-04-20 Liquid specimen container and attachable testing modules
JP51005992A JP3244504B2 (en) 1991-04-18 1992-04-20 Test module that can be attached to a liquid sample container
DE69222826T DE69222826T2 (en) 1991-04-18 1992-04-20 CONTAINERS FOR LIQUID SAMPLES AND MOUNTABLE TEST MODULES
PCT/US1992/003105 WO1992018844A1 (en) 1991-04-18 1992-04-20 Liquid specimen container and attachable testing modules
EP97106067A EP0787987A3 (en) 1991-04-18 1992-04-20 Liquid specimen container and attachable testing modules
US07/920,662 US5301685A (en) 1989-01-10 1992-07-28 Method and apparatus for obtaining a cytology monolayer
US08/172,232 US5471994A (en) 1989-01-10 1993-12-23 Method and apparatus for obtaining a cytology monolayer
US08/474,893 US5849505A (en) 1991-04-18 1995-06-07 Liquid specimen container and attachable testing modules
US08/905,833 US6106483A (en) 1989-01-10 1997-08-04 Apparatus for obtaining a cytology monolayer
US09/210,815 US6210909B1 (en) 1991-04-18 1998-12-15 Liquid specimen container and attachable testing modules
US09/680,950 US6509164B1 (en) 1991-04-18 2000-10-10 Liquid specimen container and attachable testing modules
US09/680,949 US6589749B1 (en) 1991-04-18 2000-10-10 Liquid specimen container and attachable testing modules
US09/735,550 USRE39457E1 (en) 1991-04-18 2000-12-14 Liquid specimen container and attachable testing modules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/686,934 US5429803A (en) 1991-04-18 1991-04-18 Liquid specimen container and attachable testing modules

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07/920,662 Continuation US5301685A (en) 1989-01-10 1992-07-28 Method and apparatus for obtaining a cytology monolayer

Related Child Applications (6)

Application Number Title Priority Date Filing Date
US07/308,763 Continuation-In-Part US4961432A (en) 1989-01-10 1989-01-10 Modular fluid sample preparation assembly
US07/920,662 Continuation-In-Part US5301685A (en) 1989-01-10 1992-07-28 Method and apparatus for obtaining a cytology monolayer
US08/172,232 Continuation-In-Part US5471994A (en) 1989-01-10 1993-12-23 Method and apparatus for obtaining a cytology monolayer
US34088494A Continuation 1991-04-18 1994-11-15
US34088494A Continuation-In-Part 1991-04-18 1994-11-15
US08/474,893 Continuation US5849505A (en) 1991-04-18 1995-06-07 Liquid specimen container and attachable testing modules

Publications (1)

Publication Number Publication Date
US5429803A true US5429803A (en) 1995-07-04

Family

ID=24758345

Family Applications (5)

Application Number Title Priority Date Filing Date
US07/686,934 Expired - Fee Related US5429803A (en) 1989-01-10 1991-04-18 Liquid specimen container and attachable testing modules
US08/474,893 Ceased US5849505A (en) 1991-04-18 1995-06-07 Liquid specimen container and attachable testing modules
US09/210,815 Expired - Fee Related US6210909B1 (en) 1991-04-18 1998-12-15 Liquid specimen container and attachable testing modules
US09/680,950 Expired - Fee Related US6509164B1 (en) 1991-04-18 2000-10-10 Liquid specimen container and attachable testing modules
US09/680,949 Expired - Fee Related US6589749B1 (en) 1991-04-18 2000-10-10 Liquid specimen container and attachable testing modules

Family Applications After (4)

Application Number Title Priority Date Filing Date
US08/474,893 Ceased US5849505A (en) 1991-04-18 1995-06-07 Liquid specimen container and attachable testing modules
US09/210,815 Expired - Fee Related US6210909B1 (en) 1991-04-18 1998-12-15 Liquid specimen container and attachable testing modules
US09/680,950 Expired - Fee Related US6509164B1 (en) 1991-04-18 2000-10-10 Liquid specimen container and attachable testing modules
US09/680,949 Expired - Fee Related US6589749B1 (en) 1991-04-18 2000-10-10 Liquid specimen container and attachable testing modules

Country Status (8)

