US5446756A - Integrated cellular communications system - Google Patents

Integrated cellular communications system Download PDF

Info

Publication number
US5446756A
US5446756A US08/145,246 US14524693A US5446756A US 5446756 A US5446756 A US 5446756A US 14524693 A US14524693 A US 14524693A US 5446756 A US5446756 A US 5446756A
Authority
US
United States
Prior art keywords
signal
quality
satellite
user
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/145,246
Inventor
Albert J. Mallinckrodt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CELSAT Corp
ATC Technologies LLC
Original Assignee
Celsat America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/495,497 external-priority patent/US5073900A/en
Priority to US08/145,246 priority Critical patent/US5446756A/en
Application filed by Celsat America Inc filed Critical Celsat America Inc
Assigned to CELSAT CORPORATION reassignment CELSAT CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MALLINCKRODT, ALBERT J.
Assigned to CELSAT AMERICA, INC. reassignment CELSAT AMERICA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CELSAT, INCORPORATED
Priority to US08/444,574 priority patent/US5612703A/en
Publication of US5446756A publication Critical patent/US5446756A/en
Application granted granted Critical
Priority to US08/751,651 priority patent/US5835857A/en
Priority to US08/944,570 priority patent/US5832379A/en
Priority to US08/944,727 priority patent/US5940753A/en
Priority to US09/181,492 priority patent/US5995832A/en
Priority to US09/260,161 priority patent/US6108561A/en
Assigned to MOBILE SATELLITE VENTURES, LP reassignment MOBILE SATELLITE VENTURES, LP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CELSAT AMERICA, INC.
Assigned to ATC TECHNOLOGIES, LLC reassignment ATC TECHNOLOGIES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOBILE SATELLITE VENTURES, LP
Assigned to THE BANK OF NEW YORK reassignment THE BANK OF NEW YORK SECURITY AGREEMENT Assignors: ATC TECHNOLOGIES, LLC, MOBILE SATELLITE VENTURES LP
Assigned to CELSAT, INCORPORATED reassignment CELSAT, INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MALLINCKRODT, ALBERT JOHN
Assigned to ATC TECHNOLOGIES, LLC, LIGHTSQUARED FINANCE CO., LIGHTSQUARED LP reassignment ATC TECHNOLOGIES, LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: THE BANK OF NEW YORK MELLON AS COLLATERAL AGENT
Assigned to WILMINGTON TRUST FSB, AS COLLATERAL TRUSTEE reassignment WILMINGTON TRUST FSB, AS COLLATERAL TRUSTEE SECURITY AGREEMENT Assignors: ATC TECHNOLOGIES, LLC
Assigned to WILMINGTON TRUST FSB, AS COLLATERAL TRUSTEE reassignment WILMINGTON TRUST FSB, AS COLLATERAL TRUSTEE SECURITY AGREEMENT Assignors: ATC TECHNOLOGIES, LLC, LIGHTSQUARED INC. OF VIRGINIA, LIGHTSQUARED LP, LIGHTSQUARED SUBSIDIARY LLC
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/228TPC being performed according to specific parameters taking into account previous information or commands using past power values or information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18532Arrangements for managing transmission, i.e. for transporting data or a signalling message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18558Arrangements for managing communications, i.e. for setting up, maintaining or releasing a call between stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/2041Spot beam multiple access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/216Code division or spread-spectrum multiple access [CDMA, SSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/225Calculation of statistics, e.g. average, variance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18517Transmission equipment in earth stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18532Arrangements for managing transmission, i.e. for transporting data or a signalling message
    • H04B7/18534Arrangements for managing transmission, i.e. for transporting data or a signalling message for enhancing link reliablility, e.g. satellites diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • H04B7/18543Arrangements for managing radio, resources, i.e. for establishing or releasing a connection for adaptation of transmission parameters, e.g. power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/02Inter-networking arrangements

Definitions

  • the invention relates to communication systems and in particular, to a cellular mobile communications system having integrated satellite and ground nodes.
  • the cellular communications industry has grown at a fast pace in the United States and even faster in some other countries. It has become an important service of substantial utility and because of the growth rate, saturation of the existing service is of concern. High density regions having high use rates, such as Los Angeles, New York and Chicago are of most immediate concern. Contributing to this concern is the congestion of the electromagnetic frequency spectrum which is becoming increasingly severe as the communication needs of society expand. This congestion is caused not only by cellular communications systems but also by other communications systems. However, in the cellular communications industry alone, it is estimated that the number of mobile subscribers will increase on a world-wide level by an order of magnitude within the next ten years. The radio frequency spectrum is limited and in view of this increasing demand for its use, means to more efficiently use it are continually being explored.
  • ground cellular and planned satellite technologies complement one another in geographical coverage in that the ground cellular communications service provides voice telephone service in relatively developed urban and suburban areas but not in sparsely populated areas, while the planned earth orbiting satellites will serve the sparsely populated areas.
  • the two technologies use the same general area of the RF spectrum, they are basically separate and incompatible by design as they presently exist. At present, if a user needs both forms of mobile communications coverage, he must invest in two relatively expensive subscriber units, one for each system.
  • FM frequency modulation
  • each radio channel may be used only once over a wide geographical area encompassing many cells. This means that each cell can use only a small fraction of the total allocated radio frequency band, resulting in an inefficient use of the available spectrum.
  • the quality of speech is poor because of the phenomena affecting FM transmission known as fading and "dead spots.”
  • the subjective effect of fading is repeated submersion of the voice signal in background noise frequently many times per second if the mobile unit is in motion. The problem is exacerbated by interference from co-channel users in distant cells and resultant crosstalk due to the limited interference rejection capability of FM. Additionally, communications privacy is relatively poor; the FM signal may be heard by others who are receiving that frequency.
  • the spread spectrum communications technique is a technology that has found widespread use in military applications which must meet requirements for security, minimized likelihood of signal detection, and minimum susceptibility to external interference or jamming.
  • the data modulated carrier signal is further modulated by a relatively wide-band, pseudo-random "spreading" signal so that the transmitted bandwidth is much greater than the bandwidth or rate of the information to be transmitted.
  • the "spreading" signal is generated by a pseudo-random deterministic digital logic algorithm which is duplicated at the receiver.
  • the received signal is remapped into the original information bandwidth to reproduce the desired signal. Because a receiver is responsive only to a signal that was spread using the same unique spreading code, a uniquely addressable channel is possible. Also, the power spectral density is low and without the unique spreading code, the signal is very difficult to detect, much less decode, so privacy is enhanced and interference with the signals of other services is reduced.
  • the spread spectrum signal has strong immunity to multipath fading, interference from other users of the same system, and interference from other systems.
  • the user transceiver commonly radiates at a power level which is 30 to 40 dB greater than is required on the average in order to overcome fading nulls. This results in greatly increased inter-system interference and reduced battery life. It would also be desirable to provide a power control system to compensate for fading and interference without exceeding the minimum amount of power necessary to overcome such interference.
  • a user position determination capability would be useful for certain applications of a cellular communications system such as tracking the progress of commercial vehicles en route.
  • a further use may be to provide users with an indication of their own position. Such a capability would be more useful with increased accuracy.
  • a cellular communications system which integrates satellite nodes with surface nodes to provide coverage of greater surface areas without requiring the use of two different systems with attendant expense and hardware requirements. Additionally, it would be desirable to provide a cellular communications system using a spread spectrum technique which can make more efficient use of existing frequency spectrum resources and result in increased privacy in communications. Additionally, it would be desirable to permit the use of a relatively low power, compact and mobile user handset having a small, non-directional antenna, one which can communicate with both the land-based stations and the satellite-based stations.
  • the invention provides a cellular communications system using spread spectrum waveforms.
  • the spread spectrum system makes possible the use of very low rate, highly redundant coding without loss of capability to accommodate a large number of users within the allocated bandwidth.
  • the invention in one aspect, is directed to a cellular communications system and method having at least one node positioned so as to establish a set of cells with each node including means for transmitting and receiving spread spectrum waveforms in a common frequency band.
  • Each user unit within the set of cells includes means for communicating with each node and being operatively responsive to a predetermined one of the spread spectrum waveforms to thereby establish selective communication with at least one of the nodes.
  • Position means are included for determining the position of a selected user unit by providing a timing signal to the selected user unit from at least one node, providing a timing response signal from the selected user unit in response to each timing signal, receiving the timing response signal by at least one node, measuring the response time of the user unit to the timing signal based on receipt of the timing response signal, and determining the position of the user unit based on the round trip time of transmission of the timing signal and receipt of the timing response signal.
  • the position means comprises means for measuring the response times of the user unit to respective timing signals transmitted by at least two nodes and for determining the position of the selected user unit based on the round trip times from each timing signal transmitting surface node.
  • the position means comprises means for determining the position of the selected user unit by measuring at a plurality of nodes the response time of the user unit to a timing signal transmitted by at least one of the nodes and determining the position of the selected user unit based on the times of receipt by the nodes of the timing response signal from the user unit.
  • the position means may store a priori information about the selected user unit and may determine the position of the selected user unit by providing a timing signal to the user unit from a node, measuring the response time of the user unit to the timing signal at the node, and determining the position of the user unit based on such measurement and on the a priori information. Additionally, the position means is also for determining in which cell a selected user unit is and for indicating the location of the cell.
  • an adaptive transmitter power control system and method compensate for received signal strength variations, such as those caused by buildings, foliage and other obstructions.
  • a path loss measure is derived from the received signal strength and from data included in each transmitted signal which indicates that transmitter's output power level. Based on the derived path loss and the transmitter's power level data, the receiver can then adjust the power output of its own associated transmitter accordingly.
  • each receiver determines the quality of the received signal and provides a local quality signal to its associated transmitter in the respective transceiver indicative of that received signal quality.
  • Each transmitter also transmits the local quality signal provided to it from its associated receiver and the transceiver is additionally responsive to the quality signal received from the other transceiver with which it is in communication to control its own output power in the response to that quality signal.
  • the error rate of the received signal is determined in providing the quality signal, and in another aspect, the signal-to-noise ratio (SNR) is measured to determine quality.
  • the transceiver receiving the error rate signal or the SNR from the other transceiver controls its own transmitter power output in response.
  • FIG. 1 is a block diagram showing an overview of the principal elements of a communications system in accordance with the principles of the invention
  • FIG. 2 is a diagram of the frequency sub-bands of the frequency band allocation for a cellular system
  • FIG. 3 is a overview block diagram of a communications system in accordance with the principles of the invention without a network control center;
  • FIG. 4 is a diagram showing the interrelationship of the cellular hierarchical structure of the ground and satellite nodes in a typical section and presents a cluster comprising more than one satellite cell;
  • FIG. 5 is a block diagram of a satellite link system showing the user unit and satellite node control center;
  • FIG. 6 is a block diagram of one embodiment of satellite signal processing in the system of FIG. 5;
  • FIG. 7 is a functional block diagram of a user transceiver showing an adaptive power control system
  • FIGS. 8a through 8h show timing diagrams of an adaptive, two-way power control system
  • FIG. 9 is a functional diagram of a two-way power control system incorporating telemetered signal-quality deficiency supervisory control.
  • the invention is embodied in a cellular communications system utilizing integrated satellite and ground nodes both of which use the same modulation, coding, and spreading structure and both responding to an identical user unit.
  • the system network control center 12 directs the top level allocation of calls to satellite and ground regional resources throughout the system. It also is used to coordinate system-wide operations, to keep track of user locations, to perform optimum allocation of system resources to each call, dispatch facility command codes, and monitor and supervise overall system health.
  • the regional node control centers 14, one of which is shown, are connected to the system network control center 12 and direct the allocation of calls to ground nodes within a major metropolitan region.
  • the regional node control center 14 provides access to and from fixed land communication lines, such as commercial telephone systems known as the public switched telephone network (PSTN).
  • PSTN public switched telephone network
  • the ground nodes 16 under direction of the respective regional node control center 14 receive calls over the fixed land line network encode them, spread them according to the unique spreading code assigned to each designated user, combine them into a composite signal, modulate that composite signal onto the transmission carrier, and broadcast them over the cellular region covered.
  • Satellite node control centers 18 are also connected to the system network control center 12 via status and control land lines and similarly handle calls designated for satellite links such as from PSTN, encode them, spread them according to the unique spreading codes assigned to the designated users, and multiplex them with other similarly directed calls into an uplink trunk, which is beamed up to the designated satellite 20. Satellite nodes 20 receive the uplink trunks, frequency demultiplex the calls intended for different satellite cells, frequency translate and direct each to its appropriate cell transmitter and cell beam, and broadcast the composite of all such similarly directed calls down to the intended satellite cellular area.
  • backhaul means the link between a satellite 20 and a satellite node control center 18. In one embodiment, it is a K-band frequency while the link between the satellite 20 and the user unit 22 uses an L-band or an S-band frequency.
  • a "node” is a communication site or a communication relay site capable of direct one- or two-way radio communication with users. Nodes may include moving or stationary surface sites or airborne or satellite sites.
  • User units 22 respond to signals of either satellite or ground node origin, receive the outbound composite signal, separate out the signal intended for that user by despreading using the user's assigned unique spreading code, de-modulate, and decode the information and deliver the call to the user.
  • Such user units 22 may be mobile or may be fixed in position.
  • Gateways 24 provide direct trunks, that is, groups of channels, between satellite and the ground public switched telephone system or private trunk users.
  • a gateway may comprise a dedicated satellite terminal for use by a large company or other entity. In the embodiment of FIG. 1, the gateway 24 is also connected to that system network controller 12.
  • the allocated frequency band 26 of a communications system is shown.
  • the allocated frequency band 26 is divided into 2 main sub-bands, an outgoing sub-band 25 and an incoming sub-band 27. Additionally the main sub-bands are themselves divided into further sub-bands which are designated as follows:
  • IS Inbound Satellite 36 (user to satellite node)
  • All users in all cells use the entire designated sub-band for the described function. Unlike existing ground or satellite mobile systems, there is no necessity for frequency division by cells; all cells may use these same basic six sub-bands. This arrangement results in a higher frequency reuse factor as is discussed in more detail below.
  • a mobile user's unit 22 will send an occasional burst of an identification signal in the IC sub-band either in response to a poll or autonomously. This may occur when the unit 22 is in standby mode.
  • This identification signal is tracked by the regional node control center 14 as long as the unit is within that respective region, otherwise the signal will be tracked by the satellite node or nodes. In another embodiment, this identification signal is tracked by all ground and satellite nodes capable of receiving it. This information is forwarded to the network control center 12 via status and command lines. By this means, the applicable regional node control center 14 and the system network control center 12 remain constantly aware of the cellular location and link options for each active user 22.
  • An intra-regional call to or from a mobile user 22 will generally be handled solely by the respective regional node control center 14.
  • Inter-regional calls are assigned to satellite or ground regional system resources by the system network control center 12 based on the location of the parties to the call, signal quality on the various line options, resource availability and best utilization of resources.
  • a user 22 in standby mode constantly monitors the common outbound calling frequency sub-band OC 32 for calling signals addressed to him by means of his unique spreading code. Such calls may be originated from either ground or satellite nodes. Recognition of his unique call code initiates the user unit 22 ring function. When the user goes "off-hook", e.g. by lifting the handset from its cradle, a return signal is broadcast from the user unit 22 to any receiving node in the user calling frequency sub-band IC 38. This initiates a handshaking sequence between the calling node and the user unit which instructs the user unit whether to transition to either satellite, or ground frequency sub-bands, OS 30 and IS 36 or OG 28 and IG 34.
  • a mobile user wishing to place a call simply takes his unit 22 off hook and dials the number of the desired party, confirms the number and "sends" the call. Thereby an incoming call sequence is initiated in the IC sub-band 38.
  • This call is generally heard by several ground and satellite nodes which forward call and signal quality reports to the appropriate system network control center 12 which in turn designates the call handling to a particular satellite node 20 or regional node control center 14.
  • the call handling element then initiates a handshaking function with the calling unit over the OC 32 and IC 38 sub-bands, leading finally to transition to the appropriate satellite or ground sub-bands for communication.
  • FIG. 3 a block diagram of a communications system 40 which does not include a system network control center is presented.
  • the satellite node control centers 42 are connected directly into the land line network as are also the regional node control centers 44.
  • Gateway systems 46 are also available as in the system of FIG. 1 and connect the satellite communications to the appropriate land line or other communications systems.
  • the user unit 22 designates satellite node 48 communication or ground node 50 communication by sending a predetermined code.
  • FIG. 4 a hierarchical cellular structure is shown.
  • a pair of clusters 52 of ground cells 54 are shown. Additionally, a plurality of satellite cells 56 are shown.
  • numerals 54 and 56 point only to two cells each, this has been done to retain clarity in the drawing.
  • Numeral 54 is meant to indicate all ground cells in the figure and similarly numeral 56 is meant to indicate all satellite cells.
  • the cells are shown as hexagonal in shape, however, this is exemplary only.
  • the ground cells may be from 3 to 15 km across although other sizes are possible depending on user density in the cell.
  • the satellite cells may be approximately 200-500 km across as an example depending on the number of beams used to cover a given area. As shown, some satellite cells may include no ground cells. Such cells may cover undeveloped areas for which ground nodes are not practical.
  • Part of a satellite cluster 58 is also shown. The cell members of such a cluster share a common satellite node control center 60.
  • a significant advantage of the invention is that by the use of spread spectrum multiple access, adjacent cells are not required to use different frequency bands. All ground-user links utilize the same two frequency sub-bands (OG 28, IG 34) and all satellite-user links use the same two frequency sub-bands (OS 30, IS 36). This obviates an otherwise complex and restrictive frequency coordination problem of ensuring that frequencies are not reused within cells closer than some minimum distance to one another (as in the FM approach), and yet provides for a hierarchical set of cell sizes to accommodate areas of significantly different subscriber densities.
  • the satellite nodes 20 make use of large, multiple-feed antennas 62 which in one embodiment provide separate, relatively narrow beamwidth beams and associated separate transmitters for each satellite cell 56.
  • the multiple feed antenna 62 may cover an area such as the United States with, typically, about 100 satellite beams/cells and in one embodiment, with about 200 beams/cells.
  • "relatively narrow beamwidth” refers to a beamwidth that results in a cell of 500 km or less across.
  • the combined satellite/ground nodes system provides a hierarchical geographical cellular structure.
  • each satellite cell 56 may further contain as many as 100 or more ground cells 54, which ground cells would normally carry the bulk of the traffic originated therein.
  • the number of users of the ground nodes 16 is anticipated to exceed the number of users of the satellite nodes 20 where ground cells exist within satellite cells. Because all of these ground node users would otherwise interfere as background noise with the intended user-satellite links, in one embodiment the frequency band allocation may be separated into separate segments for the ground element and the space element as has been discussed in connection with FIG. 2. This combined, hybrid service can be provided in a manner that is smoothly transparent to the user. Calls will be allocated among all available ground and satellite resources in the most efficient manner by the system network control center 12.
  • the "cluster” defined as the minimal set of cells such that mutual interference between cells reusing a given frequency sub-band is tolerable provided that such "co-channel cells" are in different clusters. Conversely all cells within a cluster must use different frequency sub-bands.
  • the number of cells in such a cluster is called the “cluster size”.
  • the "frequency reuse factor” i.e. the number of possible reuses of a frequency sub-band within the system is thus equal to the number of cells in the system divided by the cluster size.
  • the total number of channels that can be supported per cell, and therefore overall bandwidth efficiency of the system is thus inversely proportional to the cluster size.
  • the invention system achieves a minimum possible cluster size of one as compared to typically 7 to 13 for other ground or satellite cellular concepts and thereby a maximum possible frequency reuse factor. This is a major advantage of the invention.
  • FIG. 5 a block diagram is shown of a typical user unit 22 to satellite 20 to satellite node control 18 communication and the processing involved in the user unit 22 and the satellite node control 18.
  • the handset 64 is lifted and the telephone number entered by the user. After confirming a display of the number dialed, the user pushes a "send" button, thus initiating a call request signal.
  • This signal is processed through the transmitter processing circuitry 66 which includes spreading the signal using a calling spread code.
  • the signal is radiated by the omni-directional antenna 68 and received by the satellite 20 through its narrow beamwidth antenna 62.
  • the satellite processes the received signal as will be described below and sends the backhaul to the satellite node control center 18 by way of its backhaul antenna 70.
  • the antenna 68 of the user unit 22 receives the signal and the receiver processor 72 processes the signal. Processing by the user unit 22 will be described in more detail below in reference to FIG. 7.
  • the satellite node control center 18 receives the signal at its antenna 71, applies it to a circulator 73, amplifies 74, frequency demultiplexes 76 the signal separating off the composite signal which includes the signal from the user shown in FIG. 5, splits it 78 off to one of a bank of code correletors, each of which comprises a mixer 80 for removing the spreading and identification codes, an AGC amplifier 82, the FECC demodulator 84, a demultiplexer 86 and finally a voice encoder/decoder (CODEC) 88 for converting digital voice information into an analog voice signal.
  • the voice signal is then routed to the appropriate land line, such as a commercial telephone system. Transmission by the satellite node control center 18 is essentially the reverse of the above described reception operation.
  • a circulator/diplexer 92 receives the uplink signal and applies it to an L-band or S-band amplifier 94 as appropriate.
  • the signals from all the M satellite cells within a "cluster" are frequency multiplexed 96 into a single composite K-band backhaul signal occupying M times the bandwidth of an individual L-/S-band mobile link channel.
  • the composite signal is then split 98 into N parts, separately amplified 100, and beamed through a second circulator 102 to N separate satellite ground cells.
  • This general configuration supports a number of particular configurations various of which may be best adapted to one or another situation depending on system optimization which for example may include considerations related to regional land line long distance rate structure, frequency allocation and subscriber population.
  • M-to-M configuration M contiguous cells served by a single common satellite ground node with M limited by available bandwidth.
  • an M-to-M configuration would provide an "inter-metropolitan bus" which would tie together all occupants of such M satellite cells as if in a single local calling region.
  • the same cells for example, Seattle, Los Angeles, Omaha and others
  • comprising the cluster of M user cells on the left side of FIG. 6 are each served by corresponding backhaul beams on the right side of FIG. 6.
  • the user unit 22 comprises a small, light-weight, low-cost, mobile transceiver handset with a small, non-directional antenna 68.
  • the single antenna 68 provides both transmit and receive functions by the use of a circulator/diplexer 104 or other means. It is fully portable and whether stationary or in motion, permits access to a wide range of communication services from one telephone with one call number. It is anticipated that user units will transmit and receive on frequencies in the 1--3 Ghz band but can operate in other bands as well.
  • the user unit 22 shown in FIG. 7 comprises a transmitter section 106 and a receiver section 108.
  • a microphone couples the voice signal to a voice encoder 110 which performs analog to digital encoding using one of the various modern speech coding technologies well known to those skilled in the art.
  • the digital voice signal is combined with local status data, and/or other data, facsimile, or video data forming a composite bit stream in digital multiplexer 112.
  • the resulting digital bit stream proceeds sequentially through forward error encoder 114, symbol or bit interleaver 116, symbol or bit, phase, and/or amplitude modulator 118, narrow band IF amplifier 120, wideband multiplier or spreader 122, wide band IF amplifier 124, wide band mixer 126, and final power amplifier 128.
  • Oscillators or equivalent synthesizers derive the bit or baud frequency 130, pseudo-random noise or "chip" frequency 132, and carrier frequency 134.
  • the PRN generator 136 comprises deterministic logic generating a pseudo-random digital bit stream capable of being replicated at the remote receiver.
  • the ring generator 138 on command generates a short pseudo-random sequence functionally equivalent to a "ring".
  • the transceiver receive function 108 demodulation operations mirror the corresponding transmit modulation functions in the transmitter section 106.
  • the signal is received by the non-directional antenna 68 and conducted to the circulator 104.
  • An amplifier 142 amplifies the received signal for mixing to an IF at mixer 144.
  • the IF signal is amplified 146 and multiplied or despread 148 and then IF amplified 150 again.
  • the IF signal then: is conducted to a bit or symbol detector 152 which decides the polarity or value of each channel bit or symbol, a bit or symbol de-interleaver 154 and then to a forward error decoder 156.
  • the composite bit stream from the FEC decoder 156 is then split into its several voice, data, and command components in the de-multiplexer 158.
  • a voice decoder 160 performs digital to analog converting and results in a voice signal for communication to the user by a speaker or other means.
  • Local oscillator 162 provides the first mixer 144 LO and the bit or symbol detector 152 timing.
  • a PRN oscillator 164 and PRN generator 166 provide the deterministic logic of the spread signal for despreading purposes.
  • the baud or bit clock oscillator 168 drives the bit in the bit detector 152, forward error decoder 156 and the voice decoder 160.
  • the bit or symbol interleaver 116 and de-interleaver 154 provide a type of coded time diversity reception which provides an effective power gain against multipath fading to be expected for mobile users. Its function is to spread or diffuse the effect of short bursts of channel bit or symbol errors so that they can more readily be corrected by the error correction code.
  • a command decoder 174 and command logic element 176 are coupled to the forward error decoder 156 for receiving commands or information.
  • the non-voice signal output at the forward error decoder 156 may be ignored by the voice decoder 160 but used by the command decoder 174.
  • An example of the special coding techniques are illustrated in FIG. 7 by the MUX 112 and DEMUX 158.
  • acquisition, control and tracking circuitry 178 are provided in the receiver section 108 for the three receive side functional oscillators 162, 164, 168 to acquire and track the phase of their counterpart oscillators in the received signal. Means for so doing are well known to those skilled in the art.
  • the automatic gain control (AGC) voltage 184 derived from the received signal is used in the conventional way to control the gain of the preceding amplifiers to an optimum value and in addition as an indicator of short term variations of path loss suffered by the received signal.
  • AGC automatic gain control
  • this information is combined with simultaneously received digital data 186 in a power level controller 188 indicating the level at which the received signal was originally transmitted to command the local instantaneous transmit power level to a value such that the received value at the satellite node control is approximately constant, independent of fading and shadowing effects.
  • the level commanded to the output power amplifier 128 is also provided 190 to the transmitter multiplexer 112 for transmission to the corresponding unit.
  • a further feature of a system in accordance with the principles of the invention is an adaptive two-way power control system which continually maintains each transmitted signal power at a minimum necessary level, adapting rapidly to and accommodating such fades dynamically, and only as necessary.
  • the adaptive power control system in accordance with the invention comprises two main adaptive sections, the first being an adaptive path loss power control system and the second being an adaptive signal quality power control system.
  • the adaptive power control system in accordance with the invention considers not only path loss but also a measure of data loss or "signal quality" reported to it from another unit with which it is in communication.
  • signal quality refers to the accuracy or fidelity of a received signal in representing the quantity or waveform it is supposed to represent.
  • grade of service is a collective term including the concepts of fidelity, accuracy, fraction of time that communications are satisfactory, etc., any of which may be used to describe the quality objectives or specifications for a communication service. Examples of grade of service objectives would include:
  • bit error rate less than one in 10 3 ;
  • Power adjustment based upon path loss reciprocity alone is subject to several sources of error, including, path non-reciprocity (due to frequency difference), staleness due to transit time delay, and local noise or interference anomalies. Compensation for all these effects is provided in the system and method of the invention by a longer term signal quality monitor, which compares recent past actual error rate statistics, (measured in the forward error correction decoder) and compares against prescribed maximum acceptable error rate statistic. The difference is interpreted as a longer-term signal level deficiency. This signal level deficiency is then telemetered back to the respondent transceiver, where it is used to provide a longer term supervisory control over the short term path-reciprocity power adjustment system.
  • the longer term signal quality deficiency estimate will sense this and call for a gradual increase in the reference value calibration of the fast, signal sensing power control.
  • each transmitter telemeters its current signal output level to the counterpart far end receiver by adding a low rate data stream to the composite digital output signal.
  • each end can form an estimate of the instantaneous path loss and adjust its current transmit power output to a level which will produce an approximately constant received signal level at the counterpart receiver irrespective of path loss variations.
  • FIGS. 8a through 8h timing and waveform diagrams of the adaptive path loss system of an adaptive power control system in accordance with the principles of the invention are presented.
  • the two ends of the communications link are referred to generally as A and B.
  • A corresponds to the user
  • B corresponds to the cellular node.
  • A would be the user and B would be the satellite control node; in this case, the satellite is simply a constant gain repeater and the control of its power output is exercised by the level of the signal sent up to it.
  • the path loss suddenly increases x dB due for example to the mobile user A driving behind a building or other obstruction in the immediate vicinity of A. This causes the signal strength as sensed by A's AGC to decrease x dB as shown in FIG. 8b.
  • the telemetered data at time 192 shown in FIG. 8c indicates that the level at which this signal had been transmitted from B had not been altered,
  • A's power level controller 188 subtracts the telemetered transmitted signal level from the observed received signal level and computes that there has been an increase of x dB in path loss. Accordingly it increases its signal level output by x dB at time 192 as shown in FIG. 8d and at the same time adds this information to its status telemeter channel.
  • This signal is transmitted to B, arriving after transit time T as shown in FIG. 8e.
  • the B receiver sees a constant received signal strength as shown in FIG. 8f but learns from the telemetered data channel as shown in FIG. 8g that the signal has been sent to him at +x dB. Therefore, B also computes that the path loss has increased x dB, adjusts its output signal level accordingly at FIG. 8h and telemeters that information. That signal increase arrives back at station A at 2T as shown in FIG. 8e thus restoring the nominal signal strength with a delay of two transit times (T).
  • T two transit times
  • FIG. 9 shows the operation of an adaptive signal quality power control system acting in concert with the adaptive path loss power control system described above. While FIG. 9 depicts only one of two corresponding transceivers 210 which are in communication with each other, the one not shown functions identically to the one shown in FIG. 9 and described.
  • Receiver 212 receives the signal from the corresponding transceiver and provides a measure indicative of the near-end received signal level deviation from a nominal level 214 by techniques well known to those skilled in the art as a step in determining the path loss.
  • the nominal level is typically calculated to i provide a desired minimum acceptable grade of service under average conditions of fading and interference, as is well known to those skilled in the art.
  • the receiver 212 provides a digital output signal 213 based on the received signal.
  • Forward error decoder 216 decodes the digital information in the received signal 213, and in the process provides an error rate measure 218, derived from the fraction of transmitted bits needing correction.
  • the forward error decoded signal 218 is further processed in the signal quality circuit 220 to derive signal quality deficiency; i.e., an estimate of the change in transmit power calculated as that which would be required to just achieve the specified, minimum acceptable error rate under average conditions of fading and interference.
  • the output from the signal quality circuit 220 is provided to an analog-to-digital converter 221 to provide a digital signal to be multiplexed 244. If the error rate is higher than acceptable, the signal quality circuit output 222 will include a power increase command signal and if the error rate is less than acceptable, a transmit power reduction will be output.
  • the circuit of FIG. 9 also includes a consideration of the signal-to-noise ratio (SNR) in the received signal to determine signal quality.
  • SNR signal-to-noise ratio
  • the SNR of the received signal is determined in the receiver 212 by techniques well known to those skilled in the art; for example, the AGC is monitored, and an SNR signal 223 is provided to the signal quality circuit 220.
  • the signal quality circuit 220 considers both the error rate 218 and the SNR when producing its output control signal 222.
  • a demultiplexer 224 separates the telemetered data 217 output through the forward error decoder 216 as to far-end signal quality deficiency 226, far-end transmitter power deviation reference 228 from a nominal level, and the traffic signals 230.
  • the far-end transmit power deviation signal 228 is combined 232 with the near-end received signal level deviation 214 to yield a signal 234 representative of the path loss deviation from a nominal reference value.
  • the telemetered far-end signal quality deficiency 226 and the path loss deviation 234 are combined 236 through complementary filters 238 and 240 to yield the transmit power control signal 242 for controlling the output power of the associated transmitter 250.
  • the transmit power control signal 242 is also applied to an analog-to-digital converter 243 to provide a digitized transmit power control signal 245.
  • the resulting transmitter power level deviation from nominal reference 245 and the near-end signal quality 222 deficiency signals are multiplexed 244 with the traffic 246, then forward error encoded 248 and transmitted 250 to the far end transceiver in support of identical functions performed there.
  • the complementary combining filters 238 and 240 can be designed as optimal estimating filters based upon knowledge of the power requirement signal and measurement error statistics using methods well known to those familiar with estimation theory.
  • the ring generator 138 generates a ring signal based on the user's code for calling out with the user unit 22.
  • the ring signal is detected in a fixed matched filter 198 matched to a short pulse sequence which carries the user's unique code.
  • each user can be selectively called.
  • the ring detect and call request signals may be utilized in poll/response mode to provide tracking information on each active or standby mode user. Course tracking information, adequate for management of the call routing functions is provided by comparison of signal quality as received at various modes.
  • the user response signal time is accurately locked to the time of receipt of the polling or timing signal, to a fraction of a PRN chip width.
  • Measurement of the round trip poll/response time from two or more nodes or time differences of arrival at several nodes provides the basic measurement that enable solution and provision of precise user position.
  • Ground and satellite transmitters and receivers duplicate the functions summarized above for the user units. Given a priori information, for example as to the route plan of a vehicle, a single round trip poll/response time measurement from a single node can yield valuable user position information.
  • the command logic 176 is further coupled to the receiver AGC 180, the matched filter ring detector (RD) 198, the acquisition and tracking circuitry 178, the transmit local oscillator (LO) 162 and the ring generator (RG) 138 to command various modes of operation.
  • RD matched filter ring detector
  • LO transmit local oscillator
  • RG ring generator
  • bandwidth utilization efficiency in either the ground based cellular or mobile satellite elements, radio frequency spectrum allocation is a severely limited commodity. Measures incorporated in the invention to maximize bandwidth utilization efficiency include the use of code division multiple access (CDMA) technology which provides an important spectral utilization efficiency gain and higher spatial frequency reuse factor made possible by the use of smaller satellite antenna beams.
  • CDMA code division multiple access
  • the satellite transmitter source power per user is minimized by the use of forward-error-correcting coding, which in turn is enabled by the above use of spread spectrum code division multiple access (SS/CDMA) technology and by the use of relatively high antenna gain on the satellite.
  • SS/CDMA spread spectrum code division multiple access
  • CDMA and forward-error-correction coding are known to those skilled in the art and no further details are given here.
  • the minimum cell size is inversely proportional to the satellite dish diameter.
  • the number of available channels is strictly limited by the cluster size.
  • the effective cluster size is 5, and one may use only 1/5 or the total allocatable capacity per cell.
  • the cluster size is one. That is, each cell uses the same, full allocated frequency band. This is possible because of the strong interference rejection properties of spread spectrum code division multiple access technology (SS/CDMA).
  • SS/CDMA spread spectrum code division multiple access technology
  • the effect of users in adjacent cells using the same band is qualitatively no different than that of other users in the same cell, so may be taken into account as an effective reduction in the number of users that can be tolerated within a cell.
  • the cumulative effect of all such other-cell interferers may be calculated on the assumption of uniform density of users and a distance attenuation law appropriate to the case of ground propagation or satellite beam pattern. Doing so, we find the multiplying factor for the ratio of total interference to in-cell origin interference of 1.4 for ground propagation and 2.0 for the satellite system. This factor may be accounted for as a multiplier equivalent in effect to an effective cluster size for the CDMA system.
  • frequency reuse factor or bandwidth utilization efficiency factors inversely proportional to effective cluster size in the ratios:
  • ground cellular component of the invention for respectively the ground cellular component of the invention, satellite cellular component of the invention, the AMSC mobile satellite concept, and current ground cellular technology.
  • the second severely limited commodity in the satellite links is satellite prime power, a major component of the weight of a communication satellite and thereby a major factor in satellite cost.
  • the down links to individual users are the largest power consumers and thus for a limited satellite source power, may provide the limiting factor on the number of users that can be served.
  • the system envisages the use of the highest feasible satellite antenna gain.
  • power gain on the order of 45 dB and beamwidth of under one-degree are envisioned at L-band. This is accomplished by an antenna size of approximately 20 meters.
  • the system utilizes channel bit interleaving/de-interleaving, a kind of coded time diversity to provide power gain against deep fading nulls. This makes it possible to operate at relatively low bit energy to noise density ratio, on the order of 3 dB. This in turn reflects in minimum satellite power requirements per user.
  • two-way, adaptive power control and signal quality control as previously described obviate the usual practice of continuously transmitting at a power level which is 10 to 40 dB greater than required most of the time in order to provide a margin for accommodating infrequent deep fades.
  • the Code Division Multiplex system has the following important advantages in the present system. Blank time when some of the channels are not in use reduces the average interference background. In other words, the system overloads and underloads gracefully.
  • the system inherently provides flexibility of base band rates; as opposed to FDM systems, signals having different baseband rates can be multiplexed together on an ad-hoc basis without complex preplanned and restrictive sub-band allocation plans. Not all users need the same baseband rate. Satellite antenna sidelobe control problems are significantly reduced.
  • the above mentioned numerical studies of out-of-cell interference factors show that secondary lobe responses may effectively be ignored.
  • Co-code reassignment that is reuse of the same spreading code
  • Co-code reassignment that is reuse of the same spreading code
  • the requirements on space division are eased; there is no need to reuse the same channel access i.e., spreading code.
  • the system in accordance with the invention provides a flexible capability of providing the following additional special services: high quality, high rate voice and data service; facsimile (the standard group 3 as well as the high speed group 4); two way messaging, i.e. data interchange between mobile terminals at variable rates; automatic position determination and reporting to within several hundred feet; paging rural residential telephone; and private wireless exchange.
  • the system network control center 12 is designed to normally make the choice of which satellite or ground node a user will communicate with. In another embodiment, as an option, the user can request his choice between satellite link or direct ground based link depending on which provides clearer communications at the time or request his choice based on other communication requirements.
  • a satellite node has been described above, it is not intended that this be the only means of providing above-ground service. In the case where a satellite has failed or is unable to provide the desired level of service for other reasons, for example, the satellite has been jammed by a hostile entity, an aircraft or other super-surface vehicle may be commissioned to provide the satellite functions described above.
  • the "surface" nodes described above may be located on the ground or in water bodies on the surface of the earth.
  • users have been shown and described as being located in automobiles, other users may exist.
  • a satellite may be a user of the system for communicating signals, just as a ship at sea may or a user on foot.

