US5624303A - Polishing pad and a method for making a polishing pad with covalently bonded particles - Google Patents

Polishing pad and a method for making a polishing pad with covalently bonded particles Download PDF

Info

Publication number
US5624303A
US5624303A US08/589,774 US58977496A US5624303A US 5624303 A US5624303 A US 5624303A US 58977496 A US58977496 A US 58977496A US 5624303 A US5624303 A US 5624303A
Authority
US
United States
Prior art keywords
abrasive particles
polishing pad
matrix material
bonding
molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/589,774
Inventor
Karl M. Robinson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Round Rock Research LLC
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROBINSON, KARL M.
Priority to US08/589,774 priority Critical patent/US5624303A/en
Priority to PCT/US1997/000861 priority patent/WO1997026114A1/en
Priority to AU18328/97A priority patent/AU1832897A/en
Priority to JP52625697A priority patent/JP4171846B2/en
Priority to KR10-1998-0705588A priority patent/KR100459528B1/en
Priority to DE69713057T priority patent/DE69713057T2/en
Priority to AT97903862T priority patent/ATE218413T1/en
Priority to EP97903862A priority patent/EP0876242B1/en
Priority to US08/798,001 priority patent/US5823855A/en
Priority to US08/838,394 priority patent/US5879222A/en
Publication of US5624303A publication Critical patent/US5624303A/en
Application granted granted Critical
Priority to JP2005195615A priority patent/JP4174607B2/en
Assigned to ROUND ROCK RESEARCH, LLC reassignment ROUND ROCK RESEARCH, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICRON TECHNOLOGY, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • B24B37/245Pads with fixed abrasives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/34Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S451/00Abrading
    • Y10S451/921Pad for lens shaping tool

Definitions

  • the present invention relates to polishing pads used in chemical-mechanical planarization of semiconductor wafers, and, more particularly, to polishing pads with abrasive particles embedded in the body of the pad.
  • CMP Chemical-mechanical planarization
  • CMP processes must consistently and accurately produce a uniform, planar surface on the wafer because it is important to accurately focus optical or electromagnetic circuit patterns on the surface of the wafer. As the density of integrated circuits increases, it is often necessary to accurately focus the critical dimensions of the photo-pattern to within a tolerance of approximately 0.5 ⁇ m. Focusing the photo-patterns to such small tolerances, however, is very difficult when the distance between the emission source and the surface of the wafer varies because the surface of the wafer is not uniformly planar. In fact, several devices may be defective on a wafer with a non-uniform planar surface. Thus, CMP processes must create a highly uniform, planar surface.
  • the throughput of CMP processes is a function of several factors, one of which is the rate at which the thickness of the wafer decreases as it is being planarized (the "polishing rate") without sacrificing the uniformity of the planarity of the surface of the wafer. Accordingly, it is desirable to maximize the polishing rate within controlled limits.
  • the polishing rate of CMP processes may be increased by increasing the proportion of abrasive particles in the slurry, solution.
  • one problem with increasing the proportion of abrasive particles in colloidal slurry solutions is that the abrasive particles tend to flocculate when they are mixed with some desirable oxidizing and etching chemicals.
  • stabilizing chemicals may prevent flocculation of the abrasive particles, the stabilizing chemicals are generally incompatible with the oxidizing and etching chemicals.
  • One desirable solution for limiting the proportion of abrasive particles in the slurry is to suspend the abrasive particles in the pad.
  • Conventional suspended particle pads are made by admixing the abrasive particles into a matrix material made from monomer chains.
  • An ionic adhesion catalyst such as hexamethyldisalizane, may be used to enhance adhesion between the particles and the monomer chains.
  • the matrix material is cured to harden the pad and suspend the abrasive particles throughout the matrix material. In operation, the suspended abrasive particles in the pad abrade the surface of the wafer to mechanically remove material from the wafer.
  • One problem with conventional suspended particle polishing pads is that the abrasiveness of the planarizing surface of the pad, and thus the polishing rate of a wafer, varies from one area to another across the surface of the pad. Before the matrix material is cured, the abrasive particles commonly agglomerate into high density clusters, causing a non-uniform distribution of abrasive particles throughout the pad. Therefore, it would be desirable to develop a suspended particle polishing pad with a uniform distribution of abrasive particles throughout the pad.
  • the inventive polishing pad is used for planarizing semiconductor wafers with a CMP process; the polishing pad has a body, molecular bonding links, and abrasive particles dispersed substantially uniformly throughout the body.
  • the body is made from a polymeric matrix material, and the molecular bonding links are covalently attached to the matrix material. Substantially all of the abrasive particles are also covalently bonded to at least one molecular bonding link.
  • the molecular bonding links securely affix the abrasive particles to the matrix material to enhance the uniformity of the distribution of the abrasive particles throughout the pad and to substantially prevent the abrasive particles from breaking away from the pad.
  • molecular bonding links are covalently bonded to abrasive particles.
  • the bonded molecular bonding links and abrasive particles are admixed with a matrix material in a mold.
  • reactive terminus groups of the molecular bonding links bond to the matrix material to securely affix the particles to the matrix material.
  • the matrix material is then polymerized to form a pad body with bonded abrasive particles that are suspended substantially uniformly throughout the body.
  • FIG. 1 is a partial cross-sectional view of a conventional polishing pad with suspended abrasive particles in accordance with the prior art.
  • FIG. 2 is a partial schematic cross-sectional view of a polishing pad with bonded, suspended particles in accordance with the invention.
  • FIG. 3 is a schematic view of a molecular bonding link and an abrasive particle in accordance with the invention.
  • FIG. 4A is a chemical diagram of a molecular bonding link and abrasive particle in accordance with the invention.
  • FIG. 4B is a chemical diagram of the reaction between a molecular bonding link and an abrasive particle in accordance with the invention.
  • FIG. 5 is a flow chart illustrating a method of making a polishing pad with bonded, suspended particles in accordance with the invention.
  • the polishing pad of the present invention has a uniform distribution of abrasive particles throughout the pad, and the abrasive particles are covalently bonded to the pad to substantially prevent the abrasive particles from breaking away from the pad.
  • An important aspect of the present invention is to provide molecular bonding links that covalently bond to both the matrix material of the polishing pad and the abrasive particles.
  • the molecular bonding links perform the following advantageous functions: (1) substantially prevent the abrasive particles from agglomerating before the matrix material is cured; and (2) secure the abrasive particles to the matrix material.
  • the molecular bonding links therefore, enhance the uniformity of the distribution of the abrasive particles throughout the matrix material and substantially prevent the abrasive particles from breaking away from the polishing pad.
  • FIG. 1 illustrates a conventional polishing pad P formed from a matrix material 12 and a number of abrasive particles 20.
  • the abrasive particles 20 are suspended in the matrix material 12 while the matrix material 12 is in a liquid state.
  • the abrasive particles 20 may agglomerate into clusters 22 that reduce the uniformity of the distribution of the abrasive particles 20 throughout the matrix material 12.
  • the polishing rate over the cluster 22 of abrasive particles 20 is different than that of other areas on the pad.
  • abrasive particles 20 near the planarizing surface tend to break away from the pad P and scratch a wafer (not shown).
  • conventional suspended particle polishing pads may provide erratic polishing rates and damage the wafers.
  • FIG. 2 illustrates a polishing pad 10 in accordance with the invention.
  • the polishing pad 10 has a body 11 made from a matrix material 12.
  • the matrix material 12 is generally polyurethane or nylon.
  • the above-listed polymeric materials are merely exemplary, and thus other polymeric matrix materials are within the scope of the invention.
  • the molecular bonding links 30 covalently bond to the matrix material 12 and the abrasive particles 20.
  • the molecular bonding links 30, therefore, secure the abrasive particles 20 to the matrix material 12.
  • the abrasive particles 20 are preferably made from silicon dioxide or aluminum oxide, but other types of abrasive particles are within the scope of the invention.
  • FIG. 3 further illustrates the bond between a strand of matrix material 12, a bonding link 30, and an abrasive particle 20.
  • the molecular bonding link 30 has an alkyl chain 32, a reactive terminus group 34, and a particle affixing group 36.
  • the reactive terminus group 34 is a molecular segment that bonds the bonding link 30 to the strand of the matrix material 12.
  • the specific structure of the reactive terminus group 34 is selected to reactively bond with the specific type of matrix material 12 when the matrix material 12 is in a liquid monomer phase.
  • the particle affixing group 36 is another molecular segment that covalently bonds the bonding link 30 to the abrasive particle 20.
  • the specific structure of the particle affixing group 36 is similarly selected to covalently bond with the material from which the abrasive particles 20 are made. Accordingly, the molecular bonding link 30 securely attaches the abrasive particle 20 to the matrix material 12.
  • FIG. 4A illustrates a specific embodiment of the molecular bonding link 30.
  • the trichlorosilane molecule reacts with the O--H chains on the surface of the particle 20 to covalently bond the abrasive particle 20 to the particle affixing group 36 of the molecular bonding link 30.
  • the COOH reactive terminus group 34 reacts with a urethane monomer chain 12 to bond the bonding link 30 to the matrix material 12.
  • the byproducts of the reaction are water and hydrochloric acid.
  • the invention is not limited to abrasive particles made from silicon dioxide or a matrix material made from polyurethane.
  • the materials from which the abrasive particles and the matrix material are made can be varied to impart desired characteristics to the pad.
  • a central aspect of the invention is to select molecular bonding links that covalently bond to the abrasive particles and matrix material to substantially prevent the bonds between the matrix material, molecular bonding links, and abrasive particles from weakening in the presence of an electrostatic solvent. Additionally, the length of the alkyl chain 32 of the molecular bonding link 30 may be varied to accommodate different sizes of abrasive particles 20.
  • an alkyl chain 15-20 ⁇ in length may be used with a 1,500 ⁇ diameter particle.
  • Longer alkyl chains 32 are preferably used with larger abrasive particles 20, and shorter alkyl chains 32 are preferably used with smaller abrasive particles 20.
  • FIG. 5 graphically illustrates a method for making bonded particle polishing pads for use in chemical-mechanical planarization of semiconductor wafers in accordance with the invention.
  • the first step 200 of the method is to fill a mold with a matrix material in a liquid monomer phase.
  • the second step 202 is to covalently bond abrasive particles to molecular bonding links. Depending upon the desired length of the molecular bonding links, they are deposited onto the abrasive particles either by vapor deposition (shorter lengths) or by liquid deposition (longer lengths).
  • the third step 204 is to admix the bonded molecular bonding links and abrasive particles with the matrix material.
  • the pad is made from approximately 10%-50% by weight abrasive particles and bonding links, and approximately 50%-90% by weight matrix material 12. In a preferred embodiment, the pad is made from approximately 15%-25% by weight of bonded abrasive particles and bonding links. After the bonded abrasive particles and molecular bonding links are disbursed substantially uniformly throughout the matrix material, the fourth step 206 is to cure the matrix material.
  • One advantage of the present invention is that the polishing pad results in a high polishing rate without limiting the oxidizing or etching chemicals in the slurry.
  • stabilizing agents are not required in the slurry solution. Accordingly, a wider range of etching and oxidizing chemicals may be used in the slurry solution.
  • the polishing pad 10 has a uniform polishing rate across its planarizing surface.
  • the abrasive particles 20 do not agglomerate into large clusters 22, as shown in FIG. 1.
  • the polishing pad 10, therefore, has a substantially uniform distribution of abrasive particles 20 throughout the matrix material.
  • the polishing rate is substantially uniform across the surface of the wafer.
  • Still another advantage of the invention is that the polishing pad 10 does not create large scratches on the surface of a wafer.
  • the abrasive particles 20 do not readily break away from the pad 10 in the presence of an electrostatic solvent.
  • large clusters 22 of abrasive particles 20 are less likely to break away from the pad 10 and scratch a wafer during planarization.

Abstract

The present invention is a polishing pad for use in chemical-mechanical planarization of semiconductor wafers, and a method for making the polishing pad. The polishing pad has a body, molecular bonding links, and abrasive particles dispersed substantially uniformly throughout the body. The body is made from a polymeric matrix material and the molecular bonding links are covalently bonded to the matrix material. Substantially all of the abrasive particles are covalently bonded to at least one molecular bonding link. The molecular bonding links securely affix the abrasive particles to the matrix material to enhance the uniformity, of the distribution of the abrasive particles throughout the pad and to substantially prevent the abrasive particles from breaking away from the pad.