Country Link
US (5) US5429803A (en)
EP (2) EP0787987A3 (en)
JP (1) JP3244504B2 (en)
AT (1) ATE159588T1 (en)
AU (1) AU645689B2 (en)
CA (1) CA2085741C (en)
DE (1) DE69222826T2 (en)
WO (1) WO1992018844A1 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2743006A1 (en) * 1995-12-29 1997-07-04 Rhone Poulenc Agrochimie SUCTION DEVICE FOR DISSOCIATING FINE SOLID PARTICLES FROM A LIQUID
WO1998011250A2 (en) * 1996-09-13 1998-03-19 Maxine Helen Simmons Detection of microorganisms
US5800779A (en) * 1995-11-20 1998-09-01 Johnson; Theodore D. Diagnostic sampling device and system for analyzing body fluids
WO1998040159A2 (en) * 1997-03-10 1998-09-17 Trega Biosciences, Inc. Apparatus and method for combinatorial chemistry synthesis
US5817032A (en) * 1996-05-14 1998-10-06 Biopath Automation Llc. Means and method for harvesting and handling tissue samples for biopsy analysis
US6027694A (en) * 1996-10-17 2000-02-22 Texperts, Inc. Spillproof microplate assembly
US6030582A (en) * 1998-03-06 2000-02-29 Levy; Abner Self-resealing, puncturable container cap
EP1068532A1 (en) * 1998-04-15 2001-01-17 Utah State University Real time detection of antigens
US6277646B1 (en) * 1997-05-05 2001-08-21 Dade Behring Inc. Fluid specimen collecting and testing apparatus
WO2001083930A2 (en) * 2000-04-29 2001-11-08 Branan Medical Corp. Fluid testing apparatus
US6342183B1 (en) * 1997-02-14 2002-01-29 Escreen System for collecting and locally analyzing a fluid specimen
US6423237B1 (en) * 1992-07-28 2002-07-23 Lamina, Inc. Method and apparatus for manually separating particulate matter from a liquid specimen
US20030053938A1 (en) * 2001-09-19 2003-03-20 Becton, Dickinson And Company. Liquid specimen collection container
US20030077838A1 (en) * 2001-10-19 2003-04-24 Monogen, Inc. Vial system and method for processing liquid-based specimens
US6562299B1 (en) 1998-09-18 2003-05-13 Cytyc Corporation Method and apparatus for preparing cytological specimens
US6572824B1 (en) 1998-09-18 2003-06-03 Cytyc Corporation Method and apparatus for preparing cytological specimens
US20040065622A1 (en) * 2002-10-02 2004-04-08 Ferguson Gary William Filter device to capture a desired amount of material and methods of use
US20040069714A1 (en) * 2002-10-11 2004-04-15 Ferguson Gary William Filter apparatus and methods to capture a desired amount of material from a sample suspension for monolayer deposition, analysis or other uses
US6752965B2 (en) 1998-03-06 2004-06-22 Abner Levy Self resealing elastomeric closure
US20040166023A1 (en) * 1997-02-14 2004-08-26 Lappe Murray I. System for automatically testing a fluid specimen
US6830935B1 (en) * 1998-07-07 2004-12-14 Lamina, Inc. Method for mixing and processing specimen samples
US20050135973A1 (en) * 2003-12-19 2005-06-23 Pitney Bowes Incorporated Method and device for collecting and transferring biohazard samples
US20050277848A1 (en) * 2004-06-12 2005-12-15 Graf Christian D Lumbar puncture fluid collection device
US20070287193A1 (en) * 2004-11-09 2007-12-13 Monogen, Inc. Vial Assembly, Sampling Apparatus And Method For Processing Liquid-Based Specimens
US7340970B2 (en) 2003-12-19 2008-03-11 Pitney Bowes Inc. Method and device for isolating, collecting and transferring hazardous samples
US20090024055A1 (en) * 2007-07-16 2009-01-22 Phuong Nguyen All-in-one biological specimen collecting, transporting and analyzing device
US7887758B2 (en) 1998-09-18 2011-02-15 Cytyc Corporation Sample vial for use in preparing cytological specimen
US20110097250A1 (en) * 2005-07-28 2011-04-28 Infinite Medical Technology Corp. Safety, biodegradable biological sample collection system
US20110159533A1 (en) * 2008-07-29 2011-06-30 Bastien Karkouche Bioparticle capture device, and use thereof
US20130053815A1 (en) * 2011-08-23 2013-02-28 Allergan, Inc. High recovery vial adaptor
CN1759318B (en) * 2003-03-10 2013-12-18 积水医疗株式会社 Method of examining specimen and specimen container to be used in examination method
US20140075886A1 (en) * 2012-09-17 2014-03-20 Don Bell System, methods and apparatus for urine collection and storage
US20140283945A1 (en) * 2011-11-10 2014-09-25 Biofire Diagnostics, Llc Loading vials
US9468423B2 (en) 2012-01-10 2016-10-18 Becton, Dickinson And Company Safety shield for fluid specimen container
US20160325043A1 (en) * 2013-12-27 2016-11-10 William Beaumount Hospital Container closure, container assembly and method for utilizing the same
US10054522B1 (en) * 2015-05-15 2018-08-21 Colleen Kraft Systems, devices, and methods for specimen preparation
CN109770953A (en) * 2019-02-17 2019-05-21 张云生 A kind of Male urine collecting device and its application method
US10370649B2 (en) * 2014-06-30 2019-08-06 Ge Healthcare Uk Limited Device and method for cell nuclei preparation
US10433820B2 (en) * 2015-10-15 2019-10-08 Ronan Murphy Biopsy transport device and method

