Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUS5577505 A
Type de publicationOctroi
Numéro de demandeUS 08/597,697
Date de publication26 nov. 1996
Date de dépôt6 févr. 1996
Date de priorité6 févr. 1996
État de paiement des fraisPayé
Autre référence de publicationDE19642379A1, DE19642379C2
Numéro de publication08597697, 597697, US 5577505 A, US 5577505A, US-A-5577505, US5577505 A, US5577505A
InventeursGeorge A. Brock-Fisher, McKee D. Poland, Patrick G. Rafter
Cessionnaire d'origineHewlett-Packard Company
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Means for increasing sensitivity in non-linear ultrasound imaging systems
US 5577505 A
Résumé
An image with increased sensitivity to non-linear responses, particularly second harmonic responses, can be achieved by measuring the ultrasound response under multiple excitation levels. The responses gathered from the multiple excitation levels are gain corrected in an amount corresponding to the difference in excitation levels, then subtracted. Because of this subtraction, most of the linear response will be removed, and what remains corresponds to the non-linear response.
Images(2)
Previous page
Next page
Revendications(12)
We claim:
1. A method for measuring a non-linear response of tissue and bubbles comprising the steps of:
exciting and measuring a first response at a first power setting;
exciting and measuring a second response at a second power setting, wherein the second power setting is different than the first power setting;
scaling the first response for the second power setting to produce a projected response; and
subtracting the projected response from the second response to determine the non-linear response.
2. A method, as defined in claim 1, wherein the first and second power settings are voltage levels.
3. A method, as defined in claim 2, wherein the first power setting is half the second power setting.
4. A method, as defined in claim 2, wherein the first power setting is half the second power setting.
5. A method, as defined in claim 1, wherein the step of exciting and measuring a first response includes the step of selecting the first power setting by reducing the aperture such that some of the transducer assembly is active.
6. A method, as defined in claim 5, wherein the step of reducing the aperture includes symmetrically firing a subset of elements of the transducer assembly.
7. A method, as defined in claim 5, wherein:
the step of reducing the aperture further includes,
partitioning the transducer assembly into two groups using a synthetic aperture, and
firing a line from each of the two groups; the step of exciting and measuring the second response further includes, firing the whole aperture in the same line, and
the step of scaling includes grouping the response from the two groups and comparing the grouped response with the second response to determine the non-linearity of the bubbles and the tissue.
8. A method for measuring a non-linear response of tissue and bubbles comprising the steps of:
exciting and measuring responses at each one of a group of power levels, wherein the group has at least two different power levels;
scaling each response according to its power setting to produce a projected response; and
subtracting linear combinations of the projected responses to determine the non-linear response.
9. A method, as defined in claim 8, wherein the different power levels of the power group are voltage levels.
10. A method, as defined in claim 8, wherein the step of exciting and measuring each response includes the step of selecting one of the power group by reducing the aperture such that some of the transducer assembly is active.
11. A method, as defined in claim 10, wherein the step of reducing the aperture includes symmetrically firing a subset of elements of the transducer assembly.
12. A method, as defined in claim 10, wherein:
the step of reducing the aperture further includes,
partitioning the transducer assembly into two groups using a synthetic aperture, and
firing a line from each of the two groups;
the step of exciting and measuring the second response further includes, firing the whole aperture in the same line, and
the step of scaling includes grouping the response from the two groups and comparing the grouped response with the second response to determine the non-linearity of the bubbles and the tissue.
Description
FIELD OF THE INVENTION

This invention pertains to ultrasound imaging systems. In particular, this invention is directed towards increasing sensitivity in the detection of non-linear responses from ultrasonic backscatterers.

BACKGROUND OF THE INVENTION

Medical ultrasound imaging systems have been designed under the premise that the impinging ultrasonic energy produces a linear response. In order to be linear, a system must obey the following equation: IF

x1(t)=a system input and y1(t) is the corresponding output

and

x2(t)=a system input and y2(t) is the corresponding output THEN

(a*x1(t)+b*x2(t)) as an input gives (a*y1(t) and b*y2(t)) as an output

Current trends in research concentrate on investigating non-linear responses to ultrasonic energy. For example, some contrast agents have been found to provide a second harmonic response to impinging ultrasound energy, and this response can be used to provide increased diagnostic information about the surrounding tissues. A second harmonic response occurs when an agent under increasing ultrasonic pressure, "maps" energy into its harmonics, instead of the fundamental.

