US5766254A - Spinal stabilization implant system - Google Patents

Spinal stabilization implant system Download PDF

Info

Publication number
US5766254A
US5766254A US08/692,849 US69284996A US5766254A US 5766254 A US5766254 A US 5766254A US 69284996 A US69284996 A US 69284996A US 5766254 A US5766254 A US 5766254A
Authority
US
United States
Prior art keywords
plate
attachment
side edge
screw
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/692,849
Inventor
Steven D. Gelbard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US08/692,849 priority Critical patent/US5766254A/en
Application granted granted Critical
Publication of US5766254A publication Critical patent/US5766254A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7059Cortical plates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7032Screws or hooks with U-shaped head or back through which longitudinal rods pass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7049Connectors, not bearing on the vertebrae, for linking longitudinal elements together
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7058Plates mounted on top of bone anchor heads or shoulders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8033Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates having indirect contact with screw heads, or having contact with screw heads maintained with the aid of additional components, e.g. nuts, wedges or head covers
    • A61B17/8042Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates having indirect contact with screw heads, or having contact with screw heads maintained with the aid of additional components, e.g. nuts, wedges or head covers the additional component being a cover over the screw head

Definitions

  • This invention relates generally to spinal implants and, in particular, to a spinal implant having a novel top-loading bolt attachment for support and alignment rods with cross links and ancillary components for stabilization of the vertebrae as well as a two plate system for cervical spine fixation.
  • Surgical implants are well known in the art for treatment of curvatures of the spine including anterior, trauma, deformity, and/or degenerative spinal conditions.
  • the purpose of the implant is to reinforce the spine by use of strategically placed attachment screws capable of supporting alignment support rods placed bilateral along the vertebrae as well as cross-link members that bridge the sagittal of the spine.
  • the problem which this invention addresses is the method of fastening the spinal implants during surgery.
  • an attachment screw provides the functional base for the support rod, cross-link, caudal facing hooks, cranial facing hook and the like components that form a spinal implant system.
  • the conventional method of fastening utilizing a goal post mounting screw from which a bolt and nut is coupled perpendicular thereto for mounting to the component.
  • This side attachment frequently requires the movement of muscle and other tissue during operation which increases the difficulty of the operation, is a time consuming effort, and can be a major trauma to a person.
  • U.S. Pat. No. 5,084,048, issued to Jacob et al., entitled “Implant for Vertebrae With Spinal Stabilizer” discloses a vertebrae implant having a stabilizing element which is articulated to accommodate a pair of bone screws wherein each bone screw includes a clamp disposed between a shoulder in a spherical surface which is all coupled together by the use of a clamping nut directly on the end of the bone screw.
  • the device allows for support of an alignment rod along the side of the bone screw, but fails to provide any type of cross link or ancillary component attachment devices.
  • U.S. Pat. No. 4,041,939 issued to Hall, entitled "Surgical Implant Spinal Screw” discloses a spinal implant utilizing a screw having a centrally disposed aperture for placement of a metal cable therethrough with a nylon insert that will permanently secure the cable in a fixed position once attached. The device is best used in an operation for the correction of scoliosis.
  • anterior cervical plates Another problem with prior art is the use of anterior cervical plates.
  • the prior art employs a single plate that is attached by the use of small bone attachment screws. After installation, the screws have a tendency of working their way out of the bone resulting in the loosening of the cervical plate causing the patient pain and typically resulting in further surgery to correct the problem.
  • the instant invention is a surgical implant system for the stabilization of the human spine by fixation of the vertebra.
  • the system is based upon screws, nuts, rods, hooks, cross-members and variations thereof.
  • the preferred embodiment employs a metal screw for placement in the sacrum or pedicle defined by a coarse self-tapping thread and a U-shaped saddle for placement of conventional alignment rods.
  • Unique to this invention is that the screw is threaded on the outer surface of the saddle allowing the alignment rod to be securely fastened into the saddle by placement of the rod therein and the fastening of a nut to the top of saddle.
  • top-loading attachment is further applicable to caudal, cranial, and the like hook components.
  • An anterior cervical plate is set forth using a second plate to permanently lock the cervical plate in position.
  • the second plate does not rely upon the bone to support the plate thus providing a means to prevent any bone attachment screws from loosening or otherwise backing out of the bone.
  • an objective of the instant invention is to provide thoracic lumbar stabilization by use of linking conventional support alignment rods placed bilaterally along the vertebrae with the top-loading sacral and pedicle screws of the instant invention.
  • Still another objective is to lessen the need for ancillary tissue movement during surgery by use of a top mounted attachment means for ancillary components and provide a variable attachment system to provide the surgeon with fixation components that will accommodate a variety of circumstances.
  • Yet another objective of the instant invention is to provide a cross-link member that is operatively associated with the attachment screws by means of a top mounted link that is receptive to the protruding members of the screws or separate cross link attachments.
  • Yet still another objective of the instant invention is to provide a variable attachment means for two member and four member attachment screws by the use of rotatable attachment slots within the cross-link members.
