US5653961A - Butixocort aerosol formulations in hydrofluorocarbon propellant - Google Patents

Butixocort aerosol formulations in hydrofluorocarbon propellant Download PDF

Info

Publication number
US5653961A
US5653961A US08/414,370 US41437095A US5653961A US 5653961 A US5653961 A US 5653961A US 41437095 A US41437095 A US 41437095A US 5653961 A US5653961 A US 5653961A
Authority
US
United States
Prior art keywords
percent
aerosol
formulation according
weight
formulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/414,370
Inventor
Rebecca A. McNally
Gary H. Ward
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Minnesota Mining and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Mining and Manufacturing Co filed Critical Minnesota Mining and Manufacturing Co
Assigned to MINNESOTA MINING AND MANUFACTURING COMPANY reassignment MINNESOTA MINING AND MANUFACTURING COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCNALLY, REBECCA A., WARD, GARY H.
Priority to US08/414,370 priority Critical patent/US5653961A/en
Priority to AU49279/96A priority patent/AU4927996A/en
Priority to CA002215255A priority patent/CA2215255A1/en
Priority to JP8529365A priority patent/JPH11502837A/en
Priority to EP96905547A priority patent/EP0817611A1/en
Priority to PCT/US1996/002230 priority patent/WO1996029985A1/en
Publication of US5653961A publication Critical patent/US5653961A/en
Application granted granted Critical
Priority to MXPA/A/1997/007238A priority patent/MXPA97007238A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/008Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy comprising drug dissolved or suspended in liquid propellant for inhalation via a pressurized metered dose inhaler [MDI]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • A61K31/573Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone

Definitions

  • This invention relates to pharmaceutical aerosol formulations.
  • this invention relates to pharmaceutical solution aerosol formulations wherein the propellant comprises a hydrofluoroalkane propellant such as 1,1,1,2-tetrafluoroethane or 1,1,1,2,3,3,3-heptafluoropropane.
  • this invention relates to pharmaceutical aerosol formulations containing butixocort propionate.
  • Butixocort propionate (11-beta-hydroxypregn-4-ene-3,20-dione-21-thiopropionate-17-butyrate is an antiinflammatory steroid disclosed in U.S. Pat. No. 4,933,331 (Aubard et at.).
  • Hydrofluorocarbon 134a HFC 134a, 1,1,1,2-tetrafluoroethane) and hydrofluorocarbon 227 are said to be less harmful to the ozone than many chlorofluorocarbon propellants.
  • compositions for inhalation most commonly contain a drug in the form of solid particles of respirable size suspended in the propellant system.
  • Formulations involving dissolved drug are also known but have generally been less preferred because of the tendency of compounds (including drug substances) to be much more chemically reactive (and therefore unstable) in solution than in the solid state.
  • Butixocort propionate has been found to have appreciable solubility in HFA 134a and HFA 227 (at 20° C., HFA 134a dissolves about 0.02% by weight of butixocort propionate and HFA 227 dissolves about 0.03% by weight of butixocort propionate).
  • This level of solubility can lead to particle size increase of the drug in a suspension formulation. It is well known that particles having a diameter of greater than about 10 mm are not suitable for inhalation to the lung. Therefore particle size increase can threaten the utility of a pharmaceutical aerosol formulation for inhalation.
  • the present invention provides a solution aerosol formulation comprising a propellant system comprising a hydrofluoroalkane selected from the group consisting of 1,1,1,2-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoropropane, and a mixture thereof, and a therapeutically effective mount of butixocort propionate, wherein the butixocort propionate is dissolved in the formulation.
  • a propellant system comprising a hydrofluoroalkane selected from the group consisting of 1,1,1,2-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoropropane, and a mixture thereof, and a therapeutically effective mount of butixocort propionate, wherein the butixocort propionate is dissolved in the formulation.
  • the present invention also provides a method of treating bronchial asthma, comprising administering via inhalation an amount of a formulation as described above effective to control inflammation associated with bronchial asthma.
  • the solution formulation of the invention exhibits suitable stability yet eliminates problems associated with increasing particle size.
  • This invention also eliminates other problems encountered with suspension aerosols such as rapid flocculation, irreversible particle aggregation and bulk separation of the drug from the propellant (creaming or settling), all of which affect dose uniformity.
  • butixocort propionate is known and disclosed, e.g., in U.S. Pat. No. 4,933,331 (Aubard et al., incorporated herein by reference).
  • Butixocort propionate is generally present in a formulation of the invention in a therapeutically effective mount, i.e., an mount such that one or more metered volumes of the formulation (e.g., metered volumes of about 50 ⁇ L) when delivered to the lung by oral or nasal inhalation contains an mount of medicament effective to exert the intended therapeutic action (e.g., controlling inflammation associated with bronchial asthma).
  • a therapeutically effective mount i.e., an mount such that one or more metered volumes of the formulation (e.g., metered volumes of about 50 ⁇ L) when delivered to the lung by oral or nasal inhalation contains an mount of medicament effective to exert the intended therapeutic action (e.g., controlling inflammation associated with bronchial asthma).
  • the mount that constitutes a therapeutically effective mount will depend on the particular formulation, the indication being treated and the intended therapeutic effect, and the actuator being used to dispense the formulation. Generally and preferably butixocort propionate constitutes about 0.1 to about 0.9 percent by weight, more preferably about 0.4 to about 0.6 percent by weight of the total weight of the formulation.
  • the formulation of the invention is a solution formulation, i.e., the butixocort propionate is dissolved in the formulation and the formulation is substantially free of particulate (undissolved) butixocort propionate.
  • Certain steroids are known to exist in several crystalline forms (polymorphs).
  • a formulation of the invention contains butixocort propionate but not a particular crystalline form or polymorph thereof, as the crystalline identity of the drug is lost upon dissolution. Therefore this invention avoids complications that can occur in certain suspension steroid formulations due to in situ changes in crystal form (e.g., crystal polymorphism). Any appropriately soluble form of butixocort propionate can be used in preparing a formulation of the invention.
  • butixocort propionate has been found to have appreciable solubility in HFA-134a and in HFA-227. In most cases, however, the solubility of butixocort propionate in these propellants will not be sufficient to afford a formulation containing a therapeutically effective amount of dissolved butixocort propionate. Therefore it is often necessary or desirable to use a solubilizer in order to further solubilize butixocort propionate (i.e., in order to provide a system in which butixocort propionate is more soluble than in the hydrofluoroalkane propellant alone). Butixocort propionate can be further solubilized in any suitable manner.
  • solubilizing include use of cosolvents for the drug (e.g., alcohols such as ethanol or propylene glycol, dimethyl ether) to aid in drug dissolution, and micellar solubilization of the drug using a surfactant, e.g., a glycerol phosphatide such as lecithin or other such materials enumerated for such purpose in PCT Publication No. WO93/04671 (Oliver et al.). It is sometimes necessary to use a cosolvent for the surfactant in order to dissolve sufficient surfactant to accomplish micellar solubilization of a drug.
  • cosolvents for the drug e.g., alcohols such as ethanol or propylene glycol, dimethyl ether
  • a surfactant e.g., a glycerol phosphatide such as lecithin or other such materials enumerated for such purpose in PCT Publication No. WO93/04671 (Oliver et al.).
  • the preferred solubilizer for use in a formulation of the invention is ethanol. Ethanol, however, has been found to decrease the respirable fraction of drug if it is used in an excessive mount.
  • a formulation of the invention preferably contains ethanol in an amount effective to further solubilize butixocort propionate in the formulation but less than that amount which causes a decrease in respirable fraction.
  • the ethanol constitutes about 3 to about 30 percent by weight of the total weight of the formulation. More preferably, ethanol constitutes about 8 to about 16 percent by weight of the aerosol formulation.
  • a formulation of the invention contains a propellant system that functions to propel the other components of the formulation through the valve of a metered dose inhaler canister in a manner such that the drug is presented for inhalation by a patient.
  • the propellant system comprises a hydrofluoroalkane propellant.
  • Preferred propellants include 1,1,1,2-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoropropane, and mixtures thereof in any proportion.
  • the propellant is present in an amount sufficient to propel a plurality of doses from an aerosol canister such as a metered dose inhaler.
  • the propellant preferably constitutes from about 60 to about 98 percent by weight, and more preferably from about 75 to about 90 percent by weight of the total weight of the aerosol formulation.
  • the formulations of the invention are preferably free of chlorofluorocarbons such as fluorotrichloromethane, dichlorodifluoromethane, and dichlorotetrafluoroethane. Most preferably, the hydrofluorocarbon propellant is the only propellant present in the formulations of the invention.
  • a formulation of the invention can contain suitable excipients (e.g., those disclosed in U.S. Pat. No. 5,225,183, Purewal et at., incorporated herein by reference) in mounts readily determined by those skilled in the art.
  • suitable excipients e.g., those disclosed in U.S. Pat. No. 5,225,183, Purewal et at., incorporated herein by reference
  • Certain excipients e.g., certain surfactants (for optimizing valve function), flavoring agents, and/or water, are beneficial to some embodiments of the invention.
  • the chemical stability of certain formulations of the invention that is, stability of the formulation to degradation of butixocort propionate
  • water When water is included in a formulation of the invention it will generally be present in an mount of about 0.005 percent to about 1 percent by weight of the total weight of the formulation.
  • Strong inorganic acids e.g., hydrochloric, nitric, phosphoric, or sulfuric acid
  • organic acids e.g., ascorbic acid, citric acid
  • Formulations of the invention optionally further comprise a flavoring agent, e.g., a menthol, in an amount effective to mask the taste of butixocort propionate when an aerosolized dose of the formulation is inhaled orally, e.g., about 0.3 percent by weight of the total weight of the formulation.
  • a flavoring agent e.g., a menthol
  • preferred formulations of the invention are stable for a prolonged period of time to degradation of the drug.
  • a formulation of the invention when stored ten months in an aluminum aerosol vial as described below exhibits a percent drug recovery of at least about 93 percent, more preferably at least about 95 percent.
  • Formulations of the invention can be prepared by either pressure filling or cold filling techniques, both of which are well known to those skilled in the art. Ethanol and the excipient or excipients, if any, are combined with the propellant. This solution is pressure filled or cold filled into aerosol vials containing the butixocort propionate. Alternatively, the butixocort propionate and any non-volatile excipients are dissolved in ethanol in an aerosol vial. The aerosol vial is then fitted with a valve and pressure filled with the propellant.
  • Aerosol canisters equipped with conventional valves, preferably metered dose valves, can be used to deliver formulations of the invention.
  • a suitable valve rubber is a nitrile rubber "DB-218" available from American Gasket and Rubber, Schiller Park, Ill.
  • Conventional aerosol canisters can be used to contain a formulation of the invention. It has been found, however, that certain containers enhance the chemical stability of certain formulations of the invention and/or minimize the absorption of butixocort propionate onto the container walls; accordingly, it is preferred to contain a formulation of the invention within an aluminum aerosol vial.
  • a formulation of the invention can be administered to the lung by oral or nasal inhalation.
  • Oral inhalation is preferred, and conventional actuators for oral inhalation can be used in connection with a formulation of the invention.
  • Particle size or droplet size of the inhaled dose is important to an inhalable dose form intended to be administered to the lung.
  • Particle size or droplet size and respirable fraction of a propellant based solution aerosol formulation can be affected by the size of the orifice through which the formulation passes. It is preferred to administer a formulation of the invention through an actuator having an orifice diameter of about 0.25 mm (0.010 inch) or less.
  • An example of such an actuator is actuator model M3756, 3M Company.
  • the respirable fraction (the percent by weight of particles having an aerodynamic particle size of less than 4.7 mm) of the aerosol formulation is determined using an Anderson Cascade Impactor (available from Anderson Sampler Inc., Atlanta, Ga).
  • the aerosol vial containing the formulation to be tested is primed 5 times.
  • the valve and valve stem are then cleaned with ethanol and dried with compressed air or nitrogen.
  • the aerosol vial and a clean, dry actuator (unless otherwise indicated Model M3756 having an orifice diameter of about 0.25 mm (0.010 inch), 3M) are coupled to the glass throat attached to the top of the impactor using an appropriate firing adaptor.
  • the calibrated vacuum pump (28.3 L/min) attached to the impactor is turned on.
  • the vial is actuated.
  • the vial and actuator are disconnected, shaken for about 10 seconds, then reconnected to the throat and actuated again. This procedure is repeated until the vial has been actuated a total of 10 times.
  • the cascade impactor is disassembled and each component is rinsed with diluent.
  • Each solution is analyzed for butixocort propionate content using high performance liquid chromatography or ultraviolet spectroscopy (238 nm).
  • the respirable fraction is calculated as follows: ##EQU1##
  • the percent of degradation impurities and the percent of drug recovered is determined using high performance liquid chromatography.
  • the aerosol vial containing the formulation to be assayed is chilled in dry ice for 20 minutes.
  • the cap is removed and the contents of the vial are poured into a pre-chilled volumetric flask.
  • the propellant is allowed to evaporate.
  • the cap and vial are rinsed with acetonitrile into the volumetric flask.
  • the flask is brought to volume with the indicated diluent.
  • An aliquot of this solution is pipetted into a volumetric flask and the flask is brought to volume with the indicated diluent.
  • a precisely weighed quantity of butixocort propionate is placed into a volumetric flask then dissolved in ethanol or acetonitrile. The flask is brought to volume with the indicated diluent. An aliquot of this solution is pipetted into a volumetric flask and the flask is brought to volume with the indicated diluent.
  • a portion of the standard solution is injected into the HPLC using the parameters indicated below in connection with the either Percent Degradation Impurities or Percent Drug Recovery, as appropriate, and the recorder sensitivity is adjusted to produce peaks at 70-90% of full scale.
  • the chromatogram is obtained and the peak areas are measured. This chromatogram provides a correlation between peak area and weight of butixocort propionate. It also provides the peak areas of impurities present in the raw drug (butixocort propionate) prior to formulating.
  • sample solution A portion of the sample solution is injected into the HPLC under the same conditions as the standard.
  • the chromatogram is obtained and the peak areas are measured.
  • the percent impurities in the raw drug is determined using the peak areas from the HPLC chromatogram (diluent: acetonitrile; column: 15 cm ⁇ 4.6 mm Supelco 5 micrometer Supersil LC-18; mobile phase: 30:35:35 methanol:acetonitrile:water containing 0.1 mg perchloric acid per 100 mL of solution; flow rate 1 mL/min; detection: 240 nm UV) of the standard solution and the equation below. ##EQU2##
  • the percent impurities in the sample is obtained by performing the same calculation on the peak areas from the sample chromatogram.
  • the amount of butixocort propionate that was in the aerosol vial after storage is determined by HPLC (diluent: a solution of 55 volume percent acetonitrile and 45 volume percent water containing 0.05 mg ascorbic acid per 100 mL of solution; column: 15 cm ⁇ 4.6 mm Supelco 5 micrometer Supersil LC-18; mobile phase: 55:45 acetonitrile/water v/v; flow rate 1:5 mL/min; detection: 240 nm UV) using the area of the butixocort propionate peak from the sample chromatogram and the correlation between peak area and weight of butixocort propionate that is obtained from the standard chromatogram.
  • Solubility of butixocort propionate in P134a, P227, and blends thereof with ethanol was determined as follows: Drug and the selected propellant system were combined and agitated for a period of seven days at a selected temperature to afford a saturated solution. The solid was filtered off and the supernatant was weighed. The propellant was removed by evaporation and the drug was reconstituted quantitatively. The concentration of the drug in the reconstituted solution was determined and from this the mount and concentration of drug dissolved in the propellant system was calculated. TABLES 1 and 2 show the average of three independent determinations.
  • Butixocort propionate (50 mg) and ethanol (1 g) were placed in a 10 mL aluminum aerosol vial.
  • the vial was cooled to about -78° C. in a dry ice/trichloromethane bath then filled with cold P134a (1,1,1,2-tetrafluoroethane, 8.95 g).
  • the resulting formulation contained 0.5% by weight of butixocort propionate, 10% by weight ethanol, and 89.5% by weight P134a.
  • the vial was sealed with a 50 ⁇ L metered dose valve having a diaphragm of DB-218 nitrile rubber (American Gasket and Rubber, Schiller Park, Ill.).
  • the respirable fraction was found to be 42% using the test method described above and an actuator having a generally elliptical orifice 0.422 mm (0.0166 in) ⁇ 0.478 mm (0.0188 in). This formulation was tested for respirable fraction using an actuator having a generally elliptical orifice 0.22 mm (0.0086 in) ⁇ 0.25 mm (0.0098 in) (Model M3756, 3M). Respirable fraction was found to be 69%.
  • Butixocort propionate (50 mg) and ethanol (1 g) were place in a 10 mL aluminum aerosol vial.
  • the vial was sealed with a continuous valve then pressure filled with P227 (1,1,1,2,3,3,3-heptafluoropropane, 8.95 g).
  • the resulting formulation contained 0.5% by weight of butixocort propionate, 10% by weight ethanol, and 89.5% by weight P227.
  • the vial was chilled then the continuous valve was replaced with a 50 ⁇ L metered dose valve having a diaphragm of DB-218 nitrile rubber (American Gasket and Rubber, Schiller Park, Ill.).
  • the respirable fraction was determined using the method described above and found to be 45%.
  • Solution formulations containing 10 percent by weight ethanol, 0.5 percent butixocort propionate, and either P 134a or P227 were prepared and placed in aerosol vials of the several types shown in Table 3 below.
  • the vials were sealed with blind ferrules.
  • the vials were stored at 40° C. for one month then assayed according to the test method described above for percent degradation impurities and drug content. The results are shown in Table 3 below where each value is the average of 3 separate vials.
  • Solution formulations as set forth in Table 4 were prepared, placed in aerosol vials having diaphragms and seals of nitrile rubber (DB-218, American Gasket and Rubber, Schiller Park, Ill.), stored at 40° C., and tested for percent drug recovery according to the method described above. Each entry represents the average of 3 independent determinations.
  • the designation "% w/w” indicates percent by weight of the indicated component based on the total weight of the formulation. Vial types are those described in TABLE 3 above.