Abstract

A cellular communications system is provided having both surface and satellite nodes which are fully integrated for providing service over large areas. A spread spectrum system is used with code division multiple access (CDMA) employing forward error correction coding (FECC) to enhance the effective gain and selectivity of the system. Two-way adaptive power control and signal quality monitoring and power control responsive thereto are provided for controlling the power output levels of transmitters to the minimum necessary for satisfactory communications. Each transmission includes a code representative of the transmitter output power level. Receivers compare this code to the received signal strength and adjust their associated transmitter power output level accordingly. Bit error rate and SNR are monitored by receivers to develop a measure of signal quality. A signal quality code is transmitted to remote units and transmission output power level is adjusted in response. Timing signals are provided by one or more nodes to obtain user position information.

Description

This is a continuation-in-part application of application Ser. No 07/781,972, filed Oct. 24, 1991 now U.S. Pat. No. 5,339,330, from PCT application Ser. No. PCT/US91/01852 which was filed on Mar. 19, 1991 and was a continuation-in-part of application Ser. No. 07/495,497 filed Mar. 19, 1990, now U.S. Pat. No. 5,073,900.
BACKGROUND
The invention relates to communication systems and in particular, to a cellular mobile communications system having integrated satellite and ground nodes.
The cellular communications industry has grown at a fast pace in the United States and even faster in some other countries. It has become an important service of substantial utility and because of the growth rate, saturation of the existing service is of concern. High density regions having high use rates, such as Los Angeles, New York and Chicago are of most immediate concern. Contributing to this concern is the congestion of the electromagnetic frequency spectrum which is becoming increasingly severe as the communication needs of society expand. This congestion is caused not only by cellular communications systems but also by other communications systems. However, in the cellular communications industry alone, it is estimated that the number of mobile subscribers will increase on a world-wide level by an order of magnitude within the next ten years. The radio frequency spectrum is limited and in view of this increasing demand for its use, means to more efficiently use it are continually being explored.
Existing cellular radio is primarily aimed at providing mobile telephone service to automotive users in developed metropolitan areas. For remote area users, airborne users, and marine users, AIRFONE and INMARSAT services exist but coverage is incomplete and service is relatively expensive. Mobile radio satellite systems in an advanced planning stage will probably provide improved direct-broadcast voice channels to mobile subscribers in remote areas but still at significantly higher cost in comparison to existing ground cellular service. The ground cellular and planned satellite technologies complement one another in geographical coverage in that the ground cellular communications service provides voice telephone service in relatively developed urban and suburban areas but not in sparsely populated areas, while the planned earth orbiting satellites will serve the sparsely populated areas. Although the two technologies use the same general area of the RF spectrum, they are basically separate and incompatible by design as they presently exist. At present, if a user needs both forms of mobile communications coverage, he must invest in two relatively expensive subscriber units, one for each system.
The demand for mobile telephone service is steadily expanding and with the expansion of the service, the problem of serving an increased number of subscribers who are travelling from one region to another has become of primary importance. Cellular communications i systems divide the service areas into geographical cells, each served by a base station or node typically located at its center. The central node transmits sufficient power to cover its cell area with adequate field strength. If a mobile user moves to a new cell, the radio link is switched to the new node provided there:is an available channel. However, if the mobile user travels into a region where all channels are busy, or that is not served by any cellular service, or, in some cases, into an area served by a different licensee/provider, then his call may be abruptly terminated.
Present land mobile communication systems typically use a frequency modulation (FM) approach and because of the limited interference rejection capabilities of FM modulation, each radio channel may be used only once over a wide geographical area encompassing many cells. This means that each cell can use only a small fraction of the total allocated radio frequency band, resulting in an inefficient use of the available spectrum. In some cases, the quality of speech is poor because of the phenomena affecting FM transmission known as fading and "dead spots." The subjective effect of fading is repeated submersion of the voice signal in background noise frequently many times per second if the mobile unit is in motion. The problem is exacerbated by interference from co-channel users in distant cells and resultant crosstalk due to the limited interference rejection capability of FM. Additionally, communications privacy is relatively poor; the FM signal may be heard by others who are receiving that frequency.
In the case where one band of frequencies is preferable over others and that one band alone is to be used for mobile communications, efficient communications systems are necessary to assure that the number of users desiring to use the band can be accommodated. For example, there is presently widespread agreement on the choice of L-band as the technically preferred frequency band for the satellite-to-mobile link in mobile communications systems. In the case band is chosen to contain all mobile communications users, improvements in spectral utilization in the area of interference protection and in the ability to function without imposing intolerable interference on other services will be of paramount importance in the considerations of optimal use of the scarce spectrum.
The spread spectrum communications technique is a technology that has found widespread use in military applications which must meet requirements for security, minimized likelihood of signal detection, and minimum susceptibility to external interference or jamming. In a spread spectrum system, the data modulated carrier signal is further modulated by a relatively wide-band, pseudo-random "spreading" signal so that the transmitted bandwidth is much greater than the bandwidth or rate of the information to be transmitted. Commonly the "spreading" signal is generated by a pseudo-random deterministic digital logic algorithm which is duplicated at the receiver.
By further modulating the received signal by the same spreading waveform, the received signal is remapped into the original information bandwidth to reproduce the desired signal. Because a receiver is responsive only to a signal that was spread using the same unique spreading code, a uniquely addressable channel is possible. Also, the power spectral density is low and without the unique spreading code, the signal is very difficult to detect, much less decode, so privacy is enhanced and interference with the signals of other services is reduced. The spread spectrum signal has strong immunity to multipath fading, interference from other users of the same system, and interference from other systems.
In a satellite communications system, downlink power is an important consideration. Satellite power is severely limited; therefore, the number of users of the satellite that can be accommodated, and consequently the economic viability of such a system, is in inverse proportion to how much satellite transmitter power must be allocated to each user. Many of the proposed mobile communications satellite systems have relied upon user antenna directivity to provide additional effective power gain. This has resulted in significant user equipment expense and the operational inconvenience of having to perform some steering or selection of the antenna to point at the satellite. Additionally, hand held transceivers are impractical because of the relatively large directive antennas required.
In some ground cellular service, the user transceiver commonly radiates at a power level which is 30 to 40 dB greater than is required on the average in order to overcome fading nulls. This results in greatly increased inter-system interference and reduced battery life. It would also be desirable to provide a power control system to compensate for fading and interference without exceeding the minimum amount of power necessary to overcome such interference.
Additionally, a user position determination capability would be useful for certain applications of a cellular communications system such as tracking the progress of commercial vehicles en route. A further use may be to provide users with an indication of their own position. Such a capability would be more useful with increased accuracy.
Thus it would be desirable to provide a cellular communications system which integrates satellite nodes with surface nodes to provide coverage of greater surface areas without requiring the use of two different systems with attendant expense and hardware requirements. Additionally, it would be desirable to provide a cellular communications system using a spread spectrum technique which can make more efficient use of existing frequency spectrum resources and result in increased privacy in communications. Additionally, it would be desirable to permit the use of a relatively low power, compact and mobile user handset having a small, non-directional antenna, one which can communicate with both the land-based stations and the satellite-based stations.
SUMMARY OF THE INVENTION
The invention provides a cellular communications system using spread spectrum waveforms. The spread spectrum system makes possible the use of very low rate, highly redundant coding without loss of capability to accommodate a large number of users within the allocated bandwidth.
Briefly and in general terms, the invention, in one aspect, is directed to a cellular communications system and method having at least one node positioned so as to establish a set of cells with each node including means for transmitting and receiving spread spectrum waveforms in a common frequency band. Each user unit within the set of cells includes means for communicating with each node and being operatively responsive to a predetermined one of the spread spectrum waveforms to thereby establish selective communication with at least one of the nodes. Position means are included for determining the position of a selected user unit by providing a timing signal to the selected user unit from at least one node, providing a timing response signal from the selected user unit in response to each timing signal, receiving the timing response signal by at least one node, measuring the response time of the user unit to the timing signal based on receipt of the timing response signal, and determining the position of the user unit based on the round trip time of transmission of the timing signal and receipt of the timing response signal.
In a more detailed aspect of the invention, the position means comprises means for measuring the response times of the user unit to respective timing signals transmitted by at least two nodes and for determining the position of the selected user unit based on the round trip times from each timing signal transmitting surface node.
In yet a further aspect, the position means comprises means for determining the position of the selected user unit by measuring at a plurality of nodes the response time of the user unit to a timing signal transmitted by at least one of the nodes and determining the position of the selected user unit based on the times of receipt by the nodes of the timing response signal from the user unit.
In another aspect, the position means may store a priori information about the selected user unit and may determine the position of the selected user unit by providing a timing signal to the user unit from a node, measuring the response time of the user unit to the timing signal at the node, and determining the position of the user unit based on such measurement and on the a priori information. Additionally, the position means is also for determining in which cell a selected user unit is and for indicating the location of the cell.
In yet another aspect of the invention, an adaptive transmitter power control system and method compensate for received signal strength variations, such as those caused by buildings, foliage and other obstructions. A path loss measure is derived from the received signal strength and from data included in each transmitted signal which indicates that transmitter's output power level. Based on the derived path loss and the transmitter's power level data, the receiver can then adjust the power output of its own associated transmitter accordingly.
In yet a further aspect, each receiver determines the quality of the received signal and provides a local quality signal to its associated transmitter in the respective transceiver indicative of that received signal quality. Each transmitter also transmits the local quality signal provided to it from its associated receiver and the transceiver is additionally responsive to the quality signal received from the other transceiver with which it is in communication to control its own output power in the response to that quality signal.
In a more detailed aspect, the error rate of the received signal is determined in providing the quality signal, and in another aspect, the signal-to-noise ratio (SNR) is measured to determine quality. The transceiver receiving the error rate signal or the SNR from the other transceiver controls its own transmitter power output in response.
Other aspects and advantages of the invention will become apparent from the following detailed description and the accompanying drawings, illustrating by way of example the features of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram showing an overview of the principal elements of a communications system in accordance with the principles of the invention;
FIG. 2 is a diagram of the frequency sub-bands of the frequency band allocation for a cellular system;
FIG. 3 is a overview block diagram of a communications system in accordance with the principles of the invention without a network control center;
FIG. 4 is a diagram showing the interrelationship of the cellular hierarchical structure of the ground and satellite nodes in a typical section and presents a cluster comprising more than one satellite cell;
FIG. 5 is a block diagram of a satellite link system showing the user unit and satellite node control center;
FIG. 6 is a block diagram of one embodiment of satellite signal processing in the system of FIG. 5;
FIG. 7 is a functional block diagram of a user transceiver showing an adaptive power control system;
FIGS. 8a through 8h show timing diagrams of an adaptive, two-way power control system; and
FIG. 9 is a functional diagram of a two-way power control system incorporating telemetered signal-quality deficiency supervisory control.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
As is shown in the exemplary drawings, the invention is embodied in a cellular communications system utilizing integrated satellite and ground nodes both of which use the same modulation, coding, and spreading structure and both responding to an identical user unit.
Referring now to FIG. 1, an overview of a communications system 10 is presented showing the functional inter-relationships of the major elements. The system network control center 12 directs the top level allocation of calls to satellite and ground regional resources throughout the system. It also is used to coordinate system-wide operations, to keep track of user locations, to perform optimum allocation of system resources to each call, dispatch facility command codes, and monitor and supervise overall system health. The regional node control centers 14, one of which is shown, are connected to the system network control center 12 and direct the allocation of calls to ground nodes within a major metropolitan region. The regional node control center 14 provides access to and from fixed land communication lines, such as commercial telephone systems known as the public switched telephone network (PSTN). The ground nodes 16 under direction of the respective regional node control center 14 receive calls over the fixed land line network encode them, spread them according to the unique spreading code assigned to each designated user, combine them into a composite signal, modulate that composite signal onto the transmission carrier, and broadcast them over the cellular region covered.
Satellite node control centers 18 are also connected to the system network control center 12 via status and control land lines and similarly handle calls designated for satellite links such as from PSTN, encode them, spread them according to the unique spreading codes assigned to the designated users, and multiplex them with other similarly directed calls into an uplink trunk, which is beamed up to the designated satellite 20. Satellite nodes 20 receive the uplink trunks, frequency demultiplex the calls intended for different satellite cells, frequency translate and direct each to its appropriate cell transmitter and cell beam, and broadcast the composite of all such similarly directed calls down to the intended satellite cellular area. As used herein, "backhaul" means the link between a satellite 20 and a satellite node control center 18. In one embodiment, it is a K-band frequency while the link between the satellite 20 and the user unit 22 uses an L-band or an S-band frequency.
As used herein, a "node" is a communication site or a communication relay site capable of direct one- or two-way radio communication with users. Nodes may include moving or stationary surface sites or airborne or satellite sites.
User units 22 respond to signals of either satellite or ground node origin, receive the outbound composite signal, separate out the signal intended for that user by despreading using the user's assigned unique spreading code, de-modulate, and decode the information and deliver the call to the user. Such user units 22 may be mobile or may be fixed in position. Gateways 24 provide direct trunks, that is, groups of channels, between satellite and the ground public switched telephone system or private trunk users. For example, a gateway may comprise a dedicated satellite terminal for use by a large company or other entity. In the embodiment of FIG. 1, the gateway 24 is also connected to that system network controller 12.
All of the above-discussed centers, nodes, units and gateways are full duplex transmit/receive performing the corresponding inbound (user to system) link functions as well in the inverse manner to the outbound (system to user) link functions just described.
Referring now to FIG. 2, the allocated frequency band 26 of a communications system is shown. The allocated frequency band 26 is divided into 2 main sub-bands, an outgoing sub-band 25 and an incoming sub-band 27. Additionally the main sub-bands are themselves divided into further sub-bands which are designated as follows:
OG: Outbound Ground 28 (ground node to user)
OS: Outbound Satellite 30 (satellite node to user)
OC: Outbound Calling and Command 32 (node to user)
IG: Inbound Ground 34 (user to ground node)
IS: Inbound Satellite 36 (user to satellite node)
IC: Inbound Calling and Tracking 38 (user to node)
All users in all cells use the entire designated sub-band for the described function. Unlike existing ground or satellite mobile systems, there is no necessity for frequency division by cells; all cells may use these same basic six sub-bands. This arrangement results in a higher frequency reuse factor as is discussed in more detail below.
In one embodiment, a mobile user's unit 22 will send an occasional burst of an identification signal in the IC sub-band either in response to a poll or autonomously. This may occur when the unit 22 is in standby mode. This identification signal is tracked by the regional node control center 14 as long as the unit is within that respective region, otherwise the signal will be tracked by the satellite node or nodes. In another embodiment, this identification signal is tracked by all ground and satellite nodes capable of receiving it. This information is forwarded to the network control center 12 via status and command lines. By this means, the applicable regional node control center 14 and the system network control center 12 remain constantly aware of the cellular location and link options for each active user 22. An intra-regional call to or from a mobile user 22 will generally be handled solely by the respective regional node control center 14. Inter-regional calls are assigned to satellite or ground regional system resources by the system network control center 12 based on the location of the parties to the call, signal quality on the various line options, resource availability and best utilization of resources.
A user 22 in standby mode constantly monitors the common outbound calling frequency sub-band OC 32 for calling signals addressed to him by means of his unique spreading code. Such calls may be originated from either ground or satellite nodes. Recognition of his unique call code initiates the user unit 22 ring function. When the user goes "off-hook", e.g. by lifting the handset from its cradle, a return signal is broadcast from the user unit 22 to any receiving node in the user calling frequency sub-band IC 38. This initiates a handshaking sequence between the calling node and the user unit which instructs the user unit whether to transition to either satellite, or ground frequency sub-bands, OS 30 and IS 36 or OG 28 and IG 34.
A mobile user wishing to place a call simply takes his unit 22 off hook and dials the number of the desired party, confirms the number and "sends" the call. Thereby an incoming call sequence is initiated in the IC sub-band 38. This call is generally heard by several ground and satellite nodes which forward call and signal quality reports to the appropriate system network control center 12 which in turn designates the call handling to a particular satellite node 20 or regional node control center 14. The call handling element then initiates a handshaking function with the calling unit over the OC 32 and IC 38 sub-bands, leading finally to transition to the appropriate satellite or ground sub-bands for communication.
Referring now to FIG. 3, a block diagram of a communications system 40 which does not include a system network control center is presented. In this system, the satellite node control centers 42 are connected directly into the land line network as are also the regional node control centers 44. Gateway systems 46 are also available as in the system of FIG. 1 and connect the satellite communications to the appropriate land line or other communications systems. The user unit 22 designates satellite node 48 communication or ground node 50 communication by sending a predetermined code.
Referring now to FIG. 4, a hierarchical cellular structure is shown. A pair of clusters 52 of ground cells 54 are shown. Additionally, a plurality of satellite cells 56 are shown. Although numerals 54 and 56 point only to two cells each, this has been done to retain clarity in the drawing. Numeral 54 is meant to indicate all ground cells in the figure and similarly numeral 56 is meant to indicate all satellite cells. The cells are shown as hexagonal in shape, however, this is exemplary only. The ground cells may be from 3 to 15 km across although other sizes are possible depending on user density in the cell. The satellite cells may be approximately 200-500 km across as an example depending on the number of beams used to cover a given area. As shown, some satellite cells may include no ground cells. Such cells may cover undeveloped areas for which ground nodes are not practical. Part of a satellite cluster 58 is also shown. The cell members of such a cluster share a common satellite node control center 60.
A significant advantage of the invention is that by the use of spread spectrum multiple access, adjacent cells are not required to use different frequency bands. All ground-user links utilize the same two frequency sub-bands (OG 28, IG 34) and all satellite-user links use the same two frequency sub-bands (OS 30, IS 36). This obviates an otherwise complex and restrictive frequency coordination problem of ensuring that frequencies are not reused within cells closer than some minimum distance to one another (as in the FM approach), and yet provides for a hierarchical set of cell sizes to accommodate areas of significantly different subscriber densities.
Referring again to FIG. 1 as well as to FIG. 4, the satellite nodes 20 make use of large, multiple-feed antennas 62 which in one embodiment provide separate, relatively narrow beamwidth beams and associated separate transmitters for each satellite cell 56. For example, the multiple feed antenna 62 may cover an area such as the United States with, typically, about 100 satellite beams/cells and in one embodiment, with about 200 beams/cells. As used herein, "relatively narrow beamwidth" refers to a beamwidth that results in a cell of 500 km or less across. The combined satellite/ground nodes system provides a hierarchical geographical cellular structure. Thus within a dense metropolitan area, each satellite cell 56 may further contain as many as 100 or more ground cells 54, which ground cells would normally carry the bulk of the traffic originated therein. The number of users of the ground nodes 16 is anticipated to exceed the number of users of the satellite nodes 20 where ground cells exist within satellite cells. Because all of these ground node users would otherwise interfere as background noise with the intended user-satellite links, in one embodiment the frequency band allocation may be separated into separate segments for the ground element and the space element as has been discussed in connection with FIG. 2. This combined, hybrid service can be provided in a manner that is smoothly transparent to the user. Calls will be allocated among all available ground and satellite resources in the most efficient manner by the system network control center 12.
An important parameter in most considerations of cellular radio communications systems is the "cluster", defined as the minimal set of cells such that mutual interference between cells reusing a given frequency sub-band is tolerable provided that such "co-channel cells" are in different clusters. Conversely all cells within a cluster must use different frequency sub-bands. The number of cells in such a cluster is called the "cluster size". It will be seen that the "frequency reuse factor", i.e. the number of possible reuses of a frequency sub-band within the system is thus equal to the number of cells in the system divided by the cluster size. The total number of channels that can be supported per cell, and therefore overall bandwidth efficiency of the system is thus inversely proportional to the cluster size. By means to be described, the invention system achieves a minimum possible cluster size of one as compared to typically 7 to 13 for other ground or satellite cellular concepts and thereby a maximum possible frequency reuse factor. This is a major advantage of the invention.
Referring now to FIG. 5, a block diagram is shown of a typical user unit 22 to satellite 20 to satellite node control 18 communication and the processing involved in the user unit 22 and the satellite node control 18. In placing a call for example, the handset 64 is lifted and the telephone number entered by the user. After confirming a display of the number dialed, the user pushes a "send" button, thus initiating a call request signal. This signal is processed through the transmitter processing circuitry 66 which includes spreading the signal using a calling spread code. The signal is radiated by the omni-directional antenna 68 and received by the satellite 20 through its narrow beamwidth antenna 62. The satellite processes the received signal as will be described below and sends the backhaul to the satellite node control center 18 by way of its backhaul antenna 70. On receive, the antenna 68 of the user unit 22 receives the signal and the receiver processor 72 processes the signal. Processing by the user unit 22 will be described in more detail below in reference to FIG. 7.
The satellite node control center 18 receives the signal at its antenna 71, applies it to a circulator 73, amplifies 74, frequency demultiplexes 76 the signal separating off the composite signal which includes the signal from the user shown in FIG. 5, splits it 78 off to one of a bank of code correletors, each of which comprises a mixer 80 for removing the spreading and identification codes, an AGC amplifier 82, the FECC demodulator 84, a demultiplexer 86 and finally a voice encoder/decoder (CODEC) 88 for converting digital voice information into an analog voice signal. The voice signal is then routed to the appropriate land line, such as a commercial telephone system. Transmission by the satellite node control center 18 is essentially the reverse of the above described reception operation.
Referring now to FIG. 6, the satellite transponder 90 of FIG. 5 is shown in block diagram form. A circulator/diplexer 92 receives the uplink signal and applies it to an L-band or S-band amplifier 94 as appropriate. The signals from all the M satellite cells within a "cluster" are frequency multiplexed 96 into a single composite K-band backhaul signal occupying M times the bandwidth of an individual L-/S-band mobile link channel. The composite signal is then split 98 into N parts, separately amplified 100, and beamed through a second circulator 102 to N separate satellite ground cells. This general configuration supports a number of particular configurations various of which may be best adapted to one or another situation depending on system optimization which for example may include considerations related to regional land line long distance rate structure, frequency allocation and subscriber population. Thus, for a low density rural area, one may utilize an M-to-1 (M>1, N=1) cluster configuration of M contiguous cells served by a single common satellite ground node with M limited by available bandwidth. In order to provide high-value, long distance service between metropolitan areas, already or best covered for local calling by ground cellular technology, an M-to-M configuration would provide an "inter-metropolitan bus" which would tie together all occupants of such M satellite cells as if in a single local calling region. To illustrate, the same cells (for example, Seattle, Los Angeles, Omaha and others) comprising the cluster of M user cells on the left side of FIG. 6, are each served by corresponding backhaul beams on the right side of FIG. 6.
Referring now to FIG. 7, a functional block diagram of a typical user unit 22 is shown. The user unit 22 comprises a small, light-weight, low-cost, mobile transceiver handset with a small, non-directional antenna 68. The single antenna 68 provides both transmit and receive functions by the use of a circulator/diplexer 104 or other means. It is fully portable and whether stationary or in motion, permits access to a wide range of communication services from one telephone with one call number. It is anticipated that user units will transmit and receive on frequencies in the 1--3 Ghz band but can operate in other bands as well.
The user unit 22 shown in FIG. 7 comprises a transmitter section 106 and a receiver section 108. For the transmission of voice communication, a microphone couples the voice signal to a voice encoder 110 which performs analog to digital encoding using one of the various modern speech coding technologies well known to those skilled in the art. The digital voice signal is combined with local status data, and/or other data, facsimile, or video data forming a composite bit stream in digital multiplexer 112. The resulting digital bit stream proceeds sequentially through forward error encoder 114, symbol or bit interleaver 116, symbol or bit, phase, and/or amplitude modulator 118, narrow band IF amplifier 120, wideband multiplier or spreader 122, wide band IF amplifier 124, wide band mixer 126, and final power amplifier 128. Oscillators or equivalent synthesizers derive the bit or baud frequency 130, pseudo-random noise or "chip" frequency 132, and carrier frequency 134. The PRN generator 136 comprises deterministic logic generating a pseudo-random digital bit stream capable of being replicated at the remote receiver. The ring generator 138 on command generates a short pseudo-random sequence functionally equivalent to a "ring".
The transceiver receive function 108 demodulation operations mirror the corresponding transmit modulation functions in the transmitter section 106. The signal is received by the non-directional antenna 68 and conducted to the circulator 104. An amplifier 142 amplifies the received signal for mixing to an IF at mixer 144. The IF signal is amplified 146 and multiplied or despread 148 and then IF amplified 150 again. The IF signal then: is conducted to a bit or symbol detector 152 which decides the polarity or value of each channel bit or symbol, a bit or symbol de-interleaver 154 and then to a forward error decoder 156. the composite bit stream from the FEC decoder 156 is then split into its several voice, data, and command components in the de-multiplexer 158. Finally a voice decoder 160 performs digital to analog converting and results in a voice signal for communication to the user by a speaker or other means. Local oscillator 162 provides the first mixer 144 LO and the bit or symbol detector 152 timing. A PRN oscillator 164 and PRN generator 166 provide the deterministic logic of the spread signal for despreading purposes. The baud or bit clock oscillator 168 drives the bit in the bit detector 152, forward error decoder 156 and the voice decoder 160.
The bit or symbol interleaver 116 and de-interleaver 154 provide a type of coded time diversity reception which provides an effective power gain against multipath fading to be expected for mobile users. Its function is to spread or diffuse the effect of short bursts of channel bit or symbol errors so that they can more readily be corrected by the error correction code.
As an alternative mode of operation, provision is made for direct data or facsimile or other digital data input 170 to the transmitter chain and output 172 from the receiver chain.
A command decoder 174 and command logic element 176 are coupled to the forward error decoder 156 for receiving commands or information. By means of special coding techniques known to those skilled in the art, the non-voice signal output at the forward error decoder 156 may be ignored by the voice decoder 160 but used by the command decoder 174. An example of the special coding techniques are illustrated in FIG. 7 by the MUX 112 and DEMUX 158.
As shown, acquisition, control and tracking circuitry 178 are provided in the receiver section 108 for the three receive side functional oscillators 162, 164, 168 to acquire and track the phase of their counterpart oscillators in the received signal. Means for so doing are well known to those skilled in the art.
The automatic gain control (AGC) voltage 184 derived from the received signal is used in the conventional way to control the gain of the preceding amplifiers to an optimum value and in addition as an indicator of short term variations of path loss suffered by the received signal. By means to be described more in detail below, this information is combined with simultaneously received digital data 186 in a power level controller 188 indicating the level at which the received signal was originally transmitted to command the local instantaneous transmit power level to a value such that the received value at the satellite node control is approximately constant, independent of fading and shadowing effects. The level commanded to the output power amplifier 128 is also provided 190 to the transmitter multiplexer 112 for transmission to the corresponding unit.
In mobile and other radio applications, fading, shadowing, and interference phenomena result in occasional, potentially significant steep increases of path loss and if severe enough, may result in data loss. In order to insure that the probability that such a fade will be disruptive is acceptably low, conventional design practice is to provide a substantial excess power margin by transmitting at a power level that is normally as much as 10 to 40 dB above the average requirement. But this causes correspondingly increased battery usage, inter-system, and intra-system interference. In a CDMA application, this can drastically reduce the useful circuit capacity of the channel.
A further feature of a system in accordance with the principles of the invention is an adaptive two-way power control system which continually maintains each transmitted signal power at a minimum necessary level, adapting rapidly to and accommodating such fades dynamically, and only as necessary. In controlling the transmitted signal power, the adaptive power control system in accordance with the invention comprises two main adaptive sections, the first being an adaptive path loss power control system and the second being an adaptive signal quality power control system. The adaptive power control system in accordance with the invention considers not only path loss but also a measure of data loss or "signal quality" reported to it from another unit with which it is in communication. As used herein, "signal quality" refers to the accuracy or fidelity of a received signal in representing the quantity or waveform it is supposed to represent. In a digital data system, this may be measured or expressed in terms of a bit error rate, or, if variable, the likelihood of exceeding a specified maximum bit error rate threshold. Signal quality involves more than just signal strength, depending also on noise and interference level, and on the variability of signal loss over time. Additionally, "grade of service" as used herein is a collective term including the concepts of fidelity, accuracy, fraction of time that communications are satisfactory, etc., any of which may be used to describe the quality objectives or specifications for a communication service. Examples of grade of service objectives would include:
bit error rate less than one in 103 ;
ninety percent or better score on the voice diagnostic rhyme test; and
less than one-half percent probability of fade below threshold, although the exact numbers may vary depending on the application.
Power adjustment based upon path loss reciprocity alone is subject to several sources of error, including, path non-reciprocity (due to frequency difference), staleness due to transit time delay, and local noise or interference anomalies. Compensation for all these effects is provided in the system and method of the invention by a longer term signal quality monitor, which compares recent past actual error rate statistics, (measured in the forward error correction decoder) and compares against prescribed maximum acceptable error rate statistic. The difference is interpreted as a longer-term signal level deficiency. This signal level deficiency is then telemetered back to the respondent transceiver, where it is used to provide a longer term supervisory control over the short term path-reciprocity power adjustment system. Thus, for example, if a mobile terminal passes into an urban area where it suffers deep-fast fades that cannot be fully compensated due to the delay in the path reciprocity sensing power control, the longer term signal quality deficiency estimate will sense this and call for a gradual increase in the reference value calibration of the fast, signal sensing power control.
Discussing now an embodiment of the adaptive path loss power control system, each transmitter telemeters its current signal output level to the counterpart far end receiver by adding a low rate data stream to the composite digital output signal. Using this information along with the measured strength of the received signal and assuming path loss reciprocity, each end can form an estimate of the instantaneous path loss and adjust its current transmit power output to a level which will produce an approximately constant received signal level at the counterpart receiver irrespective of path loss variations.
Referring now to FIGS. 8a through 8h, timing and waveform diagrams of the adaptive path loss system of an adaptive power control system in accordance with the principles of the invention are presented. In this example, the two ends of the communications link are referred to generally as A and B. In the ground cellular application, "A" corresponds to the user and "B" corresponds to the cellular node. In the satellite link, A would be the user and B would be the satellite control node; in this case, the satellite is simply a constant gain repeater and the control of its power output is exercised by the level of the signal sent up to it.
In the example of FIG. 8a, at time 192, the path loss suddenly increases x dB due for example to the mobile user A driving behind a building or other obstruction in the immediate vicinity of A. This causes the signal strength as sensed by A's AGC to decrease x dB as shown in FIG. 8b. The telemetered data at time 192 shown in FIG. 8c indicates that the level at which this signal had been transmitted from B had not been altered, A's power level controller 188 subtracts the telemetered transmitted signal level from the observed received signal level and computes that there has been an increase of x dB in path loss. Accordingly it increases its signal level output by x dB at time 192 as shown in FIG. 8d and at the same time adds this information to its status telemeter channel.
This signal is transmitted to B, arriving after transit time T as shown in FIG. 8e. The B receiver sees a constant received signal strength as shown in FIG. 8f but learns from the telemetered data channel as shown in FIG. 8g that the signal has been sent to him at +x dB. Therefore, B also computes that the path loss has increased x dB, adjusts its output signal level accordingly at FIG. 8h and telemeters that information. That signal increase arrives back at station A at 2T as shown in FIG. 8e thus restoring the nominal signal strength with a delay of two transit times (T). Thus for a path loss variation occurring in the vicinity of A, the path loss compensation at B is seen to be essentially instantaneous while that at A occurs only after a two transit time delay, 2T.
FIG. 9 shows the operation of an adaptive signal quality power control system acting in concert with the adaptive path loss power control system described above. While FIG. 9 depicts only one of two corresponding transceivers 210 which are in communication with each other, the one not shown functions identically to the one shown in FIG. 9 and described. Receiver 212 receives the signal from the corresponding transceiver and provides a measure indicative of the near-end received signal level deviation from a nominal level 214 by techniques well known to those skilled in the art as a step in determining the path loss. The nominal level is typically calculated to i provide a desired minimum acceptable grade of service under average conditions of fading and interference, as is well known to those skilled in the art. The receiver 212 provides a digital output signal 213 based on the received signal. Forward error decoder 216 decodes the digital information in the received signal 213, and in the process provides an error rate measure 218, derived from the fraction of transmitted bits needing correction. The forward error decoded signal 218 is further processed in the signal quality circuit 220 to derive signal quality deficiency; i.e., an estimate of the change in transmit power calculated as that which would be required to just achieve the specified, minimum acceptable error rate under average conditions of fading and interference. The output from the signal quality circuit 220 is provided to an analog-to-digital converter 221 to provide a digital signal to be multiplexed 244. If the error rate is higher than acceptable, the signal quality circuit output 222 will include a power increase command signal and if the error rate is less than acceptable, a transmit power reduction will be output.
The circuit of FIG. 9 also includes a consideration of the signal-to-noise ratio (SNR) in the received signal to determine signal quality. The SNR of the received signal is determined in the receiver 212 by techniques well known to those skilled in the art; for example, the AGC is monitored, and an SNR signal 223 is provided to the signal quality circuit 220. In this embodiment, the signal quality circuit 220 considers both the error rate 218 and the SNR when producing its output control signal 222.
A demultiplexer 224 separates the telemetered data 217 output through the forward error decoder 216 as to far-end signal quality deficiency 226, far-end transmitter power deviation reference 228 from a nominal level, and the traffic signals 230. The far-end transmit power deviation signal 228 is combined 232 with the near-end received signal level deviation 214 to yield a signal 234 representative of the path loss deviation from a nominal reference value. The telemetered far-end signal quality deficiency 226 and the path loss deviation 234 are combined 236 through complementary filters 238 and 240 to yield the transmit power control signal 242 for controlling the output power of the associated transmitter 250. The transmit power control signal 242 is also applied to an analog-to-digital converter 243 to provide a digitized transmit power control signal 245. The resulting transmitter power level deviation from nominal reference 245 and the near-end signal quality 222 deficiency signals are multiplexed 244 with the traffic 246, then forward error encoded 248 and transmitted 250 to the far end transceiver in support of identical functions performed there. The complementary combining filters 238 and 240 can be designed as optimal estimating filters based upon knowledge of the power requirement signal and measurement error statistics using methods well known to those familiar with estimation theory.
Referring again to FIG. 7, an arrangement is provided for generating call requests and detecting ring signals. The ring generator 138 generates a ring signal based on the user's code for calling out with the user unit 22. For receiving a call, the ring signal is detected in a fixed matched filter 198 matched to a short pulse sequence which carries the user's unique code. By this means each user can be selectively called. As an option, the ring detect and call request signals may be utilized in poll/response mode to provide tracking information on each active or standby mode user. Course tracking information, adequate for management of the call routing functions is provided by comparison of signal quality as received at various modes. For the precision location option, the user response signal time is accurately locked to the time of receipt of the polling or timing signal, to a fraction of a PRN chip width. Measurement of the round trip poll/response time from two or more nodes or time differences of arrival at several nodes provides the basic measurement that enable solution and provision of precise user position. Ground and satellite transmitters and receivers duplicate the functions summarized above for the user units. Given a priori information, for example as to the route plan of a vehicle, a single round trip poll/response time measurement from a single node can yield valuable user position information.
The command logic 176 is further coupled to the receiver AGC 180, the matched filter ring detector (RD) 198, the acquisition and tracking circuitry 178, the transmit local oscillator (LO) 162 and the ring generator (RG) 138 to command various modes of operation.
The economic feasibility of a mobile telephone system is related to the number of users that can be supported. Two significant limits on the number of users supported are bandwidth utilization efficiency and power efficiency. In regard to bandwidth utilization efficiency, in either the ground based cellular or mobile satellite elements, radio frequency spectrum allocation is a severely limited commodity. Measures incorporated in the invention to maximize bandwidth utilization efficiency include the use of code division multiple access (CDMA) technology which provides an important spectral utilization efficiency gain and higher spatial frequency reuse factor made possible by the use of smaller satellite antenna beams. In regard to power efficiency, which is a major factor for the satellite-mobile links, the satellite transmitter source power per user is minimized by the use of forward-error-correcting coding, which in turn is enabled by the above use of spread spectrum code division multiple access (SS/CDMA) technology and by the use of relatively high antenna gain on the satellite. CDMA and forward-error-correction coding are known to those skilled in the art and no further details are given here.
The issue of bandwidth utilization efficiency will now be considered in detail. The major contribution of SS/CDMA to spectral efficiency is closely related to the concept of cellular "cluster". In existing Frequency Division or Time division multiple access technology, a given frequency or time slot allocation must be protected from interference from nearby cells by users on the same frequency sub-band. Depending on the degree of protection required, it may be necessary to preclude the reuse of the cell "X" frequencies on a number of cells, N, surrounding "X". That number is called the "cluster size." Because each cell can then utilize only one Nth of the total allocatable channels, it will be seen, all other things being equal, that the "frequency reuse factor" and spectral utilization efficiency are inversely proportional to the cluster size, N.
Field tests of the FM-frequency division multiplex ground cellular system, Macdonald, V. H., The Cellular Concept, Bell Systems Technical Journal, p. 15, January 1979, determined that a signal-to-interference ratio of 17 dB or better is required for good to excellent quality to be perceived by most listeners. This, combined with propagation and fading studies, yielded the criterion that the separation between co-channel sites should be at least 6.0 times the maximum distance to a user within the cell using omni-directional antennas at the ground nodes. In order to achieve this separation, the cluster size must be at least N=12 cells per cluster. Thus one may use only 1/12 of the total allocatable capacity per cell.
In satellite service, the minimum cell size is inversely proportional to the satellite dish diameter. For a given maximum feasible dish diameter, the number of available channels is strictly limited by the cluster size. In the planned AMSC system, C. E. Agnew et al., The AMSC Mobile Satellite System, Proceedings of the Mobile Satellite Conference, NASA, JPL, May 1988, the effective cluster size is 5, and one may use only 1/5 or the total allocatable capacity per cell.
In a system in accordance with the invention, the cluster size is one. That is, each cell uses the same, full allocated frequency band. This is possible because of the strong interference rejection properties of spread spectrum code division multiple access technology (SS/CDMA). The effect of users in adjacent cells using the same band is qualitatively no different than that of other users in the same cell, so may be taken into account as an effective reduction in the number of users that can be tolerated within a cell. The cumulative effect of all such other-cell interferers may be calculated on the assumption of uniform density of users and a distance attenuation law appropriate to the case of ground propagation or satellite beam pattern. Doing so, we find the multiplying factor for the ratio of total interference to in-cell origin interference of 1.4 for ground propagation and 2.0 for the satellite system. This factor may be accounted for as a multiplier equivalent in effect to an effective cluster size for the CDMA system. Thus, finally, it is believed that in comparison with other systems we find frequency reuse factor or bandwidth utilization efficiency factors inversely proportional to effective cluster size in the ratios:
0.71 : 0.5 : 0.2 : 0.08
for respectively the ground cellular component of the invention, satellite cellular component of the invention, the AMSC mobile satellite concept, and current ground cellular technology.
The second severely limited commodity in the satellite links is satellite prime power, a major component of the weight of a communication satellite and thereby a major factor in satellite cost. Generally in systems such as this, the down links to individual users are the largest power consumers and thus for a limited satellite source power, may provide the limiting factor on the number of users that can be served. Thus it is important to design the system for minimum required power per user. This requirement is addressed in the invention in four ways. In the invention the system envisages the use of the highest feasible satellite antenna gain. In one embodiment, power gain on the order of 45 dB and beamwidth of under one-degree are envisioned at L-band. This is accomplished by an antenna size of approximately 20 meters.
Secondly, by virtue of the use of the spread spectrum technique, very low rate high gain coding is available without penalty in terms of increased bandwidth occupancy.
Thirdly, the system utilizes channel bit interleaving/de-interleaving, a kind of coded time diversity to provide power gain against deep fading nulls. This makes it possible to operate at relatively low bit energy to noise density ratio, on the order of 3 dB. This in turn reflects in minimum satellite power requirements per user.
Fourthly, two-way, adaptive power control and signal quality control as previously described obviate the usual practice of continuously transmitting at a power level which is 10 to 40 dB greater than required most of the time in order to provide a margin for accommodating infrequent deep fades.
In addition to the above listed advantages, the Code Division Multiplex system has the following important advantages in the present system. Blank time when some of the channels are not in use reduces the average interference background. In other words, the system overloads and underloads gracefully. The system inherently provides flexibility of base band rates; as opposed to FDM systems, signals having different baseband rates can be multiplexed together on an ad-hoc basis without complex preplanned and restrictive sub-band allocation plans. Not all users need the same baseband rate. Satellite antenna sidelobe control problems are significantly reduced. The above mentioned numerical studies of out-of-cell interference factors show that secondary lobe responses may effectively be ignored. Co-code reassignment (that is reuse of the same spreading code) is feasible with just one beam separation. However, because there are effectively (i.e. including phasing as a means of providing independent codes) an unlimited number of channel codes, the requirements on space division are eased; there is no need to reuse the same channel access i.e., spreading code.
By virtue of the above discussed design factors the system in accordance with the invention provides a flexible capability of providing the following additional special services: high quality, high rate voice and data service; facsimile (the standard group 3 as well as the high speed group 4); two way messaging, i.e. data interchange between mobile terminals at variable rates; automatic position determination and reporting to within several hundred feet; paging rural residential telephone; and private wireless exchange.
It is anticipated that the satellite will utilize geostationary orbits but is not restricted to such. The invention permits operating in other orbits as well. The system network control center 12 is designed to normally make the choice of which satellite or ground node a user will communicate with. In another embodiment, as an option, the user can request his choice between satellite link or direct ground based link depending on which provides clearer communications at the time or request his choice based on other communication requirements.
While a satellite node has been described above, it is not intended that this be the only means of providing above-ground service. In the case where a satellite has failed or is unable to provide the desired level of service for other reasons, for example, the satellite has been jammed by a hostile entity, an aircraft or other super-surface vehicle may be commissioned to provide the satellite functions described above. The "surface" nodes described above may be located on the ground or in water bodies on the surface of the earth. Additionally, while users have been shown and described as being located in automobiles, other users may exist. For example, a satellite may be a user of the system for communicating signals, just as a ship at sea may or a user on foot.
While several particular forms of the invention have been illustrated and described, it will be apparent that various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited, except by the appended claims.