Description

TECHNICAL FIELD
The present invention relates to polishing pads used in chemical-mechanical planarization of semiconductor wafers, and, more particularly, to polishing pads with abrasive particles embedded in the body of the pad.
BACKGROUND OF THE INVENTION
Chemical-mechanical planarization ("CMP") processes remove materials from the surface layer of a wafer in the production of ultra-high density integrated circuits. In a typical CMP process, a wafer presses against a polishing pad in the presence of a slurry under controlled chemical, pressure, velocity, and temperature conditions. The slurry solution has abrasive particles that abrade the surface of the wafer, and chemicals that oxidize and/or etch the surface of the wafer. Thus, when relative motion is imparted between the wafer and the pad, material is removed from the surface of the wafer by the abrasive particles (mechanical removal) and by the chemicals in the slurry (chemical removal).
CMP processes must consistently and accurately produce a uniform, planar surface on the wafer because it is important to accurately focus optical or electromagnetic circuit patterns on the surface of the wafer. As the density of integrated circuits increases, it is often necessary to accurately focus the critical dimensions of the photo-pattern to within a tolerance of approximately 0.5 μm. Focusing the photo-patterns to such small tolerances, however, is very difficult when the distance between the emission source and the surface of the wafer varies because the surface of the wafer is not uniformly planar. In fact, several devices may be defective on a wafer with a non-uniform planar surface. Thus, CMP processes must create a highly uniform, planar surface.
In the competitive semiconductor industry, it is also desirable to maximize the throughput of the finished wafers and minimize the number of defective or impaired devices on each wafer. The throughput of CMP processes is a function of several factors, one of which is the rate at which the thickness of the wafer decreases as it is being planarized (the "polishing rate") without sacrificing the uniformity of the planarity of the surface of the wafer. Accordingly, it is desirable to maximize the polishing rate within controlled limits.
The polishing rate of CMP processes may be increased by increasing the proportion of abrasive particles in the slurry, solution. Yet, one problem with increasing the proportion of abrasive particles in colloidal slurry solutions is that the abrasive particles tend to flocculate when they are mixed with some desirable oxidizing and etching chemicals. Although stabilizing chemicals may prevent flocculation of the abrasive particles, the stabilizing chemicals are generally incompatible with the oxidizing and etching chemicals. Thus, it is desirable to limit the proportion of abrasive particles in the slurry, solution.
One desirable solution for limiting the proportion of abrasive particles in the slurry is to suspend the abrasive particles in the pad. Conventional suspended particle pads are made by admixing the abrasive particles into a matrix material made from monomer chains. An ionic adhesion catalyst, such as hexamethyldisalizane, may be used to enhance adhesion between the particles and the monomer chains. After the abrasive particles are mixed into the matrix material, the matrix material is cured to harden the pad and suspend the abrasive particles throughout the matrix material. In operation, the suspended abrasive particles in the pad abrade the surface of the wafer to mechanically remove material from the wafer.
One problem with conventional suspended particle polishing pads is that the abrasiveness of the planarizing surface of the pad, and thus the polishing rate of a wafer, varies from one area to another across the surface of the pad. Before the matrix material is cured, the abrasive particles commonly agglomerate into high density clusters, causing a non-uniform distribution of abrasive particles throughout the pad. Therefore, it would be desirable to develop a suspended particle polishing pad with a uniform distribution of abrasive particles throughout the pad.
Another problem with conventional suspended particle polishing pads is that they tend to scratch the surface of the wafer. As the pad planarizes a wafer, the matrix material adjacent to abrasive particles on the planarizing surface of the polishing pad wears down; eventually, some of the abrasive particles break away from the pad and travel in the slurry. Particles also break away from pads with ionic adhesion catalysts because electrostatic solvents weaken the ionic bonds between the matrix material and the particles. When a large agglomeration of suspended particles breaks away from the pad, it may scratch the surface of the wafer and seriously damage several of the devices on the wafer. Therefore, it would be desirable to develop a pad that substantially prevents abrasive particles from breaking away from the pad.
SUMMARY OF THE INVENTION
The inventive polishing pad is used for planarizing semiconductor wafers with a CMP process; the polishing pad has a body, molecular bonding links, and abrasive particles dispersed substantially uniformly throughout the body. The body is made from a polymeric matrix material, and the molecular bonding links are covalently attached to the matrix material. Substantially all of the abrasive particles are also covalently bonded to at least one molecular bonding link. The molecular bonding links securely affix the abrasive particles to the matrix material to enhance the uniformity of the distribution of the abrasive particles throughout the pad and to substantially prevent the abrasive particles from breaking away from the pad.
In a method for making the inventive bonded particle polishing pad, molecular bonding links are covalently bonded to abrasive particles. After the molecular bonding links are covalently bonded to the abrasive particles, the bonded molecular bonding links and abrasive particles are admixed with a matrix material in a mold. During the admixing step, reactive terminus groups of the molecular bonding links bond to the matrix material to securely affix the particles to the matrix material. The matrix material is then polymerized to form a pad body with bonded abrasive particles that are suspended substantially uniformly throughout the body.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a partial cross-sectional view of a conventional polishing pad with suspended abrasive particles in accordance with the prior art.
FIG. 2 is a partial schematic cross-sectional view of a polishing pad with bonded, suspended particles in accordance with the invention.
FIG. 3 is a schematic view of a molecular bonding link and an abrasive particle in accordance with the invention.
FIG. 4A is a chemical diagram of a molecular bonding link and abrasive particle in accordance with the invention.
FIG. 4B is a chemical diagram of the reaction between a molecular bonding link and an abrasive particle in accordance with the invention.
FIG. 5 is a flow chart illustrating a method of making a polishing pad with bonded, suspended particles in accordance with the invention.
DETAILED DESCRIPTION OF THE INVENTION
The polishing pad of the present invention has a uniform distribution of abrasive particles throughout the pad, and the abrasive particles are covalently bonded to the pad to substantially prevent the abrasive particles from breaking away from the pad. An important aspect of the present invention is to provide molecular bonding links that covalently bond to both the matrix material of the polishing pad and the abrasive particles. The molecular bonding links perform the following advantageous functions: (1) substantially prevent the abrasive particles from agglomerating before the matrix material is cured; and (2) secure the abrasive particles to the matrix material. The molecular bonding links, therefore, enhance the uniformity of the distribution of the abrasive particles throughout the matrix material and substantially prevent the abrasive particles from breaking away from the polishing pad.
FIG. 1 illustrates a conventional polishing pad P formed from a matrix material 12 and a number of abrasive particles 20. The abrasive particles 20 are suspended in the matrix material 12 while the matrix material 12 is in a liquid state. Before the matrix material 12 cures, the abrasive particles 20 may agglomerate into clusters 22 that reduce the uniformity of the distribution of the abrasive particles 20 throughout the matrix material 12. Thus, when a planarizing surface S of the pad P is conditioned to a new planarizing surface Sc, the polishing rate over the cluster 22 of abrasive particles 20 is different than that of other areas on the pad. Additionally, as the matrix material 12 wears down during planarization or conditioning, abrasive particles 20 near the planarizing surface tend to break away from the pad P and scratch a wafer (not shown). Thus, conventional suspended particle polishing pads may provide erratic polishing rates and damage the wafers.
FIG. 2 illustrates a polishing pad 10 in accordance with the invention. The polishing pad 10 has a body 11 made from a matrix material 12. The matrix material 12 is generally polyurethane or nylon. The above-listed polymeric materials are merely exemplary, and thus other polymeric matrix materials are within the scope of the invention. The molecular bonding links 30 covalently bond to the matrix material 12 and the abrasive particles 20. The molecular bonding links 30, therefore, secure the abrasive particles 20 to the matrix material 12. The abrasive particles 20 are preferably made from silicon dioxide or aluminum oxide, but other types of abrasive particles are within the scope of the invention.
FIG. 3 further illustrates the bond between a strand of matrix material 12, a bonding link 30, and an abrasive particle 20. The molecular bonding link 30 has an alkyl chain 32, a reactive terminus group 34, and a particle affixing group 36. The reactive terminus group 34 is a molecular segment that bonds the bonding link 30 to the strand of the matrix material 12. The specific structure of the reactive terminus group 34 is selected to reactively bond with the specific type of matrix material 12 when the matrix material 12 is in a liquid monomer phase. The particle affixing group 36 is another molecular segment that covalently bonds the bonding link 30 to the abrasive particle 20. The specific structure of the particle affixing group 36 is similarly selected to covalently bond with the material from which the abrasive particles 20 are made. Accordingly, the molecular bonding link 30 securely attaches the abrasive particle 20 to the matrix material 12.
FIG. 4A illustrates a specific embodiment of the molecular bonding link 30. The alkyl chain 32 is made from (CH2)n, where n=1-30, the reactive terminus group is made from COOH, and the particle affixing group is made from trichlorosilane. Referring to FIG. 4B, the trichlorosilane molecule reacts with the O--H chains on the surface of the particle 20 to covalently bond the abrasive particle 20 to the particle affixing group 36 of the molecular bonding link 30. Similarly, the COOH reactive terminus group 34 reacts with a urethane monomer chain 12 to bond the bonding link 30 to the matrix material 12. The byproducts of the reaction are water and hydrochloric acid.
The invention is not limited to abrasive particles made from silicon dioxide or a matrix material made from polyurethane. The materials from which the abrasive particles and the matrix material are made can be varied to impart desired characteristics to the pad. A central aspect of the invention is to select molecular bonding links that covalently bond to the abrasive particles and matrix material to substantially prevent the bonds between the matrix material, molecular bonding links, and abrasive particles from weakening in the presence of an electrostatic solvent. Additionally, the length of the alkyl chain 32 of the molecular bonding link 30 may be varied to accommodate different sizes of abrasive particles 20. For example, an alkyl chain 15-20Å in length (approximately twelve carbon atoms (CH2)12) may be used with a 1,500 Å diameter particle. Longer alkyl chains 32 are preferably used with larger abrasive particles 20, and shorter alkyl chains 32 are preferably used with smaller abrasive particles 20.
FIG. 5 graphically illustrates a method for making bonded particle polishing pads for use in chemical-mechanical planarization of semiconductor wafers in accordance with the invention. The first step 200 of the method is to fill a mold with a matrix material in a liquid monomer phase. The second step 202 is to covalently bond abrasive particles to molecular bonding links. Depending upon the desired length of the molecular bonding links, they are deposited onto the abrasive particles either by vapor deposition (shorter lengths) or by liquid deposition (longer lengths). The third step 204 is to admix the bonded molecular bonding links and abrasive particles with the matrix material. The pad is made from approximately 10%-50% by weight abrasive particles and bonding links, and approximately 50%-90% by weight matrix material 12. In a preferred embodiment, the pad is made from approximately 15%-25% by weight of bonded abrasive particles and bonding links. After the bonded abrasive particles and molecular bonding links are disbursed substantially uniformly throughout the matrix material, the fourth step 206 is to cure the matrix material.
One advantage of the present invention is that the polishing pad results in a high polishing rate without limiting the oxidizing or etching chemicals in the slurry. By putting the abrasive particles 20 in the pad 10, stabilizing agents are not required in the slurry solution. Accordingly, a wider range of etching and oxidizing chemicals may be used in the slurry solution.
Another advantage of the present invention is that the polishing pad 10 has a uniform polishing rate across its planarizing surface. By bonding the abrasive particles 20 to the matrix material 12, the abrasive particles 20 do not agglomerate into large clusters 22, as shown in FIG. 1. The polishing pad 10, therefore, has a substantially uniform distribution of abrasive particles 20 throughout the matrix material. Thus, the polishing rate is substantially uniform across the surface of the wafer.
Still another advantage of the invention is that the polishing pad 10 does not create large scratches on the surface of a wafer. By covalently bonding the abrasive particles 20 to the matrix material 12, the abrasive particles 20 do not readily break away from the pad 10 in the presence of an electrostatic solvent. Thus, compared to conventional pads, large clusters 22 of abrasive particles 20 are less likely to break away from the pad 10 and scratch a wafer during planarization.
From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