In one prior art diagnostic system, disclosed by Johnson, et al in U.S. Pat. No. 5,456,257, the presence of coated microbubble contrast agents in the body of a patient is detected by transmitting ultrasonic energy which causes the destruction of the microbubble. The diagnostic system detects the microbubble destruction through phase insensitive detection and differentiation of echoes received from two consecutive ultrasonics transmission. The destruction of a microbubble may also be used as a point source of acoustic energy for aberration correction, whereby the timing of the beamformer is adjusted from an analysis of beamformer signals resulting from a detected microbubble destruction event.

It would be desirable to be able to enhance the detection of microbubbles in the bloodstream relative to the tissue.

SUMMARY OF THE INVENTION

An image with increased sensitivity to non-linear responses (e.g. second harmonics), can be achieved by measuring the ultrasound response under multiple excitation levels. The responses gathered from the multiple excitation levels are gain corrected in an amount corresponding to the difference in excitation levels, then subtracted. Because of this subtraction, most of the linear response will be removed, and what remains corresponds to the non-linear response.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates the present invention.

FIG. 2 is a flow diagram corresponding to FIG. 1.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

FIG. 1 is an illustration of the present invention. A transducer 10 is connected to a transmit/receive (T/R) switch 12. The T/R switch 12 has two inputs: a transmit line 1 12A and a transmit line 2 12B. The T/R switch 12 is further connected to a total gain control (TGC) amplifier 14. The TGC amplifier 14 is connected to a first beamformer 16. The first beamformer 16 is connected to a first and a second gain amplifier 18, 20. Each gain amplifier 18, 20 is connected to an analog-to-digital converter 22 that is further connected to a line 1 storage unit 24A and a line 2 storage unit 24B. Both storage units 24A, B are connected to a first accumulator 30. A colorizer 32 is connected between an accumulator 30 and a first post-processor 34. An envelope detector 34 is connected between the first gain amplifier 18 and a second post-processor 26. An analog summer 38, connected at its inputs to the first and second post- processors 32, 36, is connected to a display 40.

The T/R switch 12 isolates the transmitter portion of the circuitry from the receiver portion. The transmitter circuitry allows for variable transmit power between transmit events (ultrasound lines), which is shown in the diagram as excitations at V1 and V2. Signals are received into the TGC amplifier 14. The output of the TGC stage goes to another gain amplifier which has variable gain between transmit lines. In the diagram, the gain for line i is 1, and the gain for line 2 is V1/V2. The output of this gain amplifier is then beamformed, filtered, and demodulated down to In-phase (I) and Quadrature (Q) baseband signals. The signal is then envelope detected and stored into memory. Storage is available for the multiple transmit events which occur at different excitation levels. In the block diagram, line 1 and gain-corrected line 2 are stored into memory and then are subtracted. This signal would be summed with one of the transmit lines, (e.g., line 1) which has also been compressed/scan-converted/post-processed. Both images would be shown simultaneously on a video display.

FIG. 2 is a flow diagram corresponding to the block diagram shown in FIG. 1. In step 100, a first response is excited and measured at a first power setting. In step 110, a second response is excited and measured at a second power setting. In step 120, the first response is scaled for the second power setting to produce a projected response. This method relies on a straight line approximation for the projected response. In step 130, the projected response is subtracted from the second response to determine the non-linear response. If the object being insonified is linear the result would be zero.

The value of a scatter's apparent cross-section varies with transmit power, and is different for tissue and for micro-bubbles. For example, bubbles have been shown to exhibit a response whereby second harmonic components are generated as a function of incident pressure-squared as described by D. L. Miller in "Ultrasonic Detection of Resonant Cavitation Bubbles in a Flow Tube by their Second-Harmonic Emissions", September, 1981, Ultrasonics. Tissue also has non-linear components which are much smaller.

Achieving different power settings may occur in one of several manners. A preferred method of achieving different power settings is by varying the transmit voltage. This varies the pressure amplitude of the transmitted wave.

Alternatively, different power settings may be achieved by controlling the size of the aperture of the transducer assembly. This may be done in the lateral or elevational dimensions by using synthetic apertures. The aperture is divided into two or more groups and a transmit line is fired from each group separately. The subsequent receive information is stored. The entire aperture is then fired in the same direction and its receive echoes are stored. In this embodiment, the step scaling includes beamforming the response from the two smaller apertures and subtracting this from the entire aperture to determine the non-linear response.