Abstract

Pharmaceutical solution aerosol formulations of butixocort propionate as the sole active drug agent and a propellant selected from the group consisting of 1,1,1,2-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoropropane, and a mixture thereof.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to pharmaceutical aerosol formulations. In another aspect this invention relates to pharmaceutical solution aerosol formulations wherein the propellant comprises a hydrofluoroalkane propellant such as 1,1,1,2-tetrafluoroethane or 1,1,1,2,3,3,3-heptafluoropropane. In another aspect this invention relates to pharmaceutical aerosol formulations containing butixocort propionate.
2. Description of the Related Art
Butixocort propionate (11-beta-hydroxypregn-4-ene-3,20-dione-21-thiopropionate-17-butyrate is an antiinflammatory steroid disclosed in U.S. Pat. No. 4,933,331 (Aubard et at.).
Current propellant-based pharmaceutical aerosol formulations use a mixture of liquid chlorofluorocarbons as the propellant. Fluorotrichloromethane, dichlorodifluoromethane and dichlorotetrafluoroethane are the most commonly used propellants in aerosol formulations for administration by inhalation. Such chlorofluorocarbons (CFCs), however, have been implicated in the destruction of the ozone layer and their production is being phased out. Hydrofluorocarbon 134a HFC 134a, 1,1,1,2-tetrafluoroethane) and hydrofluorocarbon 227 (HFC 227, 1,1,1,2,3,3,3-heptafluoropropane) are said to be less harmful to the ozone than many chlorofluorocarbon propellants.
Pharmaceutical aerosol formulations for inhalation most commonly contain a drug in the form of solid particles of respirable size suspended in the propellant system. Formulations involving dissolved drug are also known but have generally been less preferred because of the tendency of compounds (including drug substances) to be much more chemically reactive (and therefore unstable) in solution than in the solid state.
SUMMARY OF THE INVENTION
Butixocort propionate has been found to have appreciable solubility in HFA 134a and HFA 227 (at 20° C., HFA 134a dissolves about 0.02% by weight of butixocort propionate and HFA 227 dissolves about 0.03% by weight of butixocort propionate). This level of solubility can lead to particle size increase of the drug in a suspension formulation. It is well known that particles having a diameter of greater than about 10 mm are not suitable for inhalation to the lung. Therefore particle size increase can threaten the utility of a pharmaceutical aerosol formulation for inhalation.
The present invention provides a solution aerosol formulation comprising a propellant system comprising a hydrofluoroalkane selected from the group consisting of 1,1,1,2-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoropropane, and a mixture thereof, and a therapeutically effective mount of butixocort propionate, wherein the butixocort propionate is dissolved in the formulation.
The present invention also provides a method of treating bronchial asthma, comprising administering via inhalation an amount of a formulation as described above effective to control inflammation associated with bronchial asthma.
The solution formulation of the invention exhibits suitable stability yet eliminates problems associated with increasing particle size. This invention also eliminates other problems encountered with suspension aerosols such as rapid flocculation, irreversible particle aggregation and bulk separation of the drug from the propellant (creaming or settling), all of which affect dose uniformity.
DETAILED DESCRIPTION OF THE INVENTION
All weight percentages recited herein are based on the total weight of the formulation unless otherwise indicated.
The drug butixocort propionate is known and disclosed, e.g., in U.S. Pat. No. 4,933,331 (Aubard et al., incorporated herein by reference). Butixocort propionate is generally present in a formulation of the invention in a therapeutically effective mount, i.e., an mount such that one or more metered volumes of the formulation (e.g., metered volumes of about 50 μL) when delivered to the lung by oral or nasal inhalation contains an mount of medicament effective to exert the intended therapeutic action (e.g., controlling inflammation associated with bronchial asthma). The mount that constitutes a therapeutically effective mount will depend on the particular formulation, the indication being treated and the intended therapeutic effect, and the actuator being used to dispense the formulation. Generally and preferably butixocort propionate constitutes about 0.1 to about 0.9 percent by weight, more preferably about 0.4 to about 0.6 percent by weight of the total weight of the formulation.
The formulation of the invention is a solution formulation, i.e., the butixocort propionate is dissolved in the formulation and the formulation is substantially free of particulate (undissolved) butixocort propionate. Certain steroids are known to exist in several crystalline forms (polymorphs). A formulation of the invention, however, contains butixocort propionate but not a particular crystalline form or polymorph thereof, as the crystalline identity of the drug is lost upon dissolution. Therefore this invention avoids complications that can occur in certain suspension steroid formulations due to in situ changes in crystal form (e.g., crystal polymorphism). Any appropriately soluble form of butixocort propionate can be used in preparing a formulation of the invention.
As noted above, butixocort propionate has been found to have appreciable solubility in HFA-134a and in HFA-227. In most cases, however, the solubility of butixocort propionate in these propellants will not be sufficient to afford a formulation containing a therapeutically effective amount of dissolved butixocort propionate. Therefore it is often necessary or desirable to use a solubilizer in order to further solubilize butixocort propionate (i.e., in order to provide a system in which butixocort propionate is more soluble than in the hydrofluoroalkane propellant alone). Butixocort propionate can be further solubilized in any suitable manner. Well known methods of solubilizing include use of cosolvents for the drug (e.g., alcohols such as ethanol or propylene glycol, dimethyl ether) to aid in drug dissolution, and micellar solubilization of the drug using a surfactant, e.g., a glycerol phosphatide such as lecithin or other such materials enumerated for such purpose in PCT Publication No. WO93/04671 (Oliver et al.). It is sometimes necessary to use a cosolvent for the surfactant in order to dissolve sufficient surfactant to accomplish micellar solubilization of a drug.
The preferred solubilizer for use in a formulation of the invention is ethanol. Ethanol, however, has been found to decrease the respirable fraction of drug if it is used in an excessive mount. A formulation of the invention preferably contains ethanol in an amount effective to further solubilize butixocort propionate in the formulation but less than that amount which causes a decrease in respirable fraction. Preferably the ethanol constitutes about 3 to about 30 percent by weight of the total weight of the formulation. More preferably, ethanol constitutes about 8 to about 16 percent by weight of the aerosol formulation.
A formulation of the invention contains a propellant system that functions to propel the other components of the formulation through the valve of a metered dose inhaler canister in a manner such that the drug is presented for inhalation by a patient. The propellant system comprises a hydrofluoroalkane propellant. Preferred propellants include 1,1,1,2-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoropropane, and mixtures thereof in any proportion. The propellant is present in an amount sufficient to propel a plurality of doses from an aerosol canister such as a metered dose inhaler. The propellant preferably constitutes from about 60 to about 98 percent by weight, and more preferably from about 75 to about 90 percent by weight of the total weight of the aerosol formulation. The formulations of the invention are preferably free of chlorofluorocarbons such as fluorotrichloromethane, dichlorodifluoromethane, and dichlorotetrafluoroethane. Most preferably, the hydrofluorocarbon propellant is the only propellant present in the formulations of the invention.
A formulation of the invention can contain suitable excipients (e.g., those disclosed in U.S. Pat. No. 5,225,183, Purewal et at., incorporated herein by reference) in mounts readily determined by those skilled in the art. Certain excipients, e.g., certain surfactants (for optimizing valve function), flavoring agents, and/or water, are beneficial to some embodiments of the invention. For example, it has been found that in some instances the chemical stability of certain formulations of the invention (that is, stability of the formulation to degradation of butixocort propionate) is enhanced by the presence of water. When water is included in a formulation of the invention it will generally be present in an mount of about 0.005 percent to about 1 percent by weight of the total weight of the formulation. Strong inorganic acids (e.g., hydrochloric, nitric, phosphoric, or sulfuric acid) or organic acids (e.g., ascorbic acid, citric acid) can also be incorporated into a formulation of the invention in the manner described in WO94/13262 and WO94/13263 (Jager et al., incorporated herein by reference).
Formulations of the invention optionally further comprise a flavoring agent, e.g., a menthol, in an amount effective to mask the taste of butixocort propionate when an aerosolized dose of the formulation is inhaled orally, e.g., about 0.3 percent by weight of the total weight of the formulation.
Despite the fact that the drug is dissolved, preferred formulations of the invention are stable for a prolonged period of time to degradation of the drug. Preferably a formulation of the invention when stored ten months in an aluminum aerosol vial as described below (Examples 11-50) exhibits a percent drug recovery of at least about 93 percent, more preferably at least about 95 percent.
Formulations of the invention can be prepared by either pressure filling or cold filling techniques, both of which are well known to those skilled in the art. Ethanol and the excipient or excipients, if any, are combined with the propellant. This solution is pressure filled or cold filled into aerosol vials containing the butixocort propionate. Alternatively, the butixocort propionate and any non-volatile excipients are dissolved in ethanol in an aerosol vial. The aerosol vial is then fitted with a valve and pressure filled with the propellant.
Aerosol canisters equipped with conventional valves, preferably metered dose valves, can be used to deliver formulations of the invention. A suitable valve rubber is a nitrile rubber "DB-218") available from American Gasket and Rubber, Schiller Park, Ill.
Conventional aerosol canisters can be used to contain a formulation of the invention. It has been found, however, that certain containers enhance the chemical stability of certain formulations of the invention and/or minimize the absorption of butixocort propionate onto the container walls; accordingly, it is preferred to contain a formulation of the invention within an aluminum aerosol vial.
A formulation of the invention can be administered to the lung by oral or nasal inhalation. Oral inhalation is preferred, and conventional actuators for oral inhalation can be used in connection with a formulation of the invention. Particle size or droplet size of the inhaled dose is important to an inhalable dose form intended to be administered to the lung. Particle size or droplet size and respirable fraction of a propellant based solution aerosol formulation can be affected by the size of the orifice through which the formulation passes. It is preferred to administer a formulation of the invention through an actuator having an orifice diameter of about 0.25 mm (0.010 inch) or less. An example of such an actuator is actuator model M3756, 3M Company.
The examples set forth below are intended to illustrate the invention.
Respirable Fraction
In this assay the respirable fraction (the percent by weight of particles having an aerodynamic particle size of less than 4.7 mm) of the aerosol formulation is determined using an Anderson Cascade Impactor (available from Anderson Sampler Inc., Atlanta, Ga).
The aerosol vial containing the formulation to be tested is primed 5 times. The valve and valve stem are then cleaned with ethanol and dried with compressed air or nitrogen. The aerosol vial and a clean, dry actuator (unless otherwise indicated Model M3756 having an orifice diameter of about 0.25 mm (0.010 inch), 3M) are coupled to the glass throat attached to the top of the impactor using an appropriate firing adaptor. The calibrated vacuum pump (28.3 L/min) attached to the impactor is turned on. The vial is actuated. After the aerosol cloud has disappeared (about 4 seconds), the vial and actuator are disconnected, shaken for about 10 seconds, then reconnected to the throat and actuated again. This procedure is repeated until the vial has been actuated a total of 10 times. The cascade impactor is disassembled and each component is rinsed with diluent. Each solution is analyzed for butixocort propionate content using high performance liquid chromatography or ultraviolet spectroscopy (238 nm). The respirable fraction is calculated as follows: ##EQU1##
Percent Degradation Impurities and Percent Drug Recovery
In these assays the percent of degradation impurities and the percent of drug recovered is determined using high performance liquid chromatography.
Sample Solution Preparation
The aerosol vial containing the formulation to be assayed is chilled in dry ice for 20 minutes. The cap is removed and the contents of the vial are poured into a pre-chilled volumetric flask. The propellant is allowed to evaporate. The cap and vial are rinsed with acetonitrile into the volumetric flask. The flask is brought to volume with the indicated diluent. An aliquot of this solution is pipetted into a volumetric flask and the flask is brought to volume with the indicated diluent.
Standard Solution Preparation
A precisely weighed quantity of butixocort propionate is placed into a volumetric flask then dissolved in ethanol or acetonitrile. The flask is brought to volume with the indicated diluent. An aliquot of this solution is pipetted into a volumetric flask and the flask is brought to volume with the indicated diluent.
Procedure
A portion of the standard solution is injected into the HPLC using the parameters indicated below in connection with the either Percent Degradation Impurities or Percent Drug Recovery, as appropriate, and the recorder sensitivity is adjusted to produce peaks at 70-90% of full scale. The chromatogram is obtained and the peak areas are measured. This chromatogram provides a correlation between peak area and weight of butixocort propionate. It also provides the peak areas of impurities present in the raw drug (butixocort propionate) prior to formulating.
A portion of the sample solution is injected into the HPLC under the same conditions as the standard. The chromatogram is obtained and the peak areas are measured.
Percent Degradation Impurities
The percent impurities in the raw drug is determined using the peak areas from the HPLC chromatogram (diluent: acetonitrile; column: 15 cm×4.6 mm Supelco 5 micrometer Supersil LC-18; mobile phase: 30:35:35 methanol:acetonitrile:water containing 0.1 mg perchloric acid per 100 mL of solution; flow rate 1 mL/min; detection: 240 nm UV) of the standard solution and the equation below. ##EQU2##
The percent impurities in the sample is obtained by performing the same calculation on the peak areas from the sample chromatogram.
The percent degradation impurities is then determined using the equation below. ##EQU3## Percent Drug Recovery
This is based on the amount of butixocort propionate in the sample vial before and after storage.
The amount of butixocort propionate that was in the aerosol vial after storage is determined by HPLC (diluent: a solution of 55 volume percent acetonitrile and 45 volume percent water containing 0.05 mg ascorbic acid per 100 mL of solution; column: 15 cm×4.6 mm Supelco 5 micrometer Supersil LC-18; mobile phase: 55:45 acetonitrile/water v/v; flow rate 1:5 mL/min; detection: 240 nm UV) using the area of the butixocort propionate peak from the sample chromatogram and the correlation between peak area and weight of butixocort propionate that is obtained from the standard chromatogram.
The amount of butixocort propionate that was in the aerosol vial when it was first prepared is known.
The percent drug recovery is then determined using the equation given below. ##EQU4##
Solubility Studies
Solubility of butixocort propionate in P134a, P227, and blends thereof with ethanol, was determined as follows: Drug and the selected propellant system were combined and agitated for a period of seven days at a selected temperature to afford a saturated solution. The solid was filtered off and the supernatant was weighed. The propellant was removed by evaporation and the drug was reconstituted quantitatively. The concentration of the drug in the reconstituted solution was determined and from this the mount and concentration of drug dissolved in the propellant system was calculated. TABLES 1 and 2 show the average of three independent determinations.