Claims (27)

I claim:
1. A semiconductor wafer polishing pad comprising:
a body made from a polymeric matrix material; bonding molecules covalently bonded to the matrix material; and
abrasive particles covalently bonded to the bonding molecules in a substantially uniform distribution throughout the body, the bonding molecules affixing the abrasive particles to the matrix material in a manner capable of substantially maintaining the affixation between the abrasive particles and the matrix material in the presence of an electrostatic chemical-mechanical planarization slurry.
2. The polishing pad of claim 1 wherein each bonding molecule is comprised of a reactive terminus group and a particle affixing group, the reactive terminus group being a molecule segment at one end of the bonding molecule that covalently bonds to the matrix material and the particle affixing group being another molecule segment at another end of the bonding molecule that covalently bonds to an abrasive particle.
3. The polishing pad of claim 1 wherein the matrix material is made from polyurethane.
4. The polishing pad of claim 1 wherein the abrasive particles are made from silicon dioxide.
5. The polishing pad of claim 1 wherein the abrasive particles are made from aluminum oxide.
6. The polishing pad of claim 2 wherein the matrix material is made from polyurethane and the abrasive particles are made from silicon dioxide.
7. The polishing pad of claim 6 wherein the reactive terminus group is COOH, and the particle affixing group is a trichlorosilane, the trichlorosilane covalently bonding with a hydroxylated silicon surface on the abrasive particles.
8. A planarizing machine for chemical-mechanical planarization of a semiconductor wafer, comprising:
a platen;
a polishing pad positioned on the platen, the polishing pad having a body made from a polymeric matrix material, bonding molecules covalently bonded to the matrix material, and abrasive particles covalently bonded to the bonding molecules throughout the body, the bonding molecules affixing the abrasive particles to the matrix material during chemical-mechanical planarization in the presence of an electrostatic chemical-mechanical planarizing slurry; and
a wafer carrier positionable over the polishing pad, the wafer being attachable to the wafer carrier, wherein at least one of the platen or the wafer carrier is moveable to engage the wafer with the polishing pad and to impart motion between the wafer and polishing pad.
9. The planarizing machine of claim 8 wherein each bonding molecule is comprised of a reactive terminus group and a particle affixing group, the reactive terminus group being a molecule segment at one end of the bonding molecule that covalently bonds to the matrix material and the particle affixing group being another molecule segment at another end of the bonding molecule that covalently bonds to an abrasive particle.
10. The planarizing machine of claim 8 wherein the matrix material is made from polyurethane.
11. The planarizing machine of claim 8 wherein the abrasive particles are made from silicon dioxide.
12. The planarizing machine of claim 8 wherein the abrasive particles are made from aluminum oxide.
13. The planarizing machine of claim 9 wherein the matrix material is made from polyurethane and the abrasive particles are made from silicon dioxide.
14. The planarizing machine of claim 13 wherein the reactive terminus group is COOH, and the particle affixing group is a trichlorosilane, the trichlorosilane covalently bonding with a hydroxylated silicon surface on the abrasive particles.
15. A polishing pad, comprising:
a body made from a polymeric matrix material;
non-hydrolyzed bonding molecules covalently bonded to the matrix material; and
abrasive particles covalently bonded to the bonding molecules, the bonding molecules affixing the abrasive particles to the matrix material during chemical-mechanical planarization.
16. The polishing pad of claim 15 wherein the abrasive particles have a coat of bonding molecules applied by vapor deposition.
17. The polishing pad of claim 15 wherein each bonding molecule is comprised of a reactive terminus group and a particle affixing group, the reactive terminus group being a molecule segment at one end of the bonding molecule that covalently bonds to the matrix material and the particle affixing group being another molecule segment at another end of the bonding molecule that covalently bonds to an abrasive particle.
18. The polishing pad of claim 15 wherein the matrix material is polyurethane and the abrasive particles are silicon dioxide, and wherein each bonding molecule has a reactive terminus group of COOH and a particle affixing group of trichlorosilane, the reactive terminus group being a molecule segment at one end of the bonding molecule that covalently bonds to the matrix material and the particle affixing group being another molecule segment at another end of the bonding molecule.
19. A polishing pad, comprising:
a body made from a polymeric matrix material, the body being between approximately 50% and 90% by weight of the polishing pad;
non-hydrolyzed bonding molecules covalently bonded to the matrix material; and
abrasive particles covalently bonded to the bonding molecules, the bonding molecules affixing the abrasive particles to the matrix material during chemical-mechanical planarization, and the abrasive particles being between approximately 10% and 50% by weight of the polishing pad.
20. The polishing pad of claim 19 wherein the abrasive particles have a coat of bonding molecules applied by vapor deposition.
21. The polishing pad of claim 19 wherein the abrasive particles are between approximately 15% and 25% by weight of the polishing pad.
22. The polishing pad of claim 19 wherein each bonding molecule is comprised of a reactive terminus group and a particle affixing group, the reactive terminus group being a molecule segment at one end of the bonding molecule that covalently bonds to the matrix material and the particle affixing group being another molecule segment at another end of the bonding molecule that covalently bonds to an abrasive particle, and wherein the abrasive particles are between approximately 15% and 25% by weight of the polishing pad.
23. The polishing pad of claim 19 wherein the matrix material is polyurethane and the abrasive particles are silicon dioxide, and wherein each bonding molecule is comprised of a reactive terminus group of COOH and a particle affixing group of trichlorosilane, the reactive terminus group being a molecule segment at one end of the bonding molecule that covalently bonds to the matrix material and the particle affixing group being another molecule segment at another end of the bonding molecule that covalently bonds to an abrasive particle.
24. A polishing pad, comprising:
a body made from a polymeric matrix material;
non-hydrolyzed bonding molecules covalently bonded to the matrix material; and
abrasive particles having an average particle size less than 0.15 μm, the abrasive particles being covalently bonded to the bonding molecules, and the bonding molecules affixing the abrasive particles to the matrix material during chemical-mechanical planarization in the presence of an electrostatic chemical-mechanical planarization solution.
25. The polishing pad of claim 24 wherein the abrasive particles have an average particle size less than 0.1 μm.
26. The polishing pad of claim 24 wherein the body is between approximately 50% and 90% by weight of the polishing pad and the abrasive particles are between approximately 10% and 50% by weight of the polishing pad.
27. The polishing pad of claim 26 wherein each bonding molecule is comprised of a reactive terminus group and a particle affixing group, the reactive terminus group being a molecule segment at one end of the bonding molecule that covalently bonds to the matrix material and the particle affixing group being another molecule segment at another end of the bonding molecule that covalently bonds to an abrasive particle.
US08/589,774 1996-01-22 1996-01-22 Polishing pad and a method for making a polishing pad with covalently bonded particles Expired - Lifetime US5624303A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US08/589,774 US5624303A (en) 1996-01-22 1996-01-22 Polishing pad and a method for making a polishing pad with covalently bonded particles
AT97903862T ATE218413T1 (en) 1996-01-22 1997-01-21 POLISHING PAD AND METHOD FOR PRODUCING POLISHING PAD WITH COVALENTLY BONDED PARTICLES
AU18328/97A AU1832897A (en) 1996-01-22 1997-01-21 A polishing pad and a method for making a polishing pad with covalently bonded particles
JP52625697A JP4171846B2 (en) 1996-01-22 1997-01-21 Polishing pad having shared particles and method for producing the same
KR10-1998-0705588A KR100459528B1 (en) 1996-01-22 1997-01-21 A polishing pad comprising covalently bonded particles, a method of manufacturing the same, and a flattening machine including the same
DE69713057T DE69713057T2 (en) 1996-01-22 1997-01-21 POLISHING CUSHION AND METHOD FOR PRODUCING POLISHING CUSHION WITH COVALENT-TIED PARTICLES
PCT/US1997/000861 WO1997026114A1 (en) 1996-01-22 1997-01-21 A polishing pad and a method for making a polishing pad with covalently bonded particles
EP97903862A EP0876242B1 (en) 1996-01-22 1997-01-21 A polishing pad and a method for making a polishing pad with covalently bonded particles
US08/798,001 US5823855A (en) 1996-01-22 1997-02-12 Polishing pad and a method for making a polishing pad with covalently bonded particles
US08/838,394 US5879222A (en) 1996-01-22 1997-04-09 Abrasive polishing pad with covalently bonded abrasive particles
JP2005195615A JP4174607B2 (en) 1996-01-22 2005-07-04 Polishing pad having covalently bonded particles and method of manufacturing polishing pad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/589,774 US5624303A (en) 1996-01-22 1996-01-22 Polishing pad and a method for making a polishing pad with covalently bonded particles

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US08/798,001 Division US5823855A (en) 1996-01-22 1997-02-12 Polishing pad and a method for making a polishing pad with covalently bonded particles
US08/838,394 Continuation-In-Part US5879222A (en) 1996-01-22 1997-04-09 Abrasive polishing pad with covalently bonded abrasive particles

Publications (1)

Publication Number Publication Date
US5624303A true US5624303A (en) 1997-04-29

Family

ID=24359467

Family Applications (3)

Application Number Title Priority Date Filing Date
US08/589,774 Expired - Lifetime US5624303A (en) 1996-01-22 1996-01-22 Polishing pad and a method for making a polishing pad with covalently bonded particles
US08/798,001 Expired - Lifetime US5823855A (en) 1996-01-22 1997-02-12 Polishing pad and a method for making a polishing pad with covalently bonded particles
US08/838,394 Expired - Lifetime US5879222A (en) 1996-01-22 1997-04-09 Abrasive polishing pad with covalently bonded abrasive particles

Family Applications After (2)

Application Number Title Priority Date Filing Date
US08/798,001 Expired - Lifetime US5823855A (en) 1996-01-22 1997-02-12 Polishing pad and a method for making a polishing pad with covalently bonded particles
US08/838,394 Expired - Lifetime US5879222A (en) 1996-01-22 1997-04-09 Abrasive polishing pad with covalently bonded abrasive particles

Country Status (8)

Country Link
US (3) US5624303A (en)
EP (1) EP0876242B1 (en)
JP (2) JP4171846B2 (en)
KR (1) KR100459528B1 (en)
AT (1) ATE218413T1 (en)
AU (1) AU1832897A (en)
DE (1) DE69713057T2 (en)
WO (1) WO1997026114A1 (en)