Another way of controlling transmit output is to fire a subset of elements in the array and compare the scaled subset response to the response of the entire array. This has to be done in such a way as to minimize grating lobes that stem from undersampling of the aperture and steering errors that come from asymmetries about the center of the aperture.

Although the invention has been illustrated using two excitation levels, one of ordinary skill in the art can extend the concept by applying N excitation levels, where N≧2, and subtracting linear combinations of the corresponding N responses, each linear combination representing the projected response. The coefficients of the linear combination are chosen so that the subtraction eliminates the linear portion of the response, leaving only the non-linear response.

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US5410516 *14 juin 199325 avr. 1995Schering AktiengesellschaftUltrasonic processes and circuits for performing them
US5456257 *23 nov. 199410 oct. 1995Advanced Technology Laboratories, Inc.Ultrasonic detection of contrast agents
US5482046 *23 nov. 19949 janv. 1996General Electric CompanyAcoustic power control technique
Citations hors brevets
Référence
1"Ultrasonic Detection Of Resonant Cavitation Bubbles In A Flow Tube By Their Second-Harmonic Emissions", D. L. Miller; Ultrasonics, Sep. 1981; pp. 217-224.
2 *Ultrasonic Detection Of Resonant Cavitation Bubbles In A Flow Tube By Their Second Harmonic Emissions , D. L. Miller; Ultrasonics, Sep. 1981; pp. 217 224.
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
US5678553 *1 nov. 199421 oct. 1997Schering AktiengesellschaftUltrasonic processes and circuits for carrying out those processes
US5735281 *9 août 19967 avr. 1998Hewlett-Packard CompanyMethod of enhancing and prolonging the effect of ultrasound contrast agents
US5776063 *30 sept. 19967 juil. 1998Molecular Biosystems, Inc.Analysis of ultrasound images in the presence of contrast agent
US5833613 *27 sept. 199610 nov. 1998Advanced Technology Laboratories, Inc.Ultrasonic diagnostic imaging with contrast agents
US5833614 *15 juil. 199710 nov. 1998Acuson CorporationUltrasonic imaging method and apparatus for generating pulse width modulated waveforms with reduced harmonic response
US5846202 *15 déc. 19978 déc. 1998Acuson CorporationUltrasound method and system for imaging
US5860931 *10 oct. 199719 janv. 1999Acuson CorporationUltrasound method and system for measuring perfusion
US5873830 *22 août 199723 févr. 1999Acuson CorporationUltrasound imaging system and method for improving resolution and operation
US5882306 *11 avr. 199716 mars 1999Acuson CorporationUltrasound imaging methods and systems
US5897500 *18 déc. 199727 avr. 1999Acuson CorporationUltrasonic imaging system and method for displaying composite fundamental and harmonic images
US5902242 *22 janv. 199811 mai 1999Acuson CorporationSystem and method for forming a combined ultrasonic image
US5913823 *15 juil. 199722 juin 1999Acuson CorporationUltrasound imaging method and system for transmit signal generation for an ultrasonic imaging system capable of harmonic imaging
US5924991 *20 août 199820 juil. 1999Acuson CorporationUltrasonic system and method for harmonic imaging in three dimensions
US5928151 *22 août 199727 juil. 1999Acuson CorporationUltrasonic system and method for harmonic imaging in three dimensions
US5933389 *5 sept. 19973 août 1999Acuson CorporationUltrasonic imaging system and method
US5935069 *10 oct. 199710 août 1999Acuson CorporationUltrasound system and method for variable transmission of ultrasonic signals
US5944666 *21 août 199731 août 1999Acuson CorporationUltrasonic method for imaging blood flow including disruption or activation of contrast agent
US5947904 *12 nov. 19987 sept. 1999Acuson CorporationUltrasonic method and system for imaging blood flow including disruption or activation of a contrast agent
US5957845 *23 sept. 199828 sept. 1999Acuson CorporationGated ultrasound imaging apparatus and method