              TABLE 1                                                     
______________________________________                                    
Butixocort Solubility (mg drug/mL propellant)                             
                 Propellant                                               
Temperature (°C.)                                                  
                   134a   227                                             
______________________________________                                    
4                  0.103  0.261                                           
20                 0.203  0.285                                           
30                 0.3    0.306                                           
40                 0.319  0.317                                           
______________________________________                                    
              TABLE 2                                                     
______________________________________                                    
Butixocort Solubility (mg drug/mL propellant), 20°C.               
                 Propellant                                               
Weight % Ethanol   134a   227                                             
______________________________________                                    
0                  0.30   0.395                                           
1                  0.751  0.971                                           
2.5                1.757  1.113                                           
5                  4.177  3.853                                           
7.5                6.958  6.199                                           
10                 9.633  8.519                                           
______________________________________                                    
EXAMPLE 1
Butixocort propionate (50 mg) and ethanol (1 g) were placed in a 10 mL aluminum aerosol vial. The vial was cooled to about -78° C. in a dry ice/trichloromethane bath then filled with cold P134a (1,1,1,2-tetrafluoroethane, 8.95 g). The resulting formulation contained 0.5% by weight of butixocort propionate, 10% by weight ethanol, and 89.5% by weight P134a. The vial was sealed with a 50 μL metered dose valve having a diaphragm of DB-218 nitrile rubber (American Gasket and Rubber, Schiller Park, Ill.). The respirable fraction was found to be 42% using the test method described above and an actuator having a generally elliptical orifice 0.422 mm (0.0166 in)×0.478 mm (0.0188 in). This formulation was tested for respirable fraction using an actuator having a generally elliptical orifice 0.22 mm (0.0086 in)×0.25 mm (0.0098 in) (Model M3756, 3M). Respirable fraction was found to be 69%.
EXAMPLE 2
Butixocort propionate (50 mg) and ethanol (1 g) were place in a 10 mL aluminum aerosol vial. The vial was sealed with a continuous valve then pressure filled with P227 (1,1,1,2,3,3,3-heptafluoropropane, 8.95 g). The resulting formulation contained 0.5% by weight of butixocort propionate, 10% by weight ethanol, and 89.5% by weight P227. The vial was chilled then the continuous valve was replaced with a 50 μL metered dose valve having a diaphragm of DB-218 nitrile rubber (American Gasket and Rubber, Schiller Park, Ill.). The respirable fraction was determined using the method described above and found to be 45%.
EXAMPLES 3-10
Solution formulations containing 10 percent by weight ethanol, 0.5 percent butixocort propionate, and either P 134a or P227 (as indicated in Table 3 below) were prepared and placed in aerosol vials of the several types shown in Table 3 below. The vials were sealed with blind ferrules. The vials were stored at 40° C. for one month then assayed according to the test method described above for percent degradation impurities and drug content. The results are shown in Table 3 below where each value is the average of 3 separate vials.
              TABLE 3                                                     
______________________________________                                    
                   Drug                                                   
                   Content                                                
                   (% of                                                  
           Vial    Initial  Percent Impurities                            
Example Propellant                                                        
                 Type      Content)                                       
                                  Initial                                 
                                        1 Month                           
______________________________________                                    
3       134a     Glass.sup.1                                              
                           79.7   1.53  6.39                              
                 (Type III)                                               
4       134a     Aluminum.sup.2                                           
                           98.0   1.41  2.95                              
5       134a     Epoxy-Lined                                              
                           100    1.82  1.25                              
                 Aluminum.sup.3                                           
6       134a     Plastic.sup.4                                            
                           95.7   2.42  3.53                              
7       227      Glass     87.5   1.48  6.67                              
                 (Type III)                                               
8       227      Aluminum  81.5   1.46  3.80                              
9       227      Epoxy-Lined                                              
                           93.3   2.49  2.66                              
                 Aluminum                                                 
10      227      Plastic   93.2   2.27  5.13                              
______________________________________                                    
 .sup.1 Made from TypeIII (sodalime) glass and are avaiable from Wheaton  
 Coated Products                                                          
 .sup.2 Available from 3M Company                                         
 .sup.3 Epoxy/phenolformaldehyde resin coated aluminum vials, coated by   
 Cebal                                                                    
 .sup.4 Made from polyethylene terephthalate and are available from Precis
 Plastic Ltd., United Kingdom                                             
EXAMPLES 11-50
Solution formulations as set forth in Table 4 were prepared, placed in aerosol vials having diaphragms and seals of nitrile rubber (DB-218, American Gasket and Rubber, Schiller Park, Ill.), stored at 40° C., and tested for percent drug recovery according to the method described above. Each entry represents the average of 3 independent determinations. The designation "% w/w" indicates percent by weight of the indicated component based on the total weight of the formulation. Vial types are those described in TABLE 3 above.
                                  TABLE 4                                 
__________________________________________________________________________
                                   Stability                              
           Propellant      Sorbitan                                       
                                   Results                                
           (weight % P134a:                                               
                   Ethanol                                                
                       Water                                              
                           trioleate % w/w                                
                                   10 Month %                             
Example                                                                   
     Vial Type                                                            
           weight % P227)                                                 
                   % w/w                                                  
                       % w/w                                              
                           (× 0.001)                                
                                   Recovery                               
__________________________________________________________________________
11   Aluminum                                                             
           0:100   8   0.00                                               
                           0.0     95.8                                   
12   Epoxy-lined                                                          
           0:100   8   0.00                                               
                           5.0     63.9                                   
13   Aluminum                                                             
           100:0   8   0.00                                               
                           5.0     91.8                                   
14   Epoxy-lined                                                          
           100:0   8   0.00                                               
                           0.0     80.2                                   
15   Aluminum                                                             
           0:100   16  0.00                                               
                           5.0     91.2                                   
16   Epoxy-lined                                                          
           0:100   16  0.00                                               
                           0.0     86.7                                   
17   Aluminum                                                             
           100:0   16  0.00                                               
                           0.0     89.7                                   
18   Epoxy-lined                                                          
           100:0   16  0.00                                               
                           5.0     72.1                                   
19   Aluminum                                                             
           0:100   8   0.50                                               
                           5.0     95.7                                   
20   Epoxy-lined                                                          
           0:100   8   0.50                                               
                           0.0     90.5                                   
21   Aluminum                                                             
           100:0   9   0.50                                               
                           0.0     94.3                                   
22   Epoxy-lined                                                          
           100:0   8   0.50                                               
                           5.0     89.0                                   
23   Aluminum                                                             
           0:100   16  0.50                                               
                           0.0     96.1                                   
24   Epoxy-lined                                                          
           0:100   16  0.50                                               
                           5.0     92.2                                   
25   Aluminum                                                             
           100:0   16  0.50                                               
                           5.0     96.1                                   
26   Epoxy-lined                                                          
           100:0   16  0.50                                               
                           0.0     88.5                                   
27   Epoxy-lined                                                          
           50:50   12  0.25                                               
                           2.5     82.2                                   
28   Epoxy-lined                                                          
           50:50   12  0.25                                               
                           2.5     81.5                                   
29   Epoxy-lined                                                          
           50:50   12  0.25                                               
                           2.5     87.5                                   
30   Epoxy-lined                                                          
           50:50   12  0.25                                               
                           2.5     89.3                                   
31   Aluminum                                                             
           0:100   8   0.00                                               
                           5.0     95.3                                   
32   Epoxy-lined                                                          
           0:100   8   0.00                                               
                           0.0     88.3                                   
33   Aluminum                                                             
           100:0   8   0.00                                               
                           0.0     97.3                                   
34   Epoxy-lined                                                          
           100:0   8   0.00                                               
                           5.0     81.7                                   
35   Aluminum                                                             
           0:100   16  0.00                                               
                           0.0     94.1                                   
36   Epoxy-lined                                                          
           0:100   16  0.00                                               
                           5.0     82.6                                   
37   Aluminum                                                             
           100:0   16  0.00                                               
                           5.0     69.7                                   
38   Epoxy-lined                                                          
           100:0   16  0.00                                               
                           0.0     65.4                                   
39   Aluminum                                                             
           0:100   8   0.50                                               
                           0.0     95.8                                   
40   Epoxy-lined                                                          
           0:100   8   0.50                                               
                           5.0     90.3                                   
41   Aluminum                                                             
           100:0   8   0.50                                               
                           5.0     93.8                                   
42   Epoxy-lined                                                          
           100:0   8   0.50                                               
                           0.0     86.4                                   
43   Aluminum                                                             
           0:100   16  0.50                                               
                           5.0     97.3                                   
44   Epoxy-lined                                                          
           0:100   16  0.50                                               
                           0.0     91.3                                   
45   Aluminum                                                             
           100:0   16  0.50                                               
                           0.0     96.8                                   
46   Epoxy-lined                                                          
           100:0   16  0.50                                               
                           5.0     87.6                                   
47   Epoxy-lined                                                          
           50:50   12  0.25                                               
                           2.5     87.1                                   
48   Epoxy-lined                                                          
           50:50   12  0.25                                               
                           2.5     88.0                                   
49   Epoxy-lined                                                          
           50:50   12  0.25                                               
                           2.5     87.5                                   
50   Epoxy-lined                                                          
           50:50   12  0.25                                               
                           2.5     87.5                                   
__________________________________________________________________________