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5782675A (en) * 1996-10-21 1998-07-21 Micron Technology, Inc. Apparatus and method for refurbishing fixed-abrasive polishing pads used in chemical-mechanical planarization of semiconductor wafers
US5879222A (en) * 1996-01-22 1999-03-09 Micron Technology, Inc. Abrasive polishing pad with covalently bonded abrasive particles
US5919082A (en) * 1997-08-22 1999-07-06 Micron Technology, Inc. Fixed abrasive polishing pad
WO1999033615A1 (en) * 1997-12-30 1999-07-08 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
US5958794A (en) 1995-09-22 1999-09-28 Minnesota Mining And Manufacturing Company Method of modifying an exposed surface of a semiconductor wafer
US5972792A (en) * 1996-10-18 1999-10-26 Micron Technology, Inc. Method for chemical-mechanical planarization of a substrate on a fixed-abrasive polishing pad
US6007407A (en) * 1996-08-08 1999-12-28 Minnesota Mining And Manufacturing Company Abrasive construction for semiconductor wafer modification
US6036586A (en) * 1998-07-29 2000-03-14 Micron Technology, Inc. Apparatus and method for reducing removal forces for CMP pads
US6062958A (en) * 1997-04-04 2000-05-16 Micron Technology, Inc. Variable abrasive polishing pad for mechanical and chemical-mechanical planarization
US6062133A (en) * 1995-11-17 2000-05-16 Micron Technology, Inc. Global planarization method and apparatus
US6080671A (en) * 1998-08-18 2000-06-27 Lucent Technologies Inc. Process of chemical-mechanical polishing and manufacturing an integrated circuit
US6194317B1 (en) 1998-04-30 2001-02-27 3M Innovative Properties Company Method of planarizing the upper surface of a semiconductor wafer
US6206756B1 (en) 1998-11-10 2001-03-27 Micron Technology, Inc. Tungsten chemical-mechanical polishing process using a fixed abrasive polishing pad and a tungsten layer chemical-mechanical polishing solution specifically adapted for chemical-mechanical polishing with a fixed abrasive pad
US6218316B1 (en) 1998-10-22 2001-04-17 Micron Technology, Inc. Planarization of non-planar surfaces in device fabrication
US6220934B1 (en) 1998-07-23 2001-04-24 Micron Technology, Inc. Method for controlling pH during planarization and cleaning of microelectronic substrates
US6276996B1 (en) 1998-11-10 2001-08-21 Micron Technology, Inc. Copper chemical-mechanical polishing process using a fixed abrasive polishing pad and a copper layer chemical-mechanical polishing solution specifically adapted for chemical-mechanical polishing with a fixed abrasive pad
US6316363B1 (en) 1999-09-02 2001-11-13 Micron Technology, Inc. Deadhesion method and mechanism for wafer processing
US6331488B1 (en) 1997-05-23 2001-12-18 Micron Technology, Inc. Planarization process for semiconductor substrates
US6390890B1 (en) 1999-02-06 2002-05-21 Charles J Molnar Finishing semiconductor wafers with a fixed abrasive finishing element
US6413153B1 (en) 1999-04-26 2002-07-02 Beaver Creek Concepts Inc Finishing element including discrete finishing members
KR20020055308A (en) * 2000-12-28 2002-07-08 박종섭 Pad for chemical mechanical polishing and method thereof
US6419554B2 (en) 1999-06-24 2002-07-16 Micron Technology, Inc. Fixed abrasive chemical-mechanical planarization of titanium nitride
US20020102924A1 (en) * 2000-11-29 2002-08-01 Obeng Yaw S. Selective chemical-mechanical polishing properties of a cross-linked polymer and specific applications therefor
US6428386B1 (en) 2000-06-16 2002-08-06 Micron Technology, Inc. Planarizing pads, planarizing machines, and methods for mechanical and/or chemical-mechanical planarization of microelectronic-device substrate assemblies
US6447369B1 (en) 2000-08-30 2002-09-10 Micron Technology, Inc. Planarizing machines and alignment systems for mechanical and/or chemical-mechanical planarization of microelectronic substrates
US6498101B1 (en) 2000-02-28 2002-12-24 Micron Technology, Inc. Planarizing pads, planarizing machines and methods for making and using planarizing pads in mechanical and chemical-mechanical planarization of microelectronic device substrate assemblies
US6511576B2 (en) 1999-11-17 2003-01-28 Micron Technology, Inc. System for planarizing microelectronic substrates having apertures
US6518172B1 (en) 2000-08-29 2003-02-11 Micron Technology, Inc. Method for applying uniform pressurized film across wafer
US20030031876A1 (en) * 2001-06-01 2003-02-13 Psiloquest, Inc. Thermal management with filled polymeric polishing pads and applications therefor
US6520834B1 (en) 2000-08-09 2003-02-18 Micron Technology, Inc. Methods and apparatuses for analyzing and controlling performance parameters in mechanical and chemical-mechanical planarization of microelectronic substrates
US20030035940A1 (en) * 2000-11-29 2003-02-20 Exigent, Inc. Method of altering and preserving the surface properties of a polishing pad and specific applications therefor
US6533893B2 (en) 1999-09-02 2003-03-18 Micron Technology, Inc. Method and apparatus for chemical-mechanical planarization of microelectronic substrates with selected planarizing liquids
US20030060128A1 (en) * 1999-08-31 2003-03-27 Moore Scott E. Apparatus and method for conditioning and monitoring media used for chemical-mechanical planarization
US6548407B1 (en) 2000-04-26 2003-04-15 Micron Technology, Inc. Method and apparatus for controlling chemical interactions during planarization of microelectronic substrates
US6575823B1 (en) 2001-03-06 2003-06-10 Psiloquest Inc. Polishing pad and method for in situ delivery of chemical mechanical polishing slurry modifiers and applications thereof
US6592443B1 (en) 2000-08-30 2003-07-15 Micron Technology, Inc. Method and apparatus for forming and using planarizing pads for mechanical and chemical-mechanical planarization of microelectronic substrates
US6596388B1 (en) 2000-11-29 2003-07-22 Psiloquest Method of introducing organic and inorganic grafted compounds throughout a thermoplastic polishing pad using a supercritical fluid and applications therefor
US6609947B1 (en) 2000-08-30 2003-08-26 Micron Technology, Inc. Planarizing machines and control systems for mechanical and/or chemical-mechanical planarization of micro electronic substrates
US6612912B2 (en) 1998-08-11 2003-09-02 Hitachi, Ltd. Method for fabricating semiconductor device and processing apparatus for processing semiconductor device
US6612901B1 (en) 2000-06-07 2003-09-02 Micron Technology, Inc. Apparatus for in-situ optical endpointing of web-format planarizing machines in mechanical or chemical-mechanical planarization of microelectronic-device substrate assemblies
US6623329B1 (en) 2000-08-31 2003-09-23 Micron Technology, Inc. Method and apparatus for supporting a microelectronic substrate relative to a planarization pad
US6628410B2 (en) 1996-02-16 2003-09-30 Micron Technology, Inc. Endpoint detector and method for measuring a change in wafer thickness in chemical-mechanical polishing of semiconductor wafers and other microelectronic substrates
US6641463B1 (en) 1999-02-06 2003-11-04 Beaver Creek Concepts Inc Finishing components and elements
US6652764B1 (en) 2000-08-31 2003-11-25 Micron Technology, Inc. Methods and apparatuses for making and using planarizing pads for mechanical and chemical-mechanical planarization of microelectronic substrates
US6659846B2 (en) * 2001-09-17 2003-12-09 Agere Systems, Inc. Pad for chemical mechanical polishing
US6666749B2 (en) 2001-08-30 2003-12-23 Micron Technology, Inc. Apparatus and method for enhanced processing of microelectronic workpieces
US20040014396A1 (en) * 2002-07-18 2004-01-22 Elledge Jason B. Methods and systems for planarizing workpieces, e.g., microelectronic workpieces
US6684704B1 (en) 2002-09-12 2004-02-03 Psiloquest, Inc. Measuring the surface properties of polishing pads using ultrasonic reflectance
US6706383B1 (en) 2001-11-27 2004-03-16 Psiloquest, Inc. Polishing pad support that improves polishing performance and longevity
US6736869B1 (en) 2000-08-28 2004-05-18 Micron Technology, Inc. Method for forming a planarizing pad for planarization of microelectronic substrates
US20040116054A1 (en) * 2002-11-28 2004-06-17 Stefan Geyer Abrasive pad and process for the wet-chemical grinding of a substrate surface
US6764574B1 (en) 2001-03-06 2004-07-20 Psiloquest Polishing pad composition and method of use
US20040146712A1 (en) * 2002-09-11 2004-07-29 Psiloquest, Inc. Polishing pad resistant to delamination
US6769967B1 (en) 1996-10-21 2004-08-03 Micron Technology, Inc. Apparatus and method for refurbishing polishing pads used in chemical-mechanical planarization of semiconductor wafers
US20040159558A1 (en) * 2003-02-18 2004-08-19 Bunyan Michael H. Polishing article for electro-chemical mechanical polishing
US6780095B1 (en) 1997-12-30 2004-08-24 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
US20040166779A1 (en) * 2003-02-24 2004-08-26 Sudhakar Balijepalli Materials and methods for chemical-mechanical planarization
US20040166790A1 (en) * 2003-02-21 2004-08-26 Sudhakar Balijepalli Method of manufacturing a fixed abrasive material
US20040198184A1 (en) * 2001-08-24 2004-10-07 Joslyn Michael J Planarizing machines and methods for dispensing planarizing solutions in the processing of microelectronic workpieces
US6838382B1 (en) 2000-08-28 2005-01-04 Micron Technology, Inc. Method and apparatus for forming a planarizing pad having a film and texture elements for planarization of microelectronic substrates
US20050014457A1 (en) * 2001-08-24 2005-01-20 Taylor Theodore M. Apparatus and method for conditioning a contact surface of a processing pad used in processing microelectronic workpieces
US20050040813A1 (en) * 2003-08-21 2005-02-24 Suresh Ramarajan Apparatuses and methods for monitoring rotation of a conductive microfeature workpiece
US20050054275A1 (en) * 1998-05-29 2005-03-10 Carlson David W. Web-format polishing pads and methods for manufacturing and using web-format polishing pads in mechanical and chemical-mechanical planarization of microelectronic substrates
US20050055885A1 (en) * 2003-09-15 2005-03-17 Psiloquest Polishing pad for chemical mechanical polishing
US6884152B2 (en) 2003-02-11 2005-04-26 Micron Technology, Inc. Apparatuses and methods for conditioning polishing pads used in polishing micro-device workpieces
US6935929B2 (en) 2003-04-28 2005-08-30 Micron Technology, Inc. Polishing machines including under-pads and methods for mechanical and/or chemical-mechanical polishing of microfeature workpieces
US20050202756A1 (en) * 2004-03-09 2005-09-15 Carter Moore Methods and systems for planarizing workpieces, e.g., microelectronic workpieces
US20050266226A1 (en) * 2000-11-29 2005-12-01 Psiloquest Chemical mechanical polishing pad and method for selective metal and barrier polishing
US7059946B1 (en) 2000-11-29 2006-06-13 Psiloquest Inc. Compacted polishing pads for improved chemical mechanical polishing longevity
US7066792B2 (en) 2004-08-06 2006-06-27 Micron Technology, Inc. Shaped polishing pads for beveling microfeature workpiece edges, and associate system and methods
US7144814B2 (en) * 1998-11-09 2006-12-05 Az Electronic Materials Usa Corp. Abrasive composition for the integrated circuits electronics industry
US20070015444A1 (en) * 2005-01-12 2007-01-18 Psiloquest Smoothing pad for bare semiconductor wafers
US20070049177A1 (en) * 2005-09-01 2007-03-01 Micron Technology, Inc. Method and apparatus for removing material from microfeature workpieces
US20070161332A1 (en) * 2005-07-13 2007-07-12 Micron Technology, Inc. Systems and methods for removing microfeature workpiece surface defects
US8092707B2 (en) 1997-04-30 2012-01-10 3M Innovative Properties Company Compositions and methods for modifying a surface suited for semiconductor fabrication
US20120083191A1 (en) * 2010-09-30 2012-04-05 Allison William C Polishing pad for eddy current end-point detection
US8251774B2 (en) 2008-08-28 2012-08-28 3M Innovative Properties Company Structured abrasive article, method of making the same, and use in wafer planarization
US8657653B2 (en) 2010-09-30 2014-02-25 Nexplanar Corporation Homogeneous polishing pad for eddy current end-point detection
US9309448B2 (en) 2010-02-24 2016-04-12 Basf Se Abrasive articles, method for their preparation and method of their use
US20160107381A1 (en) * 2014-10-17 2016-04-21 Applied Materials, Inc. Polishing articles and integrated system and methods for manufacturing chemical mechanical polishing articles
US11446788B2 (en) 2014-10-17 2022-09-20 Applied Materials, Inc. Precursor formulations for polishing pads produced by an additive manufacturing process
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
US11524384B2 (en) 2017-08-07 2022-12-13 Applied Materials, Inc. Abrasive delivery polishing pads and manufacturing methods thereof
US11685014B2 (en) 2018-09-04 2023-06-27 Applied Materials, Inc. Formulations for advanced polishing pads
US11724362B2 (en) 2014-10-17 2023-08-15 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
US11772229B2 (en) 2016-01-19 2023-10-03 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
US11806829B2 (en) 2020-06-19 2023-11-07 Applied Materials, Inc. Advanced polishing pads and related polishing pad manufacturing methods
US11813712B2 (en) 2019-12-20 2023-11-14 Applied Materials, Inc. Polishing pads having selectively arranged porosity
US11878389B2 (en) 2021-02-10 2024-01-23 Applied Materials, Inc. Structures formed using an additive manufacturing process for regenerating surface texture in situ
US11958162B2 (en) 2014-10-17 2024-04-16 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US11964359B2 (en) 2019-10-23 2024-04-23 Applied Materials, Inc. Apparatus and method of forming a polishing article that has a desired zeta potential