  • Still another objective of the instant invention is to simplify the means for attaching caudal, thoracic, cranial and the like hooks by use of a top loading fastening nut that is threaded directly onto the hook body.
  • Still another objective of the instant invention is to provide an improved sacral and pedicle pinion post screw that allows angular bridging by use of an indexing right angled base having the means for coupling to another right angled base.
  • Yet still another objective is to disclose an improved anterior cervical plate having a second plate that couples to the cervical mounted plate effectively locking the cervical mounted plate in position by preventing the retraction of the mounting screws, while allowing the mounting screws to be put in at various angles and positions.
  • FIG. 1 is an exploded perspective view of the preferred embodiment of the instant invention
  • FIG. 2 is perspective view of a variation to the cross-link member support
  • FIG. 3 is perspective view of another variation to the cross-link member support by use of an elongated slot
  • FIG. 4 is a perspective view of the spinal implant using employing the variable cross-link support member
  • FIG. 5 is a perspective view of the bifurcated externally threaded hook attachment
  • FIG. 6 is a perspective view of the attachment nut for use with the spinal screw of FIG. 5;
  • FIG. 7 is an exploded perspective view of a four protruding member spinal screw embodiment
  • FIG. 8 is an exploded view of a pinion spinal screw with a first rotatable directional shaft
  • FIG. 9 is an exploded view of a pinion spinal screw with a secondary rotatable direction shaft coupling to the first shaft of FIG. 8;
  • FIG. 10 is an exploded view of a bridge cross-link attachment member employing a C-shaped clamp with bolt and nut;
  • FIG. 11 is a top view of the anterior cervical plates
  • FIG. 12 is a perspective view of the anterior cervical plates available for installation
  • FIG. 13 is a top view of an anterior cervical plate using a strap embodiment
  • FIG. 14 is a perspective view of the anterior cervical plates with the strap embodiment in an attached position
  • FIG. 15 is a perspective view of another two plate anterior cervical plate with the strap embodiment in an attached position
  • FIG. 16 is an exploded view of a pinion spinal screw with an enlarged shoulder
  • FIG. 17 is a perspective view of a variation to the cross-link member support employing a threaded rotatable member
  • FIG. 18 is a perspective view of an enlarged bifurcated externally threaded hook attachment with a preformed support member.
  • the surgical implant system of the instant invention is generally shown as numerated 10 for use in the stabilization of a human spine by fixation of vertebra.
  • the construction materials consist of stainless steel, titanium, or the like high quality material.
  • the base of the system employs a spinal screw 12 shown diverging in the sacrum 14.
  • the sacral screw 12 characterized by a first end 16 having a relatively coarse self-tapping thread 18 over a major portion of its length.
  • a second end 20 having a first 22 and second 24 spaced apart protruding member extending obliquely from the screw defining an inner surface saddle 26 having an inner diameter corresponding to the outer diameter of a conventional support alignment rod 28.
  • the screw can be made of various lengths and diameters, the size dependant upon the location for placement, the amount of support or reconstruction required, and the actual size of the individual's bone structure.
  • the outer surface of the second end 20 of the screw 12 includes a plurality of grooves placed therein to form a partial thread 34.
  • the threads 34 can be cast or placed on the surface by means of a conventional thread shaping die.
  • the saddle 26 receptive to an alignment support rod 28 placed along the length of the vertebra 30 of the spine 32 to provide longitudinal support.
  • a rectangular shaped rigid plate 36 can then be used to connect two sagittal placed screws 12.
  • the plate 36 is defined as an elongated sagittal traverse support member having first 38 and second end 40 and two edges and upper and lower reversible surface.
  • At the first end 36 is placed an opening 42 operatively associated with the protruding members 22 and 24 of the screw 12.
  • the first screw is rigidly connected to the second screw by placement of the plate 36 over the protruding members respectively.
  • Openings 42 are provided to accommodate the protruding members 22, 24 by use of two slots disposed at the first end 38 for insertion of the protruding members of the first screw and two slots 44 disposed in the second end 40 for insertion of the protruding members of the sagittal placed second screw.
  • the connecting member 36 is rigidly secured to the screws 12 by use of metal nuts 46 having an internal thread 48 engageable with the threaded surface 34 of each protruding member.
  • a means for spacing the traverse support member a predetermined distance from the saddle surface 26 is accomplished by use of a washer 50 having an elongated slot for disposition over the protruding members.
  • the screw allowing for placement on a top surface of the alignment support rod 28 placed within the saddle 26.
  • Rod support can also be accomplished by top loading, without a cross link, by use of the screw attachment 12 to the bone with a segmented slotted member 37 to fit directly over the protruding members of the screw.
  • Securement is accomplished by the attachment nuts 46 to the screw 12 causing member 37 to fixate rod 28 in position.
  • This embodiment is preferred for thoraco lumbar stabilization by use of linking the support alignment rods that are placed bilaterally.