Claims (16)

What is claimed is:
1. A solution aerosol formulation comprising: a propellant system comprising a hydrofluorocarbon selected from the group consisting of 1,1,1,2-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoropropane, and a mixture thereof; and a therapeutically effective amount of butixocort propionate, wherein the butixocort propionate is dissolved in the formulation and is the sole drug in the formulation.
2. An aerosol formulation according to claim 1, wherein the propellant comprises 1,1,1,2-tetrafluoroethane.
3. An aerosol formulation according to claim 1, wherein the propellant comprises 1,1,1,2,3,3,3-heptafluoropropane.
4. An aerosol formulation according to claim 1, wherein the propellant comprises a mixture of 1,1,1,2-tetrafluoroethane and 1,1,1,2,3,3,3-heptafluoropropane.
5. An aerosol formulation according to claim 1, wherein the butixocort propionate is present in an amount of about 0.1 percent to about 0.9 percent by weight.
6. An aerosol formulation according to claim 1, characterized in that it is free of chlorofluorocarbons.
7. An aerosol formulation according to claim 1, further comprising ethanol.
8. An aerosol formulation according to claim 7, wherein the ethanol is present in an amount of about 3 percent to about 30 percent by weight.
9. An aerosol formulation according to claim 8, wherein the ethanol is present in an amount of about 8 percent to about 16 percent by weight.
10. An aerosol formulation according to claim 1 further comprising about 0.005 percent to about 1 percent by weight water.
11. An aerosol formulation according to claim 1 further comprising a flavoring agent.
12. An aerosol formulation according to claim 1 comprising from about 0.1 percent to about 0.9 by weight butixocort propionate, from about 8 to about 16 percent by weight ethanol, and 1,1,1,2,3,3,3-heptafluoropropane.
13. An aerosol formulation according to claim 1 comprising from about 0.1 percent to about 0.9 percent by weight butixocort propionate, from about 8 to about 16 percent by weight ethanol, and 1,1,1,2-tetrafluoroethane.
14. An aerosol formulation according to claim 1, wherein the formulation exhibits at least 93 percent drug recovery after storage for ten months at 40° C. in an aluminum aerosol canister.
15. A method of treating bronchial asthma comprising administering via inhalation an amount of a formulation according to claim 1 so as to control inflammation associated with bronchial asthma.
16. A metered dose inhaler comprising: (i) an aerosol canister defining a formulation chamber; and (ii) a formulation according to claim 1, wherein said formulation is contained within said formulation chamber.
US08/414,370 1995-03-31 1995-03-31 Butixocort aerosol formulations in hydrofluorocarbon propellant Expired - Fee Related US5653961A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US08/414,370 US5653961A (en) 1995-03-31 1995-03-31 Butixocort aerosol formulations in hydrofluorocarbon propellant
EP96905547A EP0817611A1 (en) 1995-03-31 1996-02-20 Butixocort aerosol formulations
CA002215255A CA2215255A1 (en) 1995-03-31 1996-02-20 Butixocort aerosol formulations
JP8529365A JPH11502837A (en) 1995-03-31 1996-02-20 Butixocoat aerosol formulation
AU49279/96A AU4927996A (en) 1995-03-31 1996-02-20 Butixocort aerosol formulations
PCT/US1996/002230 WO1996029985A1 (en) 1995-03-31 1996-02-20 Butixocort aerosol formulations
MXPA/A/1997/007238A MXPA97007238A (en) 1995-03-31 1997-09-23 Butixoc aerosol formulations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/414,370 US5653961A (en) 1995-03-31 1995-03-31 Butixocort aerosol formulations in hydrofluorocarbon propellant

Publications (1)

Publication Number Publication Date
US5653961A true US5653961A (en) 1997-08-05

Family

ID=23641159

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/414,370 Expired - Fee Related US5653961A (en) 1995-03-31 1995-03-31 Butixocort aerosol formulations in hydrofluorocarbon propellant

Country Status (6)

Country Link
US (1) US5653961A (en)
EP (1) EP0817611A1 (en)
JP (1) JPH11502837A (en)
AU (1) AU4927996A (en)
CA (1) CA2215255A1 (en)
WO (1) WO1996029985A1 (en)

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5874481A (en) * 1995-06-07 1999-02-23 Alliance Pharmaceutical Corp. Fluorochemical solutions for the delivery of lipophilic pharmaceutical agents
WO1999025786A1 (en) * 1997-11-18 1999-05-27 Alliedsignal Inc. Hydrofluorocarbon refrigerants
US5910301A (en) * 1994-05-13 1999-06-08 Aradigm Corporation Method of intrapulmonary administration of a narcotic drug
US6013245A (en) * 1995-01-26 2000-01-11 Glaxo Group Limited Aerosol formulation containing beclomethasone dipropionate and 1,1,1,2,3,3,3-heptafluoro-n-propane as propellant
US6071497A (en) * 1995-05-15 2000-06-06 Pharmaceutical Discovery Corporation Microparticles for lung delivery comprising diketopiperazine
US6120752A (en) * 1997-05-21 2000-09-19 3M Innovative Properties Company Medicinal aerosol products containing formulations of ciclesonide and related steroids
US6197280B1 (en) 1997-09-09 2001-03-06 Bioglan Laboratories Limited Pharmaceutical compositions and devices for their administration
US6264923B1 (en) 1998-05-13 2001-07-24 3M Innovative Properties Company Medicinal aerosol formulation of ciclesonide and related compounds
US6309623B1 (en) 1997-09-29 2001-10-30 Inhale Therapeutic Systems, Inc. Stabilized preparations for use in metered dose inhalers
US6413496B1 (en) 1996-12-04 2002-07-02 Biogland Ireland (R&D) Limited Pharmaceutical compositions and devices for their administration
US6433040B1 (en) 1997-09-29 2002-08-13 Inhale Therapeutic Systems, Inc. Stabilized bioactive preparations and methods of use
US6509005B1 (en) * 1998-10-27 2003-01-21 Virginia Commonwealth University Δ9 Tetrahydrocannabinol (Δ9 THC) solution metered dose inhaler
US20030066525A1 (en) * 1998-11-25 2003-04-10 Chiesi Farmaceutici S.P.A. Pressurised metered dose inhalers (MDI)
US6565885B1 (en) 1997-09-29 2003-05-20 Inhale Therapeutic Systems, Inc. Methods of spray drying pharmaceutical compositions
US20030157028A1 (en) * 2000-02-22 2003-08-21 David Lewis Formulations containing an anticholinergic drug for the treatment of chronic obstructive pulmonary disease
US20030190287A1 (en) * 1997-06-13 2003-10-09 Chiesi Farmaceutici S.P.A. Pharaceutical aerosol composition
US20030190289A1 (en) * 2000-05-12 2003-10-09 David Lewis Formulations containing a glucocorticoid drug for the treatment of bronchopulmonary diseases
US20040033201A1 (en) * 1999-06-18 2004-02-19 3M Innovative Properties Company Process for making chemically stable C-17/21 OH 20-ketosteroid aerosol products
US20040047809A1 (en) * 2000-05-22 2004-03-11 Chiesi Farmaceutici S.P.A. Stable pharmaceutical solution formulations for pressurised metered dose inhalers
US20040077528A1 (en) * 1999-06-29 2004-04-22 Mannkind Corporation Purification and stabilization of peptide and protein pharmaceutical agents
US20040105820A1 (en) * 1997-09-29 2004-06-03 Weers Jeffry G. Phospholipid-based powders for inhalation
US20040184993A1 (en) * 1998-11-25 2004-09-23 Chiesi Farmaceutici S.P.A. Pharmaceutical aerosol composition containing HFA 227 and HFA 134a
US20050034720A1 (en) * 2000-01-07 2005-02-17 Gaetano Brambilla Aerosol inhaler
US20050069499A1 (en) * 2003-09-25 2005-03-31 Moshe Arkin Foamable compositions, processes of preparing same and uses thereof
US20050088617A1 (en) * 2003-10-27 2005-04-28 Jen-Chuen Hsieh Method and apparatus for visual drive control
US20050153874A1 (en) * 2004-01-12 2005-07-14 Mannkind Corporation Method of reducing serum proinsulin levels in type 2 diabetics
US20050154013A1 (en) * 2002-03-01 2005-07-14 Chiesi Farmaceutici S.P.A. Pressurised metered dose inhalers containing solutions of beta-2 agonists
US20050163722A1 (en) * 2001-07-02 2005-07-28 Chiesi Farmaceutici S.P.A. Optimised formulation of tobramycin for aerosolization
US6946117B1 (en) 1997-09-29 2005-09-20 Nektar Therapeutics Stabilized preparations for use in nebulizers
US6967017B1 (en) 1999-07-23 2005-11-22 Chiesi Farmaceutici S.P.A. Formulations of steroid solutions for inhalatory administration
US20070020191A1 (en) * 1999-06-29 2007-01-25 Mannkind Corporation Potentiation of glucose elimination
US20070086952A1 (en) * 2005-09-29 2007-04-19 Biodel, Inc. Rapid Acting and Prolonged Acting Inhalable Insulin Preparations
US20070235365A1 (en) * 2004-03-12 2007-10-11 Biodel Inc. Rapid Acting Drug Delivery Compositions
US20080039368A1 (en) * 2006-04-12 2008-02-14 Biodel Inc. Rapid acting and long acting insulin combination formulations
US20080090753A1 (en) * 2004-03-12 2008-04-17 Biodel, Inc. Rapid Acting Injectable Insulin Compositions
US7368102B2 (en) 2001-12-19 2008-05-06 Nektar Therapeutics Pulmonary delivery of aminoglycosides
US7381402B2 (en) 2004-02-27 2008-06-03 Chiesi Farmaceutici S.P.A. Stable pharmaceutical solution formulations for pressurized metered dose inhalers
US20080248999A1 (en) * 2007-04-04 2008-10-09 Biodel Inc. Amylin formulations
US7442388B2 (en) 2000-05-10 2008-10-28 Weers Jeffry G Phospholipid-based powders for drug delivery
US20090137455A1 (en) * 2005-09-29 2009-05-28 Biodel Inc. Rapid acting and long acting insulin combination formulations
US20090175840A1 (en) * 2008-01-04 2009-07-09 Biodel, Inc. Insulin formulations for insulin release as a function of tissue glucose levels
US7566445B1 (en) * 1996-08-01 2009-07-28 Norton Healthcare Limited Medicinal aerosols and methods of delivery thereof
US20090191134A1 (en) * 2006-06-12 2009-07-30 Medispray Laboratoriespvt. Ltd. Stable aerosol pharmaceutical formulations
US7713929B2 (en) 2006-04-12 2010-05-11 Biodel Inc. Rapid acting and long acting insulin combination formulations
US20100141969A1 (en) * 2008-12-08 2010-06-10 Brazier David B Method and Apparatus for Making Liquid Flexographic Printing Elements
US20100227795A1 (en) * 2009-03-03 2010-09-09 Biodel Inc. Insulin formulations for rapid uptake
US7871598B1 (en) 2000-05-10 2011-01-18 Novartis Ag Stable metal ion-lipid powdered pharmaceutical compositions for drug delivery and methods of use
US8246934B2 (en) 1997-09-29 2012-08-21 Novartis Ag Respiratory dispersion for metered dose inhalers comprising perforated microstructures
US8404217B2 (en) 2000-05-10 2013-03-26 Novartis Ag Formulation for pulmonary administration of antifungal agents, and associated methods of manufacture and use
US8623817B2 (en) 2008-08-11 2014-01-07 Mannkind Corporation Method of treating diabetes type 2 by administering ultrarapid acting insulin
US8785396B2 (en) 2007-10-24 2014-07-22 Mannkind Corporation Method and composition for treating migraines
US9192675B2 (en) 2008-06-13 2015-11-24 Mankind Corporation Dry powder inhaler and system for drug delivery
US9220687B2 (en) 2008-12-29 2015-12-29 Mannkind Corporation Substituted diketopiperazine analogs for use as drug delivery agents
US9233159B2 (en) 2011-10-24 2016-01-12 Mannkind Corporation Methods and compositions for treating pain
US9241903B2 (en) 2006-02-22 2016-01-26 Mannkind Corporation Method for improving the pharmaceutic properties of microparticles comprising diketopiperazine and an active agent
US9283193B2 (en) 2005-09-14 2016-03-15 Mannkind Corporation Method of drug formulation based on increasing the affinity of crystalline microparticle surfaces for active agents
US9346766B2 (en) 2004-08-20 2016-05-24 Mannkind Corporation Catalysis of diketopiperazine synthesis
US9364619B2 (en) 2008-06-20 2016-06-14 Mannkind Corporation Interactive apparatus and method for real-time profiling of inhalation efforts
US9364436B2 (en) 2011-06-17 2016-06-14 Mannkind Corporation High capacity diketopiperazine microparticles and methods
US9630930B2 (en) 2009-06-12 2017-04-25 Mannkind Corporation Diketopiperazine microparticles with defined specific surface areas
EP3124067A3 (en) * 1999-03-03 2017-05-24 Optinose AS Nasal delivery device
US9662461B2 (en) 2008-06-13 2017-05-30 Mannkind Corporation Dry powder drug delivery system and methods
US9675674B2 (en) 2004-08-23 2017-06-13 Mannkind Corporation Diketopiperazine salts for drug delivery and related methods
US9700690B2 (en) 2002-03-20 2017-07-11 Mannkind Corporation Inhalation apparatus
US9706944B2 (en) 2009-11-03 2017-07-18 Mannkind Corporation Apparatus and method for simulating inhalation efforts
US9802012B2 (en) 2012-07-12 2017-10-31 Mannkind Corporation Dry powder drug delivery system and methods
US9925144B2 (en) 2013-07-18 2018-03-27 Mannkind Corporation Heat-stable dry powder pharmaceutical compositions and methods
US9983108B2 (en) 2009-03-11 2018-05-29 Mannkind Corporation Apparatus, system and method for measuring resistance of an inhaler
US10159644B2 (en) 2012-10-26 2018-12-25 Mannkind Corporation Inhalable vaccine compositions and methods
US10307464B2 (en) 2014-03-28 2019-06-04 Mannkind Corporation Use of ultrarapid acting insulin
US10342938B2 (en) 2008-06-13 2019-07-09 Mannkind Corporation Dry powder drug delivery system
US10421729B2 (en) 2013-03-15 2019-09-24 Mannkind Corporation Microcrystalline diketopiperazine compositions and methods
US10561806B2 (en) 2014-10-02 2020-02-18 Mannkind Corporation Mouthpiece cover for an inhaler
US10625034B2 (en) 2011-04-01 2020-04-21 Mannkind Corporation Blister package for pharmaceutical cartridges
US11446127B2 (en) 2013-08-05 2022-09-20 Mannkind Corporation Insufflation apparatus and methods