US5957852 *2 juin 199828 sept. 1999Acuson CorporationUltrasonic harmonic imaging system and method
US5961460 *11 avr. 19975 oct. 1999Acuson CorporationUltrasound imaging enhancement methods and systems
US5961464 *16 sept. 19985 oct. 1999Hewlett-Packard CompanyUltrasound contrast agent detection using spectral analysis from acoustic scan lines
US5971928 *2 nov. 199826 oct. 1999Acuson CorporationDiagnostic medical ultrasonic system and method for image subtraction
US6005827 *15 juil. 199721 déc. 1999Acuson CorporationUltrasonic harmonic imaging system and method
US6009046 *11 mai 199928 déc. 1999Acuson CorporationUltrasonic harmonic imaging system and method
US6010456 *30 déc. 19984 janv. 2000General Electric CompanyMethod and apparatus for acoustic subtraction imaging using linear and nonlinear ultrasonic images
US6017310 *4 oct. 199625 janv. 2000Andaris LimitedUse of hollow microcapsules
US6023977 *15 avr. 199815 févr. 2000Acuson CorporationUltrasonic imaging aberration correction system and method
US6027448 *23 juin 199822 févr. 2000Acuson CorporationUltrasonic transducer and method for harmonic imaging
US6030344 *22 août 199729 févr. 2000Acuson CorporationMethods and apparatus for ultrasound image quantification
US6039690 *17 sept. 199821 mars 2000Acuson CorporationMethod and apparatus for frequency control of an ultrasound system
US6045505 *17 sept. 19984 avr. 2000Acuson CorporationMethod and apparatus for frequency control of an ultrasound system
US6048316 *16 oct. 199811 avr. 2000Acuson CorporationMedical diagnostic ultrasonic imaging system and method for displaying composite fundamental and harmonic images
US6050944 *1 août 199718 avr. 2000Acuson CorporationMethod and apparatus for frequency control of an ultrasound system
US6063033 *28 mai 199916 mai 2000General Electric CompanyUltrasound imaging with higher-order nonlinearities
US6077225 *23 janv. 199820 juin 2000Hewlett-Packard CompanyUltrasound method for enhancing image presentation when contrast agents are used
US6080107 *26 janv. 199927 juin 2000Hewlett-Packard CompanyMethods for the use of contrast agents in ultrasonic imaging
US6083168 *4 févr. 19994 juil. 2000Acuson CorporationUltrasound imaging system and method for improving resolution and operation
US6086540 *7 oct. 199711 juil. 2000Molecular Biosystems, Inc.Methods of ultrasound imaging using echogenically persistent contrast agents
US6095980 *17 sept. 19981 août 2000Sunnybrook Health Science CentrePulse inversion doppler ultrasonic diagnostic imaging
US6102865 *1 juil. 199915 août 2000Acuson CorporationMultiple ultrasound image registration system, method and transducer
US6104670 *15 juin 199815 août 2000Acuson CorporationUltrasonic harmonic imaging system and method
US6106465 *22 août 199722 août 2000Acuson CorporationUltrasonic method and system for boundary detection of an object of interest in an ultrasound image
US6108572 *23 avr. 199922 août 2000General Electric CompanyMethod and apparatus for harmonic imaging using multiple focal zones
US6110120 *11 avr. 199729 août 2000Acuson CorporationGated ultrasound imaging apparatus and method
US6122222 *7 mai 199919 sept. 2000Acuson CorporationUltrasonic transmit and receive system
US6131458 *26 août 199917 oct. 2000Acuson CorporationUltrasonic imaging aberration correction system and method
US6132374 *1 août 199717 oct. 2000Acuson CorporationUltrasonic imaging method and system
US6132376 *20 juil. 199917 oct. 2000Acuson CorporationMultiple ultrasonic image registration system, method and transducer
US6171245 *11 mars 19999 janv. 2001Siemens Medical Systems, Inc.Method of imaging scatterers based on acoustically stimulated changes of their acoustic properties
US617428625 nov. 199816 janv. 2001Acuson CorporationMedical diagnostic ultrasound method and system for element switching
US619032229 juin 199920 févr. 2001Agilent Technologies, Inc.Ultrasonic imaging system and method using linear cancellation
US619365931 mars 199927 févr. 2001Acuson CorporationMedical ultrasonic diagnostic imaging method and apparatus