  • the use of additional screws, as shown, allow for support along the length of the vertebrae.
  • the metal nuts 46 threaded directly to the top of the screws 12 eliminating the need for movement of muscle during surgery.
  • a variable angled cross-link sagittal traverse support member having a first end 62 and a second end 64 and two edges 66 & 68 with an upper 70 and a lower 72 reversible surface.
  • the first end 62 includes a centrally disposed opening 74 available for insertion of a cylindrical post commonly used with pedicle screws of the prior art and the variable offset screw of the instant invention described later in this embodiment.
  • a means for rotating 76 the coupling slots in radial relation to the support member 60. The rotation allowing for the offset of a top loading screw by rotation member 76 permitting placement at variable directions for insertion of the protruding members through the slots 78.
  • a rigid support member 80 can be defined by a first end 82 and a second end 84 with two surfaces therebetween as shown in FIG. 3 wherein an elongated centrally disposed opening or slot 86 extends from the first end to the second end allowing a universally acceptable attachment means for pinon shafts or in the saddle post attachment by use of an enlarged slot.
  • FIG. 4 illustrates the use of a variable cross-link support member 90 having a first end 92 and a second end 94 with a first rotatable disk 96 for rotating at least two slots 98 in radial relation to the support member 90.
  • a second rotatable disk 100 for rotating at least two slots 102 in radial relation to the support member 90 is disposed at the second end.
  • the disks 96 and 100 are permanently secured to the support member 90 allowing freedom of circular rotation only. The freedom of rotation allows for correction of angle when the screws do not line up directly across the spine.
  • the variable angled support member 90 can be attached to the screw a first screw in the previously described manner by placement of the slots 98 over the protruding members 106 of the saddle end of the screw 104.
  • a second screw 108 can be placed sagittal across the spine but now in a dissimilar plane allowing a surgeon to custom place the screw 108 in the strongest area of the bone eliminating the need to bridge a damaged or degenerative area.
  • the slots 102 are placed over the protruding members 110 of the saddle end of the screw 108.
  • the metal nuts 112 are used for engagement with the outer surfaces 116 and 118 of the corresponding protruding members.
  • the support member 90 residing tightly against the alignment support rod 120 causing a frictional engagement with the inner surface of the saddle.
  • the variable angled support member is made of a variety of lengths for spanning any length range.
  • a second support member 90 is shown is a directly traversing manner wherein the rotatable disks 96 and 100 are placed in a conventional format for placement over the screws 104 and 108.
  • the benefit of the rotatable disk is especially noticeable where the disk may need only a minute movement to accommodate the situation whereas the prior are would require screw removal and replacement.
  • the system includes the flexibility to attach a cross-link without screw support yet employ the top loading benefit.
  • a U-shaped saddle 91 can be placed about the support rod 120 with a second sagittal placed saddle support 95 shown here in a four protruding member design.
  • Variable cross-link support member 90 with a first rotatable disk 97 for rotating at the four slots in radial relation to the support member 90.
  • a second rotatable disk 100 is placed at the opposite end for rotating at the two slots in radial relation to the support member 90.
  • the freedom of rotation allows for correction of angle when the attachment devices 91 and 95 do not line up directly across the spine.
  • the metal nuts 112 engage the outer surfaces of the corresponding protruding members.
  • the support member 90 residing tightly against the alignment support rod 120 causing a frictional engagement with the inner surface of the saddle.
  • FIGS. 5 and 6 illustrate a perspective view of a caudal facing hook 130 having a hook shaped base 132 formed integral with a saddle shaped upper portion 134.
  • the saddle shape portion illustrates the protruding member 136 and 138 common to the invention with the threads 140 cast into the outer surface of the members.
  • the saddle in this type of hook allows for attachment directly onto an alignment support rod wherein the metal nut 142 includes internal threads 144 engageable directly with the hook body 130 threads 140 securely fastening the hook in position.
  • various hook embodiments such as claw and fork hook which employ the top-loading threaded attachment of the instant invention.
  • FIG. 7 shown is an alternative embodiment of the screw attachment 150 having four spaced apart protruding members 152.
  • Each protruding member having a first side 154 surface and a second side 156 surface forming an arcuate shaped saddle 158.
  • the third side surface 160 and fourth side surface 162 are threaded for engagement with the inner threaded surface 164 of attachment nut 166.
  • the saddle surface adapted for support of an alignment support rod in a longitudinal or perpendicular mode, the increased saddle surface area providing additional stability for use as a hook or the like attachment.
  • Coupling an alignment support rod to the screw 150 requires the use of a rectangular rigid plate 170 defined by four edges rounded at the corners with two side surfaces with four openings 172 placed therethrough at each end operatively associated with the four spaced apart protruding members of the attachment screw 150.
  • the support member allows for interconnecting to a second sagittal disposed and/or a bilaterally placed screw 174.