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2326334A (en) 1997-06-13 1998-12-23 Chiesi Farma Spa Pharmaceutical aerosol compositions
WO2004071488A1 (en) * 2003-02-04 2004-08-26 Chrysalis Technologies Incorporated Perfluorocarbon and hydrofluorocarbon formulations and methods of making and using same
BRPI0721256A2 (en) * 2007-02-09 2013-03-12 Schering Corp stable pharmaceutical drug aerosols

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933331A (en) * 1983-08-26 1990-06-12 Jouveinal, S.A. Hydrocortisone 17-oxo-21-thioesters and their uses as medicaments
WO1992000062A1 (en) * 1990-06-27 1992-01-09 Minnesota Mining And Manufacturing Company The use of soluble fluorosurfactants for the preparation of metered-dose aerosol formulations
US5126123A (en) * 1990-06-28 1992-06-30 Glaxo, Inc. Aerosol drug formulations
US5190029A (en) * 1991-02-14 1993-03-02 Virginia Commonwealth University Formulation for delivery of drugs by metered dose inhalers with reduced or no chlorofluorocarbon content
WO1993004671A1 (en) * 1991-09-03 1993-03-18 Minnesota Mining And Manufacturing Company Medicinal aerosol formulations
US5225183A (en) * 1988-12-06 1993-07-06 Riker Laboratories, Inc. Medicinal aerosol formulations
EP0553298A1 (en) * 1990-10-18 1993-08-04 Minnesota Mining & Mfg Aerosol formulation comprising beclomethasone 17,21 dipropionate.
WO1994013262A1 (en) * 1992-12-09 1994-06-23 Boehringer Ingelheim Pharmaceuticals, Inc. Stabilized medicinal aerosol solution formulations

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933331A (en) * 1983-08-26 1990-06-12 Jouveinal, S.A. Hydrocortisone 17-oxo-21-thioesters and their uses as medicaments
US5225183A (en) * 1988-12-06 1993-07-06 Riker Laboratories, Inc. Medicinal aerosol formulations
WO1992000062A1 (en) * 1990-06-27 1992-01-09 Minnesota Mining And Manufacturing Company The use of soluble fluorosurfactants for the preparation of metered-dose aerosol formulations
US5126123A (en) * 1990-06-28 1992-06-30 Glaxo, Inc. Aerosol drug formulations
EP0553298A1 (en) * 1990-10-18 1993-08-04 Minnesota Mining & Mfg Aerosol formulation comprising beclomethasone 17,21 dipropionate.
US5190029A (en) * 1991-02-14 1993-03-02 Virginia Commonwealth University Formulation for delivery of drugs by metered dose inhalers with reduced or no chlorofluorocarbon content
WO1993004671A1 (en) * 1991-09-03 1993-03-18 Minnesota Mining And Manufacturing Company Medicinal aerosol formulations
WO1994013262A1 (en) * 1992-12-09 1994-06-23 Boehringer Ingelheim Pharmaceuticals, Inc. Stabilized medicinal aerosol solution formulations
WO1994013263A1 (en) * 1992-12-09 1994-06-23 Jager Paul D Stabilized medicinal aerosol solution formulations

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Mor e n, F. et al. (1993). Aerosols in Medicine. Elsevier Science Publishers, pp. 303 319. *
Moren, F. et al. (1993). Aerosols in Medicine. Elsevier Science Publishers, pp. 303-319.