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309362B1 (en) * 1992-07-28 2001-10-30 Lamina, Inc. Method and apparatus for automatically separating particulate matter from a fluid
GB9422504D0 (en) * 1994-11-08 1995-01-04 Robertson Patricia M B Blood testing
GB9510395D0 (en) * 1995-05-23 1995-07-19 Haemocell Plc Improvements in filtration
FR2735400B1 (en) * 1995-06-16 1997-09-12 Nosenzo Michel DEVICE FOR TESTING BIOLOGICAL ELEMENTS FROM A FILTRATION OPERATION
EP1073892B1 (en) * 1998-02-27 2010-11-24 Ventana Medical Systems, Inc. Automated molecular pathology apparatus having independent slide heaters
US5932482A (en) * 1998-08-10 1999-08-03 Markelov; Michael Headspace vial apparatus and method
USD425618S (en) * 1999-08-06 2000-05-23 Becton, Dickinson And Company Specimen collection device
USD425625S (en) * 1999-08-06 2000-05-23 Becton, Dickinson And Company Specimen sampling tube
US6171261B1 (en) 1999-08-06 2001-01-09 Becton Dickinson And Company Specimen collection device and method of delivering fluid specimens to test tubes
US6235010B1 (en) 1999-08-06 2001-05-22 Becton Dickinson And Company Closed system specimen collection container
US6508987B1 (en) 1999-08-06 2003-01-21 Becton, Dickinson And Company Biological fluid collection device with a pivotable faucet
US6409971B1 (en) 1999-08-06 2002-06-25 Becton, Dickinson And Company Device and method for collecting and transferring a urine specimen
USD425982S (en) * 1999-08-06 2000-05-30 Becton, Dickinson And Company Urine collection container
USD434494S (en) * 1999-08-06 2000-11-28 Becton Dickinson And Company Integrated pivot port closed collection container
USD426302S (en) * 1999-08-06 2000-06-06 Becton, Dickinson And Company Specimen collection container
US6350254B1 (en) 1999-08-06 2002-02-26 Becton, Dickinson And Company Medical device for fluid collection and method to fill multiple specimen tubes
USD425983S (en) * 1999-08-06 2000-05-30 Becton, Dickinson And Company Urine collection device
AU2002255763A1 (en) * 2001-03-16 2002-10-03 Photuris, Inc. Modular all-optical cross-connect
US6869405B2 (en) * 2001-03-30 2005-03-22 Becton, Dickinson And Company Blunt cannula and filter assembly and method of use with point-of-care testing cartridge
US6902534B2 (en) * 2001-03-30 2005-06-07 Becton, Dickinson And Company Method and kit of components for delivering blood to a portable clinical analyzer
US6726879B2 (en) 2001-05-21 2004-04-27 Ameditech, Inc. Dual chambered fluid specimen testing device and method
US7300633B2 (en) * 2001-07-25 2007-11-27 Oakville Hong Kong Company Limited Specimen collection container
FR2836520B1 (en) * 2002-02-28 2004-07-16 Univ Joseph Fourier OSMOTIC ACTUATOR AND MOTOR
US7176034B2 (en) * 2002-07-03 2007-02-13 St. Joseph's Healthcare Apparatus and method for filtering biological samples
US6955099B2 (en) * 2002-07-19 2005-10-18 Goodin John W Spill proof liquid sample cup
US7560272B2 (en) 2003-01-04 2009-07-14 Inverness Medical Switzerland Gmbh Specimen collection and assay container
US20060216829A1 (en) * 2003-03-21 2006-09-28 Denis Bouboulis Erythrocyte sedimentation rate (ESR) test measurement instrument of unitary design and method of using the same
US6974701B2 (en) * 2003-03-21 2005-12-13 Hemovations, Llc Erythrocyte sedimentation rate (ESR) test measurement instrument of unitary design and method of using the same
US7517495B2 (en) * 2003-08-25 2009-04-14 Inverness Medical Switzerland Gmbh Biological specimen collection and analysis system
DE10349578A1 (en) * 2003-10-24 2005-06-02 Westfaliasurge Gmbh Process and assembly to remove a sample of liquid milk from a bulk holding tank holding layers of milk
EP1687620B1 (en) * 2003-11-14 2014-04-23 Alere Switzerland GmbH Sample collection cup with integrated sample analysis system
FI20040825A0 (en) * 2004-06-15 2004-06-15 Ani Biotech Oy Filter device, its use, method and kit
US20110094319A1 (en) * 2005-07-28 2011-04-28 Infinite Medical Technology Corp. Needle-free, safety biological sample collection system
US7458942B2 (en) * 2004-09-22 2008-12-02 Medtox Systems and methods for collecting, testing and transporting liquid biological specimens
US7824927B2 (en) * 2005-04-05 2010-11-02 George Mason Intellectual Properties, Inc. Analyte detection using an active assay
US7686771B2 (en) * 2005-12-12 2010-03-30 Cytyc Corporation Method and apparatus for obtaining aliquot from liquid-based cytological sample
US20070140915A1 (en) * 2005-12-12 2007-06-21 Cytyc Corporation Method and Apparatus for Obtaining Aliquot from Liquid-Based Cytological Sample
DE102006002258B4 (en) * 2006-01-17 2008-08-21 Siemens Ag Module for the preparation of a biological sample, biochip set and use of the module
EP2024742B1 (en) 2006-05-22 2020-03-04 3M Innovative Properties Company System and method for preparing samples
US8197420B2 (en) 2006-12-18 2012-06-12 Magnolia Medical Technologies, Inc. Systems and methods for parenterally procuring bodily-fluid samples with reduced contamination
US9192932B2 (en) 2007-06-20 2015-11-24 Labcyte Inc. Closures which contain reservoirs and allow acoustic ejection
CN101909755B (en) * 2007-11-20 2013-09-18 3M创新有限公司 Sample preparation container and method
