US5460906A - Portable radio battery latch - Google Patents

Portable radio battery latch Download PDF

Info

Publication number
US5460906A
US5460906A US08/231,610 US23161094A US5460906A US 5460906 A US5460906 A US 5460906A US 23161094 A US23161094 A US 23161094A US 5460906 A US5460906 A US 5460906A
Authority
US
United States
Prior art keywords
battery
radio
housing
protrusions
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/231,610
Inventor
Robert Leon
Kok H. Chong
Kuruvilla Valakuzhy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Priority to US08/231,610 priority Critical patent/US5460906A/en
Application granted granted Critical
Publication of US5460906A publication Critical patent/US5460906A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0262Details of the structure or mounting of specific components for a battery compartment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T292/00Closure fasteners
    • Y10T292/08Bolts
    • Y10T292/096Sliding
    • Y10T292/0969Spring projected
    • Y10T292/097Operating means
    • Y10T292/0997Rigid

Definitions

  • This invention relates generally to portable radio batteries, and more specifically to latches for radio batteries.
  • Portable radios must be designed so that the batteries do not easily come off. However, ease of removal and insertion of a battery pack onto a radio is a desirable feature. Accordingly, a need exists for a latch that facilitates insertion of the battery pack onto and removal from the radio housing, while providing protection against accidental removal.
  • a latch for a battery includes a beam supported at opposite springing ends.
  • a protrusion located between the opposite ends of the beam selectively latches onto a fixed hook.
  • FIG. I is a perspective rear view of a radio in accordance with the present invention.
  • FIG. 2 is a perspective rear view of a battery pack in accordance with the present invention.
  • FIG. 3 is bottom view of the latch assembly 102 of FIG. 2.
  • FIG. 4 is a top view of the latch assembly 102 of FIG. 3.
  • FIG. 5 is a back view of the single latch and spring piece 202 of FIG. 4.
  • FIG. 6 is a sectional view of a simplified latch 52 and catch 152 assembly of the radio of FIG. I and the battery of FIG. 2.
  • a battery (or other energy source) or battery pack 10 selectively attaches to and powers a communication device, such as a two-way radio 30.
  • Radio 30 includes a radio housing 32 having a battery receiving area 34 on the backside 14 of the radio housing and an antenna 42.
  • the receiving area 34 also includes a bottom sidewall 24 that extends perpendicularly away from the backside 14 of the housing 32.
  • the radio 30 has retainable receiving areas, such as a cavity 66 located on the backside 14 and a pair of apertures 64, located on the bottom sidewall 24 to form a retainer, for mechanically coupling the battery 10 to the radio 30.
  • Conductive mating means such as positive and negative radio supply contacts 38 and 40, respectively are recessed within the cavity 66, but show through corresponding apertures, to form a protrusion receiving area or socket.
  • the bottom apertures 64 and the top cavity 66 are used for receiving the battery 10. These retainers simultaneously serve three functions: mechanically coupling the battery 10 to the radio 30, electronically coupling the battery to the radio through the radio contacts 40 and 38, and providing accessibility to the battery for a charger (not shown) through the apertures 64 when charging the battery.
  • the radio housing 32 and its backside 14 can either be two separate housings coupled together or one integrated housing.
  • the backside of the radio housing is a separate metal chassis for providing ground protection to the radio while both the housings for the battery and radio are made from plastic.
  • a catch assembly 104 is mounted on a top center end of the radio's backside or chassis 14.
  • the catch assembly 104 includes two fixed hooks 152 and 154, each having a protrusion or upper ledge 15.
  • Each of the upper ledge 15 has a sloping top surface 321 and the interior wall of the fixed hook defines a recess 78.
  • a battery housing 16 includes a bottom side or underside 44 and a housing portion or battery cover 22 on the rear or backside. Both the battery cover 22 and the bottom side 44 of the battery housing include mating mechanisms, such as protrusions or bosses 13 and 36, respectively, for attaching the battery to the radio 30.
  • the bottom protrusions 36 captivate charging contacts such as positive and negative charger contacts 18 and 21 and sensor contacts 19 and 20 on the bottom side 44 of the battery pack 10.
  • the top protrusion 13 captivates the positive and negative supply contacts 28 and 26, respectively, within the top rear protrusion 13 disposed on the housing portion or battery cover 22.
  • each bottom protrusion 36 hooks into the aperture 64, in the corresponding end of the radio housing 32 to provide pivotal support.
  • the top rear protrusion 13 extends into the cavity 66, in the corresponding top portion of the radio housing 32, to provide proper alignment and to reduce tolerance stack-up during attachment.
  • the battery pack 10 hooks or pivots at one end as the lower protrusions 36 are engaged by the apertures 64.
  • the protrusions 36 do not extend out of the apertures 64 but are recessed within them. Then, the protrusion 13 in the battery cover is pivoted into proper alignment by being lowered towards the radio housing until the protrusion 13 aligns into place.
  • the protrusions 36 and 13 preferably carry cylindrical conductive contacts. These contacts are force-fitted into molded through-holes 112 and 114 of the battery housing 16 to integrally form the positive and negative charger contacts 21 and 18, charger sense contacts 19 and 20, and positive and negative battery supply contacts 28 and 26 in the housing.
  • the housing 16 and housing portion 22 can either be one integrated housing or two separate housings coupled together.
  • battery cover 22 and battery housing 16 are ultrasonically welded together once battery cells 71, as seen in FIG. 6, have been placed inside a cell compartment housing 206 (and correspondingly covered with a cell compartment cover portion 106).