Cited By (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910301A (en) * 1994-05-13 1999-06-08 Aradigm Corporation Method of intrapulmonary administration of a narcotic drug
US6013245A (en) * 1995-01-26 2000-01-11 Glaxo Group Limited Aerosol formulation containing beclomethasone dipropionate and 1,1,1,2,3,3,3-heptafluoro-n-propane as propellant
US6071497A (en) * 1995-05-15 2000-06-06 Pharmaceutical Discovery Corporation Microparticles for lung delivery comprising diketopiperazine
US8394414B2 (en) 1995-05-15 2013-03-12 Mannkind Corporation Method for drug delivery to the pulmonary system
US20040096403A1 (en) * 1995-05-15 2004-05-20 Mannkind Corporation Method for drug delivery to the pulmonary system
US5874481A (en) * 1995-06-07 1999-02-23 Alliance Pharmaceutical Corp. Fluorochemical solutions for the delivery of lipophilic pharmaceutical agents
US8834849B2 (en) 1996-08-01 2014-09-16 Norton Healthcare Limited Medicinal aerosols and methods of delivery thereof
US7566445B1 (en) * 1996-08-01 2009-07-28 Norton Healthcare Limited Medicinal aerosols and methods of delivery thereof
US9650203B2 (en) 1996-08-01 2017-05-16 Norton Healthcare Limited Medicinal aerosols and methods of delivery thereof
US20090246148A1 (en) * 1996-08-01 2009-10-01 Norton Healthcare Ltd Medicinal aerosols and methods of delivery thereof
US6413496B1 (en) 1996-12-04 2002-07-02 Biogland Ireland (R&D) Limited Pharmaceutical compositions and devices for their administration
US6120752A (en) * 1997-05-21 2000-09-19 3M Innovative Properties Company Medicinal aerosol products containing formulations of ciclesonide and related steroids
US20040062720A1 (en) * 1997-06-13 2004-04-01 Chiesi Farmaceutici S.P.A. Pharmaceutical aerosol composition
US20090311196A1 (en) * 1997-06-13 2009-12-17 Chiesi Farmaceutici S.P.A Pharmaceutical aerosol composition
US8420058B2 (en) 1997-06-13 2013-04-16 Chiesi Farmaceutici S.P.A. Pharmaceutical aerosol composition
US20030190287A1 (en) * 1997-06-13 2003-10-09 Chiesi Farmaceutici S.P.A. Pharaceutical aerosol composition
US7601336B2 (en) 1997-06-13 2009-10-13 Chiesi Farmaceutici S.P.A. Pharmaceutical aerosol composition
US20030206870A1 (en) * 1997-06-13 2003-11-06 Chiesi Farmaceutici S.P.A. Pharaceutical aerosol composition
US6197280B1 (en) 1997-09-09 2001-03-06 Bioglan Laboratories Limited Pharmaceutical compositions and devices for their administration
US7393544B2 (en) 1997-09-29 2008-07-01 Nektar Therapeutics Dispersion for pulmonary delivery of a bioactive agent
US9554993B2 (en) 1997-09-29 2017-01-31 Novartis Ag Pulmonary delivery particles comprising an active agent
US20070212405A1 (en) * 1997-09-29 2007-09-13 Nektar Therapeutics Dispersion for pulmonary delivery of a bioactive agent
US7205343B2 (en) 1997-09-29 2007-04-17 Dellamary Luis A Stabilized bioactive preparations and method of use
US6433040B1 (en) 1997-09-29 2002-08-13 Inhale Therapeutic Systems, Inc. Stabilized bioactive preparations and methods of use
US20050207986A1 (en) * 1997-09-29 2005-09-22 Schutt Ernest G Stabilized preparations for use in nebulizers
US20040105820A1 (en) * 1997-09-29 2004-06-03 Weers Jeffry G. Phospholipid-based powders for inhalation
US20080233194A1 (en) * 1997-09-29 2008-09-25 Nektar Therapeutics Dispersion for pulmonary delivery of a bioactive agent
US6565885B1 (en) 1997-09-29 2003-05-20 Inhale Therapeutic Systems, Inc. Methods of spray drying pharmaceutical compositions
US8168223B1 (en) 1997-09-29 2012-05-01 Novartis Pharma Ag Engineered particles and methods of use
US6638495B2 (en) 1997-09-29 2003-10-28 Nektar Therapeutics Stabilized preparation for use in metered dose inhalers
US8080263B2 (en) 1997-09-29 2011-12-20 Novartis Ag Dispersion for pulmonary delivery of a bioactive agent
US6309623B1 (en) 1997-09-29 2001-10-30 Inhale Therapeutic Systems, Inc. Stabilized preparations for use in metered dose inhalers
US8246934B2 (en) 1997-09-29 2012-08-21 Novartis Ag Respiratory dispersion for metered dose inhalers comprising perforated microstructures
US6946117B1 (en) 1997-09-29 2005-09-20 Nektar Therapeutics Stabilized preparations for use in nebulizers
WO1999025786A1 (en) * 1997-11-18 1999-05-27 Alliedsignal Inc. Hydrofluorocarbon refrigerants
US6264923B1 (en) 1998-05-13 2001-07-24 3M Innovative Properties Company Medicinal aerosol formulation of ciclesonide and related compounds
US6713048B2 (en) * 1998-10-27 2004-03-30 Virginia Commonwealth University Δ9 tetrahydrocannabinol (Δ9 THC) solution metered dose inhalers and methods of use
US6509005B1 (en) * 1998-10-27 2003-01-21 Virginia Commonwealth University Δ9 Tetrahydrocannabinol (Δ9 THC) solution metered dose inhaler
US20050142071A1 (en) * 1998-11-25 2005-06-30 Chiesi Farmaceutici S.P.A. Pressurised metered dose inhalers (MDI)
US20040184993A1 (en) * 1998-11-25 2004-09-23 Chiesi Farmaceutici S.P.A. Pharmaceutical aerosol composition containing HFA 227 and HFA 134a
US20080115782A1 (en) * 1998-11-25 2008-05-22 Chiesi Farmaceutici S.P.A. Pressurised metered dose inhalers (mdi)
US20030066525A1 (en) * 1998-11-25 2003-04-10 Chiesi Farmaceutici S.P.A. Pressurised metered dose inhalers (MDI)
US7347199B1 (en) 1998-11-25 2008-03-25 Chiesi Farmaceutici S.P.A. Pressurised metered dose inhalers (MDI)
US7223381B2 (en) 1998-11-25 2007-05-29 Chiesi Farmaceutici S.P.A. Pressurised metered dose inhalers (MDI)
US8142763B2 (en) 1998-11-25 2012-03-27 Chiesi Farmaceutici S.P.A. Pressurized metered dose inhalers (MDI) containing a solution comprising ipratropium bromide, HFA propellant, and co-solvent and comprising a container with a specific internal surface composition and/or lining
EP3124067A3 (en) * 1999-03-03 2017-05-24 Optinose AS Nasal delivery device
US20040033201A1 (en) * 1999-06-18 2004-02-19 3M Innovative Properties Company Process for making chemically stable C-17/21 OH 20-ketosteroid aerosol products
US20050220717A1 (en) * 1999-06-18 2005-10-06 3M Innovative Properties Company Steroid solution aerosol products with enhanced chemical stability
US20100086609A1 (en) * 1999-06-29 2010-04-08 Mannkind Corporation Methods and Compositions for Delivering Peptides
US9006175B2 (en) 1999-06-29 2015-04-14 Mannkind Corporation Potentiation of glucose elimination
US7943178B2 (en) 1999-06-29 2011-05-17 Mannkind Corporation Methods and compositions for delivering peptides
US20070020191A1 (en) * 1999-06-29 2007-01-25 Mannkind Corporation Potentiation of glucose elimination
US20110105391A1 (en) * 1999-06-29 2011-05-05 Mannkind Corporation Methods and Compositions for Delivering Peptides
US8389470B2 (en) 1999-06-29 2013-03-05 Mannkind Corporation Methods and compositions for delivering peptides
US9801925B2 (en) 1999-06-29 2017-10-31 Mannkind Corporation Potentiation of glucose elimination
US8889099B2 (en) 1999-06-29 2014-11-18 Mannkind Corporation Methods and compositions for delivering peptides
US7648960B2 (en) 1999-06-29 2010-01-19 Mannkind Corporation Method for delivery of monomeric or dimeric insulin complexed to diketopiperazine microparticles
US20040077528A1 (en) * 1999-06-29 2004-04-22 Mannkind Corporation Purification and stabilization of peptide and protein pharmaceutical agents
US6967017B1 (en) 1999-07-23 2005-11-22 Chiesi Farmaceutici S.P.A. Formulations of steroid solutions for inhalatory administration
US20050034720A1 (en) * 2000-01-07 2005-02-17 Gaetano Brambilla Aerosol inhaler
US6964759B2 (en) 2000-02-22 2005-11-15 Chiesi Farmaceutici S.P.A. Formulations containing an anticholinergic drug for the treatment of chronic obstructive pulmonary disease
US20030157028A1 (en) * 2000-02-22 2003-08-21 David Lewis Formulations containing an anticholinergic drug for the treatment of chronic obstructive pulmonary disease
US8709484B2 (en) 2000-05-10 2014-04-29 Novartis Ag Phospholipid-based powders for drug delivery
US7871598B1 (en) 2000-05-10 2011-01-18 Novartis Ag Stable metal ion-lipid powdered pharmaceutical compositions for drug delivery and methods of use
US8404217B2 (en) 2000-05-10 2013-03-26 Novartis Ag Formulation for pulmonary administration of antifungal agents, and associated methods of manufacture and use
US8349294B2 (en) 2000-05-10 2013-01-08 Novartis Ag Stable metal ion-lipid powdered pharmaceutical compositions for drug delivery and methods of use
US20090047358A1 (en) * 2000-05-10 2009-02-19 Weers Jeffry G Phospholipid-based powders for drug delivery
US7442388B2 (en) 2000-05-10 2008-10-28 Weers Jeffry G Phospholipid-based powders for drug delivery
US9439862B2 (en) 2000-05-10 2016-09-13 Novartis Ag Phospholipid-based powders for drug delivery
US8877162B2 (en) 2000-05-10 2014-11-04 Novartis Ag Stable metal ion-lipid powdered pharmaceutical compositions for drug delivery
US20030190289A1 (en) * 2000-05-12 2003-10-09 David Lewis Formulations containing a glucocorticoid drug for the treatment of bronchopulmonary diseases
US20040047809A1 (en) * 2000-05-22 2004-03-11 Chiesi Farmaceutici S.P.A. Stable pharmaceutical solution formulations for pressurised metered dose inhalers