US8563264B2 (en) 2007-11-20 2013-10-22 3M Innovative Properties Company Sample preparation for environmental sampling
EP2214830B1 (en) * 2007-11-20 2012-09-12 3M Innovative Properties Company Sample preparation container and method
CN101909756B (en) 2007-11-20 2013-10-16 3M创新有限公司 Sample preparation and collection system and method
DE102007057760B3 (en) * 2007-11-30 2009-02-05 DIMA Gesellschaft für Diagnostika mbH Sampling instrument, especially for human stool, has a retention chamber for surplus sample material and a disposal chamber to dissolve the sample in a fluid
EP2238236B1 (en) * 2008-01-09 2017-03-29 Screencell Device and method for isolating and cultivating live cells on a filter or extracting the genetic material thereof
GB0821057D0 (en) * 2008-11-18 2008-12-24 Knight Scient Ltd Device for collecting first pass urine
DE102009039488B4 (en) * 2009-08-31 2017-06-29 Robert Bosch Gmbh Fluid sampling bar for fluid samples in plants
WO2011060451A1 (en) * 2009-11-16 2011-05-19 Infinite Medical Technology Corp. Safety, biodegradable biological sample collection system
WO2013023218A1 (en) 2011-08-11 2013-02-14 Inspire Medical Systems, Inc. System for selecting a stimulation protocol based on sensed respiratory effort
US8535241B2 (en) 2011-10-13 2013-09-17 Magnolia Medical Technologies, Inc. Fluid diversion mechanism for bodily-fluid sampling
US8864684B2 (en) 2011-10-13 2014-10-21 Magnolia Medical Technologies, Inc. Fluid diversion mechanism for bodily-fluid sampling
US9381524B2 (en) 2011-11-08 2016-07-05 Becton, Dickinson And Company System and method for automated sample preparation
US9075039B2 (en) 2011-11-08 2015-07-07 Becton, Dickinson And Company Container and cap for a biological specimen
CN102539196A (en) * 2011-12-23 2012-07-04 江西稀有稀土金属钨业集团有限公司 Liquid sampling device and using method for liquid sampling device
US9022951B2 (en) 2012-05-30 2015-05-05 Magnolia Medical Technologies, Inc. Fluid diversion mechanism for bodily-fluid sampling
US9060724B2 (en) 2012-05-30 2015-06-23 Magnolia Medical Technologies, Inc. Fluid diversion mechanism for bodily-fluid sampling
US9204864B2 (en) 2012-08-01 2015-12-08 Magnolia Medical Technologies, Inc. Fluid diversion mechanism for bodily-fluid sampling
WO2014058945A1 (en) 2012-10-11 2014-04-17 Bullington Gregory J Systems and methods for delivering a fluid to a patient with reduced contamination
JP6329965B2 (en) 2012-11-30 2018-05-23 マグノリア メディカル テクノロジーズ,インコーポレイテッド Syringe-type fluid diversion mechanism for collecting body fluid
US10772548B2 (en) 2012-12-04 2020-09-15 Magnolia Medical Technologies, Inc. Sterile bodily-fluid collection device and methods
US10251590B2 (en) 2012-12-04 2019-04-09 Magnolia Medical Technologies, Inc. Sterile bodily-fluid collection device and methods
EP3461405A1 (en) 2013-03-12 2019-04-03 Magnolia Medical Technologies, Inc. Methods and apparatus for selectively occluding the lumen of a needle
CN103411882B (en) * 2013-08-14 2015-11-18 彭玉洲 A kind of method detecting urinary formed element
GB201316347D0 (en) * 2013-09-13 2013-10-30 Cancer Rec Tech Ltd Biological fluid filtration assembly
US10533932B2 (en) 2013-09-13 2020-01-14 Cancer Research Technology Limited Apparatus and methods for liquid separation and capture of biologics
EP3113747B1 (en) 2014-03-03 2019-11-27 Magnolia Medical Technologies, Inc. Apparatus and methods for disinfection of a specimen container
CN107209181A (en) * 2015-01-22 2017-09-26 日本电气方案创新株式会社 target analysis tool and target analysis method
EP3881892A1 (en) 2015-03-19 2021-09-22 Inspire Medical Systems, Inc. Stimulation for treating sleep disordered breathing
EP3769681B1 (en) 2015-06-12 2022-03-02 Magnolia Medical Technologies, Inc. Bodily-fluid sampling and transfer device
CA3109854C (en) 2015-09-01 2023-07-25 Becton, Dickinson And Company Depth filtration device for separating specimen phases
EP3733067B1 (en) 2015-09-03 2023-06-14 Magnolia Medical Technologies, Inc. System for maintaining sterility of a specimen container
WO2017160928A1 (en) 2016-03-16 2017-09-21 Dignity Health Methods and apparatus for reducing contamination in blood draw samples
US10039882B2 (en) * 2016-09-01 2018-08-07 Arthrex, Inc. Binding syringe
JP7204742B2 (en) 2017-09-12 2023-01-16 マグノリア メディカル テクノロジーズ,インコーポレイテッド FLUID CONTROL DEVICE AND METHOD OF USING FLUID CONTROL DEVICE
DE102017008908A1 (en) * 2017-09-22 2019-03-28 Friz Biochem Gesellschaft Für Bioanalytik Mbh Portable container for tuberculosis preanalytics
WO2019113505A1 (en) 2017-12-07 2019-06-13 Magnolia Medical Technologies, Inc. Fluid control devices and methods of using the same
JP2022523153A (en) 2019-02-08 2022-04-21 マグノリア メディカル テクノロジーズ,インコーポレイテッド Equipment and methods for fluid collection and distribution
US11857321B2 (en) 2019-03-11 2024-01-02 Magnolia Medical Technologies, Inc. Fluid control devices and methods of using the same
WO2022047195A1 (en) * 2020-08-28 2022-03-03 Porex Corporation Liquid collection device
JP7418823B2 (en) 2020-09-24 2024-01-22 大扇産業株式会社 Specimen collection container
EP4304781A1 (en) * 2021-03-10 2024-01-17 Arthrex, Inc. Systems and methods for the preparation of enriched serum
WO2022235673A1 (en) * 2021-05-03 2022-11-10 Co-Diagnostics, Inc Systems, methods, and apparatus for automated self-contained biological analysis