  • a top extension 6 extends from the cell compartment cover portion 106 and forms the base of a releasable snap assembly 102 for latching on to the catch assembly 104 of the radio's backside or chassis 14.
  • snap assembly 102 includes a single latch and spring piece 202.
  • the single spring and latch piece 202 may be made from any suitable resilient material such as polycarbonate or any other type of plastic.
  • the single piece 202 is molded as an integral part of the battery cover, but other implementations may be apparent to those skilled in the art.
  • the single latch and spring piece 202 is molded at two "L" shaped support ends 8 to the extension 6. As part of the single piece 202, two “S" shaped spring support arms 418 each connect to the free end of the supports 8. A beam or sidewall of the latch and spring piece 2 joins the two spring support arms 418, in order to form a spring and minimize the stress on the spring.
  • Two latch protrusions, hooks, or snaps 52 and 54 are perpendicularly projected from the beam 2 and are used to lock the battery to the radio. Dual hooks provide more of a balanced locking assembly. However, it is possible to implement the invention with only one hook in accordance with the invention.
  • the latch hooks 52 and 54 are preferably tapered on several surfaces, including a slope 421, for easier snapping action and slightly thickened near the center, between the two hooks, to protect the hooks from wear and tear.
  • the single latch piece 102 also includes a rigid ejector 4 perpendicularly and centrally mounted on the beam 2, around the hooks, to minimize bending of that center area.
  • the ejector 4 is a tri-pod having a center triangular support leg or rib 250 mounted between the two latch hooks 52 and 54 and having the other two support legs 252 and 254 straddling the two latch hooks 52 and 54.
  • a side view, in FIG. 6, of the single latch piece 202 shows a "U" shaped retainer 422. This retainer 422 is formed from each of the bottom protruded surface of the latch hooks 52 intersecting the corner of the underside of the ejector 4 and the beam 2.
  • the common tip of the tripod ejector 4 forms a button 3.
  • the hooks 52 and 54 parallel each other, as they move in the horizontal or inward direction 530. This parallel motion prevents bowing of the beam 2 and minimizes the required force or beam travel to disengage the hooks 52 and 54.
  • the extension 6 is preferably cut-out in a "U" shape.
  • the bottom of the "U” or the overall width of the extension 6 limits the travel of the beam 2 in the vertical or downward direction.
  • FIG. 6 a cut-away view of only the ejector 4 and snap latch 52 is shown in a simplistic battery and radio assembled representation.
  • the front portion of the battery housing forms a housing overtravel limiting plastic skirt, detent, or protective sheath 122 that inhibits over-travel and damage of the button 3.
  • Skirt 122 extends from the battery cell compartment portion 206 and intersects its inner wall 124.
  • Inner wall 124 and the skirt 122 form a cavity 113 to receive the single latch piece 202 and to control its travel from being twisted in any direction, even when the battery pack is removed from the protection of the radio housing 16. Specifically, inner wall 124 inhibits overtravel and damage of the beam 2 from being bent too far inward.
  • button 3 slips through an opening 118 defined by a recessed edge 125 of the housing skirt 122. Since button 3 is omnidirectionally captured, except in the horizontal direction, by the recessed edge 125, in the front end, and the beam 2 is blocked by the inner wall 124 in the back end, the travel of the latch hooks 52 and 54 is restricted when the beam 2 carrying them is similarly restricted from moving beyond the plastic's yield limit in any direction.
  • the overall shape of the single latch piece 202 is arched or in whatever shape needed to fit the cavity 113.
  • the back side 210 of the two side legs 252 and 254 of the tri-pod ejector 4 is also slightly curved or tapered to more easily fit the ejector 4 in the cavity portion 113.
  • a cut relief or indented recess 126, around the opening 118, allows for easy depression of the button 3 with an operator's finger.
  • the lower protrusions 36 of the lower end 44 of the battery are inserted and engaged by the corresponding radio apertures 64. Then the battery housing is pivoted toward its locked position.
  • the slope 421 of each of the latch hooks 52 and 54 slide down the slope 321 of each of the fixed hooks 152 and 154 until the latch hooks lock or snap into place.
  • the resilient plastic beam 2 decompresses the latch hooks into their "locked" positions when each of the fixed protrusions 15 are up and beyond the slopes 421.
  • the release of the beam's spring force biases the hooks 52 and 54, carried by the beam 2, toward the recessed wall 78 of the fixed hooks 152 and 154.
  • the double spring beam 2 has sufficient tension from its double spring arms 418 to provide spring force retention. That decompression release outwardly pushes the battery housing 10 toward the chassis 14, making retention easier.
  • the "U" shaped retainer 422 locks on to the protrusion 15.
  • the tri-pod's center leg 250 also fits in between the two fixed hooks 152 and 154 of the radio chassis 34.
  • the user has to hold the radio stationary while grabbing and resting the palm against the battery. Meanwhile, the latch assembly 102 is deflected and the battery pack is pivoted upward while deflection is maintained.
  • the area surrounding the opening 118 and the recessed edge 125 forms a finger indented recess 126 on the skirt 122.
  • This finger indented recess 126 thus allow easy latch removal access from the outside of the battery housing 16.
  • access is purposely designed to be very limited on the inside of the battery housing 16 by creating a tight fit for the cavity 113.
  • a battery pack latch is provided which facilitates insertion of the battery pack on to and removal from a radio housing, while preventing accidental removal.