  • the support member 170 for the four protruding members may also include a means for rotating the four openings 172 in radial relation to the support member 170 by use of a rotatable disk similar to that shown in FIG. 4 which is permanently secured to the support member 170 allowing freedom of circular rotation. The freedom of rotation allowing for correction of angle when the screws do not line up directly across the spine. Singular attachment plates may also be employed when cross-linking is not desired.
  • variable directional attachment screw 180 is shown defined by a first end 182 and a second end 184.
  • the first end 182 having a relatively coarse self-tapping thread 186 over a major portion of its length and a shoulder 188 having a plurality of ridges placed about the circumference.
  • the second end 184 utilizes a rectilinear protruding shaft 190 extending obliquely from the shoulder 188 having a threaded section 192 for use in conjunction with an attachment nut 194.
  • the variable directional screw 182 allows engagement of attachment member 196 having a first directional shaft 198 and base end 200 forming a shoulder.
  • the base end 200 includes a side surface 202 engageable with the shoulder ridges 188 of the screw allowing the base to index about the circumference of the shaft 190 for direction application of the shaft 198.
  • the metal nut 194 is used to engage the threads 192 of the protruding shaft fixing the directional shaft in a stationary position.
  • an alternative base end 210 is shown including a side surface 212 engageable with the shoulder ridges 188 of the screw 182 allowing the base to index about the circumference of the shaft 190 for direction application of a shaft 214.
  • the metal nut 194 is used to engage the threads 192 of the protruding shaft fixing the directional shaft in a stationary position.
  • a second base member 216 can then be added having a side surface 218 engageable with the shoulder ridges 220 located about shaft 214 allowing the second base 216 to index about the circumference of the shaft 214 for direction application of a shaft 222.
  • the metal nut 224 is used to engage the threads of the shaft 214 fixing the directional shaft in a stationary position.
  • a third nut is made available to tightened to devices such as the plates disclosed in FIGS. 2 and 3 for pinion type shaft attachment.
  • FIG. 10 illustrates an alternative cross link based upon a C-shaped bracket 230 having two holes 232 and 234 with a peg 236 and nut 238 for locking the bracket 230 in position about a conventional alignment support rod 240.
  • the cross-link 242 can be placed through the pinion type peg 236 by use of attachment holes 244 for stabilizing along the bilateral support rod 240.
  • the cross-link 242 provides stability for a mid-thoracic and is less bulky that the aforementioned cross-links. Further shown is use of an improved alignment rod 240 having a plurality of spaced apart raised ridges 241 to assist in maintaining attachment-brackets in a predetermined position.
  • FIG. 11 is a anterior cervical plate employing a second plate for locking purposes.
  • Cervical plate 250 is defined as a first rectangular shaped rigid plate having a first end 252 and a second end 254 and two side edges 256 and 258 with a curvature formed between the two edges causing the plate 252 to have a slight curve in it for the cervical curve.
  • the plate utilizes a plurality of openings such as the slots 260 and holes 262 for use in attaching the plate 250 to the cervical by use of conventional bone screws.
  • a second rectangular shaped rigid plate 270 defined by two ends 272 and 274 and two edges 276 and 278 also having a curvature between the two edges is used to couple to the first plate 250 to prevent the bone screws, not shown, from loosening out of the bone.
  • One surface 280 of the place includes a series of indentations 282 and 284 to accommodate the bone screws head.
  • the second plate 270 has a plurality of attachment holes 286 placed about the outer edge of the plate 250 for insertion of threaded screws that which in turn can be threaded in coupling holes 288 placed about the circumference of the first plate 250.
  • Cervical plate 250 is readily attached to the spine 290 by use of screws 292 placed into the slots 260.
  • the second plate 270 is then placed over the cervical plate 250, the raised indentations 282 and 284 of the plate allowing a flush attachment.
  • Attachment screws 294 are placed through the openings 286 of the second plate and are threaded into threaded openings 288 of the first plate 250.
  • the second plate essentially locking the first plate in position by preventing bone screws 292 from working their way out of the bone.
  • FIG. 13 is another embodiment of an anterior cervical plate employing a second plate for locking purposes.
  • Cervical plate 300 is defined as a first rectangular shaped rigid plate having a first end 302 and a second end 304 and two side edges 306 and 308 with a curvature formed between the two edges causing the plate 302 to have a slight curve in it for the cervical curve.
  • the plate utilizes a plurality of openings such as the slots 310 and holes 312 for use in attaching the plate 300 to the cervical by use of conventional bone screws.
  • attachment strap 314 Permanently attached to each side of the plate is attachment strap 314 which includes a means for permanently attaching to strap 316.
  • a second rectangular shaped rigid plate 320 defined by two ends 322 and 324 and two edges 326 and 328 also having a curvature between the two edges is used to couple to the first plate 300 to prevent the bone screws, not shown, from loosening out of the bone.
  • One surface of the place includes a series of indentations 330 to accommodate the bone screws head.
  • the second plate 320 has two coupling points 332 that are operatively associated with the aforementioned strapping means 314 and 316.
  • the anterior cervical plate is shown attached in a locked position. Cervical plate 30 is readily attached to the spine by use of conventional bone screws placed.