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2953132A (en) * 1955-10-27 1960-09-20 Baxter Laboratories Inc Parenteral solution equipment
US3066671A (en) * 1959-10-27 1962-12-04 Milton J Cohen Disposable additive container
US3141740A (en) * 1954-10-27 1964-07-21 Wild Werner Method for determining the conceptionfree period in a woman
US3608550A (en) * 1969-05-07 1971-09-28 Becton Dickinson Co Transfer needle assembly
US3647397A (en) * 1969-11-19 1972-03-07 Charles M Coleman Reagent solution preparation
US3904482A (en) * 1972-01-06 1975-09-09 Becton Dickinson Co Method for the cultivation of microorganisms from body fluid
US4024857A (en) * 1974-12-23 1977-05-24 Becton, Dickinson And Company Micro blood collection device
US4040791A (en) * 1976-06-22 1977-08-09 David H Kuntz Specimen collecting device
WO1980000406A1 (en) * 1978-08-23 1980-03-20 Lucas & Soehne Kunststoffwerk Container for analysis,particularly for analysing a urine sample
US4300404A (en) * 1977-12-01 1981-11-17 Becton, Dickinson And Company Liquid specimen container
US4376634A (en) * 1980-05-30 1983-03-15 Mallinckrodt, Inc. Assay kit having syringe, dilution device and reagents within sealed container
EP0102070A2 (en) * 1982-08-27 1984-03-07 Radiometer A/S A liquid sampler
US4458020A (en) * 1982-11-15 1984-07-03 Quidel Integrated single tube plunger immunoassay system having plural reagent chambers
US4573983A (en) * 1984-07-27 1986-03-04 The Kendall Company Liquid collection system having an anti-septic member on the discharge section
US4685472A (en) * 1984-01-23 1987-08-11 Rudolph Muto Specimen collector
US4786471A (en) * 1983-10-21 1988-11-22 Baxter Travenol Laboratories, Inc. Heterogeneous immunoassay method and assembly
US4871675A (en) * 1984-11-23 1989-10-03 Jiri Coupek Storage container of samples for analysis
US4953561A (en) * 1989-09-18 1990-09-04 Cancer Diagnostics, Inc. Urine testing module and method of collecting urine antigen
US5016644A (en) * 1989-01-10 1991-05-21 La Mina Ltd. Urine testing module and method of collecting urine antigen
US5042502A (en) * 1989-09-18 1991-08-27 La Mina Ltd. Urine testing module with cytology cup