US619366217 févr. 199927 févr. 2001Atl UltrasoundHigh frame rate pulse inversion harmonic ultrasonic diagnostic imaging system
US620190028 juin 199913 mars 2001Acuson CorporationMultiple ultrasound image registration system, method and transducer
US620683310 janv. 200027 mars 2001Research Corporation Technologiers, Inc.Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging
US621394624 déc. 199810 avr. 2001Agilent Technologies, Inc.Methods and apparatus for speckle reduction by orthogonal pulse compounding in medical ultrasound imaging
US62175169 nov. 199917 avr. 2001Agilent Technologies, Inc.System and method for configuring the locus of focal points of ultrasound beams
US62210188 août 200024 avr. 2001Acuson CorporationMedical ultrasonic diagnostic imaging method and apparatus
US622279512 août 199924 avr. 2001Acuson CorporationUltrasonic harmonic imaging system and method
US622294811 févr. 200024 avr. 2001Acuson CorporationMultiple ultrasound image registration system, method and transducer
US62235996 avr. 20001 mai 2001Acuson CorporationUltrasonic imaging aberration correction system and method
US622455625 nov. 19981 mai 2001Acuson CorporationDiagnostic medical ultrasound system and method for using a sparse array
US622622814 oct. 19991 mai 2001Acuson CorporationUltrasonic harmonic imaging system and method
US622803117 févr. 19998 mai 2001Atl UltrasoundHigh frame rate ultrasonic diagnostic imaging systems with motion artifact reduction
US625803330 nov. 199910 juil. 2001Agilent Technologies, Inc.Ultrasound method employing echoes from a region of interest to enable quantization of backscatter signals
US630609519 août 199923 oct. 2001Acuson CorporationGated ultrasound imaging apparatus and method
US631237915 avr. 19986 nov. 2001Acuson CorporationUltrasonic harmonic imaging system and method using waveform pre-distortion
US631920328 juil. 200020 nov. 2001Atl UltrasoundUltrasonic nonlinear imaging at fundamental frequencies
US634402331 oct. 20005 févr. 2002Matsushita Electric Industrial Co., Ltd.Ultrasonic diagnostic imaging system
US635499730 mars 200012 mars 2002Acuson CorporationMethod and apparatus for frequency control of an ultrasound system
US636002726 sept. 200019 mars 2002Acuson CorporationMultiple ultrasound image registration system, method and transducer
US636149811 févr. 200026 mars 2002George A Brock-FisherContrast agent imaging with suppression of nonlinear tissue response
US639873211 févr. 20004 juin 2002Koninklijke Philips Electronics, N.V.Acoustic border detection using power modulation
US63987357 mars 20004 juin 2002Koninklijke Philips Electronics N.V.Detecting a relative level of an ultrasound imaging contrast agent
US640153921 juin 200011 juin 2002Acuson CorporationUltrasonic imaging aberration correction system and method
US641322111 févr. 20002 juil. 2002George A Brock-FisherUltrasonic system and method employing variable filtering of echo return signals
US643604122 déc. 200020 août 2002Acuson CorporationMedical ultrasonic imaging method with improved ultrasonic contrast agent specificity
US6461303 *19 janv. 20018 oct. 2002Bjorn AngelsenMethod of detecting ultrasound contrast agent in soft tissue, and quantitating blood perfusion through regions of tissue
US649484129 févr. 200017 déc. 2002Acuson CorporationMedical diagnostic ultrasound system using contrast pulse sequence imaging
US6497665 *14 juil. 200024 déc. 2002Koninklijke Philips Electronics N.V.System and method for non-linear detection of ultrasonic contrast agents at a fundamental frequency
US65142069 mars 20014 févr. 2003Koninklijke Philips Electronics, N.V.Simultaneous fundamental and harmonic ultrasonic imaging
US652771828 mars 20004 mars 2003Brian G ConnorUltrasound system for continuous imaging and delivery of an encapsulated agent
US6533727 *11 févr. 200018 mars 2003Koninklijke Phillips Electronics N.V.Ultrasonic system and method employing non-integer harmonic echo signals for imaging
US6537222 *26 août 199725 mars 2003Koninklijke Philips Electronics N.V.Methods for the detection of contrast agents in ultrasonic imaging