Claims (3)

What is claimed is:
1. A cellular communication system comprising:
(a) a first transceiver comprising
a first receiver for receiving a first signal,
quality measurement means for determining the quality of said first signal and for generating a first quality signal representative of the quality of said first signal, and
a first transmitter for transmitting a second signal and said first quality signal;
(b) a second transceiver comprising
a second transmitter for transmitting said first signal,
a second receiver for receiving said second signal and said first quality signal,
a history compilation means for compiling history data relating to received first quality signals,
signal strength measurement means for measuring the signal strength of said second signal,
a processor means for processing said first quality signal, said compiled history data and said signal strength of said second signal for providing a path loss signal, and
controller means for controlling the output power level of said first signal in accordance with said path loss signal.
2. A cellular communication system as in claim 1 wherein:
said second transceiver further comprises:
a quality means for determining the quality of said second signal and for producing a second quality signal representative of the quality of said second signal, and
said second transmitter for transmitting said first signal and said second quality signal;
said first transceiver further comprises:
said first receiver for receiving said first signal and said second quality signal,
a history compilation means for compiling history data relating to received second quality signals,
a measurement means for measuring the signal strength of said first signal,
a processor means for processing said second quality signal, said compiled history data and said signal strength of said first signal for providing a path loss signal, and
a controller means for controlling the output power level of said second signal in accordance with said path loss signal.
3. A method for communicating between first and second transceivers, each transceiver comprising a transmitter and a receiver, the method comprising:
generating a quality signal representative of the quality of a received first signal;
transmitting the quality signal of the respective transceiver and a second signal to the other transceiver;
receiving the transmitted quality signal and second signal from the other transceiver;
measuring the signal strength of the received second signal;
compiling history data relating to the received quality signals;
processing the quality signal the compiled history data and the signal strength of the second signal to provide a path loss signal; and
controlling the associated transmitter output power level in response to path loss signal.
US08/145,246 1990-03-19 1993-10-28 Integrated cellular communications system Expired - Lifetime US5446756A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US08/145,246 US5446756A (en) 1990-03-19 1993-10-28 Integrated cellular communications system
US08/444,574 US5612703A (en) 1990-03-19 1995-05-19 position determination in an integrated cellular communications system
US08/751,651 US5835857A (en) 1990-03-19 1996-11-18 Position determination for reducing unauthorized use of a communication system
US08/944,570 US5832379A (en) 1990-03-19 1997-10-06 Communications system including control means for designating communication between space nodes and surface nodes
US08/944,727 US5940753A (en) 1990-03-19 1997-10-06 Controller for cellular communications system
US09/181,492 US5995832A (en) 1990-03-19 1998-10-28 Communications system
US09/260,161 US6108561A (en) 1990-03-19 1999-03-01 Power control of an integrated cellular communications system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US07/495,497 US5073900A (en) 1990-03-19 1990-03-19 Integrated cellular communications system
PCT/US1991/001852 WO1991015071A1 (en) 1990-03-19 1991-03-19 Integrated cellular communications system
US07/781,972 US5339330A (en) 1990-03-19 1991-10-24 Integrated cellular communications system
US08/145,246 US5446756A (en) 1990-03-19 1993-10-28 Integrated cellular communications system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07/781,972 Continuation-In-Part US5339330A (en) 1990-03-19 1991-10-24 Integrated cellular communications system

Related Child Applications (5)

Application Number Title Priority Date Filing Date
US25534194A Continuation-In-Part 1990-03-19 1994-06-07
US08/444,574 Division US5612703A (en) 1990-03-19 1995-05-19 position determination in an integrated cellular communications system
US44457395A Division 1990-03-19 1995-05-19
US08/751,651 Continuation-In-Part US5835857A (en) 1990-03-19 1996-11-18 Position determination for reducing unauthorized use of a communication system
US08/780,519 Division US5878329A (en) 1990-03-19 1997-01-08 Power control of an integrated cellular communications system

Publications (1)

Publication Number Publication Date
US5446756A true US5446756A (en) 1995-08-29

Family

ID=27051784

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/145,246 Expired - Lifetime US5446756A (en) 1990-03-19 1993-10-28 Integrated cellular communications system
US08/444,574 Expired - Fee Related US5612703A (en) 1990-03-19 1995-05-19 position determination in an integrated cellular communications system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US08/444,574 Expired - Fee Related US5612703A (en) 1990-03-19 1995-05-19 position determination in an integrated cellular communications system

Country Status (1)

Country Link
US (2) US5446756A (en)

Cited By (214)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5566165A (en) * 1994-05-12 1996-10-15 Ntt Mobile Communications Network Inc. Transmission power control method and a communication system using the same
US5581268A (en) * 1995-08-03 1996-12-03 Globalstar L.P. Method and apparatus for increasing antenna efficiency for hand-held mobile satellite communications terminal
US5592481A (en) * 1995-06-06 1997-01-07 Globalstar L.P. Multiple satellite repeater capacity loading with multiple spread spectrum gateway antennas
US5594780A (en) * 1991-10-10 1997-01-14 Space Systems/Loral, Inc. Satellite communication system that is coupled to a terrestrial communication network and method
US5619525A (en) * 1995-06-06 1997-04-08 Globalstar L.P. Closed loop power control for low earth orbit satellite communications system
US5623269A (en) * 1993-05-07 1997-04-22 Space Systems/Loral, Inc. Mobile communication satellite payload
US5634190A (en) * 1995-06-06 1997-05-27 Globalstar L.P. Low earth orbit communication satellite gateway-to-gateway relay system
US5640386A (en) * 1995-06-06 1997-06-17 Globalstar L.P. Two-system protocol conversion transceiver repeater
US5664006A (en) * 1995-06-07 1997-09-02 Globalstar L.P. Method for accounting for user terminal connection to a satellite communications system
EP0805568A1 (en) * 1996-04-30 1997-11-05 Trw Inc. Power control method and apparatus for satellite based telecommunications system
WO1997041675A1 (en) * 1996-04-29 1997-11-06 Radio Design Innovation Ab Adaptive air interface
US5697050A (en) * 1995-08-23 1997-12-09 Globalstar L.P. Satellite beam steering reference using terrestrial beam steering terminals
US5697053A (en) * 1994-07-28 1997-12-09 Lucent Technologies Inc. Method of power control and cell site selection
US5710768A (en) * 1994-09-30 1998-01-20 Qualcomm Incorporated Method of searching for a bursty signal
EP0825730A2 (en) * 1996-08-21 1998-02-25 HE HOLDINGS, INC. dba HUGHES ELECTRONICS Method and system for controlling uplink power in a high data rate satellite communication system employing on-board demodulation and remodulation
FR2755330A1 (en) * 1996-10-30 1998-05-01 Motorola Inc METHOD AND SYSTEM FOR DIGITAL BEAM FORMING, OF THE INTELLIGENT TYPE, PROVIDING IMPROVED SIGNAL QUALITY COMMUNICATIONS
US5787336A (en) * 1994-11-08 1998-07-28 Space Systems/Loral, Inc. Satellite communication power management system
US5802445A (en) * 1995-07-13 1998-09-01 Globalstar L.P. Methods and apparatus for providing user RF exposure monitoring and control in a satellite communications system
US5812932A (en) * 1995-11-17 1998-09-22 Globalstar L.P. Mobile satellite user information request system and methods
US5815798A (en) * 1995-06-02 1998-09-29 Dsc Communications Corporation Apparatus and method of controlling transmitting power in a subscriber terminal of a wireless telecommunications system
US5842114A (en) * 1997-02-12 1998-11-24 Interdigital Technology Corporation Global channel power control to minimize spillover in a wireless communication environment
US5841768A (en) * 1996-06-27 1998-11-24 Interdigital Technology Corporation Method of controlling initial power ramp-up in CDMA systems by using short codes
US5859842A (en) 1994-11-03 1999-01-12 Omnipoint Corporation Antenna diversity techniques
US5859874A (en) * 1994-05-09 1999-01-12 Globalstar L.P. Multipath communication system optimizer
FR2766647A1 (en) * 1997-07-24 1999-01-29 Wavecom Sa Mobile telephone signal quality measurement
US5867109A (en) * 1995-06-06 1999-02-02 Globalstar L.P. Satellite repeater diversity resource management system
US5875180A (en) * 1997-02-06 1999-02-23 Globalstar L.P. Satellite telephone interference avoidance system
US5878329A (en) * 1990-03-19 1999-03-02 Celsat America, Inc. Power control of an integrated cellular communications system
US5884142A (en) * 1997-04-15 1999-03-16 Globalstar L.P. Low earth orbit distributed gateway communication system
US5896558A (en) * 1996-12-19 1999-04-20 Globalstar L.P. Interactive fixed and mobile satellite network
US5896568A (en) * 1996-09-06 1999-04-20 Northern Telecom Limited Wireless architecture having redistributed access functions
US5905943A (en) * 1997-04-29 1999-05-18 Globalstar L.P. System for generating and using global radio frequency maps
US5913164A (en) * 1995-11-30 1999-06-15 Amsc Subsidiary Corporation Conversion system used in billing system for mobile satellite system
US5915216A (en) * 1995-06-02 1999-06-22 Dsc Communications Corporation Apparatus and method of transmitting and receiving information in a wireless telecommunications system
US5918157A (en) * 1997-03-18 1999-06-29 Globalstar L.P. Satellite communications system having distributed user assignment and resource assignment with terrestrial gateways
US5933777A (en) * 1997-04-24 1999-08-03 Telefonaktiebolaget Lm Ericsson (Publ) System and method for allocating channel elements in a code division multiple access radio telecommunications network
US5940382A (en) * 1996-06-27 1999-08-17 Interdigital Technology Corporation Virtual locating of a fixed subscriber unit to reduce re-acquisition time
US5940753A (en) * 1990-03-19 1999-08-17 Celsat America, Inc. Controller for cellular communications system
US5940748A (en) * 1996-02-23 1999-08-17 Matsushita Communications Industrial Corporation Method and system for determining the integrity of a received signal
US5946305A (en) * 1994-12-13 1999-08-31 Sony Corporation Cordless telephone system
US5956619A (en) * 1996-12-12 1999-09-21 Globalstar L.P. Satellite controlled power control for personal communication user terminals
EP0954117A1 (en) * 1998-04-30 1999-11-03 ICO Services Ltd. Transmission quality reporting
US5991618A (en) * 1998-05-29 1999-11-23 Motorola, Inc. Method and system for estimating a communication mode quality in a wireless communications system
US5991596A (en) * 1996-10-24 1999-11-23 Stanford Telecommunications, Inc. Wireless request channel for use with information broadcast system
US6021309A (en) * 1997-05-22 2000-02-01 Globalstar L.P. Channel frequency allocation for multiple-satellite communication network
US6035178A (en) * 1996-05-09 2000-03-07 Ericsson Inc. Satellite communication system for local-area coverage
WO2000018034A1 (en) * 1998-09-21 2000-03-30 Tantivy Communications, Inc. Power control protocol for highly variable data rate reverse link of a wireless communication system
US6061556A (en) * 1997-04-24 2000-05-09 Telefonaktiebolaget Lm Ericsson (Publ) System and method for secondary traffic charging in a radio telecommunications network
US6064857A (en) * 1997-04-15 2000-05-16 Globalstar L.P. Dual mode satellite telephone with hybrid battery/capacitor power supply
US6070074A (en) * 1998-04-24 2000-05-30 Trw Inc. Method for enhancing the performance of a regenerative satellite communications system
US6072768A (en) * 1996-09-04 2000-06-06 Globalstar L.P. Automatic satellite/terrestrial mobile terminal roaming system and method
US6078817A (en) * 1997-04-24 2000-06-20 Telefonaktiebolaget Lm Ericsson System and method of dynamically increasing the capacity of a code division multiple access radio telecommunications network
US6081710A (en) * 1997-07-10 2000-06-27 Globalstar L.P. Dynamic traffic allocation for power control in multiple satellite communication systems
US6097958A (en) * 1997-10-10 2000-08-01 Northern Telecom Limited Method and apparatus for locating and tracking cellular telephones in a CDMA cellular communication network
US6101385A (en) * 1997-10-09 2000-08-08 Globalstar L.P. Satellite communication service with non-congruent sub-beam coverage
US6128487A (en) * 1997-04-15 2000-10-03 Globalstar, L.P. Global mobile paging system
US6148220A (en) * 1997-04-25 2000-11-14 Triquint Semiconductor, Inc. Battery life extending technique for mobile wireless applications
US6201961B1 (en) 1996-09-13 2001-03-13 Globalstar L. P. Use of reference phone in point-to-point satellite communication system
US6240124B1 (en) 1995-06-06 2001-05-29 Globalstar L.P. Closed loop power control for low earth orbit satellite communications system
US6246873B1 (en) * 1995-03-24 2001-06-12 European Broadcasting Union Satellite communication conference system for use in a satellite communication system
US6253080B1 (en) 1999-07-08 2001-06-26 Globalstar L.P. Low earth orbit distributed gateway communication system
US6272325B1 (en) 1995-07-13 2001-08-07 Globalstar L.P. Method and apparatus for considering user terminal transmitted power during operation in a plurality of different communication systems
US6272316B1 (en) 1995-11-17 2001-08-07 Globalstar L.P. Mobile satellite user information request system and methods
US6292665B1 (en) 1998-10-08 2001-09-18 Harris Corporation Geolocation of cellular phone using supervisory audio tone transmitted from single base station
US6330232B1 (en) 1997-07-16 2001-12-11 Nortel Networks Limited Base station transceiver subsystem carrier selection at a CDMA cell site
US20020051434A1 (en) * 1997-10-23 2002-05-02 Ozluturk Fatih M. Method for using rapid acquisition spreading codes for spread-spectrum communications
US6414946B1 (en) * 1997-11-19 2002-07-02 Oki Electric Industry Co., Ltd. Adaptive downlink transmission power control arbiter
US6418147B1 (en) 1998-01-21 2002-07-09 Globalstar Lp Multiple vocoder mobile satellite telephone system
US20020126770A1 (en) * 2001-03-09 2002-09-12 Behrouz Pourseyed Method and system for acquiring narrowband channel information over a wideband channel receiver
US6456608B1 (en) 1995-06-30 2002-09-24 Interdigital Technology Corporation Adaptive vector correlator using weighting signals for spread-spectrum communications
US6456828B1 (en) 1997-02-12 2002-09-24 Interdigital Technology Corporation Base station using global channel power control
US20020142788A1 (en) * 1996-04-04 2002-10-03 At&T Wireless Services, Inc. Method for determining organization parameters in a wireless communication system
US6463279B1 (en) 1999-11-17 2002-10-08 Globalstar L.P. Channel frequency allocation for multiple-satellite communication network
US20020168993A1 (en) * 2001-05-10 2002-11-14 Koninklijke Philips Electronics N.V. Updating path loss estimation for power control and link adaptation in IEEE 802.11h WLAN
US6507570B1 (en) * 1998-05-15 2003-01-14 Nokia Mobile Phones Limited Interfrequency measurement
US20030054762A1 (en) * 2001-09-14 2003-03-20 Karabinis Peter D. Multi-band/multi-mode satellite radiotelephone communications systems and methods
US20030054761A1 (en) * 2001-09-14 2003-03-20 Karabinis Peter D. Spatial guardbands for terrestrial reuse of satellite frequencies
US20030054815A1 (en) * 2001-09-14 2003-03-20 Karabinis Peter D. Methods and systems for modifying satellite antenna cell patterns in response to terrestrial reuse of satellite frequencies
US20030054814A1 (en) * 2001-09-14 2003-03-20 Karabinis Peter D. Systems and methods for monitoring terrestrially reused satellite frequencies to reduce potential interference
US20030068978A1 (en) * 2001-09-14 2003-04-10 Karabinis Peter D. Space-based network architectures for satellite radiotelephone systems
US20030073436A1 (en) * 2001-09-14 2003-04-17 Karabinis Peter D. Additional systems and methods for monitoring terrestrially reused satellite frequencies to reduce potential interference
US6587687B1 (en) 1996-10-21 2003-07-01 Globalstar L.P. Multiple satellite fade attenuation control system
FR2834421A1 (en) * 2001-12-28 2003-07-04 Wavecom Sa METHOD FOR TRANSMITTING DATA IN A CELLULAR COMMUNICATION NETWORK, SYSTEM, TERMINAL AND BASE STATION
US20030148736A1 (en) * 1995-11-14 2003-08-07 Harris Corporation Wireless, frequency-agile spread spectrum ground link-based aircraft data communication system
US20030149986A1 (en) * 1999-08-10 2003-08-07 Mayfield William W. Security system for defeating satellite television piracy
US20030153308A1 (en) * 2001-09-14 2003-08-14 Karabinis Peter D. Staggered sectorization for terrestrial reuse of satellite frequencies
US20030224785A1 (en) * 2002-05-28 2003-12-04 Karabinis Peter D. Systems and methods for reducing satellite feeder link bandwidth/carriers in cellular satellite systems
US6661996B1 (en) 1998-07-14 2003-12-09 Globalstar L.P. Satellite communication system providing multi-gateway diversity to a mobile user terminal
US20040023658A1 (en) * 2000-08-02 2004-02-05 Karabinis Peter D Coordinated satellite-terrestrial frequency reuse
US6697350B2 (en) 1995-06-30 2004-02-24 Interdigital Technology Corporation Adaptive vector correlator for spread-spectrum communications
US20040070454A1 (en) * 2002-10-15 2004-04-15 Triquint Semiconductor, Inc. Continuous bias circuit and method for an amplifier
US20040072554A1 (en) * 2002-10-15 2004-04-15 Triquint Semiconductor, Inc. Automatic-bias amplifier circuit
US20040121727A1 (en) * 2001-09-14 2004-06-24 Karabinis Peter D. Systems and methods for terrestrial reuse of cellular satellite frequency spectrum in a time-division duplex mode
US20040137929A1 (en) * 2000-11-30 2004-07-15 Jones Aled Wynne Communication system
US20040142660A1 (en) * 2001-09-14 2004-07-22 Churan Gary G. Network-assisted global positioning systems, methods and terminals including doppler shift and code phase estimates
US6788662B2 (en) 1995-06-30 2004-09-07 Interdigital Technology Corporation Method for adaptive reverse power control for spread-spectrum communications
US20040192395A1 (en) * 2003-03-24 2004-09-30 Karabinis Peter D. Co-channel wireless communication methods and systems using nonsymmetrical alphabets
US20040192293A1 (en) * 2001-09-14 2004-09-30 Karabinis Peter D. Aggregate radiated power control for multi-band/multi-mode satellite radiotelephone communications systems and methods
US20040192200A1 (en) * 2003-03-24 2004-09-30 Karabinis Peter D. Satellite assisted push-to-send radioterminal systems and methods
US6801516B1 (en) 1995-06-30 2004-10-05 Interdigital Technology Corporation Spread-spectrum system for assigning information signals having different data rates
US6804501B1 (en) * 2000-09-25 2004-10-12 Prairiecomm, Inc. Receiver having gain control and narrowband interference detection
US20040205819A1 (en) * 2003-04-14 2004-10-14 Ramin Khoini-Poorfard Integrated multi-tuner satellite receiver architecture and associated method
US20040203742A1 (en) * 2002-12-12 2004-10-14 Karabinis Peter D. Systems and methods for increasing capacity and/or quality of service of terrestrial cellular and satellite systems using terrestrial reception of satellite band frequencies
US20040216641A1 (en) * 2002-11-13 2004-11-04 Matsushita Electric Industrial Co., Ltd. Composition for forming porous film, porous film and method for forming the same, interlevel insulator film, and semiconductor device
US6816473B2 (en) 1995-06-30 2004-11-09 Interdigital Technology Corporation Method for adaptive forward power control for spread-spectrum communications
US20040229616A1 (en) * 2003-05-16 2004-11-18 Santanu Dutta Systems and methods for handover between space based and terrestrial radioterminal communications, and for monitoring terrestrially reused satellite frequencies at a radioterminal to reduce potential interference
US20040240525A1 (en) * 2003-05-29 2004-12-02 Karabinis Peter D. Wireless communications methods and apparatus using licensed-use system protocols with unlicensed-use access points
US6834078B1 (en) * 1998-11-30 2004-12-21 Nokia Networks Oy Test facility for transceiver station
US20050026606A1 (en) * 2003-07-28 2005-02-03 Karabinis Peter D. Systems and methods for modifying antenna radiation patterns of peripheral base stations of a terrestrial network to allow reduced interference
US20050037749A1 (en) * 2003-07-30 2005-02-17 Karabinis Peter D. Intra-and/or inter-system interference reducing systems and methods for satellite communications systems
US6859652B2 (en) 2000-08-02 2005-02-22 Mobile Satellite Ventures, Lp Integrated or autonomous system and method of satellite-terrestrial frequency reuse using signal attenuation and/or blockage, dynamic assignment of frequencies and/or hysteresis
US20050041619A1 (en) * 2003-08-22 2005-02-24 Karabinis Peter D. Wireless systems, methods and devices employing forward- and/or return-link carriers having different numbers of sub-band carriers
EP1512946A2 (en) * 2003-09-05 2005-03-09 Itron, Inc. Data communication protocol in an automatic meter reading system
US20050053122A1 (en) * 1997-01-16 2005-03-10 Scientific Generics Limited Signalling system
US6885652B1 (en) 1995-06-30 2005-04-26 Interdigital Technology Corporation Code division multiple access (CDMA) communication system
US20050118948A1 (en) * 2001-09-14 2005-06-02 Karabinis Peter D. Systems and methods for terrestrial reuse of cellular satellite frequency spectrum in a time-division duplex and/or frequency-division duplex mode
US20050136836A1 (en) * 2003-07-30 2005-06-23 Karabinis Peter D. Additional intra-and/or inter-system interference reducing systems and methods for satellite communications systems
US20050135502A1 (en) * 2003-12-17 2005-06-23 Triquint Semiconductor, Inc. Method and architecture for dual-mode linear and saturated power amplifier operation
US20050208890A1 (en) * 2001-09-14 2005-09-22 Mobile Satellite Ventures, Lp Systems and methods for monitoring selected terrestrially used satellite frequency signals to reduce potential interference
US20050219068A1 (en) * 2000-11-30 2005-10-06 Jones Aled W Acoustic communication system
US20050227618A1 (en) * 2004-03-22 2005-10-13 Karabinis Peter D Multi-band satellite and/or ancillary terrestrial component radioterminal communications systems and methods with diversity operation
US20050239403A1 (en) * 2004-04-12 2005-10-27 Karabinis Peter D Systems and methods with different utilization of satellite frequency bands by a space-based network and an ancillary terrestrial network
US20050239404A1 (en) * 2004-04-07 2005-10-27 Karabinis Peter D Satellite/hands-free interlock systems and/or companion devices for radioterminals and related methods
US20050239399A1 (en) * 2004-04-21 2005-10-27 Karabinis Peter D Mobile terminals and set top boxes including multiple satellite band service links, and related systems and methods
US20050239457A1 (en) * 2004-04-20 2005-10-27 Levin Lon C Extraterrestrial communications systems and methods including ancillary extraterrestrial components
US20050260984A1 (en) * 2004-05-21 2005-11-24 Mobile Satellite Ventures, Lp Systems and methods for space-based use of terrestrial cellular frequency spectrum
US20050260947A1 (en) * 2004-05-18 2005-11-24 Karabinis Peter D Satellite communications systems and methods using radiotelephone location-based beamforming
US20050282542A1 (en) * 2001-09-14 2005-12-22 Mobile Satellite Ventures, Lp Systems and methods for terrestrial use of cellular satellite frequency spectrum
US20050288011A1 (en) * 2004-06-25 2005-12-29 Santanu Dutta Methods of ground based beamforming and on-board frequency translation and related systems
US6989712B2 (en) 2002-11-06 2006-01-24 Triquint Semiconductor, Inc. Accurate power detection for a multi-stage amplifier
US20060040613A1 (en) * 2004-08-11 2006-02-23 Mobile Satellite Venturs, Lp Satellite-band spectrum utilization for reduced or minimum interference
US7031945B1 (en) 2000-07-24 2006-04-18 Donner Irah H System and method for reallocating and/or upgrading and/or rewarding tickets, other event admittance means, goods and/or services
US20060094420A1 (en) * 2004-11-02 2006-05-04 Karabinis Peter D Multi frequency band/multi air interface/multi spectrum reuse cluster size/multi cell size satellite radioterminal communicaitons systems and methods
US20060094352A1 (en) * 2004-11-02 2006-05-04 Karabinis Peter D Apparatus and methods for power control in satellite communications systems with satellite-linked terrestrial stations
US20060105707A1 (en) * 2004-11-16 2006-05-18 Mobile Satellite Ventures, Lp Satellite communications systems, components and methods for operating shared satellite gateways
US20060111056A1 (en) * 2004-11-19 2006-05-25 Santanu Dutta Electronic antenna beam steering using ancillary receivers and related methods
US20060135070A1 (en) * 2004-12-16 2006-06-22 Atc Technologies, Llc Prediction of uplink interference potential generated by an ancillary terrestrial network and/or radioterminals
US20060165120A1 (en) * 2005-01-27 2006-07-27 Karabinis Peter D Satellite/terrestrial wireless communications systems and methods using disparate channel separation codes
US20060189275A1 (en) * 2005-02-22 2006-08-24 Karabinis Peter D Satellites using inter-satellite links to create indirect feeder link paths
US20060189274A1 (en) * 2005-02-22 2006-08-24 Karabinis Peter D Satellite communications systems and methods using diverse polarizations
US20060189309A1 (en) * 2005-02-22 2006-08-24 Good Alexander H Reusing frequencies of a fixed and/or mobile communications system
US20060199602A1 (en) * 2005-03-01 2006-09-07 Micrel, Inc. Transmitter power level optimization and error correction technique
US20060205346A1 (en) * 2005-03-09 2006-09-14 Atc Technologies, Llc Reducing interference in a wireless communications signal in the frequency domain
US20060205347A1 (en) * 2005-03-14 2006-09-14 Karabinis Peter D Satellite communications systems and methods with distributed and/or centralized architecture including ground-based beam forming
US20060211419A1 (en) * 2005-03-15 2006-09-21 Karabinis Peter D Methods and systems providing adaptive feeder links for ground based beam forming and related systems and satellites
US20060217070A1 (en) * 2005-03-11 2006-09-28 Atc Technologies, Llc Modification of transmission values to compensate for interference in a satellite down-link communications
US20060223447A1 (en) * 2005-03-31 2006-10-05 Ali Masoomzadeh-Fard Adaptive down bias to power changes for controlling random walk
US20060233147A1 (en) * 2004-12-07 2006-10-19 Mobile Satellite Ventures, Lp Broadband wireless communications systems and methods using multiple non-contiguous frequency bands/segments
US20060246838A1 (en) * 2003-09-11 2006-11-02 Atc Technologies, Llc Systems and Methods for Inter-System Sharing of Satellite Communications Frequencies Within a Common Footprint
US20060252368A1 (en) * 2001-09-14 2006-11-09 Karabinis Peter D Staggered sectorization for terrestrial reuse of satellite frequencies
US20060276129A1 (en) * 2005-03-15 2006-12-07 Karabinis Peter D Intra-system and/or inter-system reuse of feeder link frequencies including interference suppression systems and methods
US20060292990A1 (en) * 2005-06-21 2006-12-28 Karabinis Peter D Communications systems including adaptive antenna systems and methods for inter-system and intra-system interference reduction
US7162454B1 (en) 2000-07-24 2007-01-09 Donner Irah H System and method for reallocating and/or upgrading and/or selling tickets, other even admittance means, goods and/or services
US20070026867A1 (en) * 2005-07-29 2007-02-01 Atc Technologies, Llc Satellite Communications Apparatus and Methods Using Asymmetrical Forward and Return Link Frequency Reuse
US7174127B2 (en) 1999-08-10 2007-02-06 Atc Technologies, Llc Data communications systems and methods using different wireless links for inbound and outbound data
US20070045220A1 (en) * 2005-08-08 2007-03-01 Plastipak Packaging, Inc. Plastic container
US20070087690A1 (en) * 2001-09-14 2007-04-19 Atc Technologies, Llc Additional aggregate radiated power control for multi-band/multi-mode satellite radiotelephone communications systems and methods
US7216109B1 (en) 2000-07-24 2007-05-08 Donner Irah H System and method for reallocating and/or upgrading and/or selling tickets, other event admittance means, goods and/or services
US20070123252A1 (en) * 2005-10-12 2007-05-31 Atc Technologies, Llc Systems, methods and computer program products for mobility management in hybrid satellite/terrestrial wireless communications systems
US20070149127A1 (en) * 2002-02-12 2007-06-28 Atc Technologies, Llc Systems and methods for controlling a level of interference to a wireless receiver responsive to a power level associated with a wireless transmitter
US20070184849A1 (en) * 2006-01-20 2007-08-09 Act Technologies, Llc Systems and Methods for Satellite Forward Link Transmit Diversity Using Orthagonal Space Coding
US20070192805A1 (en) * 2006-02-15 2007-08-16 Atc Technologies, Llc Adaptive spotbeam broadcasting, systems, methods and devices for high bandwidth content distribution over satellite
US20070233383A1 (en) * 2003-01-09 2007-10-04 Atc Technologies, Llc Network-Assisted Global Positioning Systems, Methods and Terminals Including Doppler Shift and Code Phase Estimates
US20070232298A1 (en) * 2001-09-14 2007-10-04 Atc Technologies, Llc Systems and methods for terrestrial reuse of cellular satellite frequency spectrum using different channel separation technologies in forward and reverse links
US7280975B1 (en) 2000-07-24 2007-10-09 Donner Irah H System and method for determining and/or transmitting and/or establishing communication with a mobile device user for providing, for example, concessions, tournaments, competitions, matching, reallocating, upgrading, selling tickets, other event admittance means, goods and/or services
US20070243866A1 (en) * 2006-04-13 2007-10-18 Atc Technologies, Llc Systems and methods for controlling base station sectors to reduce potential interference with low elevation satellites
KR100769989B1 (en) * 2005-12-09 2007-10-25 한국전자통신연구원 Apparatus and method for deciding transmission route in terminal capable of two-way communication both gap filler and satellite
US20080032671A1 (en) * 2006-04-13 2008-02-07 Atc Technologies, Llc Systems and methods for controlling a level of interference to a wireless receiver responsive to an activity factor associated with a wireless transmitter
US7386517B1 (en) 2000-07-24 2008-06-10 Donner Irah H System and method for determining and/or transmitting and/or establishing communication with a mobile device user for providing, for example, concessions, tournaments, competitions, matching, reallocating, upgrading, selling tickets, other event admittance means, goods and/or services
US20080144596A1 (en) * 2006-08-22 2008-06-19 Viasat, Inc. Cooperative Orthogonal Multi-Satellite Communication System
US20080182572A1 (en) * 2006-06-29 2008-07-31 Atc Technologies,Llc Apparatus and Methods for Mobility Management in Hybrid Terrestrial-Satellite Mobile Communications Systems
US7433347B1 (en) * 2002-06-28 2008-10-07 Arraycomm, Llc Broadcast superframe with variable reuse and interference levels for a radio communications system
US7453920B2 (en) 2004-03-09 2008-11-18 Atc Technologies, Llc Code synchronization in CDMA satellite wireless communications system using uplink channel detection
US7453396B2 (en) 2005-04-04 2008-11-18 Atc Technologies, Llc Radioterminals and associated operating methods that alternate transmission of wireless communications and processing of global positioning system signals
US20080287124A1 (en) * 2007-05-15 2008-11-20 Atc Technologies, Llc Systems, methods and devices for reusing spectrum of another operator
US20090011704A1 (en) * 2007-07-03 2009-01-08 Mobile Satellite Ventures, Lp Systems and methods for reducing power robbing impact of interference to a satellite
US7505823B1 (en) 1999-07-30 2009-03-17 Intrasonics Limited Acoustic communication system
US7562051B1 (en) 2000-07-24 2009-07-14 Donner Irah H System and method for reallocating and/or upgrading and/or selling tickets, other event admittance means, goods and/or services
US7562028B1 (en) 2000-07-24 2009-07-14 Donner Irah H System and method for determining and/or transmitting and/or establishing communication with a mobile device user for providing, for example, concessions, tournaments, competitions, matching, reallocating, upgrading, selling tickets, and other event admittance mean
US7603081B2 (en) 2001-09-14 2009-10-13 Atc Technologies, Llc Radiotelephones and operating methods that use a single radio frequency chain and a single baseband processor for space-based and terrestrial communications
US20100026517A1 (en) * 2008-01-04 2010-02-04 Itron, Inc. Utility data collection and reconfigurations in a utility metering system
US20100035604A1 (en) * 2008-08-06 2010-02-11 Santanu Dutta Systems, methods and devices for overlaid operations of satellite and terrestrial wireless communications systems
US7706332B2 (en) 1995-06-30 2010-04-27 Interdigital Technology Corporation Method and subscriber unit for performing power control
US7756490B2 (en) 2005-03-08 2010-07-13 Atc Technologies, Llc Methods, radioterminals, and ancillary terrestrial components for communicating using spectrum allocated to another satellite operator
US20100176967A1 (en) * 2007-01-04 2010-07-15 Scott Cumeralto Collecting utility data information and conducting reconfigurations, such as demand resets, in a utility metering system
US7792488B2 (en) 2000-12-04 2010-09-07 Atc Technologies, Llc Systems and methods for transmitting electromagnetic energy over a wireless channel having sufficiently weak measured signal strength
US7813700B2 (en) 2005-01-05 2010-10-12 Atc Technologies, Llc Adaptive beam forming with multi-user detection and interference reduction in satellite communication systems
US20100272050A1 (en) * 2009-04-28 2010-10-28 Samsung Electronics Co., Ltd. Method and apparatus for managing user equipment history information in wireless communication network
US7831202B2 (en) 2005-08-09 2010-11-09 Atc Technologies, Llc Satellite communications systems and methods using substantially co-located feeder link antennas
US7907944B2 (en) 2005-07-05 2011-03-15 Atc Technologies, Llc Methods, apparatus and computer program products for joint decoding of access probes in a CDMA communications system
USRE42261E1 (en) 2002-02-12 2011-03-29 Atc Technologies, Llc Wireless communications systems and methods using satellite-linked remote terminal interface subsystems
US7929498B2 (en) 1995-06-30 2011-04-19 Interdigital Technology Corporation Adaptive forward power control and adaptive reverse power control for spread-spectrum communications
US7970345B2 (en) 2005-06-22 2011-06-28 Atc Technologies, Llc Systems and methods of waveform and/or information splitting for wireless transmission of information to one or more radioterminals over a plurality of transmission paths and/or system elements
US7974619B2 (en) 2003-09-23 2011-07-05 Atc Technologies, Llc Systems and methods for mobility management in overlaid mobile communications systems
US7978135B2 (en) 2008-02-15 2011-07-12 Atc Technologies, Llc Antenna beam forming systems/methods using unconstrained phase response
USRE43137E1 (en) 2001-09-14 2012-01-24 Atc Technologies, Llc Filters for combined radiotelephone/GPS terminals
US8169955B2 (en) 2006-06-19 2012-05-01 Atc Technologies, Llc Systems and methods for orthogonal frequency division multiple access (OFDMA) communications over satellite links
US8190114B2 (en) 2005-07-20 2012-05-29 Atc Technologies, Llc Frequency-dependent filtering for wireless communications transmitters
US8193975B2 (en) 2008-11-12 2012-06-05 Atc Technologies Iterative antenna beam forming systems/methods
US8248528B2 (en) 2001-12-24 2012-08-21 Intrasonics S.A.R.L. Captioning system
US8265637B2 (en) 2000-08-02 2012-09-11 Atc Technologies, Llc Systems and methods for modifying antenna radiation patterns of peripheral base stations of a terrestrial network to allow reduced interference
US8270898B2 (en) 2001-09-14 2012-09-18 Atc Technologies, Llc Satellite-band spectrum utilization for reduced or minimum interference
US8274925B2 (en) 2010-01-05 2012-09-25 Atc Technologies, Llc Retaining traffic channel assignments for satellite terminals to provide lower latency communication services
US20120271636A1 (en) * 2011-04-25 2012-10-25 Denso Corporation Voice input device
US8339308B2 (en) 2009-03-16 2012-12-25 Atc Technologies Llc Antenna beam forming systems, methods and devices using phase adjusted least squares beam forming
US8380186B2 (en) 2004-01-22 2013-02-19 Atc Technologies, Llc Satellite with different size service link antennas and radioterminal communication methods using same
US8520561B2 (en) 2009-06-09 2013-08-27 Atc Technologies, Llc Systems, methods and network components that provide different satellite spot beam return carrier groupings and reuse patterns
US8560913B2 (en) 2008-05-29 2013-10-15 Intrasonics S.A.R.L. Data embedding system
US8576769B2 (en) 2009-09-28 2013-11-05 Atc Technologies, Llc Systems and methods for adaptive interference cancellation beamforming
US8655398B2 (en) 2004-03-08 2014-02-18 Atc Technologies, Llc Communications systems and methods including emission detection
US9014619B2 (en) 2006-05-30 2015-04-21 Atc Technologies, Llc Methods and systems for satellite communications employing ground-based beam forming with spatially distributed hybrid matrix amplifiers
US10110288B2 (en) 2009-11-04 2018-10-23 Atc Technologies, Llc Frequency division duplex (FDD) return link transmit diversity systems, methods and devices using forward link side information
US10491748B1 (en) 2006-04-03 2019-11-26 Wai Wu Intelligent communication routing system and method
US10587333B2 (en) 2016-12-13 2020-03-10 Inmarsat Global Limited Forward link power control