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5938801A (en) * 1997-02-12 1999-08-17 Micron Technology, Inc. Polishing pad and a method for making a polishing pad with covalently bonded particles
US5897426A (en) * 1998-04-24 1999-04-27 Applied Materials, Inc. Chemical mechanical polishing with multiple polishing pads
US6322427B1 (en) * 1999-04-30 2001-11-27 Applied Materials, Inc. Conditioning fixed abrasive articles
US20020077037A1 (en) * 1999-05-03 2002-06-20 Tietz James V. Fixed abrasive articles
JP3117438B1 (en) * 1999-06-24 2000-12-11 日本ミクロコーティング株式会社 Chemical mechanical texturing method
US6267650B1 (en) * 1999-08-09 2001-07-31 Micron Technology, Inc. Apparatus and methods for substantial planarization of solder bumps
US6331135B1 (en) 1999-08-31 2001-12-18 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates with metal compound abrasives
US6364749B1 (en) 1999-09-02 2002-04-02 Micron Technology, Inc. CMP polishing pad with hydrophilic surfaces for enhanced wetting
JP3439402B2 (en) * 1999-11-05 2003-08-25 Necエレクトロニクス株式会社 Method for manufacturing semiconductor device
US6517414B1 (en) 2000-03-10 2003-02-11 Appied Materials, Inc. Method and apparatus for controlling a pad conditioning process of a chemical-mechanical polishing apparatus
US6290572B1 (en) 2000-03-23 2001-09-18 Micron Technology, Inc. Devices and methods for in-situ control of mechanical or chemical-mechanical planarization of microelectronic-device substrate assemblies
US6616513B1 (en) * 2000-04-07 2003-09-09 Applied Materials, Inc. Grid relief in CMP polishing pad to accurately measure pad wear, pad profile and pad wear profile
US6443810B1 (en) * 2000-04-11 2002-09-03 Taiwan Semiconductor Manufacturing Co., Ltd. Polishing platen equipped with guard ring for chemical mechanical polishing
US6872329B2 (en) 2000-07-28 2005-03-29 Applied Materials, Inc. Chemical mechanical polishing composition and process
US6672943B2 (en) * 2001-01-26 2004-01-06 Wafer Solutions, Inc. Eccentric abrasive wheel for wafer processing
US6632012B2 (en) 2001-03-30 2003-10-14 Wafer Solutions, Inc. Mixing manifold for multiple inlet chemistry fluids
KR100429691B1 (en) * 2001-06-13 2004-05-03 동성에이앤티 주식회사 Polishing pad and forming methode of the same
US6811471B2 (en) * 2002-06-05 2004-11-02 Arizona Board Of Regents Abrasive particles to clean semiconductor wafers during chemical mechanical planarization
KR100495404B1 (en) * 2002-09-17 2005-06-14 한국포리올 주식회사 Embedded liquid microelement containing polishing pad and manufacturing method thereof
US8075372B2 (en) * 2004-09-01 2011-12-13 Cabot Microelectronics Corporation Polishing pad with microporous regions
DE102007035266B4 (en) * 2007-07-27 2010-03-25 Siltronic Ag A method of polishing a substrate of silicon or an alloy of silicon and germanium
KR101701152B1 (en) * 2009-09-02 2017-02-01 주식회사 동진쎄미켐 Polishing pad comprising nano fiber with protrusion
US20120302148A1 (en) * 2011-05-23 2012-11-29 Rajeev Bajaj Polishing pad with homogeneous body having discrete protrusions thereon
US9067298B2 (en) 2011-11-29 2015-06-30 Nexplanar Corporation Polishing pad with grooved foundation layer and polishing surface layer
US9067297B2 (en) 2011-11-29 2015-06-30 Nexplanar Corporation Polishing pad with foundation layer and polishing surface layer
EP2785496B1 (en) * 2011-11-29 2021-11-24 CMC Materials, Inc. Polishing pad with foundation layer and polishing surface layer
US9597769B2 (en) 2012-06-04 2017-03-21 Nexplanar Corporation Polishing pad with polishing surface layer having an aperture or opening above a transparent foundation layer
US11292102B2 (en) 2017-12-29 2022-04-05 Saint-Gobain Abrasives, Inc. Abrasive buffing articles

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3617347A (en) * 1968-11-19 1971-11-02 Tatsuo Kuratomi Process for the production of a silicon-coated diamond power
US4565771A (en) * 1982-08-21 1986-01-21 Basf Aktiengesellschaft Production of gravure printing plates having plastic printing layers
US5127196A (en) * 1990-03-01 1992-07-07 Intel Corporation Apparatus for planarizing a dielectric formed over a semiconductor substrate
US5197999A (en) * 1991-09-30 1993-03-30 National Semiconductor Corporation Polishing pad for planarization
US5213588A (en) * 1992-02-04 1993-05-25 The Procter & Gamble Company Abrasive wiping articles and a process for preparing such articles
US5250085A (en) * 1993-01-15 1993-10-05 Minnesota Mining And Manufacturing Company Flexible bonded abrasive articles, methods of production and use
US5433650A (en) * 1993-05-03 1995-07-18 Motorola, Inc. Method for polishing a substrate

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US202757A (en) * 1878-04-23 Improvement in table-cutlery
US2185942A (en) * 1939-04-11 1940-01-02 Frank Charles William Table service
DE3479783D1 (en) * 1983-03-09 1989-10-26 Howmedica Int Inc Anchorage nail
FR2580656B1 (en) * 1985-04-23 1987-09-11 Charbonnages Ste Chimique MULTI-PHASE THERMOPLASTIC COMPOSITIONS AND ARTICLES OBTAINED
US4652274A (en) * 1985-08-07 1987-03-24 Minnesota Mining And Manufacturing Company Coated abrasive product having radiation curable binder
CA1263240A (en) * 1985-12-16 1989-11-28 Minnesota Mining And Manufacturing Company Coated abrasive suitable for use as a lapping material
JPH02191768A (en) * 1988-08-10 1990-07-27 Kanebo Ltd Yarn dyeing product of cellulose-based fiber and production thereof
JPH02139478A (en) * 1988-08-10 1990-05-29 Kanebo Ltd Cellulosic textile product and production thereof
JPH02186656A (en) * 1989-01-13 1990-07-20 Hitachi Ltd Low dust device
US4954142A (en) * 1989-03-07 1990-09-04 International Business Machines Corporation Method of chemical-mechanical polishing an electronic component substrate and polishing slurry therefor
JPH05293766A (en) * 1992-04-20 1993-11-09 Fuji Photo Film Co Ltd Polishing body
CA2140263C (en) * 1992-08-17 2005-09-13 Michael R. Hansen Particle binders
MY114512A (en) * 1992-08-19 2002-11-30 Rodel Inc Polymeric substrate with polymeric microelements
US5290903A (en) * 1992-11-09 1994-03-01 Norton Company Composite abrasive wheels
JP2991270B2 (en) * 1993-04-26 1999-12-20 キヤノン株式会社 Manufacturing method of color filter
JP3205168B2 (en) * 1993-06-18 2001-09-04 三洋化成工業株式会社 Absorbent composition for disposable diapers
GB9316021D0 (en) * 1993-08-03 1993-09-15 Exxon Chemical Patents Inc Additive for hydrocarbon oils
JP3326642B2 (en) * 1993-11-09 2002-09-24 ソニー株式会社 Substrate post-polishing treatment method and polishing apparatus used therefor
JPH07266219A (en) * 1994-03-25 1995-10-17 Mitsubishi Materials Corp Wafer polishing device
JPH07321076A (en) * 1994-05-24 1995-12-08 Toshiba Corp Manufacture of semiconductor device and abrasive device
JP2894208B2 (en) * 1994-06-02 1999-05-24 信越半導体株式会社 Polishing agent for polishing silicon wafer and polishing method
US5672095A (en) * 1995-09-29 1997-09-30 Intel Corporation Elimination of pad conditioning in a chemical mechanical polishing process
US5624303A (en) * 1996-01-22 1997-04-29 Micron Technology, Inc. Polishing pad and a method for making a polishing pad with covalently bonded particles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3617347A (en) * 1968-11-19 1971-11-02 Tatsuo Kuratomi Process for the production of a silicon-coated diamond power
US4565771A (en) * 1982-08-21 1986-01-21 Basf Aktiengesellschaft Production of gravure printing plates having plastic printing layers
US5127196A (en) * 1990-03-01 1992-07-07 Intel Corporation Apparatus for planarizing a dielectric formed over a semiconductor substrate
US5197999A (en) * 1991-09-30 1993-03-30 National Semiconductor Corporation Polishing pad for planarization
US5213588A (en) * 1992-02-04 1993-05-25 The Procter & Gamble Company Abrasive wiping articles and a process for preparing such articles
US5250085A (en) * 1993-01-15 1993-10-05 Minnesota Mining And Manufacturing Company Flexible bonded abrasive articles, methods of production and use
US5433650A (en) * 1993-05-03 1995-07-18 Motorola, Inc. Method for polishing a substrate