  • the second plate 320 is then placed over the cervical plate 300, the raised indentations of the plate allowing a flush attachment.
  • the attachment straps 314 is then permanently affixed to the second plate 320 followed by attachment straps 316. The attachment straps permanently affixing the two plates in a juxtaposition.
  • FIG. 15 is still another embodiment of an anterior cervical plate employing a second plate for locking purposes.
  • Cervical plate 350 is defined as a first rectangular shaped rigid plate having a first raised end 352 and a second raised end 354 and two raised side edges 356 and 358 with a curvature formed between the two edges causing the plate 352 to have a slight curve in it for the cervical curve.
  • the plate utilizes a plurality of openings such as the slots 360 for use in attaching the plate 350 to the cervical by use of conventional bone screws.
  • This embodiment employs a plurality of threaded bosses 362 permanently attached to the inner surface of the plate for second plate attachment purposes.
  • a second rectangular shaped rigid plate 370 defined by two ends 372 and 374 and two edges 376 and 378 also having a curvature between the two edges is used to couple to the first plate 350 to prevent the bone screws, not shown, from loosening out of the bone.
  • the ends and edges fitting within the first plate 350 assimilating a single piece anterior plate.
  • One surface of the second place includes a series of indentations 384 to accommodate the bone screws head used in attaching the first plate to the bone.
  • the second plate 370 having a plurality of holes 380 to accommodate the bosses 362 wherein attachment nuts 382 permanently fasten the two plates in position.
  • a post screw 390 for attachment to the pedicle bone is shown.
  • a first end 392 includes a relatively coarse self-tapping thread over a major portion of its length.
  • a second end 394 forming an enlarged shoulder 396 for bracket support or placement of spacing washers 398.
  • the second end utilizes a rectilinear protruding shaft 400 extending obliquely from the shoulder 396 having a threaded section 404 for use in conjunction with an attachment nut. Installation can be performed by use of the centrally disposed slot 402 or a hex shaped shaft or shoulder.
  • variable angled and adjustable cross-link sagittal traverse support member 410 having a finely threaded aperture 414 for insertion of rotatable disk 412 having engagement threads 416.
  • the disk allowing the surgeon to rotate the disk as well as provide a means for vertical adjustment in a manner similarly to the spacing washers.
  • FIGS. 18 provides a perspective view of an oversized caudal facing hook 430 having a hook shaped base 432 with a fork opening 440 formed integral with a saddle shaped upper portion 434.
  • the saddle shape portion illustrates the enlarged protruding member necessary in instances of large bone attachment or the need of greater strength.
  • the embodiment utilizes a form of four member protrusion with the U-shaped side surfaces thereby providing the additional support.
  • the saddle allows for attachment directly onto an alignment support rod wherein the metal nut 446 includes internal threads engageable directly with the threaded hook body 436.
  • the nut 446 forcing the support plate 444 tightly against the alignment rod 442, the use of a beveled support plate is shown 444 which is preformed to accommodate the curvature of the rod thereby allowing an increase in the surface area of contact.

Abstract

A surgical implant system for the stabilization of a human spine by fixation of the vertebra utilizing a stabilization cross-link spinal implant system. The system utilizes self-tapping screws having bifurcated protruding members to support an alignment rod, the protruding members available for placement of a fixed or variable traverse cross-link member that couples to the protruding members by use of threaded nuts corresponding to the threaded portion of the outer surface of the protruding members. The externally threaded coupling method can also be use for pedicle, caudal, cranial, thoracic and the like hooks. Also shown is a two plate system for anterior cervical spine fixation.

Description

This application is a Continuation of Application Ser. No. 08/241,356,filed 05/11/94 now abandoned which is a division of Application Ser. No. 07/928,263, filed 8/11/92 now U.S. Pat. No. 5,397,363.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to spinal implants and, in particular, to a spinal implant having a novel top-loading bolt attachment for support and alignment rods with cross links and ancillary components for stabilization of the vertebrae as well as a two plate system for cervical spine fixation.
2. Background of the Invention
Surgical implants are well known in the art for treatment of curvatures of the spine including anterior, trauma, deformity, and/or degenerative spinal conditions. The purpose of the implant is to reinforce the spine by use of strategically placed attachment screws capable of supporting alignment support rods placed bilateral along the vertebrae as well as cross-link members that bridge the sagittal of the spine.
The problem which this invention addresses is the method of fastening the spinal implants during surgery. Conventionally, the placement of an attachment screw provides the functional base for the support rod, cross-link, caudal facing hooks, cranial facing hook and the like components that form a spinal implant system. The conventional method of fastening utilizing a goal post mounting screw from which a bolt and nut is coupled perpendicular thereto for mounting to the component. This side attachment frequently requires the movement of muscle and other tissue during operation which increases the difficulty of the operation, is a time consuming effort, and can be a major trauma to a person.