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600706A (en) * 1992-04-08 1997-02-04 U S West, Inc. Method and system for determining the position of a mobile receiver
US5812951A (en) * 1994-11-23 1998-09-22 Hughes Electronics Corporation Wireless personal communication system
US5710805A (en) * 1995-11-03 1998-01-20 Motorola, Inc. Combined registration and call continuation method and apparatus for a mobile communication system
FI105596B (en) * 1996-05-27 2000-09-15 Nokia Networks Oy A method for determining the location of a mobile station
JPH09327072A (en) * 1996-06-05 1997-12-16 Hitachi Ltd Cdma communication method and spread spectrum communication system
CA2212121C (en) 1996-08-02 2010-03-30 Symbol Technologies, Inc. Improvements in data retrieval
US7903029B2 (en) 1996-09-09 2011-03-08 Tracbeam Llc Wireless location routing applications and architecture therefor
US6249252B1 (en) 1996-09-09 2001-06-19 Tracbeam Llc Wireless location using multiple location estimators
US9134398B2 (en) 1996-09-09 2015-09-15 Tracbeam Llc Wireless location using network centric location estimators
US7714778B2 (en) * 1997-08-20 2010-05-11 Tracbeam Llc Wireless location gateway and applications therefor
US6236365B1 (en) 1996-09-09 2001-05-22 Tracbeam, Llc Location of a mobile station using a plurality of commercial wireless infrastructures
GB2337386B (en) 1996-09-09 2001-04-04 Dennis J Dupray Location of a mobile station
US6025801A (en) * 1996-10-01 2000-02-15 Philips Electronics North America Corporation Video game with local updates mitigates latency effects in wide area network
US6018659A (en) * 1996-10-17 2000-01-25 The Boeing Company Airborne broadband communication network
US6163696A (en) * 1996-12-31 2000-12-19 Lucent Technologies Inc. Mobile location estimation in a wireless communication system
US5945949A (en) * 1997-01-13 1999-08-31 Lucent Technologies Inc. Mobile station position determination in a wireless communication system
US5977913A (en) * 1997-02-07 1999-11-02 Dominion Wireless Method and apparatus for tracking and locating personnel
KR20000065190A (en) 1997-03-03 2000-11-06 시피라 조셉 Methods and systems for improving communication
US6900775B2 (en) 1997-03-03 2005-05-31 Celletra Ltd. Active antenna array configuration and control for cellular communication systems
US6072774A (en) * 1997-05-05 2000-06-06 Motorola Communication network and method for managing internodal link topology
KR100450947B1 (en) 1997-07-12 2004-12-29 삼성전자주식회사 Method for delivering position information on a lost cellular phone, particularly concerned with delivering a position confirm signal at certain intervals when a cellular phone is lost
US6405049B2 (en) 1997-08-05 2002-06-11 Symbol Technologies, Inc. Portable data terminal and cradle
US6282179B1 (en) * 1997-10-17 2001-08-28 At&T Corp. Method and system for reducing multipath fading in bent-pipe satellite communications systems
US5966371A (en) * 1997-10-17 1999-10-12 At&T Corp. Method and system for reducing interbeam interference and multipath fading in bent-pipe satellite communications systems
US5999124A (en) * 1998-04-22 1999-12-07 Snaptrack, Inc, Satellite positioning system augmentation with wireless communication signals
CN1134937C (en) * 1998-07-21 2004-01-14 塔奇昂公司 Method and apparatus for multiple access in communication system
US6674730B1 (en) 1998-08-04 2004-01-06 Tachyon, Inc. Method of and apparatus for time synchronization in a communication system
AU1125300A (en) * 1998-10-22 2000-05-08 University Of Maryland Method and system for providing location dependent and personal identification information to a public safety answering point
US6256483B1 (en) * 1998-10-28 2001-07-03 Tachyon, Inc. Method and apparatus for calibration of a wireless transmitter
US8135413B2 (en) 1998-11-24 2012-03-13 Tracbeam Llc Platform and applications for wireless location and other complex services
US20030146871A1 (en) * 1998-11-24 2003-08-07 Tracbeam Llc Wireless location using signal direction and time difference of arrival
US6571168B1 (en) 1999-03-23 2003-05-27 Cummins, Inc. System for determining fuel usage within a jurisdiction
US6735188B1 (en) 1999-08-27 2004-05-11 Tachyon, Inc. Channel encoding and decoding method and apparatus
US6674731B1 (en) 1999-08-27 2004-01-06 Tachyon, Inc. Transmission and reception of TCP/IP data over a wireless communication channel
US6665292B1 (en) 1999-08-27 2003-12-16 Tachyon, Inc. Transmission and reception of TCP/IP data over a wireless communication channel
US6982969B1 (en) 1999-09-28 2006-01-03 Tachyon, Inc. Method and system for frequency spectrum resource allocation
US6463070B1 (en) 1999-08-27 2002-10-08 Tachyon, Inc. System and method for clock correlated data flow in a multi-processor communication system
US6650636B1 (en) 1999-08-27 2003-11-18 Tachyon, Inc. Transmission and reception of TCP/IP data over a wireless communication channel
US6218896B1 (en) 1999-08-27 2001-04-17 Tachyon, Inc. Vectored demodulation and frequency estimation apparatus and method
US6532220B1 (en) 1999-08-27 2003-03-11 Tachyon, Inc. System and method for efficient channel assignment
AU1367101A (en) 1999-09-24 2002-01-08 Dennis J. Dupray Geographically constrained network services
US10684350B2 (en) 2000-06-02 2020-06-16 Tracbeam Llc Services and applications for a communications network
US9875492B2 (en) 2001-05-22 2018-01-23 Dennis J. Dupray Real estate transaction system
US10641861B2 (en) 2000-06-02 2020-05-05 Dennis J. Dupray Services and applications for a communications network
US8082096B2 (en) 2001-05-22 2011-12-20 Tracbeam Llc Wireless location routing applications and architecture therefor
US6985942B2 (en) * 2001-08-23 2006-01-10 The Boeing Company Airborne IP address structure
GB0222554D0 (en) * 2002-09-28 2002-11-06 Koninkl Philips Electronics Nv Data processing system and method of operation
US20060247053A1 (en) * 2005-03-30 2006-11-02 Nokia Corporation System, game server, terminal, and computer program product for link point scaling in a multiplayer location-aware game
US9408046B2 (en) * 2006-10-03 2016-08-02 Telecommunication Systems, Inc. 911 data messaging
US20100063829A1 (en) * 2008-09-08 2010-03-11 Dupray Dennis J Real estate transaction system
CN102215558B (en) * 2010-04-07 2013-09-25 中国科学院国家天文台 Ground mobile communication network positioning method assisted by communication broadcast satellite signal
US9538493B2 (en) 2010-08-23 2017-01-03 Finetrak, Llc Locating a mobile station and applications therefor
US8675561B2 (en) * 2011-09-21 2014-03-18 Qualcomm Incorporated WiFi distance measurement using location packets
US8798548B1 (en) 2013-03-15 2014-08-05 DGS Global Systems, Inc. Systems, methods, and devices having databases for electronic spectrum management
US10122479B2 (en) 2017-01-23 2018-11-06 DGS Global Systems, Inc. Systems, methods, and devices for automatic signal detection with temporal feature extraction within a spectrum
US10271233B2 (en) 2013-03-15 2019-04-23 DGS Global Systems, Inc. Systems, methods, and devices for automatic signal detection with temporal feature extraction within a spectrum
US10257727B2 (en) 2013-03-15 2019-04-09 DGS Global Systems, Inc. Systems methods, and devices having databases and automated reports for electronic spectrum management
US10299149B2 (en) 2013-03-15 2019-05-21 DGS Global Systems, Inc. Systems, methods, and devices for electronic spectrum management
US10219163B2 (en) 2013-03-15 2019-02-26 DGS Global Systems, Inc. Systems, methods, and devices for electronic spectrum management
US10257729B2 (en) 2013-03-15 2019-04-09 DGS Global Systems, Inc. Systems, methods, and devices having databases for electronic spectrum management
US11646918B2 (en) 2013-03-15 2023-05-09 Digital Global Systems, Inc. Systems, methods, and devices for electronic spectrum management for identifying open space
US8805292B1 (en) 2013-03-15 2014-08-12 DGS Global Systems, Inc. Systems, methods, and devices for electronic spectrum management for identifying signal-emitting devices
US9622041B2 (en) 2013-03-15 2017-04-11 DGS Global Systems, Inc. Systems, methods, and devices for electronic spectrum management
US10244504B2 (en) 2013-03-15 2019-03-26 DGS Global Systems, Inc. Systems, methods, and devices for geolocation with deployable large scale arrays
US8787836B1 (en) 2013-03-15 2014-07-22 DGS Global Systems, Inc. Systems, methods, and devices having databases and automated reports for electronic spectrum management
US10231206B2 (en) 2013-03-15 2019-03-12 DGS Global Systems, Inc. Systems, methods, and devices for electronic spectrum management for identifying signal-emitting devices
US8750156B1 (en) 2013-03-15 2014-06-10 DGS Global Systems, Inc. Systems, methods, and devices for electronic spectrum management for identifying open space
US10257728B2 (en) 2013-03-15 2019-04-09 DGS Global Systems, Inc. Systems, methods, and devices for electronic spectrum management
US10237770B2 (en) 2013-03-15 2019-03-19 DGS Global Systems, Inc. Systems, methods, and devices having databases and automated reports for electronic spectrum management
US10355774B2 (en) 2015-04-10 2019-07-16 Viasat, Inc. End-to-end beamforming system
PL3651378T3 (en) 2015-04-10 2022-11-21 Viasat Inc. Ground based antenna beamforming for communications between access nodes and users terminals linked by a relay such as a satellite
US10775749B2 (en) 2015-04-17 2020-09-15 The Mitre Corporation Robust and resilient timing architecture for critical infrastructure
US10529241B2 (en) 2017-01-23 2020-01-07 Digital Global Systems, Inc. Unmanned vehicle recognition and threat management
US10498951B2 (en) 2017-01-23 2019-12-03 Digital Global Systems, Inc. Systems, methods, and devices for unmanned vehicle detection
US10459020B2 (en) 2017-01-23 2019-10-29 DGS Global Systems, Inc. Systems, methods, and devices for automatic signal detection based on power distribution by frequency over time within a spectrum
US10700794B2 (en) 2017-01-23 2020-06-30 Digital Global Systems, Inc. Systems, methods, and devices for automatic signal detection based on power distribution by frequency over time within an electromagnetic spectrum
US10943461B2 (en) 2018-08-24 2021-03-09 Digital Global Systems, Inc. Systems, methods, and devices for automatic signal detection based on power distribution by frequency over time

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987396A (en) * 1975-07-17 1976-10-19 Xetron Corporation Repeater system
WO1980001030A1 (en) * 1978-11-09 1980-05-15 Western Electric Co Mobile radiotelephone station two-way ranging system
US4228538A (en) * 1977-12-15 1980-10-14 Harris Corporation Real-time adaptive power control in satellite communications systems
US4928274A (en) * 1988-01-19 1990-05-22 Qualcomm, Inc. Multiplexed address control in a TDM communication system
US4979170A (en) * 1988-01-19 1990-12-18 Qualcomm, Inc. Alternating sequential half duplex communication system
US5003619A (en) * 1989-01-31 1991-03-26 Motorola, Inc. Method and apparatus for adjusting the power of a transmitter
US5017926A (en) * 1989-12-05 1991-05-21 Qualcomm, Inc. Dual satellite navigation system
US5023900A (en) * 1989-12-07 1991-06-11 Tayloe Daniel R Cellular radiotelephone diagnostic system
US5056109A (en) * 1989-11-07 1991-10-08 Qualcomm, Inc. Method and apparatus for controlling transmission power in a cdma cellular mobile telephone system
US5073900A (en) * 1990-03-19 1991-12-17 Mallinckrodt Albert J Integrated cellular communications system
US5103459A (en) * 1990-06-25 1992-04-07 Qualcomm Incorporated System and method for generating signal waveforms in a cdma cellular telephone system
US5109390A (en) * 1989-11-07 1992-04-28 Qualcomm Incorporated Diversity receiver in a cdma cellular telephone system
US5126748A (en) * 1989-12-05 1992-06-30 Qualcomm Incorporated Dual satellite navigation system and method
US5129098A (en) * 1990-09-24 1992-07-07 Novatel Communication Ltd. Radio telephone using received signal strength in controlling transmission power
US5204970A (en) * 1991-01-31 1993-04-20 Motorola, Inc. Communication system capable of adjusting transmit power of a subscriber unit
US5265119A (en) * 1989-11-07 1993-11-23 Qualcomm Incorporated Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system
US5267262A (en) * 1989-11-07 1993-11-30 Qualcomm Incorporated Transmitter power control system
US5293639A (en) * 1991-08-09 1994-03-08 Motorola, Inc. Reduction of power consumption in a portable communication unit
US5345598A (en) * 1992-04-10 1994-09-06 Ericsson-Ge Mobile Communications Holding, Inc. Duplex power control system in a communication network
US5375143A (en) * 1990-11-14 1994-12-20 Motorola, Inc. Method for channel adaptive detecting/equalizing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4728959A (en) * 1986-08-08 1988-03-01 Ventana Sciences Inc. Direction finding localization system
US4742357A (en) * 1986-09-17 1988-05-03 Rackley Ernie C Stolen object location system
US5506864A (en) * 1990-12-05 1996-04-09 Interdigital Technology Corporation CDMA communications and geolocation system and method
US5293645A (en) * 1991-10-04 1994-03-08 Sharp Microelectronics Technology, Inc. Apparatus and method for locating mobile and portable radio terminals in a radio network

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987396A (en) * 1975-07-17 1976-10-19 Xetron Corporation Repeater system
US4228538A (en) * 1977-12-15 1980-10-14 Harris Corporation Real-time adaptive power control in satellite communications systems
WO1980001030A1 (en) * 1978-11-09 1980-05-15 Western Electric Co Mobile radiotelephone station two-way ranging system
US4928274A (en) * 1988-01-19 1990-05-22 Qualcomm, Inc. Multiplexed address control in a TDM communication system
US4979170A (en) * 1988-01-19 1990-12-18 Qualcomm, Inc. Alternating sequential half duplex communication system
US5003619A (en) * 1989-01-31 1991-03-26 Motorola, Inc. Method and apparatus for adjusting the power of a transmitter
US5265119A (en) * 1989-11-07 1993-11-23 Qualcomm Incorporated Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system
US5056109A (en) * 1989-11-07 1991-10-08 Qualcomm, Inc. Method and apparatus for controlling transmission power in a cdma cellular mobile telephone system
US5109390A (en) * 1989-11-07 1992-04-28 Qualcomm Incorporated Diversity receiver in a cdma cellular telephone system
US5267262A (en) * 1989-11-07 1993-11-30 Qualcomm Incorporated Transmitter power control system
US5017926A (en) * 1989-12-05 1991-05-21 Qualcomm, Inc. Dual satellite navigation system
US5126748A (en) * 1989-12-05 1992-06-30 Qualcomm Incorporated Dual satellite navigation system and method
US5023900A (en) * 1989-12-07 1991-06-11 Tayloe Daniel R Cellular radiotelephone diagnostic system
US5073900A (en) * 1990-03-19 1991-12-17 Mallinckrodt Albert J Integrated cellular communications system
US5103459A (en) * 1990-06-25 1992-04-07 Qualcomm Incorporated System and method for generating signal waveforms in a cdma cellular telephone system
US5103459B1 (en) * 1990-06-25 1999-07-06 Qualcomm Inc System and method for generating signal waveforms in a cdma cellular telephone system
US5129098A (en) * 1990-09-24 1992-07-07 Novatel Communication Ltd. Radio telephone using received signal strength in controlling transmission power
US5375143A (en) * 1990-11-14 1994-12-20 Motorola, Inc. Method for channel adaptive detecting/equalizing
US5204970A (en) * 1991-01-31 1993-04-20 Motorola, Inc. Communication system capable of adjusting transmit power of a subscriber unit
US5293639A (en) * 1991-08-09 1994-03-08 Motorola, Inc. Reduction of power consumption in a portable communication unit
US5345598A (en) * 1992-04-10 1994-09-06 Ericsson-Ge Mobile Communications Holding, Inc. Duplex power control system in a communication network