Abstract

A latch (202) for a battery (10) includes a beam (2) supported at opposite springing (418) ends (8). A protrusion (52) located between the opposite ends of the beam selectively latches onto a fixed hook (152).

Description

This is a continuation of application Ser. No. 08/049,050 filed Apr. 19,1993now abandoned.
TECHNICAL FIELD
This invention relates generally to portable radio batteries, and more specifically to latches for radio batteries.
BACKGROUND
Portable radios must be designed so that the batteries do not easily come off. However, ease of removal and insertion of a battery pack onto a radio is a desirable feature. Accordingly, a need exists for a latch that facilitates insertion of the battery pack onto and removal from the radio housing, while providing protection against accidental removal.
SUMMARY OF THE INVENTION
Briefly, according to the invention, a latch for a battery includes a beam supported at opposite springing ends. A protrusion located between the opposite ends of the beam selectively latches onto a fixed hook.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. I is a perspective rear view of a radio in accordance with the present invention.
FIG. 2 is a perspective rear view of a battery pack in accordance with the present invention.
FIG. 3 is bottom view of the latch assembly 102 of FIG. 2.
FIG. 4 is a top view of the latch assembly 102 of FIG. 3.
FIG. 5 is a back view of the single latch and spring piece 202 of FIG. 4.
FIG. 6 is a sectional view of a simplified latch 52 and catch 152 assembly of the radio of FIG. I and the battery of FIG. 2.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to FIG. 1, a battery (or other energy source) or battery pack 10 selectively attaches to and powers a communication device, such as a two-way radio 30. Radio 30 includes a radio housing 32 having a battery receiving area 34 on the backside 14 of the radio housing and an antenna 42. The receiving area 34 also includes a bottom sidewall 24 that extends perpendicularly away from the backside 14 of the housing 32. Within the battery receiving area 34, the radio 30 has retainable receiving areas, such as a cavity 66 located on the backside 14 and a pair of apertures 64, located on the bottom sidewall 24 to form a retainer, for mechanically coupling the battery 10 to the radio 30. Conductive mating means, such as positive and negative radio supply contacts 38 and 40, respectively are recessed within the cavity 66, but show through corresponding apertures, to form a protrusion receiving area or socket. The bottom apertures 64 and the top cavity 66 are used for receiving the battery 10. These retainers simultaneously serve three functions: mechanically coupling the battery 10 to the radio 30, electronically coupling the battery to the radio through the radio contacts 40 and 38, and providing accessibility to the battery for a charger (not shown) through the apertures 64 when charging the battery.
The radio housing 32 and its backside 14 can either be two separate housings coupled together or one integrated housing. Preferably, the backside of the radio housing is a separate metal chassis for providing ground protection to the radio while both the housings for the battery and radio are made from plastic.
For latching of the battery to the radio, a catch assembly 104 is mounted on a top center end of the radio's backside or chassis 14. The catch assembly 104 includes two fixed hooks 152 and 154, each having a protrusion or upper ledge 15. Each of the upper ledge 15 has a sloping top surface 321 and the interior wall of the fixed hook defines a recess 78.
Referring to FIG. 2, a battery housing 16 includes a bottom side or underside 44 and a housing portion or battery cover 22 on the rear or backside. Both the battery cover 22 and the bottom side 44 of the battery housing include mating mechanisms, such as protrusions or bosses 13 and 36, respectively, for attaching the battery to the radio 30. The bottom protrusions 36 captivate charging contacts such as positive and negative charger contacts 18 and 21 and sensor contacts 19 and 20 on the bottom side 44 of the battery pack 10. Likewise, on the rear or backside of the battery pack 10, the top protrusion 13 captivates the positive and negative supply contacts 28 and 26, respectively, within the top rear protrusion 13 disposed on the housing portion or battery cover 22.
Each bottom protrusion 36 hooks into the aperture 64, in the corresponding end of the radio housing 32 to provide pivotal support. Similarly, the top rear protrusion 13 extends into the cavity 66, in the corresponding top portion of the radio housing 32, to provide proper alignment and to reduce tolerance stack-up during attachment. When the lower end of the battery is inserted into the radio, the battery pack 10 hooks or pivots at one end as the lower protrusions 36 are engaged by the apertures 64. Preferably, the protrusions 36 do not extend out of the apertures 64 but are recessed within them. Then, the protrusion 13 in the battery cover is pivoted into proper alignment by being lowered towards the radio housing until the protrusion 13 aligns into place. Thus, the protrusion 13 and cavity 66, mated at the opposite portion, complete the alignment process, started when the battery and radio were pivotally attached at the other end. Dual pivotal supports are used to balance the alignment better. However, it is possible to implement the invention with only one pivotal support.
The protrusions 36 and 13 preferably carry cylindrical conductive contacts. These contacts are force-fitted into molded through- holes 112 and 114 of the battery housing 16 to integrally form the positive and negative charger contacts 21 and 18, charger sense contacts 19 and 20, and positive and negative battery supply contacts 28 and 26 in the housing.
The housing 16 and housing portion 22 can either be one integrated housing or two separate housings coupled together. Preferably, for attaching the two separate parts, battery cover 22 and battery housing 16 are ultrasonically welded together once battery cells 71, as seen in FIG. 6, have been placed inside a cell compartment housing 206 (and correspondingly covered with a cell compartment cover portion 106). A top extension 6 extends from the cell compartment cover portion 106 and forms the base of a releasable snap assembly 102 for latching on to the catch assembly 104 of the radio's backside or chassis 14.
Referring to FIGS. 3-6, snap assembly 102 includes a single latch and spring piece 202. The single spring and latch piece 202 may be made from any suitable resilient material such as polycarbonate or any other type of plastic. In the preferred embodiment the single piece 202 is molded as an integral part of the battery cover, but other implementations may be apparent to those skilled in the art.