US65406848 nov. 20011 avr. 2003Koninklijke Philips Electronics N.V.Ultrasonic perfusion measurement using contrast agents
US654418220 nov. 20018 avr. 2003Koninklijke Philips Electronics N.V.Ultrasonic nonlinear imaging at fundamental frequencies
US65477383 mai 200115 avr. 2003Ge Medical Systems Global Technology Company, LlcMethods and apparatus for using ultrasound with contrast agent
US660219522 janv. 20015 août 2003Acuson CorporationMedical ultrasonic imaging pulse transmission method
US661298918 juin 20022 sept. 2003Koninklijke Philips Electronics N.V.System and method for synchronized persistence with contrast agent imaging
US662683122 janv. 200130 sept. 2003Acuson CorporationGated ultrasound imaging apparatus and method
US66321771 mai 200214 oct. 2003Acuson CorporationDual process ultrasound contrast agent imaging
US663822826 avr. 200228 oct. 2003Koninklijke Philips Electronics N.V.Contrast-agent enhanced color-flow imaging
US664514725 nov. 199811 nov. 2003Acuson CorporationDiagnostic medical ultrasound image and system for contrast agent imaging
US6652463 *29 oct. 200225 nov. 2003Koninklijke Philips Electronics N.V.System and method for non-linear detection of ultrasonic contrast agents at a fundamental frequency
US6673019 *31 janv. 20016 janv. 2004Kabushiki Kaisha ToshibaDiagnostic ultrasound imaging based on rate subtraction imaging (RSI)
US667984420 juin 200220 janv. 2004Acuson CorporationAutomatic gain compensation for multiple mode or contrast agent imaging
US668248230 août 200027 janv. 2004Acuson CorporationMedical ultrasonic imaging pulse transmission method
US6682487 *10 sept. 200227 janv. 2004Koninklijke Philips Electronics N.V.Ultrasonic imaging aberration correction using harmonic and non-harmonic signals
US669919118 juin 20022 mars 2004Koninklijke Philips Electronics N.V.Ultrasound device to detect Caisson's disease
US672662915 janv. 199927 avr. 2004Acuson CorporationUltrasound contrast imaging
US674003917 mai 200025 mai 2004Koninklijke Philips Electronics N.V.Methods and apparatus for displaying information relating to delivery and activation of a therapeutic agent using ultrasound energy
US6899681 *15 févr. 200231 mai 2005Acuson CorporationAutomated power level for contrast agent imaging
US690546718 juin 200114 juin 2005Acuson CorporationUltrasonic harmonic imaging system and method using waveform pre-distortion
US696016919 mai 20031 nov. 2005Siemens Medical Solutions Usa, Inc.Spread spectrum coding for ultrasound contrast agent imaging
US69693535 août 200329 nov. 2005Koninklijke Philips Electronics, N.V.Contrast-agent enhanced color-flow imaging
US700490523 mars 200428 févr. 2006Research Corporation Technologies, Inc.Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging
US7044914 *7 févr. 200316 mai 2006Kabushiki Kaisha ToshibaApparatus and method for ultrasonic diagnostic imaging
US71049568 nov. 199612 sept. 2006Research Corporation Technologies, Inc.Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging
US751387018 août 20047 avr. 2009Research Corproation Technologies, Inc.Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging
US7591788 *19 août 200322 sept. 2009Siemens Medical Solutions Usa, Inc.Adaptive contrast agent medical imaging
US77491678 déc. 20056 juil. 2010Kabushiki Kaisha ToshibaApparatus and method for ultrasonic diagnostic imaging
US7753850 *1 nov. 200413 juil. 2010Koninklijke Philips Electronics, N.V.Method for ultrasound perfusion imaging
US781123324 déc. 200812 oct. 2010Research Corporation Technologies, Inc.Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging
US799327329 mai 20089 août 2011Siemens Medical Solutions Usa, Inc.Adaptive contrast agent medical imaging
US8043219 *17 sept. 200425 oct. 2011Siemens Medical Solutions Usa, Inc.Automated power level for contrast agent imaging
US84545174 mai 20054 juin 2013Kabushiki Kaisha ToshibaUltrasonic diagnostic apparatus and ultrasonic diagnostic method
US862291124 oct. 20087 janv. 2014University Of Virginia Patent FoundationSystem for treatment and imaging using ultrasonic energy and microbubbles and related method thereof