Cited By (237)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958794A (en) 1995-09-22 1999-09-28 Minnesota Mining And Manufacturing Company Method of modifying an exposed surface of a semiconductor wafer
US6683003B2 (en) 1995-11-17 2004-01-27 Micron Technology, Inc. Global planarization method and apparatus
US6237483B1 (en) 1995-11-17 2001-05-29 Micron Technology, Inc. Global planarization method and apparatus
US6062133A (en) * 1995-11-17 2000-05-16 Micron Technology, Inc. Global planarization method and apparatus
US5879222A (en) * 1996-01-22 1999-03-09 Micron Technology, Inc. Abrasive polishing pad with covalently bonded abrasive particles
US6628410B2 (en) 1996-02-16 2003-09-30 Micron Technology, Inc. Endpoint detector and method for measuring a change in wafer thickness in chemical-mechanical polishing of semiconductor wafers and other microelectronic substrates
US6007407A (en) * 1996-08-08 1999-12-28 Minnesota Mining And Manufacturing Company Abrasive construction for semiconductor wafer modification
US5972792A (en) * 1996-10-18 1999-10-26 Micron Technology, Inc. Method for chemical-mechanical planarization of a substrate on a fixed-abrasive polishing pad
US5782675A (en) * 1996-10-21 1998-07-21 Micron Technology, Inc. Apparatus and method for refurbishing fixed-abrasive polishing pads used in chemical-mechanical planarization of semiconductor wafers
US6769967B1 (en) 1996-10-21 2004-08-03 Micron Technology, Inc. Apparatus and method for refurbishing polishing pads used in chemical-mechanical planarization of semiconductor wafers
US6062958A (en) * 1997-04-04 2000-05-16 Micron Technology, Inc. Variable abrasive polishing pad for mechanical and chemical-mechanical planarization
US6309282B1 (en) 1997-04-04 2001-10-30 Micron Technology, Inc. Variable abrasive polishing pad for mechanical and chemical-mechanical planarization
US8092707B2 (en) 1997-04-30 2012-01-10 3M Innovative Properties Company Compositions and methods for modifying a surface suited for semiconductor fabrication
US20060249723A1 (en) * 1997-05-23 2006-11-09 Doan Trung T Planarization process for semiconductor substrates
US6331488B1 (en) 1997-05-23 2001-12-18 Micron Technology, Inc. Planarization process for semiconductor substrates
US6693034B2 (en) 1997-05-23 2004-02-17 Micron Technology, Inc. Deadhesion method and mechanism for wafer processing
US6743724B2 (en) 1997-05-23 2004-06-01 Micron Technology, Inc. Planarization process for semiconductor substrates
US20040209475A1 (en) * 1997-05-23 2004-10-21 Doan Trung T. Planarization process for semiconductor substrates
US6290579B1 (en) * 1997-08-22 2001-09-18 Micron Technology, Inc. Fixed abrasive polishing pad
US6425815B1 (en) 1997-08-22 2002-07-30 Micron Technology, Inc. Fixed abrasive polishing pad
US6254460B1 (en) * 1997-08-22 2001-07-03 Micron Technology, Inc. Fixed abrasive polishing pad
US6431960B1 (en) 1997-08-22 2002-08-13 Micron Technology, Inc. Fixed abrasive polishing pad
US20040106367A1 (en) * 1997-08-22 2004-06-03 Walker Michael A. Fixed abrasive polishing pad
US6517425B2 (en) 1997-08-22 2003-02-11 Micron Technology, Inc. Fixed abrasive polishing pad
US5919082A (en) * 1997-08-22 1999-07-06 Micron Technology, Inc. Fixed abrasive polishing pad
US6419568B1 (en) 1997-08-22 2002-07-16 Micron Technology, Inc. Fixed abrasive polishing pad
US6527626B2 (en) 1997-08-22 2003-03-04 Micron Technology, Inc. Fixed abrasive polishing pad
US6672951B2 (en) 1997-08-22 2004-01-06 Micron Technology, Inc. Fixed abrasive polishing pad
US6409586B2 (en) 1997-08-22 2002-06-25 Micron Technology, Inc. Fixed abrasive polishing pad
US6540593B2 (en) 1997-08-22 2003-04-01 Micron Technology, Inc. Fixed abrasive polishing pad
US6419572B2 (en) 1997-12-30 2002-07-16 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
US6390910B1 (en) 1997-12-30 2002-05-21 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
US6537190B2 (en) 1997-12-30 2003-03-25 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
US6139402A (en) * 1997-12-30 2000-10-31 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
US6913519B2 (en) 1997-12-30 2005-07-05 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
US6364757B2 (en) 1997-12-30 2002-04-02 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
US6780095B1 (en) 1997-12-30 2004-08-24 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
US20040097175A1 (en) * 1997-12-30 2004-05-20 Moore Scott E. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
WO1999033615A1 (en) * 1997-12-30 1999-07-08 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
US6354930B1 (en) 1997-12-30 2002-03-12 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
US6652370B2 (en) 1997-12-30 2003-11-25 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
US6514130B2 (en) 1997-12-30 2003-02-04 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
US6194317B1 (en) 1998-04-30 2001-02-27 3M Innovative Properties Company Method of planarizing the upper surface of a semiconductor wafer
US20050054275A1 (en) * 1998-05-29 2005-03-10 Carlson David W. Web-format polishing pads and methods for manufacturing and using web-format polishing pads in mechanical and chemical-mechanical planarization of microelectronic substrates
US7156727B2 (en) * 1998-05-29 2007-01-02 Micron Technology, Inc. Web-format polishing pads and methods for manufacturing and using web-format polishing pads in mechanical and chemical-mechanical planarization of microelectronic substrates
US6913523B2 (en) 1998-07-23 2005-07-05 Micron Technology, Inc. Method for controlling pH during planarization and cleaning of microelectronic substrates
US6220934B1 (en) 1998-07-23 2001-04-24 Micron Technology, Inc. Method for controlling pH during planarization and cleaning of microelectronic substrates
US6716089B2 (en) 1998-07-23 2004-04-06 Micron Technology, Inc. Method for controlling pH during planarization and cleaning of microelectronic substrates
US6368194B1 (en) 1998-07-23 2002-04-09 Micron Technology, Inc. Apparatus for controlling PH during planarization and cleaning of microelectronic substrates
US20040192174A1 (en) * 1998-07-23 2004-09-30 Sharples Judson R. Method for controlling PH during planarization and cleaning of microelectronic substrates
US6991740B2 (en) 1998-07-29 2006-01-31 Micron Technology, Inc. Method for reducing removal forces for CMP pads
US20090298395A1 (en) * 1998-07-29 2009-12-03 Micron Technology, Inc. Apparatus and method for reducing removal forces for cmp pads
US8308528B2 (en) 1998-07-29 2012-11-13 Round Rock Research, Llc Apparatus and method for reducing removal forces for CMP pads
US20060118525A1 (en) * 1998-07-29 2006-06-08 Ward Trent T Apparatus and method for reducing removal forces for CMP pads
US6036586A (en) * 1998-07-29 2000-03-14 Micron Technology, Inc. Apparatus and method for reducing removal forces for CMP pads
US20050000941A1 (en) * 1998-07-29 2005-01-06 Ward Trent T. Apparatus and method for reducing removal forces for CMP pads
US6398905B1 (en) 1998-07-29 2002-06-04 Micron Technology, Inc. Apparatus and method for reducing removal forces for CMP pads
US7585425B2 (en) 1998-07-29 2009-09-08 Micron Technology, Inc. Apparatus and method for reducing removal forces for CMP pads
US6814834B2 (en) 1998-07-29 2004-11-09 Micron Technology, Inc. Apparatus and method for reducing removal forces for CMP pads
US6612912B2 (en) 1998-08-11 2003-09-02 Hitachi, Ltd. Method for fabricating semiconductor device and processing apparatus for processing semiconductor device
US6080671A (en) * 1998-08-18 2000-06-27 Lucent Technologies Inc. Process of chemical-mechanical polishing and manufacturing an integrated circuit
US6677252B2 (en) 1998-10-22 2004-01-13 Micron Technology, Inc. Methods for planarization of non-planar surfaces in device fabrication
US6218316B1 (en) 1998-10-22 2001-04-17 Micron Technology, Inc. Planarization of non-planar surfaces in device fabrication
US6403499B2 (en) 1998-10-22 2002-06-11 Micron Technology, Inc. Planarization of non-planar surfaces in device fabrication
US20070051918A1 (en) * 1998-11-09 2007-03-08 Az Electronic Materials Usa Corp. New abrasive composition for the integrated circuit electronics industry
US7252695B2 (en) 1998-11-09 2007-08-07 Az Electronic Materials Usa Corp. Abrasive composition for the integrated circuit electronics industry
US7144814B2 (en) * 1998-11-09 2006-12-05 Az Electronic Materials Usa Corp. Abrasive composition for the integrated circuits electronics industry
US6206756B1 (en) 1998-11-10 2001-03-27 Micron Technology, Inc. Tungsten chemical-mechanical polishing process using a fixed abrasive polishing pad and a tungsten layer chemical-mechanical polishing solution specifically adapted for chemical-mechanical polishing with a fixed abrasive pad
US6276996B1 (en) 1998-11-10 2001-08-21 Micron Technology, Inc. Copper chemical-mechanical polishing process using a fixed abrasive polishing pad and a copper layer chemical-mechanical polishing solution specifically adapted for chemical-mechanical polishing with a fixed abrasive pad
US6273786B1 (en) 1998-11-10 2001-08-14 Micron Technology, Inc. Tungsten chemical-mechanical polishing process using a fixed abrasive polishing pad and a tungsten layer chemical-mechanical polishing solution specifically adapted for chemical-mechanical polishing with a fixed abrasive pad
US6676484B2 (en) 1998-11-10 2004-01-13 Micron Technology, Inc. Copper chemical-mechanical polishing process using a fixed abrasive polishing pad and a copper layer chemical-mechanical polishing solution specifically adapted for chemical-mechanical polishing with a fixed abrasive pad
US6390890B1 (en) 1999-02-06 2002-05-21 Charles J Molnar Finishing semiconductor wafers with a fixed abrasive finishing element
US6641463B1 (en) 1999-02-06 2003-11-04 Beaver Creek Concepts Inc Finishing components and elements
US6413153B1 (en) 1999-04-26 2002-07-02 Beaver Creek Concepts Inc Finishing element including discrete finishing members
US6881129B2 (en) 1999-06-24 2005-04-19 Micron Technology, Inc. Fixed-abrasive chemical-mechanical planarization of titanium nitride
US6419554B2 (en) 1999-06-24 2002-07-16 Micron Technology, Inc. Fixed abrasive chemical-mechanical planarization of titanium nitride
US20060003675A1 (en) * 1999-06-24 2006-01-05 Micron Technology, Inc. Fixed-abrasive chemical-mechanical planarization of titanium nitride
US20050199588A1 (en) * 1999-06-24 2005-09-15 Micron Technology, Inc. Fixed-abrasive chemical-mechanical planarization of titanium nitride
US6997781B2 (en) 1999-06-24 2006-02-14 Micron Technology, Inc. Fixed-abrasive chemical-mechanical planarization of titanium nitride
US20020106977A1 (en) * 1999-06-24 2002-08-08 Micron Technology, Inc. Fixed-abrasive chemical-mechanical planarization of titanium nitride
US7402094B2 (en) 1999-06-24 2008-07-22 Micron Technology, Inc. Fixed-abrasive chemical-mechanical planarization of titanium nitride
US6733363B2 (en) 1999-08-31 2004-05-11 Micron Technology, Inc., Apparatus and method for conditioning and monitoring media used for chemical-mechanical planarization
US6969297B2 (en) 1999-08-31 2005-11-29 Micron Technology, Inc. Apparatus and method for conditioning and monitoring media used for chemical-mechanical planarization
US6755718B2 (en) 1999-08-31 2004-06-29 Micron Technology, Inc. Apparatus and method for conditioning and monitoring media used for chemical-mechanical planarization
US20060003673A1 (en) * 1999-08-31 2006-01-05 Moore Scott E Apparatus and method for conditioning and monitoring media used for chemical-mechanical planarization
US7172491B2 (en) 1999-08-31 2007-02-06 Micron Technology, Inc. Apparatus and method for conditioning and monitoring media used for chemical-mechanical planarization
US20030060128A1 (en) * 1999-08-31 2003-03-27 Moore Scott E. Apparatus and method for conditioning and monitoring media used for chemical-mechanical planarization
US6840840B2 (en) 1999-08-31 2005-01-11 Micron Technology, Inc. Apparatus and method for conditioning and monitoring media used for chemical-mechanical planarization
US6773332B2 (en) 1999-08-31 2004-08-10 Micron Technology, Inc. Apparatus and method for conditioning and monitoring media used for chemical-mechanical planarization
US20040097169A1 (en) * 1999-08-31 2004-05-20 Moore Scott E. Apparatus and method for conditioning and monitoring media used for chemical-mechanical planarization
US7229336B2 (en) 1999-08-31 2007-06-12 Micron Technology, Inc. Apparatus and method for conditioning and monitoring media used for chemical-mechanical planarization
US6533893B2 (en) 1999-09-02 2003-03-18 Micron Technology, Inc. Method and apparatus for chemical-mechanical planarization of microelectronic substrates with selected planarizing liquids
US6316363B1 (en) 1999-09-02 2001-11-13 Micron Technology, Inc. Deadhesion method and mechanism for wafer processing
US6506679B2 (en) 1999-09-02 2003-01-14 Micron Technology, Inc. Deadhesion method and mechanism for wafer processing
US6511576B2 (en) 1999-11-17 2003-01-28 Micron Technology, Inc. System for planarizing microelectronic substrates having apertures
US6498101B1 (en) 2000-02-28 2002-12-24 Micron Technology, Inc. Planarizing pads, planarizing machines and methods for making and using planarizing pads in mechanical and chemical-mechanical planarization of microelectronic device substrate assemblies
US6548407B1 (en) 2000-04-26 2003-04-15 Micron Technology, Inc. Method and apparatus for controlling chemical interactions during planarization of microelectronic substrates
US6579799B2 (en) 2000-04-26 2003-06-17 Micron Technology, Inc. Method and apparatus for controlling chemical interactions during planarization of microelectronic substrates
US6986700B2 (en) 2000-06-07 2006-01-17 Micron Technology, Inc. Apparatuses for in-situ optical endpointing on web-format planarizing machines in mechanical or chemical-mechanical planarization of microelectronic-device substrate assemblies
US20050266773A1 (en) * 2000-06-07 2005-12-01 Micron Technology, Inc. Apparatuses and methods for in-situ optical endpointing on web-format planarizing machines in mechanical or chemical-mechanical planarization of microelectronic-device substrate assemblies
US7229338B2 (en) 2000-06-07 2007-06-12 Micron Technology, Inc. Apparatuses and methods for in-situ optical endpointing on web-format planarizing machines in mechanical or chemical-mechanical planarization of microelectronic-device substrate assemblies
US6612901B1 (en) 2000-06-07 2003-09-02 Micron Technology, Inc. Apparatus for in-situ optical endpointing of web-format planarizing machines in mechanical or chemical-mechanical planarization of microelectronic-device substrate assemblies
US6428386B1 (en) 2000-06-16 2002-08-06 Micron Technology, Inc. Planarizing pads, planarizing machines, and methods for mechanical and/or chemical-mechanical planarization of microelectronic-device substrate assemblies
US20030096559A1 (en) * 2000-08-09 2003-05-22 Brian Marshall Methods and apparatuses for analyzing and controlling performance parameters in mechanical and chemical-mechanical planarization of microelectronic substrates
US6974364B2 (en) 2000-08-09 2005-12-13 Micron Technology, Inc. Methods and apparatuses for analyzing and controlling performance parameters in mechanical and chemical-mechanical planarization of microelectronic substrates
US20060160470A1 (en) * 2000-08-09 2006-07-20 Micron Technology, Inc. Methods and apparatuses for analyzing and controlling performance parameters in mechanical and chemical-mechanical planarization of microelectronic substrates
US7182668B2 (en) 2000-08-09 2007-02-27 Micron Technology, Inc. Methods for analyzing and controlling performance parameters in mechanical and chemical-mechanical planarization of microelectronic substrates
US6520834B1 (en) 2000-08-09 2003-02-18 Micron Technology, Inc. Methods and apparatuses for analyzing and controlling performance parameters in mechanical and chemical-mechanical planarization of microelectronic substrates
US20070080142A1 (en) * 2000-08-28 2007-04-12 Micron Technology, Inc. Method and apparatus for forming a planarizing pad having a film and texture elements for planarization of microelectronic substrates
US7374476B2 (en) 2000-08-28 2008-05-20 Micron Technology, Inc. Method and apparatus for forming a planarizing pad having a film and texture elements for planarization of microelectronic substrates
US6932687B2 (en) 2000-08-28 2005-08-23 Micron Technology, Inc. Planarizing pads for planarization of microelectronic substrates
US20040166792A1 (en) * 2000-08-28 2004-08-26 Agarwal Vishnu K. Planarizing pads for planarization of microelectronic substrates
US20040154533A1 (en) * 2000-08-28 2004-08-12 Agarwal Vishnu K. Apparatuses for forming a planarizing pad for planarization of microlectronic substrates
US6736869B1 (en) 2000-08-28 2004-05-18 Micron Technology, Inc. Method for forming a planarizing pad for planarization of microelectronic substrates
US7151056B2 (en) 2000-08-28 2006-12-19 Micron Technology, In.C Method and apparatus for forming a planarizing pad having a film and texture elements for planarization of microelectronic substrates
US20050037696A1 (en) * 2000-08-28 2005-02-17 Meikle Scott G. Method and apparatus for forming a planarizing pad having a film and texture elements for planarization of microelectronic substrates
US6838382B1 (en) 2000-08-28 2005-01-04 Micron Technology, Inc. Method and apparatus for forming a planarizing pad having a film and texture elements for planarization of microelectronic substrates
US7112245B2 (en) 2000-08-28 2006-09-26 Micron Technology, Inc. Apparatuses for forming a planarizing pad for planarization of microlectronic substrates