The single latch and spring piece 202 is molded at two "L" shaped support ends 8 to the extension 6. As part of the single piece 202, two "S" shaped spring support arms 418 each connect to the free end of the supports 8. A beam or sidewall of the latch and spring piece 2 joins the two spring support arms 418, in order to form a spring and minimize the stress on the spring.
Two latch protrusions, hooks, or snaps 52 and 54 are perpendicularly projected from the beam 2 and are used to lock the battery to the radio. Dual hooks provide more of a balanced locking assembly. However, it is possible to implement the invention with only one hook in accordance with the invention. The latch hooks 52 and 54 are preferably tapered on several surfaces, including a slope 421, for easier snapping action and slightly thickened near the center, between the two hooks, to protect the hooks from wear and tear.
The single latch piece 102 also includes a rigid ejector 4 perpendicularly and centrally mounted on the beam 2, around the hooks, to minimize bending of that center area. Preferably, the ejector 4 is a tri-pod having a center triangular support leg or rib 250 mounted between the two latch hooks 52 and 54 and having the other two support legs 252 and 254 straddling the two latch hooks 52 and 54. A side view, in FIG. 6, of the single latch piece 202 shows a "U" shaped retainer 422. This retainer 422 is formed from each of the bottom protruded surface of the latch hooks 52 intersecting the corner of the underside of the ejector 4 and the beam 2.
To provide an operator-selected ejecting feature, the common tip of the tripod ejector 4 forms a button 3. Controlled by the common button 3 connection, the hooks 52 and 54 parallel each other, as they move in the horizontal or inward direction 530. This parallel motion prevents bowing of the beam 2 and minimizes the required force or beam travel to disengage the hooks 52 and 54.
To expose a center hook area 302, the extension 6 is preferably cut-out in a "U" shape. The bottom of the "U" or the overall width of the extension 6 limits the travel of the beam 2 in the vertical or downward direction.
Referring to FIG. 6, a cut-away view of only the ejector 4 and snap latch 52 is shown in a simplistic battery and radio assembled representation. Opposite the cover extension 6, the front portion of the battery housing forms a housing overtravel limiting plastic skirt, detent, or protective sheath 122 that inhibits over-travel and damage of the button 3. Skirt 122 extends from the battery cell compartment portion 206 and intersects its inner wall 124. Inner wall 124 and the skirt 122 form a cavity 113 to receive the single latch piece 202 and to control its travel from being twisted in any direction, even when the battery pack is removed from the protection of the radio housing 16. Specifically, inner wall 124 inhibits overtravel and damage of the beam 2 from being bent too far inward.
When the battery housing 16 and the battery cover 22 are suitably joined, button 3 slips through an opening 118 defined by a recessed edge 125 of the housing skirt 122. Since button 3 is omnidirectionally captured, except in the horizontal direction, by the recessed edge 125, in the front end, and the beam 2 is blocked by the inner wall 124 in the back end, the travel of the latch hooks 52 and 54 is restricted when the beam 2 carrying them is similarly restricted from moving beyond the plastic's yield limit in any direction.
As seen in FIG. 5, the overall shape of the single latch piece 202 is arched or in whatever shape needed to fit the cavity 113. The back side 210 of the two side legs 252 and 254 of the tri-pod ejector 4 is also slightly curved or tapered to more easily fit the ejector 4 in the cavity portion 113. A cut relief or indented recess 126, around the opening 118, allows for easy depression of the button 3 with an operator's finger. Once the cover 22 is welded to the housing 16, the only exposed areas are then those of the button 3 and the hook area 302.
For attaching the battery of FIG. 2 to the radio of FIG. 1, the lower protrusions 36 of the lower end 44 of the battery are inserted and engaged by the corresponding radio apertures 64. Then the battery housing is pivoted toward its locked position. The slope 421 of each of the latch hooks 52 and 54 slide down the slope 321 of each of the fixed hooks 152 and 154 until the latch hooks lock or snap into place. The resilient plastic beam 2 decompresses the latch hooks into their "locked" positions when each of the fixed protrusions 15 are up and beyond the slopes 421. To maintain the latch hooks 52 and 54 in this latched position, the release of the beam's spring force biases the hooks 52 and 54, carried by the beam 2, toward the recessed wall 78 of the fixed hooks 152 and 154. When decompressed, the double spring beam 2 has sufficient tension from its double spring arms 418 to provide spring force retention. That decompression release outwardly pushes the battery housing 10 toward the chassis 14, making retention easier. Meanwhile, the "U" shaped retainer 422 locks on to the protrusion 15. The tri-pod's center leg 250 also fits in between the two fixed hooks 152 and 154 of the radio chassis 34.
This latching at one end, opposite a pivoted end, forces the user to combine deliberate motions to prevent accidental battery detachment. To remove the battery, the user has to hold the radio stationary while grabbing and resting the palm against the battery. Meanwhile, the latch assembly 102 is deflected and the battery pack is pivoted upward while deflection is maintained.
When wishing to unlock the battery pack 10 from the radio 30, one would linearly deflect the outer button end 3 of the tri-pod ejector 4. As both of the latch hooks 52 and 54 are moved inward, by the commonly connected button 3, to release the battery 10, the ejector 4 springs or compresses the latch hooks 52 and 54 of the battery pack off or away from the radio. The rigid plastic ejector piece 4 moves the beam 2 and subsequently also the hooks 52 and 54 carried with the beam 2 away from the radio's fixed hooks 152 and 154.
To facilitate button deflection, the area surrounding the opening 118 and the recessed edge 125 forms a finger indented recess 126 on the skirt 122. This finger indented recess 126 thus allow easy latch removal access from the outside of the battery housing 16. At the same time, access is purposely designed to be very limited on the inside of the battery housing 16 by creating a tight fit for the cavity 113.
In summary, only two piece parts, the battery cover and the battery housing, are used to house, cover, and protect a resilient latch. Thus, a battery pack latch is provided which facilitates insertion of the battery pack on to and removal from a radio housing, while preventing accidental removal.