Cited By (480)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5878329A (en) * 1990-03-19 1999-03-02 Celsat America, Inc. Power control of an integrated cellular communications system
US5940753A (en) * 1990-03-19 1999-08-17 Celsat America, Inc. Controller for cellular communications system
US5594780A (en) * 1991-10-10 1997-01-14 Space Systems/Loral, Inc. Satellite communication system that is coupled to a terrestrial communication network and method
US5623269A (en) * 1993-05-07 1997-04-22 Space Systems/Loral, Inc. Mobile communication satellite payload
US5859874A (en) * 1994-05-09 1999-01-12 Globalstar L.P. Multipath communication system optimizer
US5566165A (en) * 1994-05-12 1996-10-15 Ntt Mobile Communications Network Inc. Transmission power control method and a communication system using the same
US6873845B2 (en) 1994-07-28 2005-03-29 Lucent Technologies Inc. Method of power control and cell site selection based upon path gain and interference level
US5697053A (en) * 1994-07-28 1997-12-09 Lucent Technologies Inc. Method of power control and cell site selection
US5710768A (en) * 1994-09-30 1998-01-20 Qualcomm Incorporated Method of searching for a bursty signal
US5859842A (en) 1994-11-03 1999-01-12 Omnipoint Corporation Antenna diversity techniques
US6522642B1 (en) 1994-11-03 2003-02-18 Intel Corporation Antenna diversity techniques
US5826170A (en) * 1994-11-08 1998-10-20 Space Systems/Loral, Inc. Satellite communication power management system
US5787336A (en) * 1994-11-08 1998-07-28 Space Systems/Loral, Inc. Satellite communication power management system
US5946305A (en) * 1994-12-13 1999-08-31 Sony Corporation Cordless telephone system
US6246873B1 (en) * 1995-03-24 2001-06-12 European Broadcasting Union Satellite communication conference system for use in a satellite communication system
US5815798A (en) * 1995-06-02 1998-09-29 Dsc Communications Corporation Apparatus and method of controlling transmitting power in a subscriber terminal of a wireless telecommunications system
US5915216A (en) * 1995-06-02 1999-06-22 Dsc Communications Corporation Apparatus and method of transmitting and receiving information in a wireless telecommunications system
US6097752A (en) * 1995-06-06 2000-08-01 Globalstar L.P. Closed loop power control for low earth orbit satellite communications system
US5758261A (en) * 1995-06-06 1998-05-26 Globalstar L.P. Low earth orbit communication satellite gateway-to-gateway relay system
US5867109A (en) * 1995-06-06 1999-02-02 Globalstar L.P. Satellite repeater diversity resource management system
US6654357B1 (en) 1995-06-06 2003-11-25 Globalstar L.P. Satellite repeater diversity resource management system
US5812538A (en) * 1995-06-06 1998-09-22 Globalstar L.P. Multiple satellite repeater capacity loading with multiple spread spectrum gateway antennas
US5640386A (en) * 1995-06-06 1997-06-17 Globalstar L.P. Two-system protocol conversion transceiver repeater
US5634190A (en) * 1995-06-06 1997-05-27 Globalstar L.P. Low earth orbit communication satellite gateway-to-gateway relay system
US5619525A (en) * 1995-06-06 1997-04-08 Globalstar L.P. Closed loop power control for low earth orbit satellite communications system
US5592481A (en) * 1995-06-06 1997-01-07 Globalstar L.P. Multiple satellite repeater capacity loading with multiple spread spectrum gateway antennas
US6240124B1 (en) 1995-06-06 2001-05-29 Globalstar L.P. Closed loop power control for low earth orbit satellite communications system
US6023606A (en) * 1995-06-07 2000-02-08 Globalstar L.P. Method for accounting for user terminal connection to a satellite communications system
US5664006A (en) * 1995-06-07 1997-09-02 Globalstar L.P. Method for accounting for user terminal connection to a satellite communications system
US6697350B2 (en) 1995-06-30 2004-02-24 Interdigital Technology Corporation Adaptive vector correlator for spread-spectrum communications
US7929498B2 (en) 1995-06-30 2011-04-19 Interdigital Technology Corporation Adaptive forward power control and adaptive reverse power control for spread-spectrum communications
US6985467B2 (en) 1995-06-30 2006-01-10 Interdigital Technology Corporation Rapid acquisition spreading codes for spread-spectrum communications
US9564963B2 (en) 1995-06-30 2017-02-07 Interdigital Technology Corporation Automatic power control system for a code division multiple access (CDMA) communications system
US6801516B1 (en) 1995-06-30 2004-10-05 Interdigital Technology Corporation Spread-spectrum system for assigning information signals having different data rates
US6456608B1 (en) 1995-06-30 2002-09-24 Interdigital Technology Corporation Adaptive vector correlator using weighting signals for spread-spectrum communications
US8737363B2 (en) 1995-06-30 2014-05-27 Interdigital Technology Corporation Code division multiple access (CDMA) communication system
US7903613B2 (en) 1995-06-30 2011-03-08 Interdigital Technology Corporation Code division multiple access (CDMA) communication system
US6721301B2 (en) 1995-06-30 2004-04-13 Interdigital Technology Corporation Centroid tracking for spread-spectrum communications
US6816473B2 (en) 1995-06-30 2004-11-09 Interdigital Technology Corporation Method for adaptive forward power control for spread-spectrum communications
US6831905B1 (en) 1995-06-30 2004-12-14 Interdigital Technology Corporation Spread spectrum system assigning information signals to message-code signals
US7756190B2 (en) 1995-06-30 2010-07-13 Interdigital Technology Corporation Transferring voice and non-voice data
US6873645B2 (en) 1995-06-30 2005-03-29 Interdigital Technology Corporation Automatic power control system for a code division multiple access (CDMA) communications system
US6707805B2 (en) * 1995-06-30 2004-03-16 Interdigital Technology Corporation Method for initial power control for spread-spectrum communications
US6885652B1 (en) 1995-06-30 2005-04-26 Interdigital Technology Corporation Code division multiple access (CDMA) communication system
US6788662B2 (en) 1995-06-30 2004-09-07 Interdigital Technology Corporation Method for adaptive reverse power control for spread-spectrum communications
US7706332B2 (en) 1995-06-30 2010-04-27 Interdigital Technology Corporation Method and subscriber unit for performing power control
US6272325B1 (en) 1995-07-13 2001-08-07 Globalstar L.P. Method and apparatus for considering user terminal transmitted power during operation in a plurality of different communication systems
US6134423A (en) * 1995-07-13 2000-10-17 Globalstar L.P. Satellite communications system having gateway-based user RF exposure monitoring and control
US5802445A (en) * 1995-07-13 1998-09-01 Globalstar L.P. Methods and apparatus for providing user RF exposure monitoring and control in a satellite communications system
US5581268A (en) * 1995-08-03 1996-12-03 Globalstar L.P. Method and apparatus for increasing antenna efficiency for hand-held mobile satellite communications terminal
US5758260A (en) * 1995-08-23 1998-05-26 Globalstar L.P. Satellite beam steering reference using terrestrial beam steering terminals
US5697050A (en) * 1995-08-23 1997-12-09 Globalstar L.P. Satellite beam steering reference using terrestrial beam steering terminals
US20030148736A1 (en) * 1995-11-14 2003-08-07 Harris Corporation Wireless, frequency-agile spread spectrum ground link-based aircraft data communication system
US6775545B2 (en) * 1995-11-14 2004-08-10 Harris Corporation Wireless, ground link-based aircraft data communication system with roaming feature
US6272316B1 (en) 1995-11-17 2001-08-07 Globalstar L.P. Mobile satellite user information request system and methods
US5812932A (en) * 1995-11-17 1998-09-22 Globalstar L.P. Mobile satellite user information request system and methods
US5913164A (en) * 1995-11-30 1999-06-15 Amsc Subsidiary Corporation Conversion system used in billing system for mobile satellite system
US5940748A (en) * 1996-02-23 1999-08-17 Matsushita Communications Industrial Corporation Method and system for determining the integrity of a received signal
US7043254B2 (en) 1996-04-04 2006-05-09 Cingular Wireless Ii, Llc Method for determining organization parameters in a wireless communication system
US6496700B1 (en) 1996-04-04 2002-12-17 At&T Wireless Services, Inc. Method for determining organization parameters in a wireless communication system
US20020142788A1 (en) * 1996-04-04 2002-10-03 At&T Wireless Services, Inc. Method for determining organization parameters in a wireless communication system
WO1997041675A1 (en) * 1996-04-29 1997-11-06 Radio Design Innovation Ab Adaptive air interface
EP0805568A1 (en) * 1996-04-30 1997-11-05 Trw Inc. Power control method and apparatus for satellite based telecommunications system
US5924015A (en) * 1996-04-30 1999-07-13 Trw Inc Power control method and apparatus for satellite based telecommunications system
US6035178A (en) * 1996-05-09 2000-03-07 Ericsson Inc. Satellite communication system for local-area coverage
US6493563B1 (en) 1996-06-27 2002-12-10 Interdigital Technology Corporation Method of controlling initial power ramp-up in CDMA systems by using short codes
US6519474B2 (en) 1996-06-27 2003-02-11 Interdigital Technology Corporation Subscriber unit for controlling initial power ramp-up using short codes
US7085583B2 (en) 1996-06-27 2006-08-01 Interdigital Technology Corporation Communication unit for access
US8009636B2 (en) 1996-06-27 2011-08-30 Interdigital Technology Corporation Method and apparatus for performing an access procedure
US6980538B2 (en) 1996-06-27 2005-12-27 Interdigital Technology Corporation Virtual locating of a fixed subscriber unit to reduce reacquisition time
US6904294B2 (en) 1996-06-27 2005-06-07 Interdigital Technology Corporation Subscriber unit for controlling initial power ramp-up using short codes
US6181949B1 (en) 1996-06-27 2001-01-30 Interdigital Technology Corporation Method of controlling initial power ramp-up in CDMA systems by using short codes
US6577876B2 (en) 1996-06-27 2003-06-10 Interdigital Technology Corporation Base station for controlling initial power ramp-up using short codes
US6571105B2 (en) 1996-06-27 2003-05-27 Interdigital Technology Corporation Method employed by a base station for controlling initial power ramp-up using short codes
US6606503B2 (en) 1996-06-27 2003-08-12 Interdigital Technology Corporation Apparatus for controlling initial power ramp-up in a CDMA system by using short codes
US20030190925A1 (en) * 1996-06-27 2003-10-09 Interdigital Technology Corporation Base station for controlling initial power ramp-up using short codes
US20080240046A1 (en) * 1996-06-27 2008-10-02 Interdigital Technology Corporation Base station for controlling initial power ramp-up using short codes
US6252866B1 (en) 1996-06-27 2001-06-26 Interdigital Technology Corporation Virtual locating of a fixed subscriber unit to reduce re-acquisition time
US7706830B2 (en) 1996-06-27 2010-04-27 Interdigital Technology Corporation Method and subscriber unit for performing an access procedure
US5841768A (en) * 1996-06-27 1998-11-24 Interdigital Technology Corporation Method of controlling initial power ramp-up in CDMA systems by using short codes
US6879841B2 (en) 1996-06-27 2005-04-12 Interdigital Technology Corporation Method employed by a subscriber unit for controlling initial power ramp-up using short codes
US5940382A (en) * 1996-06-27 1999-08-17 Interdigital Technology Corporation Virtual locating of a fixed subscriber unit to reduce re-acquisition time
US20010026540A1 (en) * 1996-06-27 2001-10-04 Interdigital Technology Corporation, A Delaware Corporation Virtual locating of a fixed subscriber unit to reduce reacquisition time
US7117004B2 (en) 1996-06-27 2006-10-03 Interdigital Technology Corporation Method and subscriber unit for performing an access procedure
US20080240047A1 (en) * 1996-06-27 2008-10-02 Interdigital Technology Corporation Method and subscriber unit for controlling initial power ramp-up using short codes
US6839567B2 (en) 1996-06-27 2005-01-04 Interdigital Technology Corporation Method employed by a base station for controlling initial power ramp-up using short codes
US20050249166A1 (en) * 1996-06-27 2005-11-10 Interdigital Technology Corporation Method employed by a base station for controlling initial power ramp-up using short codes
US20040242259A1 (en) * 1996-06-27 2004-12-02 Interdigital Technology Corporation Method employed by a base station for controlling initial power ramp-up using short codes
US7190966B2 (en) 1996-06-27 2007-03-13 Interdigital Technology Corporation Method and apparatus for performing an access procedure
US7286847B2 (en) 1996-06-27 2007-10-23 Interdigital Technology Corporation Method and apparatus for performing an access procedure
US6507745B2 (en) 1996-06-27 2003-01-14 Interdigital Technology Corporation Apparatus for controlling initial power ramp-up in a CDMA system by using short codes
US20020186669A1 (en) * 1996-06-27 2002-12-12 Interdigital Technology Corporation Subscriber unit for controlling initial power ramp-up using short codes
US20050254478A1 (en) * 1996-06-27 2005-11-17 Interdigital Technology Corporation Method employed by a base station for controlling initial power ramp-up using short codes
US7437177B2 (en) 1996-06-27 2008-10-14 Interdigital Communications Corp. Method employed by a base station for controlling initial power ramp-up using short codes
US7873328B2 (en) 1996-06-27 2011-01-18 Interdigital Technology Corporation Subscriber unit for performing an access procedure
US6778840B2 (en) 1996-06-27 2004-08-17 Interdigital Technology Corporation Method of controlling initial power ramp-up in a CDMA system by using short codes
US6490462B2 (en) 1996-06-27 2002-12-03 Interdigital Technology Corporation Method of controlling initial power ramp-up in a CDMA system by using short codes
EP0825730A2 (en) * 1996-08-21 1998-02-25 HE HOLDINGS, INC. dba HUGHES ELECTRONICS Method and system for controlling uplink power in a high data rate satellite communication system employing on-board demodulation and remodulation
EP0825730A3 (en) * 1996-08-21 2003-10-08 Hughes Electronics Corporation Method and system for controlling uplink power in a high data rate satellite communication system employing on-board demodulation and remodulation
US6072768A (en) * 1996-09-04 2000-06-06 Globalstar L.P. Automatic satellite/terrestrial mobile terminal roaming system and method
US6233463B1 (en) 1996-09-04 2001-05-15 Globalstar L.P. Automatic satellite terrestrial mobile terminal roaming system and method
US5896568A (en) * 1996-09-06 1999-04-20 Northern Telecom Limited Wireless architecture having redistributed access functions
US6201961B1 (en) 1996-09-13 2001-03-13 Globalstar L. P. Use of reference phone in point-to-point satellite communication system
US6587687B1 (en) 1996-10-21 2003-07-01 Globalstar L.P. Multiple satellite fade attenuation control system
US5991596A (en) * 1996-10-24 1999-11-23 Stanford Telecommunications, Inc. Wireless request channel for use with information broadcast system
FR2755330A1 (en) * 1996-10-30 1998-05-01 Motorola Inc METHOD AND SYSTEM FOR DIGITAL BEAM FORMING, OF THE INTELLIGENT TYPE, PROVIDING IMPROVED SIGNAL QUALITY COMMUNICATIONS
US6085067A (en) * 1996-12-12 2000-07-04 Globalstar L.P. Satellite controlled power control for personal communication user terminals
US5956619A (en) * 1996-12-12 1999-09-21 Globalstar L.P. Satellite controlled power control for personal communication user terminals
US5896558A (en) * 1996-12-19 1999-04-20 Globalstar L.P. Interactive fixed and mobile satellite network
US6160994A (en) * 1996-12-19 2000-12-12 Globalstar L.P. Interactive fixed and mobile satellite network
US7796676B2 (en) * 1997-01-16 2010-09-14 Intrasonics Limited Signalling system
US20050053122A1 (en) * 1997-01-16 2005-03-10 Scientific Generics Limited Signalling system
US5875180A (en) * 1997-02-06 1999-02-23 Globalstar L.P. Satellite telephone interference avoidance system
US6023463A (en) * 1997-02-06 2000-02-08 Globalstar L.P. Satellite telephone interference avoidance system
US7085531B2 (en) 1997-02-12 2006-08-01 Interdigital Technology Corporation Base station using reference signal power control
US6341215B1 (en) 1997-02-12 2002-01-22 Interdigital Technology Corporation Global channel power control to minimize spillover in a wireless communication environment
US5842114A (en) * 1997-02-12 1998-11-24 Interdigital Technology Corporation Global channel power control to minimize spillover in a wireless communication environment
US20030118082A1 (en) * 1997-02-12 2003-06-26 Interdigital Technology Corporation Base Station using reference signal power control
US20060264230A1 (en) * 1997-02-12 2006-11-23 Interdigital Technology Corporation Base station using global channel power control
US6456828B1 (en) 1997-02-12 2002-09-24 Interdigital Technology Corporation Base station using global channel power control
US6181919B1 (en) 1997-02-12 2001-01-30 Interdigital Technology Corporation Global channel power control to minimize spillover in a wireless communication environment
US6542719B2 (en) 1997-02-12 2003-04-01 Interdigital Technology Corporation Base station using global channel power control
US5918157A (en) * 1997-03-18 1999-06-29 Globalstar L.P. Satellite communications system having distributed user assignment and resource assignment with terrestrial gateways
US6064857A (en) * 1997-04-15 2000-05-16 Globalstar L.P. Dual mode satellite telephone with hybrid battery/capacitor power supply
US5884142A (en) * 1997-04-15 1999-03-16 Globalstar L.P. Low earth orbit distributed gateway communication system
US6128487A (en) * 1997-04-15 2000-10-03 Globalstar, L.P. Global mobile paging system
US6272339B1 (en) 1997-04-15 2001-08-07 Globalstar L.P. Global mobile paging system
US5933777A (en) * 1997-04-24 1999-08-03 Telefonaktiebolaget Lm Ericsson (Publ) System and method for allocating channel elements in a code division multiple access radio telecommunications network
US6061556A (en) * 1997-04-24 2000-05-09 Telefonaktiebolaget Lm Ericsson (Publ) System and method for secondary traffic charging in a radio telecommunications network
US6078817A (en) * 1997-04-24 2000-06-20 Telefonaktiebolaget Lm Ericsson System and method of dynamically increasing the capacity of a code division multiple access radio telecommunications network
US6148220A (en) * 1997-04-25 2000-11-14 Triquint Semiconductor, Inc. Battery life extending technique for mobile wireless applications
US6757526B1 (en) 1997-04-25 2004-06-29 Steven J. Sharp Battery life extending technique for mobile wireless applications using bias level control
US7505742B2 (en) * 1997-04-25 2009-03-17 Triquint Semiconductor, Inc. Battery life extending technique for mobile wireless applications using bias level control
US20040192408A1 (en) * 1997-04-25 2004-09-30 Triquint Semiconductor, Inc. Battery life extending technique for mobile wireless applications using bias level control
US6125260A (en) * 1997-04-29 2000-09-26 Globalstar, L.P. System for generating and using global radio frequency maps
US5905943A (en) * 1997-04-29 1999-05-18 Globalstar L.P. System for generating and using global radio frequency maps
US6021309A (en) * 1997-05-22 2000-02-01 Globalstar L.P. Channel frequency allocation for multiple-satellite communication network
US6081710A (en) * 1997-07-10 2000-06-27 Globalstar L.P. Dynamic traffic allocation for power control in multiple satellite communication systems
US6330232B1 (en) 1997-07-16 2001-12-11 Nortel Networks Limited Base station transceiver subsystem carrier selection at a CDMA cell site
FR2766647A1 (en) * 1997-07-24 1999-01-29 Wavecom Sa Mobile telephone signal quality measurement
US6101385A (en) * 1997-10-09 2000-08-08 Globalstar L.P. Satellite communication service with non-congruent sub-beam coverage
US6301476B1 (en) 1997-10-09 2001-10-09 Globalstar L.P. Satellite communication service with non-congruent sub-beam coverage
US6097958A (en) * 1997-10-10 2000-08-01 Northern Telecom Limited Method and apparatus for locating and tracking cellular telephones in a CDMA cellular communication network
US20020051434A1 (en) * 1997-10-23 2002-05-02 Ozluturk Fatih M. Method for using rapid acquisition spreading codes for spread-spectrum communications
US6414946B1 (en) * 1997-11-19 2002-07-02 Oki Electric Industry Co., Ltd. Adaptive downlink transmission power control arbiter
US6418147B1 (en) 1998-01-21 2002-07-09 Globalstar Lp Multiple vocoder mobile satellite telephone system
US6070074A (en) * 1998-04-24 2000-05-30 Trw Inc. Method for enhancing the performance of a regenerative satellite communications system
EP0954117A1 (en) * 1998-04-30 1999-11-03 ICO Services Ltd. Transmission quality reporting
US6477355B1 (en) 1998-04-30 2002-11-05 Ico Services Ltd Transmission quality reporting
US6507570B1 (en) * 1998-05-15 2003-01-14 Nokia Mobile Phones Limited Interfrequency measurement
WO1999063679A1 (en) * 1998-05-29 1999-12-09 Motorola Inc. Method and system for estimating a communication mode quality in a wireless communications system
US5991618A (en) * 1998-05-29 1999-11-23 Motorola, Inc. Method and system for estimating a communication mode quality in a wireless communications system
US6661996B1 (en) 1998-07-14 2003-12-09 Globalstar L.P. Satellite communication system providing multi-gateway diversity to a mobile user terminal
US7184417B2 (en) 1998-09-21 2007-02-27 Ipr Licensing, Inc. Power control protocol for highly variable data rate reverse link of a wireless communication system
US8526401B2 (en) 1998-09-21 2013-09-03 Ipr Licensing, Inc. Power control protocol for highly variable data rate reverse link of wireless communication system
US6956840B1 (en) 1998-09-21 2005-10-18 Ipr Licensing, Inc. Power control protocol for highly variable data rate reverse link of a wireless communication system
US9363759B2 (en) 1998-09-21 2016-06-07 Ipr Licensing, Inc. Power control protocol for highly variable data rate reverse link of a wireless communication system
US20070140174A1 (en) * 1998-09-21 2007-06-21 Interdigital Technology Corporation Power control protocol for highly variable data rate reverse link of a wireless communication system
US20100202317A1 (en) * 1998-09-21 2010-08-12 Ipr Licensing, Inc. Power control protocol for highly variable data rate reverse link of a wireless communication system
US20060034242A1 (en) * 1998-09-21 2006-02-16 Proctor James A Jr Power control protocol for highly variable data rate reverse link of a wireless communication system
WO2000018034A1 (en) * 1998-09-21 2000-03-30 Tantivy Communications, Inc. Power control protocol for highly variable data rate reverse link of a wireless communication system
US7701903B2 (en) 1998-09-21 2010-04-20 Ipr Licensing, Inc. Power control protocol for highly variable data rate reverse link of a wireless communication system
US6292665B1 (en) 1998-10-08 2001-09-18 Harris Corporation Geolocation of cellular phone using supervisory audio tone transmitted from single base station
US6754502B2 (en) 1998-10-08 2004-06-22 Harris Corporation Geolocation of cellular phone using supervisory audio tone transmitted from single base station
US6834078B1 (en) * 1998-11-30 2004-12-21 Nokia Networks Oy Test facility for transceiver station
US6735440B2 (en) 1999-07-08 2004-05-11 Globalstar L.P. Low earth orbit distributed gateway communication system
US6253080B1 (en) 1999-07-08 2001-06-26 Globalstar L.P. Low earth orbit distributed gateway communication system
US7505823B1 (en) 1999-07-30 2009-03-17 Intrasonics Limited Acoustic communication system
US20070129019A1 (en) * 1999-08-10 2007-06-07 Atc Technologies, Llc Internet communications systems and methods using different wireless links for inbound and outbound data
US20030149986A1 (en) * 1999-08-10 2003-08-07 Mayfield William W. Security system for defeating satellite television piracy
US7174127B2 (en) 1999-08-10 2007-02-06 Atc Technologies, Llc Data communications systems and methods using different wireless links for inbound and outbound data
US6463279B1 (en) 1999-11-17 2002-10-08 Globalstar L.P. Channel frequency allocation for multiple-satellite communication network
US7565328B1 (en) 2000-07-24 2009-07-21 Donner Irah H System and method for determining and/or transmitting and/or establishing communication with a mobile device user for providing, for example, concessions, tournaments, competitions, matching, reallocating, upgrading, selling tickets, and other event admittance means, goods and/or services
US7562028B1 (en) 2000-07-24 2009-07-14 Donner Irah H System and method for determining and/or transmitting and/or establishing communication with a mobile device user for providing, for example, concessions, tournaments, competitions, matching, reallocating, upgrading, selling tickets, and other event admittance mean
US20060173781A1 (en) * 2000-07-24 2006-08-03 Donner Irah H System and method for interactive messaging and/or allocating and/or upgrading and/or rewarding tickets, other event admittance means, goods and/or services
US7216109B1 (en) 2000-07-24 2007-05-08 Donner Irah H System and method for reallocating and/or upgrading and/or selling tickets, other event admittance means, goods and/or services