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3888235A (en) * 1973-02-12 1975-06-10 Int Paper Co Catheterization kit
DE3023348C2 (en) * 1980-06-21 1984-08-23 Anton Dr. 4400 Münster Härle Flexible, one-piece collecting container for medical purposes
US4442720A (en) * 1980-07-29 1984-04-17 The United States Of America As Represented By The United States Department Of Energy Sampling device for withdrawing a representative sample from single and multi-phase flows
US4643303A (en) * 1985-10-15 1987-02-17 Micromedics, Inc. Modular sterilizing system
US5035866A (en) * 1988-02-16 1991-07-30 Wannlund Jon C Luminescence reaction test apparatus
US5030555A (en) * 1988-09-12 1991-07-09 University Of Florida Membrane-strip reagent serodiagnostic apparatus and method
US5139031A (en) * 1989-09-18 1992-08-18 La Mina Ltd. Method and device for cytology and microbiological testing
US4941360A (en) * 1989-06-14 1990-07-17 Mcclellan Oliver B Continuous (flexible) sewage monitoring machine for sampling building effluent to measure for certain controlled substances
US5137031A (en) * 1989-09-18 1992-08-11 La Mina Ltd. Urine testing apparatus with urinary sediment device

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3141740A (en) * 1954-10-27 1964-07-21 Wild Werner Method for determining the conceptionfree period in a woman
US2953132A (en) * 1955-10-27 1960-09-20 Baxter Laboratories Inc Parenteral solution equipment
US3066671A (en) * 1959-10-27 1962-12-04 Milton J Cohen Disposable additive container
US3608550A (en) * 1969-05-07 1971-09-28 Becton Dickinson Co Transfer needle assembly
US3647397A (en) * 1969-11-19 1972-03-07 Charles M Coleman Reagent solution preparation
US3904482A (en) * 1972-01-06 1975-09-09 Becton Dickinson Co Method for the cultivation of microorganisms from body fluid
US4024857A (en) * 1974-12-23 1977-05-24 Becton, Dickinson And Company Micro blood collection device
US4040791A (en) * 1976-06-22 1977-08-09 David H Kuntz Specimen collecting device
US4300404A (en) * 1977-12-01 1981-11-17 Becton, Dickinson And Company Liquid specimen container
WO1980000406A1 (en) * 1978-08-23 1980-03-20 Lucas & Soehne Kunststoffwerk Container for analysis,particularly for analysing a urine sample
US4376634A (en) * 1980-05-30 1983-03-15 Mallinckrodt, Inc. Assay kit having syringe, dilution device and reagents within sealed container
EP0102070A2 (en) * 1982-08-27 1984-03-07 Radiometer A/S A liquid sampler
US4458020A (en) * 1982-11-15 1984-07-03 Quidel Integrated single tube plunger immunoassay system having plural reagent chambers
US4786471A (en) * 1983-10-21 1988-11-22 Baxter Travenol Laboratories, Inc. Heterogeneous immunoassay method and assembly
US4685472A (en) * 1984-01-23 1987-08-11 Rudolph Muto Specimen collector
US4573983A (en) * 1984-07-27 1986-03-04 The Kendall Company Liquid collection system having an anti-septic member on the discharge section
US4871675A (en) * 1984-11-23 1989-10-03 Jiri Coupek Storage container of samples for analysis
US5016644A (en) * 1989-01-10 1991-05-21 La Mina Ltd. Urine testing module and method of collecting urine antigen
US4953561A (en) * 1989-09-18 1990-09-04 Cancer Diagnostics, Inc. Urine testing module and method of collecting urine antigen
US5042502A (en) * 1989-09-18 1991-08-27 La Mina Ltd. Urine testing module with cytology cup

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Fisher Scientific Catalog, 1988 p. 1525. *