Claims (3)

What is claimed is:
1. A battery for attachment to and powering of a radio, the battery comprising:
at least one cell;
a housing containing said at least one cell;
mating means, located on the housing, for selectively attaching the battery and the radio, the mating means including:
a pair of protrusions selectively receivable by the radio; and
spring bias means, having a pair of opposite corrugated springs and an intermediate portion between the springs, each spring having a supported end to support the spring and an unsupported end connected to the intermediate portion, the intermediate portion resiliently carrying the protrusions for selectively releasing the pair of protrusions; and
rib means having a release button end, mounted on the intermediate portion for urging the housing away from the radio when the release button end is selectively actuated by an operator.
2. The battery of claim 1 wherein the radio further comprises:
a fixed hook extending from the radio such that it is retained within the pair of protrusions when the mating means is in a latched position.
3. A radio and battery assembly, the assembly comprising:
a radio housing having a pair of fixed protrusions extending from the radio housing for selectively attaching a battery to the radio, in a latched position;
a battery housing for attaching to the radio housing, the battery housing comprising:
a battery cell compartment and a protective sheath member extending from the battery cell compartment, the protective sheath member having a receiving orifice;
a battery cover for covering the battery cell compartment and a cover extension for covering the protective sheath member; and
latching means resiliently supported from the cover extension, covered by the protective sheath member, and protruding through the receiving orifice; the latching means comprising:
a beam having opposite springing ends, the beam supported at the opposite springing ends; and
a pair of resilient protrusions located on the beam between the opposite ends of the beam for hooking with the pair of fixed protrusions extending from the radio housing; and
release means for urging the beam and the pair of resilient protrusions away from the fixed protrusions when the latching means is moved from the latched position to an unlatched position.
US08/231,610 1993-04-19 1994-04-22 Portable radio battery latch Expired - Fee Related US5460906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/231,610 US5460906A (en) 1993-04-19 1994-04-22 Portable radio battery latch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/049,050 US5620242A (en) 1993-04-19 1993-04-19 Portable radio battery latch
US08/231,610 US5460906A (en) 1993-04-19 1994-04-22 Portable radio battery latch

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/049,050 Continuation US5620242A (en) 1993-04-19 1993-04-19 Portable radio battery latch

Publications (1)

Publication Number Publication Date
US5460906A true US5460906A (en) 1995-10-24

Family

ID=21957802

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/049,050 Expired - Fee Related US5620242A (en) 1993-04-19 1993-04-19 Portable radio battery latch
US08/231,610 Expired - Fee Related US5460906A (en) 1993-04-19 1994-04-22 Portable radio battery latch

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/049,050 Expired - Fee Related US5620242A (en) 1993-04-19 1993-04-19 Portable radio battery latch

Country Status (7)