In addition, the use of the prior art devices required pre-thought to where the cross-links are to be placed. Once the base screws are installed, they cannot be moved and if the screws are placed incorrectly, the cross-link will not fit.
U.S. Pat. No. 5,084,048, issued to Jacob et al., entitled "Implant for Vertebrae With Spinal Stabilizer" discloses a vertebrae implant having a stabilizing element which is articulated to accommodate a pair of bone screws wherein each bone screw includes a clamp disposed between a shoulder in a spherical surface which is all coupled together by the use of a clamping nut directly on the end of the bone screw. The device allows for support of an alignment rod along the side of the bone screw, but fails to provide any type of cross link or ancillary component attachment devices.
U.S. Pat. No. 4,041,939, issued to Hall, entitled "Surgical Implant Spinal Screw" discloses a spinal implant utilizing a screw having a centrally disposed aperture for placement of a metal cable therethrough with a nylon insert that will permanently secure the cable in a fixed position once attached. The device is best used in an operation for the correction of scoliosis.
Another problem with prior art is the use of anterior cervical plates. The prior art employs a single plate that is attached by the use of small bone attachment screws. After installation, the screws have a tendency of working their way out of the bone resulting in the loosening of the cervical plate causing the patient pain and typically resulting in further surgery to correct the problem.
Therefore there exists a need to correct the aforementioned problems by use of a top loading spinal implant system and associated cervical plate attachment cover.
SUMMARY OF THE INVENTION
The instant invention is a surgical implant system for the stabilization of the human spine by fixation of the vertebra. The system is based upon screws, nuts, rods, hooks, cross-members and variations thereof. The preferred embodiment employs a metal screw for placement in the sacrum or pedicle defined by a coarse self-tapping thread and a U-shaped saddle for placement of conventional alignment rods. Unique to this invention is that the screw is threaded on the outer surface of the saddle allowing the alignment rod to be securely fastened into the saddle by placement of the rod therein and the fastening of a nut to the top of saddle. Further unique to this invention is the use of an elongated sagittal traverse support member that can accommodate the saddle protrusion either in a fixed position or by use of a rotatable insert that allows the cross member to be tightly fastened to the saddle in a variable alignment. The top-loading attachment is further applicable to caudal, cranial, and the like hook components.
An anterior cervical plate is set forth using a second plate to permanently lock the cervical plate in position. The second plate does not rely upon the bone to support the plate thus providing a means to prevent any bone attachment screws from loosening or otherwise backing out of the bone.
Accordingly, an objective of the instant invention is to provide thoracic lumbar stabilization by use of linking conventional support alignment rods placed bilaterally along the vertebrae with the top-loading sacral and pedicle screws of the instant invention.
Still another objective is to lessen the need for ancillary tissue movement during surgery by use of a top mounted attachment means for ancillary components and provide a variable attachment system to provide the surgeon with fixation components that will accommodate a variety of circumstances.
Yet another objective of the instant invention is to provide a cross-link member that is operatively associated with the attachment screws by means of a top mounted link that is receptive to the protruding members of the screws or separate cross link attachments.
Yet still another objective of the instant invention is to provide a variable attachment means for two member and four member attachment screws by the use of rotatable attachment slots within the cross-link members.
Still another objective of the instant invention is to simplify the means for attaching caudal, thoracic, cranial and the like hooks by use of a top loading fastening nut that is threaded directly onto the hook body.
Still another objective of the instant invention is to provide an improved sacral and pedicle pinion post screw that allows angular bridging by use of an indexing right angled base having the means for coupling to another right angled base.
Yet still another objective is to disclose an improved anterior cervical plate having a second plate that couples to the cervical mounted plate effectively locking the cervical mounted plate in position by preventing the retraction of the mounting screws, while allowing the mounting screws to be put in at various angles and positions.
Other objects and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying drawings wherein set forth, by way of illustration and example, certain embodiments of this invention. The drawings constitute a part of this specification and include exemplary embodiments of the instant invention and illustrate various objects and features thereof.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an exploded perspective view of the preferred embodiment of the instant invention;
FIG. 2 is perspective view of a variation to the cross-link member support;
FIG. 3 is perspective view of another variation to the cross-link member support by use of an elongated slot;
FIG. 4 is a perspective view of the spinal implant using employing the variable cross-link support member;
FIG. 5 is a perspective view of the bifurcated externally threaded hook attachment;
FIG. 6 is a perspective view of the attachment nut for use with the spinal screw of FIG. 5;
FIG. 7 is an exploded perspective view of a four protruding member spinal screw embodiment;
FIG. 8 is an exploded view of a pinion spinal screw with a first rotatable directional shaft;
FIG. 9 is an exploded view of a pinion spinal screw with a secondary rotatable direction shaft coupling to the first shaft of FIG. 8;
FIG. 10 is an exploded view of a bridge cross-link attachment member employing a C-shaped clamp with bolt and nut;
FIG. 11 is a top view of the anterior cervical plates;
FIG. 12 is a perspective view of the anterior cervical plates available for installation;
FIG. 13 is a top view of an anterior cervical plate using a strap embodiment;
FIG. 14 is a perspective view of the anterior cervical plates with the strap embodiment in an attached position;
FIG. 15 is a perspective view of another two plate anterior cervical plate with the strap embodiment in an attached position;
FIG. 16 is an exploded view of a pinion spinal screw with an enlarged shoulder;
FIG. 17 is a perspective view of a variation to the cross-link member support employing a threaded rotatable member; and
FIG. 18 is a perspective view of an enlarged bifurcated externally threaded hook attachment with a preformed support member.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
As required, detailed embodiments of the present invention are disclosed herein, however, it is to be understood that the disclosed embodiments are merely exemplary of the invention which may be embodied in various forms. Therefore, specific functional and structural details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure.