US7203665B2 (en) 2000-07-24 2007-04-10 Donner Irah H System and method for interactive messaging and/or allocating and/or upgrading and/or rewarding tickets, other event admittance means, goods and/or services
US7415424B1 (en) 2000-07-24 2008-08-19 Donner Irah H System and method for reallocating and/or upgrading and/or selling tickets, other event admittance means, goods and/or services
US7031945B1 (en) 2000-07-24 2006-04-18 Donner Irah H System and method for reallocating and/or upgrading and/or rewarding tickets, other event admittance means, goods and/or services
US7529713B1 (en) 2000-07-24 2009-05-05 Irah Donner System and method for interactive messaging and/or allocating and/or upgrading and/or rewarding tickets, other event admittance means, goods and/or services
US7386517B1 (en) 2000-07-24 2008-06-10 Donner Irah H System and method for determining and/or transmitting and/or establishing communication with a mobile device user for providing, for example, concessions, tournaments, competitions, matching, reallocating, upgrading, selling tickets, other event admittance means, goods and/or services
US7379891B1 (en) 2000-07-24 2008-05-27 Donner Irah H System and method for reallocating and/or upgrading and/or selling tickets, other event admittance means, goods and/or services
US7162454B1 (en) 2000-07-24 2007-01-09 Donner Irah H System and method for reallocating and/or upgrading and/or selling tickets, other even admittance means, goods and/or services
US7562051B1 (en) 2000-07-24 2009-07-14 Donner Irah H System and method for reallocating and/or upgrading and/or selling tickets, other event admittance means, goods and/or services
US7577620B1 (en) 2000-07-24 2009-08-18 Donner Irah H System and method for reallocating and/or upgrading and/or selling tickets, other event admittance means, goods and/or services
US7577575B1 (en) 2000-07-24 2009-08-18 Donner Irah H System method reallocating and/or upgrading and/or selling tickets, other event admittance means, goods and/or services
US7577619B1 (en) 2000-07-24 2009-08-18 Donner Irah H System method reallocating and/or upgrading and/or selling tickets, other event admittance means, goods and/or services
US7617159B1 (en) 2000-07-24 2009-11-10 Donner Irah H System and method for interactive messaging and/or allocating and/or upgrading and/or rewarding tickets, other event admittance means, goods and/or services
US7343350B1 (en) 2000-07-24 2008-03-11 Donner Irah H System and method for interactive messaging and/or allocating and/or upgrading and/or rewarding tickets, other event admittance means, goods and/or services
US7280975B1 (en) 2000-07-24 2007-10-09 Donner Irah H System and method for determining and/or transmitting and/or establishing communication with a mobile device user for providing, for example, concessions, tournaments, competitions, matching, reallocating, upgrading, selling tickets, other event admittance means, goods and/or services
US20060211371A1 (en) * 2000-08-02 2006-09-21 Atc Technologies, Llc Coordinated satellite-terrestrial frequency reuse
US7577400B2 (en) 2000-08-02 2009-08-18 Atc Technologies, Llc Integrated or autonomous system and method of satellite-terrestrial frequency reuse using signal attenuation and/or blockage, dynamic assignment of frequencies and/or hysteresis
US7149526B2 (en) 2000-08-02 2006-12-12 Atc Technologies, Llc Coordinated satellite-terrestrial frequency reuse
US20050079816A1 (en) * 2000-08-02 2005-04-14 Karabinis Peter D. Integrated or autonomous system and method of satellite-terrestrial frequency reuse using signal attenuation and/or blockage, dynamic assignment of frequencies and/or hysteresis
US20050272369A1 (en) * 2000-08-02 2005-12-08 Karabinis Peter D Coordinated satellite-terrestrial frequency reuse
US8265637B2 (en) 2000-08-02 2012-09-11 Atc Technologies, Llc Systems and methods for modifying antenna radiation patterns of peripheral base stations of a terrestrial network to allow reduced interference
US7636567B2 (en) 2000-08-02 2009-12-22 Atc Technologies, Llc Coordinated satellite-terrestrial frequency reuse
US7593726B2 (en) 2000-08-02 2009-09-22 Atc Technologies, Llc Coordinated satellite-terrestrial frequency reuse
US7907893B2 (en) 2000-08-02 2011-03-15 Atc Technologies, Llc Integrated or autonomous system and method of satellite-terrestrial frequency reuse using signal attenuation and/or blockage, dynamic assignment of frequencies and/or hysteresis
US20050181786A1 (en) * 2000-08-02 2005-08-18 Karabinis Peter D. Coordinated satellite-terrestrial frequency reuse
US20050164701A1 (en) * 2000-08-02 2005-07-28 Karabinis Peter D. Integrated or autonomous system and method of satellite-terrestrial frequency reuse using signal attenuation and/or blockage, dynamic assignment of frequencies and/or hysteresis
US6859652B2 (en) 2000-08-02 2005-02-22 Mobile Satellite Ventures, Lp Integrated or autonomous system and method of satellite-terrestrial frequency reuse using signal attenuation and/or blockage, dynamic assignment of frequencies and/or hysteresis
US6892068B2 (en) 2000-08-02 2005-05-10 Mobile Satellite Ventures, Lp Coordinated satellite-terrestrial frequency reuse
US20040023658A1 (en) * 2000-08-02 2004-02-05 Karabinis Peter D Coordinated satellite-terrestrial frequency reuse
US7706746B2 (en) 2000-08-02 2010-04-27 Atc Technologies, Llc Integrated or autonomous system and method of satellite-terrestrial frequency reuse using signal attenuation and/or blockage, dynamic assignment of frequencies and/or hysteresis
US7831251B2 (en) 2000-08-02 2010-11-09 Atc Technologies, Llc Integrated or autonomous system and method of satellite-terrestrial frequency reuse using signal attenuation and/or blockage, dynamic assignment of frequencies and/or hysteresis
US8369775B2 (en) 2000-08-02 2013-02-05 Atc Technologies, Llc Integrated or autonomous system and method of satellite-terrestrial frequency reuse using signal attenuation and/or blockage, dynamic assignment of frequencies and/or hysteresis
US6804501B1 (en) * 2000-09-25 2004-10-12 Prairiecomm, Inc. Receiver having gain control and narrowband interference detection
US20040137929A1 (en) * 2000-11-30 2004-07-15 Jones Aled Wynne Communication system
US20050219068A1 (en) * 2000-11-30 2005-10-06 Jones Aled W Acoustic communication system
US20100240297A1 (en) * 2000-11-30 2010-09-23 Intrasonics Limited Communication system
US7460991B2 (en) 2000-11-30 2008-12-02 Intrasonics Limited System and method for shaping a data signal for embedding within an audio signal
US8185100B2 (en) 2000-11-30 2012-05-22 Intrasonics S.A.R.L. Communication system
US7796978B2 (en) 2000-11-30 2010-09-14 Intrasonics S.A.R.L. Communication system for receiving and transmitting data using an acoustic data channel
US7792488B2 (en) 2000-12-04 2010-09-07 Atc Technologies, Llc Systems and methods for transmitting electromagnetic energy over a wireless channel having sufficiently weak measured signal strength
US20020126770A1 (en) * 2001-03-09 2002-09-12 Behrouz Pourseyed Method and system for acquiring narrowband channel information over a wideband channel receiver
US20020168993A1 (en) * 2001-05-10 2002-11-14 Koninklijke Philips Electronics N.V. Updating path loss estimation for power control and link adaptation in IEEE 802.11h WLAN
US6978151B2 (en) * 2001-05-10 2005-12-20 Koninklijke Philips Electronics N.V. Updating path loss estimation for power control and link adaptation in IEEE 802.11h WLAN
US20060040657A1 (en) * 2001-09-14 2006-02-23 Atc Technologies, Llc Space-based network architectures for satellite radiotelephone systems
US20070072545A1 (en) * 2001-09-14 2007-03-29 Atc Technologies, Llc Space-Based Network Architectures for Satellite Radiotelephone Systems
US7062267B2 (en) 2001-09-14 2006-06-13 Atc Technologies, Llc Methods and systems for modifying satellite antenna cell patterns in response to terrestrial reuse of satellite frequencies
US7792069B2 (en) 2001-09-14 2010-09-07 Atc Technologies, Llc Systems and methods for terrestrial reuse of cellular satellite frequency spectrum using different channel separation technologies in forward and reverse links
US20060111041A1 (en) * 2001-09-14 2006-05-25 Karabinis Peter D Aggregate radiated power control for multi-band/multi-mode satellite radiotelephone communications systems and methods
US20030073436A1 (en) * 2001-09-14 2003-04-17 Karabinis Peter D. Additional systems and methods for monitoring terrestrially reused satellite frequencies to reduce potential interference
US20030153308A1 (en) * 2001-09-14 2003-08-14 Karabinis Peter D. Staggered sectorization for terrestrial reuse of satellite frequencies
US7437123B2 (en) 2001-09-14 2008-10-14 Atc Technologies, Llc Space-based network architectures for satellite radiotelephone systems
US7783287B2 (en) 2001-09-14 2010-08-24 Atc Technologies, Llc Satellite radiotelephone systems, methods, components and devices including gated radiotelephone transmissions to ancillary terrestrial components
US7801520B2 (en) 2001-09-14 2010-09-21 Atc Technologies, Llc Methods and systems for configuring satellite antenna cell patterns in response to terrestrial use of satellite frequencies
US7447501B2 (en) 2001-09-14 2008-11-04 Atc Technologies, Llc Systems and methods for monitoring selected terrestrially used satellite frequency signals to reduce potential interference
US7039400B2 (en) 2001-09-14 2006-05-02 Atc Technologies, Llc Systems and methods for monitoring terrestrially reused satellite frequencies to reduce potential interference
US7031702B2 (en) 2001-09-14 2006-04-18 Atc Technologies, Llc Additional systems and methods for monitoring terrestrially reused satellite frequencies to reduce potential interference
US20030068978A1 (en) * 2001-09-14 2003-04-10 Karabinis Peter D. Space-based network architectures for satellite radiotelephone systems
US7006789B2 (en) 2001-09-14 2006-02-28 Atc Technologies, Llc Space-based network architectures for satellite radiotelephone systems
US20030054814A1 (en) * 2001-09-14 2003-03-20 Karabinis Peter D. Systems and methods for monitoring terrestrially reused satellite frequencies to reduce potential interference
US20090029696A1 (en) * 2001-09-14 2009-01-29 Atc Technologies, Llc Systems and methods for monitoring selected terrestrially used satellite frequency signals to reduce potential interference
US7113778B2 (en) 2001-09-14 2006-09-26 Atc Technologies, Llc Aggregate radiated power control for multi-band/multi-mode satellite radiotelephone communications systems and methods
US20060040659A1 (en) * 2001-09-14 2006-02-23 Atc Technologies, Llc Spatial guardbands for terrestrial reuse of satellite frequencies
US7706826B2 (en) 2001-09-14 2010-04-27 Atc Technologies, Llc Aggregate radiated power control for multi-band/multi-mode satellite radiotelephone communications systems and methods
US6999720B2 (en) 2001-09-14 2006-02-14 Atc Technologies, Llc Spatial guardbands for terrestrial reuse of satellite frequencies
US20030054815A1 (en) * 2001-09-14 2003-03-20 Karabinis Peter D. Methods and systems for modifying satellite antenna cell patterns in response to terrestrial reuse of satellite frequencies
US7664460B2 (en) 2001-09-14 2010-02-16 Atc Technologies, Llc Systems and methods for terrestrial reuse of cellular satellite frequency spectrum in a time-division duplex and/or frequency-division duplex mode
US20050282542A1 (en) * 2001-09-14 2005-12-22 Mobile Satellite Ventures, Lp Systems and methods for terrestrial use of cellular satellite frequency spectrum
US20060252368A1 (en) * 2001-09-14 2006-11-09 Karabinis Peter D Staggered sectorization for terrestrial reuse of satellite frequencies
US7890097B2 (en) 2001-09-14 2011-02-15 Atc Technologies, Llc Systems and methods for monitoring selected terrestrially used satellite frequency signals to reduce potential interference
US7623859B2 (en) 2001-09-14 2009-11-24 Atc Technologies, Llc Additional aggregate radiated power control for multi-band/multi-mode satellite radiotelephone communications systems and methods
US7890098B2 (en) 2001-09-14 2011-02-15 Atc Technologies, Llc Staggered sectorization for terrestrial reuse of satellite frequencies
US7155340B2 (en) 2001-09-14 2006-12-26 Atc Technologies, Llc Network-assisted global positioning systems, methods and terminals including doppler shift and code phase estimates
US20030054761A1 (en) * 2001-09-14 2003-03-20 Karabinis Peter D. Spatial guardbands for terrestrial reuse of satellite frequencies
US20030054762A1 (en) * 2001-09-14 2003-03-20 Karabinis Peter D. Multi-band/multi-mode satellite radiotelephone communications systems and methods
US7603117B2 (en) 2001-09-14 2009-10-13 Atc Technologies, Llc Systems and methods for terrestrial use of cellular satellite frequency spectrum
US7603081B2 (en) 2001-09-14 2009-10-13 Atc Technologies, Llc Radiotelephones and operating methods that use a single radio frequency chain and a single baseband processor for space-based and terrestrial communications
US20050208890A1 (en) * 2001-09-14 2005-09-22 Mobile Satellite Ventures, Lp Systems and methods for monitoring selected terrestrially used satellite frequency signals to reduce potential interference
US7599656B2 (en) 2001-09-14 2009-10-06 Atc Technologies, Llc Spatial guardbands for terrestrial reuse of satellite frequencies
US7181161B2 (en) 2001-09-14 2007-02-20 Atc Technologies, Llc Multi-band/multi-mode satellite radiotelephone communications systems and methods
US20040121727A1 (en) * 2001-09-14 2004-06-24 Karabinis Peter D. Systems and methods for terrestrial reuse of cellular satellite frequency spectrum in a time-division duplex mode
US7593724B2 (en) 2001-09-14 2009-09-22 Atc Technologies, Llc Systems and methods for terrestrial reuse of cellular satellite frequency spectrum in a time-division duplex mode
US8023954B2 (en) 2001-09-14 2011-09-20 Atc Technologies, Llc Systems and methods for controlling a cellular communications system responsive to a power level associated with a wireless transmitter
US20060135060A1 (en) * 2001-09-14 2006-06-22 Atc Technologies, Llc Methods and systems for configuring satellite antenna cell patterns in response to terrestrial use of satellite frequencies
US8068828B2 (en) 2001-09-14 2011-11-29 Atc Technologies, Llc Systems and methods for terrestrial reuse of cellular satellite frequency spectrum in a time-division duplex mode
US20040142660A1 (en) * 2001-09-14 2004-07-22 Churan Gary G. Network-assisted global positioning systems, methods and terminals including doppler shift and code phase estimates
US20070087690A1 (en) * 2001-09-14 2007-04-19 Atc Technologies, Llc Additional aggregate radiated power control for multi-band/multi-mode satellite radiotelephone communications systems and methods
US8078101B2 (en) 2001-09-14 2011-12-13 Atc Technologies, Llc Systems and methods for terrestrial reuse of cellular satellite frequency spectrum in a time-division duplex and/or frequency-division duplex mode
US7218931B2 (en) 2001-09-14 2007-05-15 Atc Technologies, Llc Satellite radiotelephone systems providing staggered sectorization for terrestrial reuse of satellite frequencies and related methods and radiotelephone systems
US20040192293A1 (en) * 2001-09-14 2004-09-30 Karabinis Peter D. Aggregate radiated power control for multi-band/multi-mode satellite radiotelephone communications systems and methods
US20050118948A1 (en) * 2001-09-14 2005-06-02 Karabinis Peter D. Systems and methods for terrestrial reuse of cellular satellite frequency spectrum in a time-division duplex and/or frequency-division duplex mode
USRE43137E1 (en) 2001-09-14 2012-01-24 Atc Technologies, Llc Filters for combined radiotelephone/GPS terminals
US20080032690A1 (en) * 2001-09-14 2008-02-07 Atc Technologies, Llc Methods and systems for configuring satellite antenna cell patterns in response to terrestrial use of satellite frequencies
US7593725B2 (en) 2001-09-14 2009-09-22 Atc Technologies, Llc Systems and methods for monitoring selected terrestrially used satellite frequency signals to reduce potential interference
US7295807B2 (en) 2001-09-14 2007-11-13 Atc Technologies, Llc Methods and systems for configuring satellite antenna cell patterns in response to terrestrial use of satellite frequencies
US8285278B2 (en) 2001-09-14 2012-10-09 Atc Technologies, Llc Systems and methods for terrestrial reuse of cellular satellite frequency spectrum in a time-division duplex mode
US20070232298A1 (en) * 2001-09-14 2007-10-04 Atc Technologies, Llc Systems and methods for terrestrial reuse of cellular satellite frequency spectrum using different channel separation technologies in forward and reverse links
US8270898B2 (en) 2001-09-14 2012-09-18 Atc Technologies, Llc Satellite-band spectrum utilization for reduced or minimum interference
US8248528B2 (en) 2001-12-24 2012-08-21 Intrasonics S.A.R.L. Captioning system
WO2003056860A1 (en) * 2001-12-28 2003-07-10 Wavecom Data transmission method in a cellular communication network, corresponding system, terminal and base station
KR100972132B1 (en) 2001-12-28 2010-07-26 웨이브콤 Data transmission method in a cellular communication network, corresponding system, terminal equipment and base station
US7583628B2 (en) 2001-12-28 2009-09-01 Wavecom Data transmission method in a cellular communication network, corresponding system, terminal and base station
FR2834421A1 (en) * 2001-12-28 2003-07-04 Wavecom Sa METHOD FOR TRANSMITTING DATA IN A CELLULAR COMMUNICATION NETWORK, SYSTEM, TERMINAL AND BASE STATION
US20050123062A1 (en) * 2001-12-28 2005-06-09 Wavecom Data transmission method in a cellular communication network, corresponding system, terminal and base station
US20070149127A1 (en) * 2002-02-12 2007-06-28 Atc Technologies, Llc Systems and methods for controlling a level of interference to a wireless receiver responsive to a power level associated with a wireless transmitter
US7593691B2 (en) 2002-02-12 2009-09-22 Atc Technologies, Llc Systems and methods for controlling a level of interference to a wireless receiver responsive to a power level associated with a wireless transmitter
USRE42261E1 (en) 2002-02-12 2011-03-29 Atc Technologies, Llc Wireless communications systems and methods using satellite-linked remote terminal interface subsystems
US7796985B2 (en) 2002-05-28 2010-09-14 Atc Technologies, Llc Systems and methods for packing/unpacking satellite service links to/from satellite feeder links
US6937857B2 (en) 2002-05-28 2005-08-30 Mobile Satellite Ventures, Lp Systems and methods for reducing satellite feeder link bandwidth/carriers in cellular satellite systems
US20050221757A1 (en) * 2002-05-28 2005-10-06 Mobile Satellite Ventures, Lp Systems and methods for reducing satellite feeder link bandwidth/carriers in cellular satellite systems
US7574206B2 (en) 2002-05-28 2009-08-11 Atc Technologies, Llc Systems and methods for reducing satellite feeder link bandwidth/carriers in cellular satellite systems
US20030224785A1 (en) * 2002-05-28 2003-12-04 Karabinis Peter D. Systems and methods for reducing satellite feeder link bandwidth/carriers in cellular satellite systems
US7433347B1 (en) * 2002-06-28 2008-10-07 Arraycomm, Llc Broadcast superframe with variable reuse and interference levels for a radio communications system
USRE45107E1 (en) 2002-07-02 2014-09-02 Atc Technologies, Llc Filters for combined radiotelephone/GPS terminals
US20040072554A1 (en) * 2002-10-15 2004-04-15 Triquint Semiconductor, Inc. Automatic-bias amplifier circuit
US20040070454A1 (en) * 2002-10-15 2004-04-15 Triquint Semiconductor, Inc. Continuous bias circuit and method for an amplifier
US6989712B2 (en) 2002-11-06 2006-01-24 Triquint Semiconductor, Inc. Accurate power detection for a multi-stage amplifier
US7010284B2 (en) 2002-11-06 2006-03-07 Triquint Semiconductor, Inc. Wireless communications device including power detector circuit coupled to sample signal at interior node of amplifier
US20040216641A1 (en) * 2002-11-13 2004-11-04 Matsushita Electric Industrial Co., Ltd. Composition for forming porous film, porous film and method for forming the same, interlevel insulator film, and semiconductor device
US7092708B2 (en) 2002-12-12 2006-08-15 Atc Technologies, Llc Systems and methods for increasing capacity and/or quality of service of terrestrial cellular and satellite systems using terrestrial reception of satellite band frequencies
US20040203742A1 (en) * 2002-12-12 2004-10-14 Karabinis Peter D. Systems and methods for increasing capacity and/or quality of service of terrestrial cellular and satellite systems using terrestrial reception of satellite band frequencies
US20060211452A1 (en) * 2002-12-12 2006-09-21 Atc Technologies, Llc Terrestrial base stations and operating methods for increasing capacity and/or quality of service of terrestrial cellular and satellite systems using terrestrial reception of satellite band frequencies
US7421342B2 (en) 2003-01-09 2008-09-02 Atc Technologies, Llc Network-assisted global positioning systems, methods and terminals including doppler shift and code phase estimates
US20070233383A1 (en) * 2003-01-09 2007-10-04 Atc Technologies, Llc Network-Assisted Global Positioning Systems, Methods and Terminals Including Doppler Shift and Code Phase Estimates
US20100157929A1 (en) * 2003-03-24 2010-06-24 Karabinis Peter D Co-channel wireless communication methods and systems using relayed wireless communications
US7203490B2 (en) 2003-03-24 2007-04-10 Atc Technologies, Llc Satellite assisted push-to-send radioterminal systems and methods
US20040192395A1 (en) * 2003-03-24 2004-09-30 Karabinis Peter D. Co-channel wireless communication methods and systems using nonsymmetrical alphabets
US7831201B2 (en) 2003-03-24 2010-11-09 Atc Technologies, Llc Co-channel wireless communication methods and systems using relayed wireless communications
US7444170B2 (en) 2003-03-24 2008-10-28 Atc Technologies, Llc Co-channel wireless communication methods and systems using nonsymmetrical alphabets
US8340592B2 (en) 2003-03-24 2012-12-25 Atc Technologies, Llc Radioterminals and operating methods that receive multiple measures of information from multiple sources
US8108004B2 (en) 2003-03-24 2012-01-31 Atc Technologies, Llc Co-channel wireless communication methods and systems using relayed wireless communications
US8170474B2 (en) 2003-03-24 2012-05-01 Atc Technologies, Llc Satellite assisted radioterminal communications systems and methods
US20040192200A1 (en) * 2003-03-24 2004-09-30 Karabinis Peter D. Satellite assisted push-to-send radioterminal systems and methods
US20080119190A1 (en) * 2003-03-24 2008-05-22 Mobile Satellite Ventures, Lp Co-channel wireless communication methods and systems using relayed wireless communications
US20040205819A1 (en) * 2003-04-14 2004-10-14 Ramin Khoini-Poorfard Integrated multi-tuner satellite receiver architecture and associated method
US20040205820A1 (en) * 2003-04-14 2004-10-14 Ramin Khoini-Poorfard Receiver architectures utilizing coarse analog tuning and associated methods
US7167694B2 (en) * 2003-04-14 2007-01-23 Silicon Laboratories Inc. Integrated multi-tuner satellite receiver architecture and associated method
US7340230B2 (en) * 2003-04-14 2008-03-04 Silicon Laboratories Inc. Receiver architectures utilizing coarse analog tuning and associated methods
US20080250460A1 (en) * 2003-04-14 2008-10-09 Silicon Laboratories Inc. Receiver architectures utilizing coarse analog tuning and associated methods
US7904040B2 (en) 2003-04-14 2011-03-08 Silicon Laboratories, Inc. Receiver architectures utilizing coarse analog tuning and associated methods
US20050170834A1 (en) * 2003-05-16 2005-08-04 Santanu Dutta Systems and methods for handover between space based and terrestrial radioterminal communications
US20040229616A1 (en) * 2003-05-16 2004-11-18 Santanu Dutta Systems and methods for handover between space based and terrestrial radioterminal communications, and for monitoring terrestrially reused satellite frequencies at a radioterminal to reduce potential interference
US6879829B2 (en) 2003-05-16 2005-04-12 Mobile Satellite Ventures, Lp Systems and methods for handover between space based and terrestrial radioterminal communications, and for monitoring terrestrially reused satellite frequencies at a radioterminal to reduce potential interference
US7418263B2 (en) 2003-05-16 2008-08-26 Atc Technologies, Llc Systems and methods for handover between space based and terrestrial radioterminal communications
US20040240525A1 (en) * 2003-05-29 2004-12-02 Karabinis Peter D. Wireless communications methods and apparatus using licensed-use system protocols with unlicensed-use access points
US7558568B2 (en) 2003-07-28 2009-07-07 Atc Technologies, Llc Systems and methods for modifying antenna radiation patterns of peripheral base stations of a terrestrial network to allow reduced interference
US20050026606A1 (en) * 2003-07-28 2005-02-03 Karabinis Peter D. Systems and methods for modifying antenna radiation patterns of peripheral base stations of a terrestrial network to allow reduced interference
US7340213B2 (en) 2003-07-30 2008-03-04 Atc Technologies, Llc Intra- and/or inter-system interference reducing systems and methods for satellite communications systems