Country Link
US (2) US5620242A (en)
EP (1) EP0696383A1 (en)
JP (1) JPH08509321A (en)
KR (1) KR100193587B1 (en)
CN (1) CN1121377A (en)
AU (1) AU6706794A (en)
WO (1) WO1994024708A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589288A (en) * 1995-07-31 1996-12-31 Black & Decker, Inc. Cordless power tool having a push button battery release arrangement
US5607792A (en) * 1996-02-05 1997-03-04 Motorola, Inc. Battery latch
US5620242A (en) * 1993-04-19 1997-04-15 Motorola, Inc. Portable radio battery latch
US5697070A (en) * 1995-06-05 1997-12-09 Lucent Technologies, Inc. Battery pack for portable transceiver
US5895729A (en) * 1997-09-25 1999-04-20 Motorola, Inc. Battery latch assembly for two-way radio
US5909102A (en) * 1998-01-21 1999-06-01 Motorola, Inc. Battery connection apparatus employing fixed latching members
USD410893S (en) * 1998-03-12 1999-06-15 Qualcomm Incorporated Battery pack for a portable telephone
WO2000008698A1 (en) * 1998-08-02 2000-02-17 Motorola Inc. Latch system for battery housing
US6064577A (en) * 1998-04-06 2000-05-16 Motorola, Inc. Bottom insert belt clip mount on battery
US6157545A (en) * 1998-05-14 2000-12-05 Motorola, Inc. Battery connection apparatus with end projections
US6371535B2 (en) * 1998-05-12 2002-04-16 Mitac International Corporation Easily releasable locking device for detachably securing a battery pack to a portable battery-powered apparatus
US6656626B1 (en) 1999-06-01 2003-12-02 Porter-Cable Corporation Cordless power tool battery release mechanism
US20070228741A1 (en) * 2005-11-23 2007-10-04 Lg Chem, Ltd. Locker structure of battery pack for wireless device
US20080063927A1 (en) * 2006-09-13 2008-03-13 Motorola, Inc. Unitary electronic device housing molding and battery biasing member and method of making same
US7346366B2 (en) * 2001-07-02 2008-03-18 Lg Electronics, Inc. Mobile phone
USRE40681E1 (en) 1994-06-10 2009-03-24 Linvatec Corporation Combination rechargeable, detachable battery system and power tool
US20090179435A1 (en) * 2008-01-14 2009-07-16 Lev Jeffrey A Computing device latching assembly
US20090233655A1 (en) * 2008-03-14 2009-09-17 Shenzhen Futaihong Precision Industry Co., Ltd. Portable electronic device
US7741809B2 (en) 2006-01-06 2010-06-22 Milwaukee Electric Tool Corporation Electrical component including a battery receptacle for including a battery
US20100244464A1 (en) * 2009-03-27 2010-09-30 Vijai Rajagopal Battery cover and latch assembly for a portable electronic device
US20100276946A1 (en) * 2009-04-30 2010-11-04 Motorola, Inc. Interconnect assembly
US7835534B2 (en) 2003-10-14 2010-11-16 Robert Bosch Gmbh Battery charging jobsite lunchbox
US7868590B2 (en) 2001-11-09 2011-01-11 Milwaukee Electric Tool Corporation Electrical component, such as a radio, MP3 player, audio component, battery charger, radio/charger, MP3 player/radio, MP3 player/charger or MP3 player/radio/charger, having a selectively connectable battery charger
US20110042970A1 (en) * 2009-08-19 2011-02-24 Vijai Rajagopal Battery cover and pivoting latch assembly for a portable electronic device
US20110187133A1 (en) * 2010-02-04 2011-08-04 Shenzhen Futaihong Precision Industry Co., Ltd. Battery cover latch mechanism and portable electronic device using the same
US8312937B2 (en) 2001-08-24 2012-11-20 Black & Decker Inc. Battery for a power tool with a battery pack ejector
US8586225B1 (en) 2012-08-21 2013-11-19 Harris Corporation Battery assembly for an electronic device
US8604752B2 (en) 2003-10-14 2013-12-10 Robert Bosch Gmbh Portable battery charging and audio unit
CN104659305A (en) * 2015-02-12 2015-05-27 广州明美电子有限公司 Multi-battery-cell external battery with stainless steel lock latch

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3060291B2 (en) * 1996-10-09 2000-07-10 松下電器産業株式会社 Battery pack holding device
SE516165C2 (en) * 1999-02-18 2001-11-26 Ericsson Telefon Ab L M Portable electrical appliance with a disconnectable power source unit
US7121854B2 (en) * 2003-05-28 2006-10-17 Eastway Fair Company Limited Slide type battery ejection mechanism
US7125270B2 (en) * 2003-05-28 2006-10-24 Eastway Fair Trade Company Limited Slide type battery ejection mechanism
US6955549B2 (en) * 2003-05-28 2005-10-18 One World Technologies Limited Slide type battery ejection mechanism
DE102005013351B4 (en) * 2005-03-23 2007-12-20 Diehl Aerospace Gmbh Device for emergency power supply
US8644935B2 (en) * 2007-04-23 2014-02-04 Cochlear Limited Methods of forming sealed devices containing heat sensitive components
CN101958406B (en) * 2009-07-13 2014-10-22 赛恩倍吉科技顾问(深圳)有限公司 Clamping mechanism and portable electronic device using same
EP2510764B1 (en) 2009-12-09 2016-11-16 Thomson Licensing Set-top box having microperforations
WO2011106082A1 (en) 2010-02-25 2011-09-01 Thomson Licensing Miniature multilayer radiative cooling case with hidden quick release snaps
KR20130077841A (en) 2010-05-19 2013-07-09 톰슨 라이센싱 Set-top box having dissipating thermal loads
CN103858067A (en) 2011-03-09 2014-06-11 汤姆逊许可公司 Set top box or server having snap-in heat sink and smart card reader
BR112014000762A2 (en) 2011-07-14 2017-02-14 Thomson Licensing bos top set converter having snap-in heat sink and smart card reader with a containment to retain the heat sink
US9326812B2 (en) 2012-01-25 2016-05-03 Covidien Lp Portable surgical instrument
US9364596B2 (en) * 2013-01-04 2016-06-14 HeartWave, Inc. Controller and power source for implantable blood pump
US9694526B2 (en) * 2013-03-15 2017-07-04 Apple Inc. Injection mold with multi-axial core inserts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714439A (en) * 1986-07-03 1987-12-22 Motorola, Inc. Electrical connector
US5160879A (en) * 1991-10-08 1992-11-03 Curtis Manufacturing Company, Inc. Safe, rechargeable, battery-containing power pack and method
US5314763A (en) * 1993-07-20 1994-05-24 Motorola, Inc. Battery latch
US5421745A (en) * 1994-01-03 1995-06-06 Motorola, Inc. Contact array
US5421743A (en) * 1994-07-11 1995-06-06 Hwang; Steve H. S. Safety battery snap