Now referring to FIG. 1, the surgical implant system of the instant invention is generally shown as numerated 10 for use in the stabilization of a human spine by fixation of vertebra. The construction materials consist of stainless steel, titanium, or the like high quality material. The base of the system employs a spinal screw 12 shown diverging in the sacrum 14. The sacral screw 12 characterized by a first end 16 having a relatively coarse self-tapping thread 18 over a major portion of its length. A second end 20 having a first 22 and second 24 spaced apart protruding member extending obliquely from the screw defining an inner surface saddle 26 having an inner diameter corresponding to the outer diameter of a conventional support alignment rod 28. The screw can be made of various lengths and diameters, the size dependant upon the location for placement, the amount of support or reconstruction required, and the actual size of the individual's bone structure. The outer surface of the second end 20 of the screw 12 includes a plurality of grooves placed therein to form a partial thread 34. The threads 34 can be cast or placed on the surface by means of a conventional thread shaping die. The saddle 26 receptive to an alignment support rod 28 placed along the length of the vertebra 30 of the spine 32 to provide longitudinal support.
A rectangular shaped rigid plate 36 can then be used to connect two sagittal placed screws 12. The plate 36 is defined as an elongated sagittal traverse support member having first 38 and second end 40 and two edges and upper and lower reversible surface. At the first end 36 is placed an opening 42 operatively associated with the protruding members 22 and 24 of the screw 12. The first screw is rigidly connected to the second screw by placement of the plate 36 over the protruding members respectively. Openings 42 are provided to accommodate the protruding members 22, 24 by use of two slots disposed at the first end 38 for insertion of the protruding members of the first screw and two slots 44 disposed in the second end 40 for insertion of the protruding members of the sagittal placed second screw. The connecting member 36 is rigidly secured to the screws 12 by use of metal nuts 46 having an internal thread 48 engageable with the threaded surface 34 of each protruding member.
A means for spacing the traverse support member a predetermined distance from the saddle surface 26 is accomplished by use of a washer 50 having an elongated slot for disposition over the protruding members. The screw allowing for placement on a top surface of the alignment support rod 28 placed within the saddle 26. Rod support can also be accomplished by top loading, without a cross link, by use of the screw attachment 12 to the bone with a segmented slotted member 37 to fit directly over the protruding members of the screw. Securement is accomplished by the attachment nuts 46 to the screw 12 causing member 37 to fixate rod 28 in position. This embodiment is preferred for thoraco lumbar stabilization by use of linking the support alignment rods that are placed bilaterally. The use of additional screws, as shown, allow for support along the length of the vertebrae. The metal nuts 46 threaded directly to the top of the screws 12 eliminating the need for movement of muscle during surgery.
Referring in general to FIGS. 2 and 3, a variable angled cross-link sagittal traverse support member is shown having a first end 62 and a second end 64 and two edges 66 & 68 with an upper 70 and a lower 72 reversible surface. The first end 62 includes a centrally disposed opening 74 available for insertion of a cylindrical post commonly used with pedicle screws of the prior art and the variable offset screw of the instant invention described later in this embodiment. At the second end 64 is placed a means for rotating 76 the coupling slots in radial relation to the support member 60. The rotation allowing for the offset of a top loading screw by rotation member 76 permitting placement at variable directions for insertion of the protruding members through the slots 78. Alternatively, a rigid support member 80 can be defined by a first end 82 and a second end 84 with two surfaces therebetween as shown in FIG. 3 wherein an elongated centrally disposed opening or slot 86 extends from the first end to the second end allowing a universally acceptable attachment means for pinon shafts or in the saddle post attachment by use of an enlarged slot.