US8670705B2 (en) 2003-07-30 2014-03-11 Atc Technologies, Llc Additional intra-and/or inter-system interference reducing systems and methods for satellite communications systems
US20050136836A1 (en) * 2003-07-30 2005-06-23 Karabinis Peter D. Additional intra-and/or inter-system interference reducing systems and methods for satellite communications systems
US20050037749A1 (en) * 2003-07-30 2005-02-17 Karabinis Peter D. Intra-and/or inter-system interference reducing systems and methods for satellite communications systems
US20050041619A1 (en) * 2003-08-22 2005-02-24 Karabinis Peter D. Wireless systems, methods and devices employing forward- and/or return-link carriers having different numbers of sub-band carriers
US20050068193A1 (en) * 2003-09-05 2005-03-31 Osterloh Christopher L. Data communication protocol in an automatic meter reading system
US7336200B2 (en) 2003-09-05 2008-02-26 Itron, Inc. Data communication protocol in an automatic meter reading system
US7479895B2 (en) 2003-09-05 2009-01-20 Itron, Inc. Data communication protocol in an automatic meter reading system
EP1512946A3 (en) * 2003-09-05 2006-09-27 Itron, Inc. Data communication protocol in an automatic meter reading system
EP1512946A2 (en) * 2003-09-05 2005-03-09 Itron, Inc. Data communication protocol in an automatic meter reading system
US8238819B2 (en) 2003-09-11 2012-08-07 Atc Technologies, Llc Systems and methods for inter-system sharing of satellite communications frequencies within a common footprint
US8045975B2 (en) 2003-09-11 2011-10-25 Atc Technologies, Llc Systems and methods for inter-system sharing of satellite communications frequencies within a common footprint
US7925209B2 (en) 2003-09-11 2011-04-12 Atc Technologies, Llc Systems and methods for inter-system sharing of satellite communications frequencies within a common footprint
US20060246838A1 (en) * 2003-09-11 2006-11-02 Atc Technologies, Llc Systems and Methods for Inter-System Sharing of Satellite Communications Frequencies Within a Common Footprint
US7974619B2 (en) 2003-09-23 2011-07-05 Atc Technologies, Llc Systems and methods for mobility management in overlaid mobile communications systems
US8131293B2 (en) 2003-09-23 2012-03-06 Atc Technologies, Llc Systems and methods for mobility management in overlaid mobile communications systems
US7177370B2 (en) 2003-12-17 2007-02-13 Triquint Semiconductor, Inc. Method and architecture for dual-mode linear and saturated power amplifier operation
US20050135502A1 (en) * 2003-12-17 2005-06-23 Triquint Semiconductor, Inc. Method and architecture for dual-mode linear and saturated power amplifier operation
US8380186B2 (en) 2004-01-22 2013-02-19 Atc Technologies, Llc Satellite with different size service link antennas and radioterminal communication methods using same
US8655398B2 (en) 2004-03-08 2014-02-18 Atc Technologies, Llc Communications systems and methods including emission detection
US7453920B2 (en) 2004-03-09 2008-11-18 Atc Technologies, Llc Code synchronization in CDMA satellite wireless communications system using uplink channel detection
US7933552B2 (en) 2004-03-22 2011-04-26 Atc Technologies, Llc Multi-band satellite and/or ancillary terrestrial component radioterminal communications systems and methods with combining operation
US20050227618A1 (en) * 2004-03-22 2005-10-13 Karabinis Peter D Multi-band satellite and/or ancillary terrestrial component radioterminal communications systems and methods with diversity operation
US8050674B2 (en) 2004-04-07 2011-11-01 Atc Technologies, Llc Radioterminals including satellite/hands-free interlocks and related methods
US8014815B2 (en) 2004-04-07 2011-09-06 Atc Technologies, Llc Radioterminals including satellite interlocks and related methods
US20050239404A1 (en) * 2004-04-07 2005-10-27 Karabinis Peter D Satellite/hands-free interlock systems and/or companion devices for radioterminals and related methods
US7606590B2 (en) 2004-04-07 2009-10-20 Atc Technologies, Llc Satellite/hands-free interlock systems and/or companion devices for radioterminals and related methods
US7636566B2 (en) 2004-04-12 2009-12-22 Atc Technologies, Llc Systems and method with different utilization of satellite frequency bands by a space-based network and an ancillary terrestrial network
US8055257B2 (en) 2004-04-12 2011-11-08 Atc Technologies, Llc Systems and methods with different utilization of satellite frequency bands by a space-based network and an ancillary terrestrial network
US20050239403A1 (en) * 2004-04-12 2005-10-27 Karabinis Peter D Systems and methods with different utilization of satellite frequency bands by a space-based network and an ancillary terrestrial network
US7418236B2 (en) 2004-04-20 2008-08-26 Mobile Satellite Ventures, Lp Extraterrestrial communications systems and methods including ancillary extraterrestrial components
US20050239457A1 (en) * 2004-04-20 2005-10-27 Levin Lon C Extraterrestrial communications systems and methods including ancillary extraterrestrial components
US20050239399A1 (en) * 2004-04-21 2005-10-27 Karabinis Peter D Mobile terminals and set top boxes including multiple satellite band service links, and related systems and methods
US20050260947A1 (en) * 2004-05-18 2005-11-24 Karabinis Peter D Satellite communications systems and methods using radiotelephone location-based beamforming
US8265549B2 (en) 2004-05-18 2012-09-11 Atc Technologies, Llc Satellite communications systems and methods using radiotelephone
US8238818B2 (en) 2004-05-18 2012-08-07 Atc Technologies, Llc Satellite communications systems and methods using radiotelephone location-based beamforming
US20050260984A1 (en) * 2004-05-21 2005-11-24 Mobile Satellite Ventures, Lp Systems and methods for space-based use of terrestrial cellular frequency spectrum
US7706748B2 (en) 2004-06-25 2010-04-27 Atc Technologies, Llc Methods of ground based beamforming and on-board frequency translation and related systems
US20050288011A1 (en) * 2004-06-25 2005-12-29 Santanu Dutta Methods of ground based beamforming and on-board frequency translation and related systems
US20060040613A1 (en) * 2004-08-11 2006-02-23 Mobile Satellite Venturs, Lp Satellite-band spectrum utilization for reduced or minimum interference
US8145126B2 (en) 2004-08-11 2012-03-27 Atc Technologies, Llc Satellite-band spectrum utilization for reduced or minimum interference
US7957694B2 (en) 2004-08-11 2011-06-07 Atc Technologies, Llc Satellite-band spectrum utilization for reduced or minimum interference
US8369776B2 (en) 2004-11-02 2013-02-05 Atc Technologies, Llc Apparatus and methods for power control in satellite communications systems with satellite-linked terrestrial stations
US9037078B2 (en) 2004-11-02 2015-05-19 Atc Technologies, Llc Apparatus and methods for power control in satellite communications systems with satellite-linked terrestrial stations
US20060094352A1 (en) * 2004-11-02 2006-05-04 Karabinis Peter D Apparatus and methods for power control in satellite communications systems with satellite-linked terrestrial stations
US20060094420A1 (en) * 2004-11-02 2006-05-04 Karabinis Peter D Multi frequency band/multi air interface/multi spectrum reuse cluster size/multi cell size satellite radioterminal communicaitons systems and methods
US7639981B2 (en) 2004-11-02 2009-12-29 Atc Technologies, Llc Apparatus and methods for power control in satellite communications systems with satellite-linked terrestrial stations
US7653348B2 (en) 2004-11-16 2010-01-26 Atc Technologies, Llc Satellite communications systems, components and methods for operating shared satellite gateways
US20060105707A1 (en) * 2004-11-16 2006-05-18 Mobile Satellite Ventures, Lp Satellite communications systems, components and methods for operating shared satellite gateways
US7747229B2 (en) 2004-11-19 2010-06-29 Atc Technologies, Llc Electronic antenna beam steering using ancillary receivers and related methods
US20060111056A1 (en) * 2004-11-19 2006-05-25 Santanu Dutta Electronic antenna beam steering using ancillary receivers and related methods
US20060233147A1 (en) * 2004-12-07 2006-10-19 Mobile Satellite Ventures, Lp Broadband wireless communications systems and methods using multiple non-contiguous frequency bands/segments
US7856211B2 (en) 2004-12-07 2010-12-21 Atc Technologies, Llc Broadband wireless communications systems and methods using multiple non-contiguous frequency bands/segments
US20090042516A1 (en) * 2004-12-07 2009-02-12 Atc Technologies, Llc Broadband wireless communications systems and methods using multiple non-contiguous frequency bands/segments
US7454175B2 (en) 2004-12-07 2008-11-18 Atc Technologies, Llc Broadband wireless communications systems and methods using multiple non-contiguous frequency bands/segments
US8285225B2 (en) 2004-12-07 2012-10-09 Atc Technologies, Llc Broadband wireless communications systems and methods using multiple non-contiguous frequency bands/segments
US7634234B2 (en) 2004-12-16 2009-12-15 Atc Technologies, Llc Prediction of uplink interference potential generated by an ancillary terrestrial network and/or radioterminals
US8073394B2 (en) 2004-12-16 2011-12-06 Atc Technologies, Llc Prediction of uplink interference potential generated by an ancillary terrestrial network and/or radioterminals
US7953373B2 (en) 2004-12-16 2011-05-31 Atc Technologies, Llc Prediction of uplink interference potential generated by an ancillary terrestrial network and/or radioterminals
US8064378B2 (en) 2004-12-16 2011-11-22 Atc Technologies, Llc Location-based broadcast messaging for radioterminal users
US20060135070A1 (en) * 2004-12-16 2006-06-22 Atc Technologies, Llc Prediction of uplink interference potential generated by an ancillary terrestrial network and/or radioterminals
US20060135058A1 (en) * 2004-12-16 2006-06-22 Atc Technologies, Llc Location-based broadcast messaging for radioterminal users
US8594704B2 (en) 2004-12-16 2013-11-26 Atc Technologies, Llc Location-based broadcast messaging for radioterminal users
US8744360B2 (en) 2005-01-05 2014-06-03 Atc Technologies, Inc. Adaptive beam forming with multi-user detection and interference reduction in satellite communication systems and methods
US7813700B2 (en) 2005-01-05 2010-10-12 Atc Technologies, Llc Adaptive beam forming with multi-user detection and interference reduction in satellite communication systems
US20060165120A1 (en) * 2005-01-27 2006-07-27 Karabinis Peter D Satellite/terrestrial wireless communications systems and methods using disparate channel separation codes
US7596111B2 (en) 2005-01-27 2009-09-29 Atc Technologies, Llc Satellite/terrestrial wireless communications systems and methods using disparate channel separation codes
US7899002B2 (en) 2005-01-27 2011-03-01 Atc Technologies, Llc Satellite/terrestrial wireless communications systems and methods using disparate channel separation codes
US7636546B2 (en) 2005-02-22 2009-12-22 Atc Technologies, Llc Satellite communications systems and methods using diverse polarizations
US20060189275A1 (en) * 2005-02-22 2006-08-24 Karabinis Peter D Satellites using inter-satellite links to create indirect feeder link paths
US7620394B2 (en) 2005-02-22 2009-11-17 Atc Technologies, Llc Reusing frequencies of a fixed and/or mobile communications system
US20060189274A1 (en) * 2005-02-22 2006-08-24 Karabinis Peter D Satellite communications systems and methods using diverse polarizations
US20060189309A1 (en) * 2005-02-22 2006-08-24 Good Alexander H Reusing frequencies of a fixed and/or mobile communications system
US8023939B2 (en) 2005-02-22 2011-09-20 Atc Technologies, Llc Reusing frequencies of a fixed and/or mobile communications system
US20100015971A1 (en) * 2005-02-22 2010-01-21 Good Alexander H Reusing frequencies of a fixed and/or mobile communications system
US7398101B2 (en) 2005-03-01 2008-07-08 Micrel, Inc. Transmitter power level optimization and error correction technique
US20060199602A1 (en) * 2005-03-01 2006-09-07 Micrel, Inc. Transmitter power level optimization and error correction technique
US7756490B2 (en) 2005-03-08 2010-07-13 Atc Technologies, Llc Methods, radioterminals, and ancillary terrestrial components for communicating using spectrum allocated to another satellite operator
US20060205346A1 (en) * 2005-03-09 2006-09-14 Atc Technologies, Llc Reducing interference in a wireless communications signal in the frequency domain
US7587171B2 (en) 2005-03-09 2009-09-08 Atc Technologies, Llc Reducing interference in a wireless communications signal in the frequency domain
US7796986B2 (en) 2005-03-11 2010-09-14 Atc Technologies, Llc Modification of transmission values to compensate for interference in a satellite down-link communications
US20060217070A1 (en) * 2005-03-11 2006-09-28 Atc Technologies, Llc Modification of transmission values to compensate for interference in a satellite down-link communications
US20060205347A1 (en) * 2005-03-14 2006-09-14 Karabinis Peter D Satellite communications systems and methods with distributed and/or centralized architecture including ground-based beam forming
US7627285B2 (en) 2005-03-14 2009-12-01 Atc Technologies, Llc Satellite communications systems and methods with distributed and/or centralized architecture including ground-based beam forming
US20060276129A1 (en) * 2005-03-15 2006-12-07 Karabinis Peter D Intra-system and/or inter-system reuse of feeder link frequencies including interference suppression systems and methods
US7609666B2 (en) 2005-03-15 2009-10-27 Atc Technologies Llc Methods and systems providing adaptive feeder links for ground based beam forming and related systems and satellites
US7970346B2 (en) 2005-03-15 2011-06-28 Atc Technologies, Llc Methods of reducing interference including calculation of weights based on errors and related systems
US20060211419A1 (en) * 2005-03-15 2006-09-21 Karabinis Peter D Methods and systems providing adaptive feeder links for ground based beam forming and related systems and satellites
US7974575B2 (en) 2005-03-15 2011-07-05 Atc Technologies, Llc Methods of reducing interference including applying weights to provide correction signals and related systems
US7634229B2 (en) 2005-03-15 2009-12-15 Atc Technologies, Llc Intra-system and/or inter-system reuse of feeder link frequencies including interference suppression systems and methods
US7890050B2 (en) 2005-03-15 2011-02-15 Atc Technologies, Llc Methods of reducing interference including determination of feeder link signal error and related systems
US20060223447A1 (en) * 2005-03-31 2006-10-05 Ali Masoomzadeh-Fard Adaptive down bias to power changes for controlling random walk
US7999735B2 (en) 2005-04-04 2011-08-16 Atc Technologies, Llc Radioterminals and associated operating methods that transmit position information responsive to rate of change of position
US7696924B2 (en) 2005-04-04 2010-04-13 Atc Technologies, Llc Radioterminals and associated operating methods that transmit position information responsive to change/rate of change of position
US7453396B2 (en) 2005-04-04 2008-11-18 Atc Technologies, Llc Radioterminals and associated operating methods that alternate transmission of wireless communications and processing of global positioning system signals
US7817967B2 (en) 2005-06-21 2010-10-19 Atc Technologies, Llc Communications systems including adaptive antenna systems and methods for inter-system and intra-system interference reduction
US20060292990A1 (en) * 2005-06-21 2006-12-28 Karabinis Peter D Communications systems including adaptive antenna systems and methods for inter-system and intra-system interference reduction
US8412126B2 (en) 2005-06-21 2013-04-02 Atc Technologies, Llc Communications systems including adaptive antenna systems and methods for inter-system and intra-system interference reduction
US7970345B2 (en) 2005-06-22 2011-06-28 Atc Technologies, Llc Systems and methods of waveform and/or information splitting for wireless transmission of information to one or more radioterminals over a plurality of transmission paths and/or system elements
US7907944B2 (en) 2005-07-05 2011-03-15 Atc Technologies, Llc Methods, apparatus and computer program products for joint decoding of access probes in a CDMA communications system
US8190114B2 (en) 2005-07-20 2012-05-29 Atc Technologies, Llc Frequency-dependent filtering for wireless communications transmitters
US20070026867A1 (en) * 2005-07-29 2007-02-01 Atc Technologies, Llc Satellite Communications Apparatus and Methods Using Asymmetrical Forward and Return Link Frequency Reuse
US7623867B2 (en) 2005-07-29 2009-11-24 Atc Technologies, Llc Satellite communications apparatus and methods using asymmetrical forward and return link frequency reuse
US7917135B2 (en) 2005-07-29 2011-03-29 Atc Technologies, Llc Satellite communications apparatus and methods using asymmetrical forward and return link frequency reuse
US20070045220A1 (en) * 2005-08-08 2007-03-01 Plastipak Packaging, Inc. Plastic container
US7831202B2 (en) 2005-08-09 2010-11-09 Atc Technologies, Llc Satellite communications systems and methods using substantially co-located feeder link antennas
US8249585B2 (en) 2005-10-12 2012-08-21 Atc Technologies, Llc Systems, methods and computer program products for mobility management in hybrid satellite/terrestrial wireless communications systems
US20100159922A1 (en) * 2005-10-12 2010-06-24 Atc Technologies, Llc. Systems, methods and computer program products for mobility management in hybrid satellite/terrestrial wireless communications systems
US20070123252A1 (en) * 2005-10-12 2007-05-31 Atc Technologies, Llc Systems, methods and computer program products for mobility management in hybrid satellite/terrestrial wireless communications systems
KR100769989B1 (en) * 2005-12-09 2007-10-25 한국전자통신연구원 Apparatus and method for deciding transmission route in terminal capable of two-way communication both gap filler and satellite
US8090041B2 (en) 2006-01-20 2012-01-03 Atc Technologies Llc Systems and methods for forward link closed loop beamforming
US20070184849A1 (en) * 2006-01-20 2007-08-09 Act Technologies, Llc Systems and Methods for Satellite Forward Link Transmit Diversity Using Orthagonal Space Coding
US20080008264A1 (en) * 2006-01-20 2008-01-10 Atc Technologies, Llc Systems and Methods for Forward Link Closed Loop Beamforming
US7979024B2 (en) 2006-01-20 2011-07-12 Atc Technologies, Llc Systems and methods for satellite forward link transmit diversity using orthagonal space coding
US20070192805A1 (en) * 2006-02-15 2007-08-16 Atc Technologies, Llc Adaptive spotbeam broadcasting, systems, methods and devices for high bandwidth content distribution over satellite
US8705436B2 (en) 2006-02-15 2014-04-22 Atc Technologies, Llc Adaptive spotbeam broadcasting, systems, methods and devices for high bandwidth content distribution over satellite
US10491748B1 (en) 2006-04-03 2019-11-26 Wai Wu Intelligent communication routing system and method
US20070243866A1 (en) * 2006-04-13 2007-10-18 Atc Technologies, Llc Systems and methods for controlling base station sectors to reduce potential interference with low elevation satellites
US9461806B2 (en) 2006-04-13 2016-10-04 Atc Technologies, Llc Providing different transmit and/or receive modes in different sectors of a wireless base station
US7751823B2 (en) 2006-04-13 2010-07-06 Atc Technologies, Llc Systems and methods for controlling a level of interference to a wireless receiver responsive to an activity factor associated with a wireless transmitter
US20080032671A1 (en) * 2006-04-13 2008-02-07 Atc Technologies, Llc Systems and methods for controlling a level of interference to a wireless receiver responsive to an activity factor associated with a wireless transmitter
US8923850B2 (en) 2006-04-13 2014-12-30 Atc Technologies, Llc Systems and methods for controlling base station sectors to reduce potential interference with low elevation satellites
US9014619B2 (en) 2006-05-30 2015-04-21 Atc Technologies, Llc Methods and systems for satellite communications employing ground-based beam forming with spatially distributed hybrid matrix amplifiers
US8169955B2 (en) 2006-06-19 2012-05-01 Atc Technologies, Llc Systems and methods for orthogonal frequency division multiple access (OFDMA) communications over satellite links
US8526941B2 (en) 2006-06-29 2013-09-03 Atc Technologies, Llc Apparatus and methods for mobility management in hybrid terrestrial-satellite mobile communications systems
US20080182572A1 (en) * 2006-06-29 2008-07-31 Atc Technologies,Llc Apparatus and Methods for Mobility Management in Hybrid Terrestrial-Satellite Mobile Communications Systems
US20080144734A1 (en) * 2006-08-22 2008-06-19 Viasat, Inc. Downstream Broad Beam Diversity
US7944993B2 (en) 2006-08-22 2011-05-17 Viasat, Inc. Downstream broad beam diversity
US20080214107A1 (en) * 2006-08-22 2008-09-04 Viasat, Inc. Upstream Broad Beam Diversity
US7929909B2 (en) 2006-08-22 2011-04-19 Viasat, Inc. Upstream broad beam diversity with interference cancellation
US20080144596A1 (en) * 2006-08-22 2008-06-19 Viasat, Inc. Cooperative Orthogonal Multi-Satellite Communication System
US7904020B2 (en) * 2006-08-22 2011-03-08 Viasat, Inc. Downstream broad beam diversity with interference cancellation
US7881246B2 (en) 2006-08-22 2011-02-01 Viasat, Inc. Cooperative orthogonal multi-satellite communication system
US20080143589A1 (en) * 2006-08-22 2008-06-19 Viasat, Inc. Downstream Broad Beam Diversity With Interference Cancellation
US20100176967A1 (en) * 2007-01-04 2010-07-15 Scott Cumeralto Collecting utility data information and conducting reconfigurations, such as demand resets, in a utility metering system
US20080287124A1 (en) * 2007-05-15 2008-11-20 Atc Technologies, Llc Systems, methods and devices for reusing spectrum of another operator
US8031646B2 (en) 2007-05-15 2011-10-04 Atc Technologies, Llc Systems, methods and devices for reusing spectrum of another operator
US20090011704A1 (en) * 2007-07-03 2009-01-08 Mobile Satellite Ventures, Lp Systems and methods for reducing power robbing impact of interference to a satellite
US8064824B2 (en) 2007-07-03 2011-11-22 Atc Technologies, Llc Systems and methods for reducing power robbing impact of interference to a satellite
US20100026517A1 (en) * 2008-01-04 2010-02-04 Itron, Inc. Utility data collection and reconfigurations in a utility metering system
US7978135B2 (en) 2008-02-15 2011-07-12 Atc Technologies, Llc Antenna beam forming systems/methods using unconstrained phase response
US8560913B2 (en) 2008-05-29 2013-10-15 Intrasonics S.A.R.L. Data embedding system
US20100035604A1 (en) * 2008-08-06 2010-02-11 Santanu Dutta Systems, methods and devices for overlaid operations of satellite and terrestrial wireless communications systems
US8433241B2 (en) 2008-08-06 2013-04-30 Atc Technologies, Llc Systems, methods and devices for overlaid operations of satellite and terrestrial wireless communications systems
US8193975B2 (en) 2008-11-12 2012-06-05 Atc Technologies Iterative antenna beam forming systems/methods
US8339308B2 (en) 2009-03-16 2012-12-25 Atc Technologies Llc Antenna beam forming systems, methods and devices using phase adjusted least squares beam forming
US20100272050A1 (en) * 2009-04-28 2010-10-28 Samsung Electronics Co., Ltd. Method and apparatus for managing user equipment history information in wireless communication network
WO2010126296A3 (en) * 2009-04-28 2011-01-27 Samsung Electronics Co., Ltd. Method and apparatus for managing user equipment history information in wireless communication network
US9332420B2 (en) 2009-04-28 2016-05-03 Samsung Electronics Co., Ltd Method and apparatus for managing user equipment history information in wireless communication network
US9565555B2 (en) 2009-04-28 2017-02-07 Samsung Electronics Co., Ltd Method and apparatus for managing user equipment history information in wireless communication network
US10694371B2 (en) 2009-04-28 2020-06-23 Samsung Electronics Co., Ltd Method and apparatus for managing user equipment history information in wireless communication network
US11457349B2 (en) 2009-04-28 2022-09-27 Samsung Electronics Co., Ltd Method and apparatus for managing user equipment history information in wireless communication network
US8520561B2 (en) 2009-06-09 2013-08-27 Atc Technologies, Llc Systems, methods and network components that provide different satellite spot beam return carrier groupings and reuse patterns
US8576769B2 (en) 2009-09-28 2013-11-05 Atc Technologies, Llc Systems and methods for adaptive interference cancellation beamforming
US10110288B2 (en) 2009-11-04 2018-10-23 Atc Technologies, Llc Frequency division duplex (FDD) return link transmit diversity systems, methods and devices using forward link side information
US8274925B2 (en) 2010-01-05 2012-09-25 Atc Technologies, Llc Retaining traffic channel assignments for satellite terminals to provide lower latency communication services
US8831952B2 (en) * 2011-04-25 2014-09-09 Denso Corporation Voice input device
US20120271636A1 (en) * 2011-04-25 2012-10-25 Denso Corporation Voice input device
US10587333B2 (en) 2016-12-13 2020-03-10 Inmarsat Global Limited Forward link power control