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190922494A (en) * 1909-10-02 1910-01-13 Robert Rigby An Improved Cinematographic Cubicle.
US2571353A (en) * 1947-05-05 1951-10-16 Volupte Inc Closure fastener
US4239269A (en) * 1979-01-02 1980-12-16 Chiang Chih Chang Luggage lock
US4363403A (en) * 1981-08-07 1982-12-14 Village Mold Co., Inc. Cassette storage container
US4414298A (en) * 1982-07-09 1983-11-08 Heath Company Printed circuit board mount for batteries and the like
DE3686509T2 (en) * 1985-05-27 1993-03-18 Sony Corp VIDEO TAPE RECORDING DEVICE WITH INSTALLATION CAMERA.
US4746008A (en) * 1987-07-01 1988-05-24 Heverly Karen H Child-resistant box for storage of hazardous materials
JPH0369856U (en) * 1989-11-11 1991-07-11
JP2893938B2 (en) * 1990-11-13 1999-05-24 ソニー株式会社 Contact terminal structure
US5229220A (en) * 1991-12-12 1993-07-20 Motorola, Inc. Reverse polarity protection assembly
US5211579A (en) * 1992-05-15 1993-05-18 Molex Incorporated Battery holder
US5348356A (en) * 1993-04-02 1994-09-20 Apple Computer, Inc. Hidden, releasable latch for a molded plastic enclosure
US5620242A (en) * 1993-04-19 1997-04-15 Motorola, Inc. Portable radio battery latch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714439A (en) * 1986-07-03 1987-12-22 Motorola, Inc. Electrical connector
US5160879A (en) * 1991-10-08 1992-11-03 Curtis Manufacturing Company, Inc. Safe, rechargeable, battery-containing power pack and method
US5314763A (en) * 1993-07-20 1994-05-24 Motorola, Inc. Battery latch
US5421745A (en) * 1994-01-03 1995-06-06 Motorola, Inc. Contact array
US5421743A (en) * 1994-07-11 1995-06-06 Hwang; Steve H. S. Safety battery snap