USRE4304811 janv. 200027 déc. 2011Advanced Technology Laboratories, Inc.Ultrasonic diagnostic imaging with harmonic contrast agents
EP0913704A2 *1 oct. 19986 mai 1999Sunnybrook Health Science CentrePulse inversion Doppler ultrasonic diagnostic imaging
EP0989415A2 *18 juin 199929 mars 2000Matsushita Electric Industrial Co., Ltd.Ultrasonic diagnostic system
EP1095621A1 *30 oct. 20002 mai 2001Matsushita Electric Industrial Co., Ltd.Ultrasonic diagnostic imaging system
WO1998014117A1 *26 sept. 19979 avr. 1998Molecular Biosystems IncAnalysis of ultrasound images in the presence of contrast agent
WO1998020361A1 *4 nov. 199714 mai 1998Res Corp Technologies IncFinite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging
WO1998032378A1 *19 janv. 199830 juil. 1998Andaris LtdUltrasound contrast imaging
WO1998046139A1 *8 avr. 199822 oct. 1998AcusonUltrasound imaging enhancement methods and systems
WO1999008599A1 *20 août 199825 févr. 1999AcusonUltrasonic method and system for imaging blood flow
WO2002010795A2 *11 juil. 20017 févr. 2002Koninkl Philips Electronics NvUltrasonic nonlinear imaging at fundamental frequencies
WO2003011140A126 juil. 200213 févr. 2003Koninkl Philips Electronics NvAn apparatus and method of frequency compounding to perform contrast imaging
WO2003105691A14 juin 200324 déc. 2003Koninkl Philips Electronics NvContrast agent imaging with synchronized persistence
WO2003105692A14 juin 200324 déc. 2003Koninkl Philips Electronics NvUltrasound device to detect caisson's disease
WO2004023158A128 juil. 200318 mars 2004Koninkl Philips Electronics NvSystem and method for improved harmonic imaging
WO2005044108A11 nov. 200419 mai 2005Koninkl Philips Electronics NvSystem and method for ultrasound perfusion imaging
WO2011154782A129 sept. 201015 déc. 2011Koninklijke Philips Electronics N.V.Ultrasonic visualization of percutaneous needles, intravascular catheters and other invasive devices
WO2012144243A120 janv. 201226 oct. 2012Hitachi Medical CorporationUltrasound imaging apparatus
Classifications
Classification aux États-Unis600/458
Classification internationaleA61B8/00, G01S15/89, G01N29/06, G01S7/52
Classification coopérativeG01S7/52039, G01S15/895, G01S7/52033, G01S7/52038
Classification européenneG01S7/52S2F1B, G01S7/52S2F1
Événements juridiques
DateCodeÉvénementDescription
17 juin 2009ASAssignment
Owner name: KONINKLIJKE PHILIPS ELECTRONICS N V, NETHERLANDS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AGILENT TECHNOLOGIES, INC.;REEL/FRAME:022835/0572
Effective date: 20090610
2 juin 2009SULPSurcharge for late payment
2 juin 2009FPAYFee payment
Year of fee payment: 12
1 juin 2009PRDPPatent reinstated due to the acceptance of a late maintenance fee
Effective date: 20090602
13 janv. 2009FPExpired due to failure to pay maintenance fee
Effective date: 20081126
26 nov. 2008REINReinstatement after maintenance fee payment confirmed
2 juin 2008REMIMaintenance fee reminder mailed
26 avr. 2004FPAYFee payment
Year of fee payment: 8
31 oct. 2003ASAssignment
Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V., NETHERLANDS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AGILENT TECHNOLOGIES, INC.;REEL/FRAME:014662/0179
Effective date: 20010801
Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V. GROENEWOUDSEW
30 mai 2000ASAssignment
Owner name: AGILENT TECHNOLOGIES INC, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HEWLETT-PACKARD COMPANY;REEL/FRAME:010977/0540
Effective date: 19991101
Owner name: AGILENT TECHNOLOGIES INC INTELLECTUAL PROPERTY ADM
25 mai 2000FPAYFee payment
Year of fee payment: 4
28 avr. 2000ASAssignment
Owner name: HEWLETT-PACKARD COMPANY, A DELAWARE CORPORATION, C
Free format text: MERGER;ASSIGNOR:HEWLETT-PACKARD COMPANY, A CALIFORNIA CORPORATION;REEL/FRAME:010841/0649
Effective date: 19980520
Owner name: HEWLETT-PACKARD COMPANY, A DELAWARE CORPORATION P.
18 mars 1996ASAssignment
Owner name: HEWLETT-PACKARD COMPANY, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BROCK-FISHER, GEORGE A.;POLAND, MCKEE D.;RAFTER, PATRICKG.;REEL/FRAME:007851/0789
Effective date: 19960205