US20030104691A1 (en) * 2000-08-29 2003-06-05 Blalock Guy T. Method for applying uniform pressurized film across wafer
US6828227B2 (en) 2000-08-29 2004-12-07 Micron Technology, Inc. Method for applying uniform pressurized film across wafer
US6518172B1 (en) 2000-08-29 2003-02-11 Micron Technology, Inc. Method for applying uniform pressurized film across wafer
US6653722B2 (en) 2000-08-29 2003-11-25 Micron Technology, Inc. Method for applying uniform pressurized film across wafer
US6922253B2 (en) 2000-08-30 2005-07-26 Micron Technology, Inc. Planarizing machines and control systems for mechanical and/or chemical-mechanical planarization of microelectronic substrates
US20060194522A1 (en) * 2000-08-30 2006-08-31 Micron Technology, Inc. Method and apparatus for forming and using planarizing pads for mechanical and chemical-mechanical planarization of microelectronic substrates
US6609947B1 (en) 2000-08-30 2003-08-26 Micron Technology, Inc. Planarizing machines and control systems for mechanical and/or chemical-mechanical planarization of micro electronic substrates
US7223154B2 (en) 2000-08-30 2007-05-29 Micron Technology, Inc. Method for forming and using planarizing pads for mechanical and chemical-mechanical planarization of microelectronic substrates
US7192336B2 (en) 2000-08-30 2007-03-20 Micron Technology, Inc. Method and apparatus for forming and using planarizing pads for mechanical and chemical-mechanical planarization of microelectronic substrates
US6592443B1 (en) 2000-08-30 2003-07-15 Micron Technology, Inc. Method and apparatus for forming and using planarizing pads for mechanical and chemical-mechanical planarization of microelectronic substrates
US20040012795A1 (en) * 2000-08-30 2004-01-22 Moore Scott E. Planarizing machines and control systems for mechanical and/or chemical-mechanical planarization of microelectronic substrates
US6447369B1 (en) 2000-08-30 2002-09-10 Micron Technology, Inc. Planarizing machines and alignment systems for mechanical and/or chemical-mechanical planarization of microelectronic substrates
US20060194523A1 (en) * 2000-08-30 2006-08-31 Micron Technology, Inc. Method and apparatus for forming and using planarizing pads for mechanical and chemical-mechanical planarization of microelectronic substrates
US6746317B2 (en) 2000-08-31 2004-06-08 Micron Technology, Inc. Methods and apparatuses for making and using planarizing pads for mechanical and chemical mechanical planarization of microelectronic substrates
US6758735B2 (en) 2000-08-31 2004-07-06 Micron Technology, Inc. Methods and apparatuses for making and using planarizing pads for mechanical and chemical-mechanical planarization of microelectronic substrates
US7037179B2 (en) 2000-08-31 2006-05-02 Micron Technology, Inc. Methods and apparatuses for making and using planarizing pads for mechanical and chemical-mechanical planarization of microelectronic substrates
US7294040B2 (en) 2000-08-31 2007-11-13 Micron Technology, Inc. Method and apparatus for supporting a microelectronic substrate relative to a planarization pad
US20040108062A1 (en) * 2000-08-31 2004-06-10 Moore Scott E. Method and apparatus for supporting a microelectronic substrate relative to a planarization pad
US6623329B1 (en) 2000-08-31 2003-09-23 Micron Technology, Inc. Method and apparatus for supporting a microelectronic substrate relative to a planarization pad
US6652764B1 (en) 2000-08-31 2003-11-25 Micron Technology, Inc. Methods and apparatuses for making and using planarizing pads for mechanical and chemical-mechanical planarization of microelectronic substrates
US6579604B2 (en) 2000-11-29 2003-06-17 Psiloquest Inc. Method of altering and preserving the surface properties of a polishing pad and specific applications therefor
US6846225B2 (en) 2000-11-29 2005-01-25 Psiloquest, Inc. Selective chemical-mechanical polishing properties of a cross-linked polymer and specific applications therefor
US20050266226A1 (en) * 2000-11-29 2005-12-01 Psiloquest Chemical mechanical polishing pad and method for selective metal and barrier polishing
US6596388B1 (en) 2000-11-29 2003-07-22 Psiloquest Method of introducing organic and inorganic grafted compounds throughout a thermoplastic polishing pad using a supercritical fluid and applications therefor
US20030035940A1 (en) * 2000-11-29 2003-02-20 Exigent, Inc. Method of altering and preserving the surface properties of a polishing pad and specific applications therefor
US7059946B1 (en) 2000-11-29 2006-06-13 Psiloquest Inc. Compacted polishing pads for improved chemical mechanical polishing longevity
US6821570B2 (en) 2000-11-29 2004-11-23 Psiloquest Inc. Method for preparing a polymer for chemical mechanical polishing
US20020102924A1 (en) * 2000-11-29 2002-08-01 Obeng Yaw S. Selective chemical-mechanical polishing properties of a cross-linked polymer and specific applications therefor
KR20020055308A (en) * 2000-12-28 2002-07-08 박종섭 Pad for chemical mechanical polishing and method thereof
US6575823B1 (en) 2001-03-06 2003-06-10 Psiloquest Inc. Polishing pad and method for in situ delivery of chemical mechanical polishing slurry modifiers and applications thereof
US6764574B1 (en) 2001-03-06 2004-07-20 Psiloquest Polishing pad composition and method of use
US20030031876A1 (en) * 2001-06-01 2003-02-13 Psiloquest, Inc. Thermal management with filled polymeric polishing pads and applications therefor
US20040209549A1 (en) * 2001-08-24 2004-10-21 Joslyn Michael J. Planarizing machines and methods for dispensing planarizing solutions in the processing of microelectronic workpieces
US7134944B2 (en) 2001-08-24 2006-11-14 Micron Technology, Inc. Apparatus and method for conditioning a contact surface of a processing pad used in processing microelectronic workpieces
US7210989B2 (en) 2001-08-24 2007-05-01 Micron Technology, Inc. Planarizing machines and methods for dispensing planarizing solutions in the processing of microelectronic workpieces
US7001254B2 (en) 2001-08-24 2006-02-21 Micron Technology, Inc. Apparatus and method for conditioning a contact surface of a processing pad used in processing microelectronic workpieces
US20040198184A1 (en) * 2001-08-24 2004-10-07 Joslyn Michael J Planarizing machines and methods for dispensing planarizing solutions in the processing of microelectronic workpieces
US20050014457A1 (en) * 2001-08-24 2005-01-20 Taylor Theodore M. Apparatus and method for conditioning a contact surface of a processing pad used in processing microelectronic workpieces
US20060128279A1 (en) * 2001-08-24 2006-06-15 Micron Technology, Inc. Apparatus and method for conditioning a contact surface of a processing pad used in processing microelectronic workpieces
US6866566B2 (en) 2001-08-24 2005-03-15 Micron Technology, Inc. Apparatus and method for conditioning a contact surface of a processing pad used in processing microelectronic workpieces
US20050181712A1 (en) * 2001-08-24 2005-08-18 Taylor Theodore M. Apparatus and method for conditioning a contact surface of a processing pad used in processing microelectronic workpieces
US7163447B2 (en) 2001-08-24 2007-01-16 Micron Technology, Inc. Apparatus and method for conditioning a contact surface of a processing pad used in processing microelectronic workpieces
US20050208884A1 (en) * 2001-08-24 2005-09-22 Micron Technology, Inc. Apparatus and method for conditioning a contact surface of a processing pad used in processing microelectronic workpieces
US7021996B2 (en) 2001-08-24 2006-04-04 Micron Technology, Inc. Apparatus and method for conditioning a contact surface of a processing pad used in processing microelectronic workpieces
US6666749B2 (en) 2001-08-30 2003-12-23 Micron Technology, Inc. Apparatus and method for enhanced processing of microelectronic workpieces
US6659846B2 (en) * 2001-09-17 2003-12-09 Agere Systems, Inc. Pad for chemical mechanical polishing
US6706383B1 (en) 2001-11-27 2004-03-16 Psiloquest, Inc. Polishing pad support that improves polishing performance and longevity
WO2003078535A1 (en) * 2002-03-04 2003-09-25 Psiloquest Inc. Thermal management with filled polymeric polishing pads and applications therefor
US7604527B2 (en) 2002-07-18 2009-10-20 Micron Technology, Inc. Methods and systems for planarizing workpieces, e.g., microelectronic workpieces
US20050090105A1 (en) * 2002-07-18 2005-04-28 Micron Technology, Inc. Methods and systems for planarizing workpieces, e.g., Microelectronic workpieces
US7182669B2 (en) 2002-07-18 2007-02-27 Micron Technology, Inc. Methods and systems for planarizing workpieces, e.g., microelectronic workpieces
US20040014396A1 (en) * 2002-07-18 2004-01-22 Elledge Jason B. Methods and systems for planarizing workpieces, e.g., microelectronic workpieces
US7341502B2 (en) 2002-07-18 2008-03-11 Micron Technology, Inc. Methods and systems for planarizing workpieces, e.g., microelectronic workpieces
US20040146712A1 (en) * 2002-09-11 2004-07-29 Psiloquest, Inc. Polishing pad resistant to delamination
US6838169B2 (en) 2002-09-11 2005-01-04 Psiloquest, Inc. Polishing pad resistant to delamination
US6684704B1 (en) 2002-09-12 2004-02-03 Psiloquest, Inc. Measuring the surface properties of polishing pads using ultrasonic reflectance
US20040116054A1 (en) * 2002-11-28 2004-06-17 Stefan Geyer Abrasive pad and process for the wet-chemical grinding of a substrate surface
US6911059B2 (en) * 2002-11-28 2005-06-28 Infineon Technologies Ag Abrasive pad and process for the wet-chemical grinding of a substrate surface
US7997958B2 (en) 2003-02-11 2011-08-16 Micron Technology, Inc. Apparatuses and methods for conditioning polishing pads used in polishing micro-device workpieces
US20100197204A1 (en) * 2003-02-11 2010-08-05 Micron Technology, Inc. Apparatuses and methods for conditioning polishing pads used in polishing micro-device workpieces
US7708622B2 (en) 2003-02-11 2010-05-04 Micron Technology, Inc. Apparatuses and methods for conditioning polishing pads used in polishing micro-device workpieces
US20050170761A1 (en) * 2003-02-11 2005-08-04 Micron Technology, Inc. Apparatuses and methods for conditioning polishing pads used in polishing micro-device workpieces
US6884152B2 (en) 2003-02-11 2005-04-26 Micron Technology, Inc. Apparatuses and methods for conditioning polishing pads used in polishing micro-device workpieces
US20040159558A1 (en) * 2003-02-18 2004-08-19 Bunyan Michael H. Polishing article for electro-chemical mechanical polishing
US7141155B2 (en) 2003-02-18 2006-11-28 Parker-Hannifin Corporation Polishing article for electro-chemical mechanical polishing
US20040166790A1 (en) * 2003-02-21 2004-08-26 Sudhakar Balijepalli Method of manufacturing a fixed abrasive material
US7066801B2 (en) 2003-02-21 2006-06-27 Dow Global Technologies, Inc. Method of manufacturing a fixed abrasive material
US20040166779A1 (en) * 2003-02-24 2004-08-26 Sudhakar Balijepalli Materials and methods for chemical-mechanical planarization
US6910951B2 (en) 2003-02-24 2005-06-28 Dow Global Technologies, Inc. Materials and methods for chemical-mechanical planarization
US6935929B2 (en) 2003-04-28 2005-08-30 Micron Technology, Inc. Polishing machines including under-pads and methods for mechanical and/or chemical-mechanical polishing of microfeature workpieces
US7176676B2 (en) 2003-08-21 2007-02-13 Micron Technology, Inc. Apparatuses and methods for monitoring rotation of a conductive microfeature workpiece
US20060170413A1 (en) * 2003-08-21 2006-08-03 Micron Technology, Inc. Apparatuses and methods for monitoring rotation of a conductive microfeature workpiece
US20050040813A1 (en) * 2003-08-21 2005-02-24 Suresh Ramarajan Apparatuses and methods for monitoring rotation of a conductive microfeature workpiece
US7030603B2 (en) 2003-08-21 2006-04-18 Micron Technology, Inc. Apparatuses and methods for monitoring rotation of a conductive microfeature workpiece
US20050055885A1 (en) * 2003-09-15 2005-03-17 Psiloquest Polishing pad for chemical mechanical polishing
US7416472B2 (en) 2004-03-09 2008-08-26 Micron Technology, Inc. Systems for planarizing workpieces, e.g., microelectronic workpieces
US20070021263A1 (en) * 2004-03-09 2007-01-25 Micron Technology, Inc. Methods and systems for planarizing workpieces, e.g., microelectronic workpieces
US20070010168A1 (en) * 2004-03-09 2007-01-11 Micron Technology, Inc. Methods and systems for planarizing workpieces, e.g., microelectronic workpieces
US7413500B2 (en) 2004-03-09 2008-08-19 Micron Technology, Inc. Methods for planarizing workpieces, e.g., microelectronic workpieces
US7086927B2 (en) 2004-03-09 2006-08-08 Micron Technology, Inc. Methods and systems for planarizing workpieces, e.g., microelectronic workpieces
US20050202756A1 (en) * 2004-03-09 2005-09-15 Carter Moore Methods and systems for planarizing workpieces, e.g., microelectronic workpieces
US7066792B2 (en) 2004-08-06 2006-06-27 Micron Technology, Inc. Shaped polishing pads for beveling microfeature workpiece edges, and associate system and methods
US7210985B2 (en) 2004-08-06 2007-05-01 Micron Technology, Inc. Shaped polishing pads for beveling microfeature workpiece edges, and associated systems and methods
US20060189262A1 (en) * 2004-08-06 2006-08-24 Micron Technology, Inc. Shaped polishing pads for beveling microfeature workpiece edges, and associated systems and methods
US7210984B2 (en) 2004-08-06 2007-05-01 Micron Technology, Inc. Shaped polishing pads for beveling microfeature workpiece edges, and associated systems and methods
US20060189261A1 (en) * 2004-08-06 2006-08-24 Micron Technology, Inc. Shaped polishing pads for beveling microfeature workpiece edges, and associated systems and methods
US20070015444A1 (en) * 2005-01-12 2007-01-18 Psiloquest Smoothing pad for bare semiconductor wafers
US7264539B2 (en) 2005-07-13 2007-09-04 Micron Technology, Inc. Systems and methods for removing microfeature workpiece surface defects
US7854644B2 (en) 2005-07-13 2010-12-21 Micron Technology, Inc. Systems and methods for removing microfeature workpiece surface defects
US20070161332A1 (en) * 2005-07-13 2007-07-12 Micron Technology, Inc. Systems and methods for removing microfeature workpiece surface defects
US20100059705A1 (en) * 2005-09-01 2010-03-11 Micron Technology, Inc. Method and apparatus for removing material from microfeature workpieces
US7628680B2 (en) 2005-09-01 2009-12-08 Micron Technology, Inc. Method and apparatus for removing material from microfeature workpieces
US20070049177A1 (en) * 2005-09-01 2007-03-01 Micron Technology, Inc. Method and apparatus for removing material from microfeature workpieces
US7294049B2 (en) 2005-09-01 2007-11-13 Micron Technology, Inc. Method and apparatus for removing material from microfeature workpieces
US8105131B2 (en) 2005-09-01 2012-01-31 Micron Technology, Inc. Method and apparatus for removing material from microfeature workpieces
US20080064306A1 (en) * 2005-09-01 2008-03-13 Micron Technology, Inc. Method and apparatus for removing material from microfeature workpieces
US8251774B2 (en) 2008-08-28 2012-08-28 3M Innovative Properties Company Structured abrasive article, method of making the same, and use in wafer planarization
US9309448B2 (en) 2010-02-24 2016-04-12 Basf Se Abrasive articles, method for their preparation and method of their use
US20120083191A1 (en) * 2010-09-30 2012-04-05 Allison William C Polishing pad for eddy current end-point detection
US9597777B2 (en) 2010-09-30 2017-03-21 Nexplanar Corporation Homogeneous polishing pad for eddy current end-point detection
US20140102010A1 (en) * 2010-09-30 2014-04-17 William C. Allison Polishing Pad for Eddy Current End-Point Detection
US9028302B2 (en) * 2010-09-30 2015-05-12 Nexplanar Corporation Polishing pad for eddy current end-point detection
US8628384B2 (en) * 2010-09-30 2014-01-14 Nexplanar Corporation Polishing pad for eddy current end-point detection
US8657653B2 (en) 2010-09-30 2014-02-25 Nexplanar Corporation Homogeneous polishing pad for eddy current end-point detection
US9776361B2 (en) * 2014-10-17 2017-10-03 Applied Materials, Inc. Polishing articles and integrated system and methods for manufacturing chemical mechanical polishing articles
US10493691B2 (en) * 2014-10-17 2019-12-03 Applied Materials, Inc. Polishing articles and integrated system and methods for manufacturing chemical mechanical polishing articles
US11446788B2 (en) 2014-10-17 2022-09-20 Applied Materials, Inc. Precursor formulations for polishing pads produced by an additive manufacturing process
US20160107381A1 (en) * 2014-10-17 2016-04-21 Applied Materials, Inc. Polishing articles and integrated system and methods for manufacturing chemical mechanical polishing articles
US11958162B2 (en) 2014-10-17 2024-04-16 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US11724362B2 (en) 2014-10-17 2023-08-15 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
US11772229B2 (en) 2016-01-19 2023-10-03 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
US11524384B2 (en) 2017-08-07 2022-12-13 Applied Materials, Inc. Abrasive delivery polishing pads and manufacturing methods thereof
US11685014B2 (en) 2018-09-04 2023-06-27 Applied Materials, Inc. Formulations for advanced polishing pads
US11964359B2 (en) 2019-10-23 2024-04-23 Applied Materials, Inc. Apparatus and method of forming a polishing article that has a desired zeta potential
US11813712B2 (en) 2019-12-20 2023-11-14 Applied Materials, Inc. Polishing pads having selectively arranged porosity
US11806829B2 (en) 2020-06-19 2023-11-07 Applied Materials, Inc. Advanced polishing pads and related polishing pad manufacturing methods
US11878389B2 (en) 2021-02-10 2024-01-23 Applied Materials, Inc. Structures formed using an additive manufacturing process for regenerating surface texture in situ