US20060083693A1 (en) * 2000-05-22 2006-04-20 Chiesi Farmaceutici S.P.A. Stable pharmaceutical solution formulations for pressurised metered dose inhalers
US7018618B2 (en) 2000-05-22 2006-03-28 Chiesi Farmaceutici S.P.A. Stable pharmaceutical solution formulations for pressurized metered dose inhalers
US20100098642A1 (en) * 2001-07-02 2010-04-22 Chiesi Farmaceutici S.P.A. Optimised formulation of tobramycin for aerosolization
US8168598B2 (en) 2001-07-02 2012-05-01 Chiesi Farmaceutici S.P.A. Optimised formulation of tobramycin for aerosolization
US20110212912A1 (en) * 2001-07-02 2011-09-01 Chiesi Farmaceutici S.P.A. Optimised formulation of tobramycin for aerosolization
US20050163722A1 (en) * 2001-07-02 2005-07-28 Chiesi Farmaceutici S.P.A. Optimised formulation of tobramycin for aerosolization
US7939502B2 (en) 2001-07-02 2011-05-10 Chiesi Farmaceutici S.P.A. Optimised formulation of tobramycin for aerosolization
US7696178B2 (en) 2001-07-02 2010-04-13 Chiesi Farmaceutici S.P.A. Optimised formulation of tobramycin for aerosolization
US9421166B2 (en) 2001-12-19 2016-08-23 Novartis Ag Pulmonary delivery of aminoglycoside
US8715623B2 (en) 2001-12-19 2014-05-06 Novartis Ag Pulmonary delivery of aminoglycoside
US7368102B2 (en) 2001-12-19 2008-05-06 Nektar Therapeutics Pulmonary delivery of aminoglycosides
US20090263488A1 (en) * 2002-03-01 2009-10-22 Chiesi Farmaceutici S.P.A. Pressurised metered dose inhalers containing solutions of beta-2 agonists
US20050154013A1 (en) * 2002-03-01 2005-07-14 Chiesi Farmaceutici S.P.A. Pressurised metered dose inhalers containing solutions of beta-2 agonists
US9700690B2 (en) 2002-03-20 2017-07-11 Mannkind Corporation Inhalation apparatus
US20050069499A1 (en) * 2003-09-25 2005-03-31 Moshe Arkin Foamable compositions, processes of preparing same and uses thereof
US20050088617A1 (en) * 2003-10-27 2005-04-28 Jen-Chuen Hsieh Method and apparatus for visual drive control
US20050153874A1 (en) * 2004-01-12 2005-07-14 Mannkind Corporation Method of reducing serum proinsulin levels in type 2 diabetics
US7381402B2 (en) 2004-02-27 2008-06-03 Chiesi Farmaceutici S.P.A. Stable pharmaceutical solution formulations for pressurized metered dose inhalers
US20090192075A1 (en) * 2004-03-12 2009-07-30 Biodel Inc. Amylin Formulations
US8933023B2 (en) 2004-03-12 2015-01-13 Biodel Inc. Rapid acting injectable insulin compositions
US20070235365A1 (en) * 2004-03-12 2007-10-11 Biodel Inc. Rapid Acting Drug Delivery Compositions
US20080090753A1 (en) * 2004-03-12 2008-04-17 Biodel, Inc. Rapid Acting Injectable Insulin Compositions
US9346766B2 (en) 2004-08-20 2016-05-24 Mannkind Corporation Catalysis of diketopiperazine synthesis
US9796688B2 (en) 2004-08-20 2017-10-24 Mannkind Corporation Catalysis of diketopiperazine synthesis
US10130685B2 (en) 2004-08-23 2018-11-20 Mannkind Corporation Diketopiperazine salts for drug delivery and related methods
US9675674B2 (en) 2004-08-23 2017-06-13 Mannkind Corporation Diketopiperazine salts for drug delivery and related methods
US20110183901A1 (en) * 2005-03-31 2011-07-28 Mannkind Corporation Superior Control of Blood Glucose in Diabetes Treatment
US10143655B2 (en) 2005-09-14 2018-12-04 Mannkind Corporation Method of drug formulation
US9283193B2 (en) 2005-09-14 2016-03-15 Mannkind Corporation Method of drug formulation based on increasing the affinity of crystalline microparticle surfaces for active agents
US9446001B2 (en) 2005-09-14 2016-09-20 Mannkind Corporation Increasing drug affinity for crystalline microparticle surfaces
US9717689B2 (en) 2005-09-14 2017-08-01 Mannkind Corporation Method of drug formulation based on increasing the affinity of crystalline microparticle surfaces for active agents
US20090137455A1 (en) * 2005-09-29 2009-05-28 Biodel Inc. Rapid acting and long acting insulin combination formulations
US8084420B2 (en) 2005-09-29 2011-12-27 Biodel Inc. Rapid acting and long acting insulin combination formulations
US20070086952A1 (en) * 2005-09-29 2007-04-19 Biodel, Inc. Rapid Acting and Prolonged Acting Inhalable Insulin Preparations
US10130581B2 (en) 2006-02-22 2018-11-20 Mannkind Corporation Method for improving the pharmaceutic properties of microparticles comprising diketopiperazine and an active agent
US9241903B2 (en) 2006-02-22 2016-01-26 Mannkind Corporation Method for improving the pharmaceutic properties of microparticles comprising diketopiperazine and an active agent
US7713929B2 (en) 2006-04-12 2010-05-11 Biodel Inc. Rapid acting and long acting insulin combination formulations
US20080039368A1 (en) * 2006-04-12 2008-02-14 Biodel Inc. Rapid acting and long acting insulin combination formulations
US7718609B2 (en) 2006-04-12 2010-05-18 Biodel Inc. Rapid acting and long acting insulin combination formulations
US20090191134A1 (en) * 2006-06-12 2009-07-30 Medispray Laboratoriespvt. Ltd. Stable aerosol pharmaceutical formulations
US20080248999A1 (en) * 2007-04-04 2008-10-09 Biodel Inc. Amylin formulations
US8785396B2 (en) 2007-10-24 2014-07-22 Mannkind Corporation Method and composition for treating migraines
US20090175840A1 (en) * 2008-01-04 2009-07-09 Biodel, Inc. Insulin formulations for insulin release as a function of tissue glucose levels
US9446133B2 (en) 2008-06-13 2016-09-20 Mannkind Corporation Dry powder inhaler and system for drug delivery
US9192675B2 (en) 2008-06-13 2015-11-24 Mankind Corporation Dry powder inhaler and system for drug delivery
US10751488B2 (en) 2008-06-13 2020-08-25 Mannkind Corporation Dry powder inhaler and system for drug delivery
US10342938B2 (en) 2008-06-13 2019-07-09 Mannkind Corporation Dry powder drug delivery system
US10201672B2 (en) 2008-06-13 2019-02-12 Mannkind Corporation Dry powder inhaler and system for drug delivery
US9662461B2 (en) 2008-06-13 2017-05-30 Mannkind Corporation Dry powder drug delivery system and methods
US9339615B2 (en) 2008-06-13 2016-05-17 Mannkind Corporation Dry powder inhaler and system for drug delivery
US9511198B2 (en) 2008-06-13 2016-12-06 Mannkind Corporation Dry powder inhaler and system for drug delivery
US10675421B2 (en) 2008-06-20 2020-06-09 Mannkind Corporation Interactive apparatus and method for real-time profiling of inhalation efforts
US9364619B2 (en) 2008-06-20 2016-06-14 Mannkind Corporation Interactive apparatus and method for real-time profiling of inhalation efforts
US9943571B2 (en) 2008-08-11 2018-04-17 Mannkind Corporation Use of ultrarapid acting insulin
US8623817B2 (en) 2008-08-11 2014-01-07 Mannkind Corporation Method of treating diabetes type 2 by administering ultrarapid acting insulin
US20100141969A1 (en) * 2008-12-08 2010-06-10 Brazier David B Method and Apparatus for Making Liquid Flexographic Printing Elements
US10172850B2 (en) 2008-12-29 2019-01-08 Mannkind Corporation Substituted diketopiperazine analogs for use as drug delivery agents
US9655850B2 (en) 2008-12-29 2017-05-23 Mannkind Corporation Substituted diketopiperazine analogs for use as drug delivery agents
US9220687B2 (en) 2008-12-29 2015-12-29 Mannkind Corporation Substituted diketopiperazine analogs for use as drug delivery agents
US9060927B2 (en) 2009-03-03 2015-06-23 Biodel Inc. Insulin formulations for rapid uptake
US20100227795A1 (en) * 2009-03-03 2010-09-09 Biodel Inc. Insulin formulations for rapid uptake
US9983108B2 (en) 2009-03-11 2018-05-29 Mannkind Corporation Apparatus, system and method for measuring resistance of an inhaler
US9630930B2 (en) 2009-06-12 2017-04-25 Mannkind Corporation Diketopiperazine microparticles with defined specific surface areas
US9706944B2 (en) 2009-11-03 2017-07-18 Mannkind Corporation Apparatus and method for simulating inhalation efforts
US10625034B2 (en) 2011-04-01 2020-04-21 Mannkind Corporation Blister package for pharmaceutical cartridges
US10130709B2 (en) 2011-06-17 2018-11-20 Mannkind Corporation High capacity diketopiperazine microparticles and methods
US9364436B2 (en) 2011-06-17 2016-06-14 Mannkind Corporation High capacity diketopiperazine microparticles and methods
US9233159B2 (en) 2011-10-24 2016-01-12 Mannkind Corporation Methods and compositions for treating pain
US10258664B2 (en) 2011-10-24 2019-04-16 Mannkind Corporation Methods and compositions for treating pain
US9610351B2 (en) 2011-10-24 2017-04-04 Mannkind Corporation Methods and compositions for treating pain
US9802012B2 (en) 2012-07-12 2017-10-31 Mannkind Corporation Dry powder drug delivery system and methods
US10159644B2 (en) 2012-10-26 2018-12-25 Mannkind Corporation Inhalable vaccine compositions and methods
US10421729B2 (en) 2013-03-15 2019-09-24 Mannkind Corporation Microcrystalline diketopiperazine compositions and methods
US9925144B2 (en) 2013-07-18 2018-03-27 Mannkind Corporation Heat-stable dry powder pharmaceutical compositions and methods
US11446127B2 (en) 2013-08-05 2022-09-20 Mannkind Corporation Insufflation apparatus and methods
US10307464B2 (en) 2014-03-28 2019-06-04 Mannkind Corporation Use of ultrarapid acting insulin
US10561806B2 (en) 2014-10-02 2020-02-18 Mannkind Corporation Mouthpiece cover for an inhaler