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423237B1 (en) * 1992-07-28 2002-07-23 Lamina, Inc. Method and apparatus for manually separating particulate matter from a liquid specimen
US5800779A (en) * 1995-11-20 1998-09-01 Johnson; Theodore D. Diagnostic sampling device and system for analyzing body fluids
US6153439A (en) * 1995-11-20 2000-11-28 Johnson; Theodore D. Method of analyzing body fluids
US5938939A (en) * 1995-12-29 1999-08-17 Rhone-Poulenc Agrochimie Suction device enabling fine solid particles to be separated from a liquid
FR2743006A1 (en) * 1995-12-29 1997-07-04 Rhone Poulenc Agrochimie SUCTION DEVICE FOR DISSOCIATING FINE SOLID PARTICLES FROM A LIQUID
WO1997024180A1 (en) * 1995-12-29 1997-07-10 Rhone-Poulenc Agrochimie Suction device enabling fine solid particles to be dissociated from a liquid
US5817032A (en) * 1996-05-14 1998-10-06 Biopath Automation Llc. Means and method for harvesting and handling tissue samples for biopsy analysis
WO1998011250A3 (en) * 1996-09-13 1998-04-23 Maxine Helen Simmons Detection of microorganisms
WO1998011250A2 (en) * 1996-09-13 1998-03-19 Maxine Helen Simmons Detection of microorganisms
US6051394A (en) * 1996-09-13 2000-04-18 Simmons; Maxine Helen Detection of microorganisms
US6027694A (en) * 1996-10-17 2000-02-22 Texperts, Inc. Spillproof microplate assembly
US20050074362A1 (en) * 1997-02-14 2005-04-07 Lappe Murray I. System for automatically testing a fluid specimen
US7537733B2 (en) 1997-02-14 2009-05-26 Escreen, Inc. System for automatically testing a fluid specimen
US6342183B1 (en) * 1997-02-14 2002-01-29 Escreen System for collecting and locally analyzing a fluid specimen
US6964752B2 (en) 1997-02-14 2005-11-15 Escreen, Inc. System for automatically testing a fluid specimen
US20040166023A1 (en) * 1997-02-14 2004-08-26 Lappe Murray I. System for automatically testing a fluid specimen
US20050214865A1 (en) * 1997-02-14 2005-09-29 Murray Lappe Changeable machine readable assaying indicia
WO1998040159A2 (en) * 1997-03-10 1998-09-17 Trega Biosciences, Inc. Apparatus and method for combinatorial chemistry synthesis
US6045755A (en) * 1997-03-10 2000-04-04 Trega Biosciences,, Inc. Apparatus and method for combinatorial chemistry synthesis
WO1998040159A3 (en) * 1997-03-10 1999-01-07 Trega Biosciences Inc Apparatus and method for combinatorial chemistry synthesis
US6277646B1 (en) * 1997-05-05 2001-08-21 Dade Behring Inc. Fluid specimen collecting and testing apparatus
US6030582A (en) * 1998-03-06 2000-02-29 Levy; Abner Self-resealing, puncturable container cap
US6752965B2 (en) 1998-03-06 2004-06-22 Abner Levy Self resealing elastomeric closure
EP1068532A4 (en) * 1998-04-15 2003-07-16 Univ Utah State Real time detection of antigens
EP1068532A1 (en) * 1998-04-15 2001-01-17 Utah State University Real time detection of antigens
US6830935B1 (en) * 1998-07-07 2004-12-14 Lamina, Inc. Method for mixing and processing specimen samples
US20030207455A1 (en) * 1998-09-18 2003-11-06 Cytyc Corporation Method and apparatus for preparing cytological specimens
US8574912B2 (en) 1998-09-18 2013-11-05 Cytyc Corporation Method and apparatus for preparing cytological specimens
US7887758B2 (en) 1998-09-18 2011-02-15 Cytyc Corporation Sample vial for use in preparing cytological specimen
US20030207456A1 (en) * 1998-09-18 2003-11-06 Cytyc Corporation Method and apparatus for preparing cytological specimens
US6562299B1 (en) 1998-09-18 2003-05-13 Cytyc Corporation Method and apparatus for preparing cytological specimens
US6572824B1 (en) 1998-09-18 2003-06-03 Cytyc Corporation Method and apparatus for preparing cytological specimens
US7579190B2 (en) 1998-09-18 2009-08-25 Cytyc Corporation Method and apparatus for preparing cytological specimens
US20090233331A1 (en) * 1998-09-18 2009-09-17 Cytyc Corporation Method and apparatus for preparing cytological specimens
US7435599B2 (en) 1998-09-18 2008-10-14 Cytyc Corporation Method and apparatus for preparing cytological specimens
WO2001083930A2 (en) * 2000-04-29 2001-11-08 Branan Medical Corp. Fluid testing apparatus
WO2001083930A3 (en) * 2000-04-29 2003-10-30 Raphael Wong Fluid testing apparatus
US20030053938A1 (en) * 2001-09-19 2003-03-20 Becton, Dickinson And Company. Liquid specimen collection container
US20100178711A1 (en) * 2001-10-19 2010-07-15 Hologic, Inc. Vial system and method for processing liquid-based specimens
US7771662B2 (en) 2001-10-19 2010-08-10 Hologic, Inc Vial system and method for processing liquid-based specimens
US7807476B2 (en) 2001-10-19 2010-10-05 Hologic, Inc. Vial system and method for processing liquid-based specimens
US20030077838A1 (en) * 2001-10-19 2003-04-24 Monogen, Inc. Vial system and method for processing liquid-based specimens
US20050189286A1 (en) * 2002-10-02 2005-09-01 Ferguson Gary W. Filter device to capture a desired amount of material and methods of use
US20040065622A1 (en) * 2002-10-02 2004-04-08 Ferguson Gary William Filter device to capture a desired amount of material and methods of use
US6884341B2 (en) 2002-10-02 2005-04-26 G6 Science Corp. Filter device to capture a desired amount of material
US6905594B2 (en) 2002-10-11 2005-06-14 G6 Science Corp. Filter apparatus and methods to capture a desired amount of material from a sample suspension for monolayer deposition, analysis or other uses
US20040069714A1 (en) * 2002-10-11 2004-04-15 Ferguson Gary William Filter apparatus and methods to capture a desired amount of material from a sample suspension for monolayer deposition, analysis or other uses
CN1759318B (en) * 2003-03-10 2013-12-18 积水医疗株式会社 Method of examining specimen and specimen container to be used in examination method
US7491548B2 (en) * 2003-12-19 2009-02-17 Pitney Bowes Inc. Method and device for collecting and transferring biohazard samples
US20050135973A1 (en) * 2003-12-19 2005-06-23 Pitney Bowes Incorporated Method and device for collecting and transferring biohazard samples
US7340970B2 (en) 2003-12-19 2008-03-11 Pitney Bowes Inc. Method and device for isolating, collecting and transferring hazardous samples
US20050277848A1 (en) * 2004-06-12 2005-12-15 Graf Christian D Lumbar puncture fluid collection device
US7335188B2 (en) * 2004-06-12 2008-02-26 Graf Christian D Lumbar puncture fluid collection device
US20070287193A1 (en) * 2004-11-09 2007-12-13 Monogen, Inc. Vial Assembly, Sampling Apparatus And Method For Processing Liquid-Based Specimens
US8491855B2 (en) 2005-07-28 2013-07-23 Peter A. K. Yong Safety, biodegradable biological sample collection system
US20110097250A1 (en) * 2005-07-28 2011-04-28 Infinite Medical Technology Corp. Safety, biodegradable biological sample collection system
US20090024055A1 (en) * 2007-07-16 2009-01-22 Phuong Nguyen All-in-one biological specimen collecting, transporting and analyzing device
US7981054B2 (en) 2007-07-16 2011-07-19 Phuong Nguyen All-in-one biological specimen collecting, transporting and analyzing device
US20110159533A1 (en) * 2008-07-29 2011-06-30 Bastien Karkouche Bioparticle capture device, and use thereof
US8992861B2 (en) 2008-07-29 2015-03-31 Bastien Karkouche Bioparticle capture device, and use thereof
US20130053815A1 (en) * 2011-08-23 2013-02-28 Allergan, Inc. High recovery vial adaptor
US20160151241A1 (en) * 2011-08-23 2016-06-02 Allergan, Inc. High recovery vial adaptor
US10464060B2 (en) * 2011-11-10 2019-11-05 BioFare Diagnostics, LLC Loading vials
US20140283945A1 (en) * 2011-11-10 2014-09-25 Biofire Diagnostics, Llc Loading vials
US10913060B2 (en) 2011-11-10 2021-02-09 Biofire Diagnostics, Llc Loading vials
US9468423B2 (en) 2012-01-10 2016-10-18 Becton, Dickinson And Company Safety shield for fluid specimen container
US20140075886A1 (en) * 2012-09-17 2014-03-20 Don Bell System, methods and apparatus for urine collection and storage
US10479536B2 (en) * 2012-09-17 2019-11-19 Portland Outdoors, Llc System, methods and apparatus for urine collection and storage
US10245380B2 (en) * 2013-12-27 2019-04-02 William Beaumont Hospital Container closure, container assembly and method for utilizing the same
US20160325043A1 (en) * 2013-12-27 2016-11-10 William Beaumount Hospital Container closure, container assembly and method for utilizing the same
US10370649B2 (en) * 2014-06-30 2019-08-06 Ge Healthcare Uk Limited Device and method for cell nuclei preparation
US10054522B1 (en) * 2015-05-15 2018-08-21 Colleen Kraft Systems, devices, and methods for specimen preparation
US10433820B2 (en) * 2015-10-15 2019-10-08 Ronan Murphy Biopsy transport device and method
CN109770953A (en) * 2019-02-17 2019-05-21 张云生 A kind of Male urine collecting device and its application method
CN109770953B (en) * 2019-02-17 2021-06-15 漯河市第一人民医院 Male urine receiving device and using method thereof