Also Published As

Publication number Publication date
EP0876242A1 (en) 1998-11-11
JP4174607B2 (en) 2008-11-05
ATE218413T1 (en) 2002-06-15
JP2006013523A (en) 2006-01-12
DE69713057T2 (en) 2003-01-23
AU1832897A (en) 1997-08-11
US5823855A (en) 1998-10-20
DE69713057D1 (en) 2002-07-11
EP0876242B1 (en) 2002-06-05
KR19990081877A (en) 1999-11-15
KR100459528B1 (en) 2005-06-02
US5879222A (en) 1999-03-09
JP4171846B2 (en) 2008-10-29
JP2000503601A (en) 2000-03-28
WO1997026114A1 (en) 1997-07-24

Similar Documents

Publication Publication Date Title
US5624303A (en) Polishing pad and a method for making a polishing pad with covalently bonded particles
US5938801A (en) Polishing pad and a method for making a polishing pad with covalently bonded particles
US6488575B2 (en) Polishing pads and planarizing machines for mechanical or chemical-mechanical planarization of microelectronic-device substrate assemblies, and methods for making and using such pads and machines
US6548407B1 (en) Method and apparatus for controlling chemical interactions during planarization of microelectronic substrates
US6375559B1 (en) Polishing system having a multi-phase polishing substrate and methods relating thereto
US8083820B2 (en) Structured fixed abrasive articles including surface treated nano-ceria filler, and method for making and using the same
JP2001517558A (en) Abrasive articles containing fluorochemical agents for wafer surface modification
JP2010513050A (en) Abrasive article having nanoparticulate filler and method of making and using the same
US5769691A (en) Methods and apparatus for the chemical mechanical planarization of electronic devices
KR20000052645A (en) Method for chemical-mechanical planarization of a substrate on a fixed-abrasive polishing pad
KR20030005405A (en) Grooved polishing pads for chemical mechanical planarization
WO2001053040A1 (en) Printing of polishing pads
US6468911B1 (en) Method of chemical/mechanical polishing of the surface of semiconductor device
US8105131B2 (en) Method and apparatus for removing material from microfeature workpieces
KR20010071353A (en) Dual cmp pad conditioner
JP2004074330A (en) Fixed abrasive polishing tool, and method for manufacturing the same
KR20010111548A (en) Semiconductor and optic polishing pad and method for manufacturing the same
TWI777176B (en) Planarization methods for packaging substrates
KR100630659B1 (en) Chemical-mechanical polishing apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROBINSON, KARL M.;REEL/FRAME:007849/0645

Effective date: 19960115

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: ROUND ROCK RESEARCH, LLC,NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:023786/0416

Effective date: 20091223

Owner name: ROUND ROCK RESEARCH, LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:023786/0416

Effective date: 20091223