Also Published As

Publication number Publication date
US5612703A (en) 1997-03-18

Similar Documents

Publication Publication Date Title
US5446756A (en) Integrated cellular communications system
US5878329A (en) Power control of an integrated cellular communications system
EP0476127B1 (en) Cellular communications system
US5995832A (en) Communications system
WO1996031009A1 (en) Cellular communications power control system
CA2590791C (en) Satellite communication system employing a combination of time slots and orthogonal codes
US9345029B2 (en) Satellite communication system employing a combination of time division multiplexing and non-orthogonal pseudorandom noise codes and time slots
EP0830752B1 (en) Pilot signal strength control for a low earth orbiting satellite communications system
US6347080B2 (en) Energy based communication rate detection system and method
FI121945B (en) Wireless telephone distribution system with multi-time and multi-state practice
WO1995027381A1 (en) System and method for mobile communications in coexistence with established communications systems
KR100715923B1 (en) Apparatus and method for paging
WO1995034181A1 (en) Communications system
US6671250B1 (en) Method for deep paging
RU2100904C1 (en) Network communication system
EP1169791B1 (en) System and method for correlating traffic channel signal measurements in a communications system
CA2589369C (en) Satellite communication system employing a combination of time division multiplexing and non-orthogonal pseudorandom noise codes and time slots
AU2004203066B2 (en) Method for deep paging

Legal Events

Date Code Title Description
AS Assignment

Owner name: CELSAT CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MALLINCKRODT, ALBERT J.;REEL/FRAME:006855/0352

Effective date: 19931021

AS Assignment

Owner name: CELSAT AMERICA, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CELSAT, INCORPORATED;REEL/FRAME:007234/0325

Effective date: 19941111

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 4

SULP Surcharge for late payment
FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: MOBILE SATELLITE VENTURES, LP, VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CELSAT AMERICA, INC.;REEL/FRAME:015530/0275

Effective date: 20041223

AS Assignment

Owner name: ATC TECHNOLOGIES, LLC,VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOBILE SATELLITE VENTURES, LP;REEL/FRAME:016357/0374

Effective date: 20050616

Owner name: ATC TECHNOLOGIES, LLC, VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOBILE SATELLITE VENTURES, LP;REEL/FRAME:016357/0374

Effective date: 20050616

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: THE BANK OF NEW YORK,NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:ATC TECHNOLOGIES, LLC;MOBILE SATELLITE VENTURES LP;REEL/FRAME:017435/0603

Effective date: 20060330

Owner name: THE BANK OF NEW YORK, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:ATC TECHNOLOGIES, LLC;MOBILE SATELLITE VENTURES LP;REEL/FRAME:017435/0603

Effective date: 20060330

AS Assignment

Owner name: CELSAT, INCORPORATED, NEVADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MALLINCKRODT, ALBERT JOHN;REEL/FRAME:017681/0687

Effective date: 19931021

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REFU Refund

Free format text: REFUND - PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: R2553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: ATC TECHNOLOGIES, LLC, VIRGINIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK MELLON AS COLLATERAL AGENT;REEL/FRAME:025105/0605

Effective date: 20011001

Owner name: LIGHTSQUARED LP, VIRGINIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK MELLON AS COLLATERAL AGENT;REEL/FRAME:025105/0605

Effective date: 20011001

Owner name: LIGHTSQUARED FINANCE CO., VIRGINIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK MELLON AS COLLATERAL AGENT;REEL/FRAME:025105/0605

Effective date: 20011001

AS Assignment

Owner name: WILMINGTON TRUST FSB, AS COLLATERAL TRUSTEE, MARYL

Free format text: SECURITY AGREEMENT;ASSIGNOR:ATC TECHNOLOGIES, LLC;REEL/FRAME:025126/0120

Effective date: 20101001

AS Assignment

Owner name: WILMINGTON TRUST FSB, AS COLLATERAL TRUSTEE, DELAW

Free format text: SECURITY AGREEMENT;ASSIGNORS:LIGHTSQUARED LP;ATC TECHNOLOGIES, LLC;LIGHTSQUARED INC. OF VIRGINIA;AND OTHERS;REEL/FRAME:026438/0603

Effective date: 20110603