Also Published As

Publication number Publication date
JPH11502837A (en) 1999-03-09
AU4927996A (en) 1996-10-16
CA2215255A1 (en) 1996-10-03
MX9707238A (en) 1997-11-29
WO1996029985A1 (en) 1996-10-03
EP0817611A1 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
US5653961A (en) Butixocort aerosol formulations in hydrofluorocarbon propellant
EP0735884B1 (en) Flunisolide aerosol formulations
US9895327B2 (en) Aerosol formulations comprising formoterol fumarate dihydrate
US6585958B1 (en) Medicinal aerosol formulations
US6461591B1 (en) Medical aerosol formulations
JP4672143B2 (en) Pharmaceutical aerosol formulation
JP5392880B2 (en) Stable pharmaceutical solution formulation for pressurized metered dose inhalers
EP1670443B1 (en) Aerosol formulation comprising formoterol in suspension
JP3264496B2 (en) Formulation of mometasone furoate aerosol without chlorofluorocarbon
MXPA97007238A (en) Butixoc aerosol formulations
JP5409594B2 (en) Stable pharmaceutical solution formulation for pressurized metered dose inhalers
MXPA00012388A (en) Pharmaceutical formulations for aerosols with two or more active substances

Legal Events

Date Code Title Description
AS Assignment

Owner name: MINNESOTA MINING AND MANUFACTURING COMPANY, MINNES

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCNALLY, REBECCA A.;WARD, GARY H.;REEL/FRAME:007423/0316;SIGNING DATES FROM 19950322 TO 19950331

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 20010805

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362