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5620242A (en) * 1993-04-19 1997-04-15 Motorola, Inc. Portable radio battery latch
USRE40848E1 (en) 1994-06-10 2009-07-14 Pitzen James F Combination rechargeable, detachable battery system and power tool
USRE40681E1 (en) 1994-06-10 2009-03-24 Linvatec Corporation Combination rechargeable, detachable battery system and power tool
US5697070A (en) * 1995-06-05 1997-12-09 Lucent Technologies, Inc. Battery pack for portable transceiver
US5589288A (en) * 1995-07-31 1996-12-31 Black & Decker, Inc. Cordless power tool having a push button battery release arrangement
US5607792A (en) * 1996-02-05 1997-03-04 Motorola, Inc. Battery latch
US5895729A (en) * 1997-09-25 1999-04-20 Motorola, Inc. Battery latch assembly for two-way radio
US5909102A (en) * 1998-01-21 1999-06-01 Motorola, Inc. Battery connection apparatus employing fixed latching members
USD410893S (en) * 1998-03-12 1999-06-15 Qualcomm Incorporated Battery pack for a portable telephone
US6064577A (en) * 1998-04-06 2000-05-16 Motorola, Inc. Bottom insert belt clip mount on battery
US6371535B2 (en) * 1998-05-12 2002-04-16 Mitac International Corporation Easily releasable locking device for detachably securing a battery pack to a portable battery-powered apparatus
US6157545A (en) * 1998-05-14 2000-12-05 Motorola, Inc. Battery connection apparatus with end projections
US6136467A (en) * 1998-08-02 2000-10-24 Motorola, Inc. Latch system for battery housing
WO2000008698A1 (en) * 1998-08-02 2000-02-17 Motorola Inc. Latch system for battery housing
US6656626B1 (en) 1999-06-01 2003-12-02 Porter-Cable Corporation Cordless power tool battery release mechanism
US7429430B2 (en) 1999-06-01 2008-09-30 Black & Decker Inc. Cordless power tool battery release mechanism
US7346366B2 (en) * 2001-07-02 2008-03-18 Lg Electronics, Inc. Mobile phone
US8312937B2 (en) 2001-08-24 2012-11-20 Black & Decker Inc. Battery for a power tool with a battery pack ejector
US8203307B2 (en) 2001-11-09 2012-06-19 Milwaukee Electric Tool Corporation Audio and charging system with audio device, power tool battery, and external battery charger
US7868590B2 (en) 2001-11-09 2011-01-11 Milwaukee Electric Tool Corporation Electrical component, such as a radio, MP3 player, audio component, battery charger, radio/charger, MP3 player/radio, MP3 player/charger or MP3 player/radio/charger, having a selectively connectable battery charger
US8604752B2 (en) 2003-10-14 2013-12-10 Robert Bosch Gmbh Portable battery charging and audio unit
US7835534B2 (en) 2003-10-14 2010-11-16 Robert Bosch Gmbh Battery charging jobsite lunchbox
US7630742B2 (en) * 2005-11-23 2009-12-08 Lg Chem, Ltd. Locker structure of battery pack for wireless device
CN101313266B (en) * 2005-11-23 2011-07-06 株式会社Lg化学 Locker structure of battery pack for wireless device
US20070228741A1 (en) * 2005-11-23 2007-10-04 Lg Chem, Ltd. Locker structure of battery pack for wireless device
US7741809B2 (en) 2006-01-06 2010-06-22 Milwaukee Electric Tool Corporation Electrical component including a battery receptacle for including a battery
US20080063927A1 (en) * 2006-09-13 2008-03-13 Motorola, Inc. Unitary electronic device housing molding and battery biasing member and method of making same
US20090179435A1 (en) * 2008-01-14 2009-07-16 Lev Jeffrey A Computing device latching assembly
US8172282B2 (en) 2008-01-14 2012-05-08 Hewlett-Packard Development Company, L.P. Computing device latching assembly
US20090233655A1 (en) * 2008-03-14 2009-09-17 Shenzhen Futaihong Precision Industry Co., Ltd. Portable electronic device
US7917185B2 (en) * 2008-03-14 2011-03-29 Shenzhen Futaihong Precision Industry Co., Ltd. Portable electronic device
US8297666B2 (en) 2009-03-27 2012-10-30 Research In Motion Limited Battery cover and latch assembly for a portable electronic device
US20100244464A1 (en) * 2009-03-27 2010-09-30 Vijai Rajagopal Battery cover and latch assembly for a portable electronic device
US20100276946A1 (en) * 2009-04-30 2010-11-04 Motorola, Inc. Interconnect assembly
US8534717B2 (en) * 2009-04-30 2013-09-17 Motorola Solutions, Inc. Interconnect assembly
US20110042970A1 (en) * 2009-08-19 2011-02-24 Vijai Rajagopal Battery cover and pivoting latch assembly for a portable electronic device
US8556303B2 (en) 2009-08-19 2013-10-15 Blackberry Limited Battery cover and pivoting latch assembly for a portable electronic device
US20110187133A1 (en) * 2010-02-04 2011-08-04 Shenzhen Futaihong Precision Industry Co., Ltd. Battery cover latch mechanism and portable electronic device using the same
US8586225B1 (en) 2012-08-21 2013-11-19 Harris Corporation Battery assembly for an electronic device
CN104659305A (en) * 2015-02-12 2015-05-27 广州明美电子有限公司 Multi-battery-cell external battery with stainless steel lock latch

Also Published As

Publication number Publication date
EP0696383A1 (en) 1996-02-14
KR100193587B1 (en) 1999-06-15
WO1994024708A1 (en) 1994-10-27
AU6706794A (en) 1994-11-08
CN1121377A (en) 1996-04-24
KR960702186A (en) 1996-03-28
JPH08509321A (en) 1996-10-01
US5620242A (en) 1997-04-15

Similar Documents

Publication Publication Date Title
US5460906A (en) Portable radio battery latch
US5535437A (en) Portable radio battery latch
US11901570B2 (en) Battery pack
US5317247A (en) Integrated battery contact and retentive protrusion
US6563927B2 (en) Back cover for a mobile phone
US6225777B1 (en) Latching mechanism for removable cell battery pack
US6829495B2 (en) Battery pack locking apparatus for a mobile telephone
EP1496620B1 (en) Mobile terminal with blocking mechanism for preventing accidental battery detachment.
US6322386B1 (en) Connector boot with integral latch release
US5793619A (en) Electronic appliance housing having storage portion
US7488554B2 (en) Battery cover assembly for portable electronic device
US7548761B2 (en) Radiotelephone
US7403802B2 (en) Battery and battery locking unit of mobile terminal
US20040145872A1 (en) Battery-locking mechanism
RU2152114C1 (en) Cover with torsional-displacement latch (versions)
JP3591016B2 (en) Battery storage device
US6638086B2 (en) Configurable battery connector
JP2776192B2 (en) Electronic equipment using coin-shaped batteries
JPS5839010Y2 (en) Battery cover mounting structure
JP3469749B2 (en) Battery pack
JP3555718B2 (en) Battery storage device in electronic equipment
CN217039139U (en) Intelligent wearable device
JPH0211721Y2 (en)
JP4936704B2 (en) Pack battery
JPH066452Y2 (en) Battery storage structure

Legal Events

Date Code Title Description
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19991024

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362