Also Published As

Publication number Publication date
ATE159588T1 (en) 1997-11-15
CA2085741C (en) 2000-07-11
JP3244504B2 (en) 2002-01-07
EP0787987A2 (en) 1997-08-06
CA2085741A1 (en) 1992-10-19
EP0535212A4 (en) 1993-10-20
US6589749B1 (en) 2003-07-08
DE69222826D1 (en) 1997-11-27
DE69222826T2 (en) 1998-02-19
WO1992018844A1 (en) 1992-10-29
US6210909B1 (en) 2001-04-03
EP0535212A1 (en) 1993-04-07
AU1781492A (en) 1992-11-17
US5849505A (en) 1998-12-15
EP0535212B1 (en) 1997-10-22
EP0787987A3 (en) 1997-12-29
AU645689B2 (en) 1994-01-20
JPH06501101A (en) 1994-01-27
US6509164B1 (en) 2003-01-21

Similar Documents

Publication Publication Date Title
US5429803A (en) Liquid specimen container and attachable testing modules
US5301685A (en) Method and apparatus for obtaining a cytology monolayer
US5139031A (en) Method and device for cytology and microbiological testing
EP1029228B1 (en) Method and apparatus for mixing and separating particulate matter from a liquid specimen
CA2336093C (en) Improved method for mixing and processing specimen samples
CA2299629C (en) Method and apparatus for separating particulate matter from a liquid specimen
USRE39457E1 (en) Liquid specimen container and attachable testing modules
US6106483A (en) Apparatus for obtaining a cytology monolayer
MXPA00001286A (en) Method and apparatus for separating particulate matter from a liquid specimen

Legal Events

Date Code Title Description
AS Assignment

Owner name: LA MINA LTD., MARYLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GUIRGUIS, RAOUF A.;REEL/FRAME:005718/0967

Effective date: 19910417

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: GENERAL ELECTRIC CAPITAL CORPORATION, GEORGIA

Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:COLEMAN COMPANY, INC., THE;COLEMAN POWERMATE, INC.;BRK BRANDS, INC.;AND OTHERS;REEL/FRAME:014027/0767

Effective date: 20021213

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20070704

AS Assignment

Owner name: SONABANK, VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIOTECHPHARMA CORP.;REEL/FRAME:023839/0421

Effective date: 20100125

AS Assignment

Owner name: LUDWIG & ROBINSON PLLC, DISTRICT OF COLUMBIA

Free format text: LIEN;ASSIGNORS:GUIRGUIS, RAOUF A.;BIOTECHPHARMA, LLC (AND AS SUCCESSOR IN INTEREST TO BIOTECHPHARMA CORP., LA MINA, LTD,, AND LA MINA, INC.);CONVERTING BIOPHILE LABORATORIES, INC.;REEL/FRAME:036701/0101

Effective date: 20150714