FIG. 4 illustrates the use of a variable cross-link support member 90 having a first end 92 and a second end 94 with a first rotatable disk 96 for rotating at least two slots 98 in radial relation to the support member 90. A second rotatable disk 100 for rotating at least two slots 102 in radial relation to the support member 90 is disposed at the second end. The disks 96 and 100 are permanently secured to the support member 90 allowing freedom of circular rotation only. The freedom of rotation allows for correction of angle when the screws do not line up directly across the spine. The variable angled support member 90 can be attached to the screw a first screw in the previously described manner by placement of the slots 98 over the protruding members 106 of the saddle end of the screw 104. A second screw 108 can be placed sagittal across the spine but now in a dissimilar plane allowing a surgeon to custom place the screw 108 in the strongest area of the bone eliminating the need to bridge a damaged or degenerative area. The slots 102 are placed over the protruding members 110 of the saddle end of the screw 108. The metal nuts 112 are used for engagement with the outer surfaces 116 and 118 of the corresponding protruding members. The support member 90 residing tightly against the alignment support rod 120 causing a frictional engagement with the inner surface of the saddle. The variable angled support member is made of a variety of lengths for spanning any length range. As shown a second support member 90 is shown is a directly traversing manner wherein the rotatable disks 96 and 100 are placed in a conventional format for placement over the screws 104 and 108. The benefit of the rotatable disk is especially noticeable where the disk may need only a minute movement to accommodate the situation whereas the prior are would require screw removal and replacement.
The system includes the flexibility to attach a cross-link without screw support yet employ the top loading benefit. In this embodiment a U-shaped saddle 91 can be placed about the support rod 120 with a second sagittal placed saddle support 95 shown here in a four protruding member design. Variable cross-link support member 90 with a first rotatable disk 97 for rotating at the four slots in radial relation to the support member 90. A second rotatable disk 100 is placed at the opposite end for rotating at the two slots in radial relation to the support member 90. The freedom of rotation allows for correction of angle when the attachment devices 91 and 95 do not line up directly across the spine. The metal nuts 112 engage the outer surfaces of the corresponding protruding members. The support member 90 residing tightly against the alignment support rod 120 causing a frictional engagement with the inner surface of the saddle.
FIGS. 5 and 6 illustrate a perspective view of a caudal facing hook 130 having a hook shaped base 132 formed integral with a saddle shaped upper portion 134. The saddle shape portion illustrates the protruding member 136 and 138 common to the invention with the threads 140 cast into the outer surface of the members. The saddle in this type of hook allows for attachment directly onto an alignment support rod wherein the metal nut 142 includes internal threads 144 engageable directly with the hook body 130 threads 140 securely fastening the hook in position. Although not shown, but deemed a part of this invention, is the use of various hook embodiments such as claw and fork hook which employ the top-loading threaded attachment of the instant invention. Unique to this invention is the ability to top-load the screw, attachment device, or hook member allowing the surgeon to perform all couplings from directly above the spine, as compared to the prior art requiring the attachment from the side. The importance of this factor cannot be emphasized enough, or illustrated by drawings, as the amount of muscle that encompasses the spinal area must be moved to accommodate the prior art attachment methods.
Now referring to FIG. 7, shown is an alternative embodiment of the screw attachment 150 having four spaced apart protruding members 152. Each protruding member having a first side 154 surface and a second side 156 surface forming an arcuate shaped saddle 158. The third side surface 160 and fourth side surface 162 are threaded for engagement with the inner threaded surface 164 of attachment nut 166. The saddle surface adapted for support of an alignment support rod in a longitudinal or perpendicular mode, the increased saddle surface area providing additional stability for use as a hook or the like attachment. Coupling an alignment support rod to the screw 150 requires the use of a rectangular rigid plate 170 defined by four edges rounded at the corners with two side surfaces with four openings 172 placed therethrough at each end operatively associated with the four spaced apart protruding members of the attachment screw 150. The support member allows for interconnecting to a second sagittal disposed and/or a bilaterally placed screw 174. The support member 170 for the four protruding members may also include a means for rotating the four openings 172 in radial relation to the support member 170 by use of a rotatable disk similar to that shown in FIG. 4 which is permanently secured to the support member 170 allowing freedom of circular rotation. The freedom of rotation allowing for correction of angle when the screws do not line up directly across the spine. Singular attachment plates may also be employed when cross-linking is not desired.
Referring now to FIGS. 8 and 9, a variable directional attachment screw 180 is shown defined by a first end 182 and a second end 184. The first end 182 having a relatively coarse self-tapping thread 186 over a major portion of its length and a shoulder 188 having a plurality of ridges placed about the circumference. The second end 184 utilizes a rectilinear protruding shaft 190 extending obliquely from the shoulder 188 having a threaded section 192 for use in conjunction with an attachment nut 194. The variable directional screw 182 allows engagement of attachment member 196 having a first directional shaft 198 and base end 200 forming a shoulder. The base end 200 includes a side surface 202 engageable with the shoulder ridges 188 of the screw allowing the base to index about the circumference of the shaft 190 for direction application of the shaft 198. Once a directional locale is depicted, the metal nut 194 is used to engage the threads 192 of the protruding shaft fixing the directional shaft in a stationary position.
As shown in FIG. 9, an alternative base end 210 is shown including a side surface 212 engageable with the shoulder ridges 188 of the screw 182 allowing the base to index about the circumference of the shaft 190 for direction application of a shaft 214. Once a directional locale is depicted, the metal nut 194 is used to engage the threads 192 of the protruding shaft fixing the directional shaft in a stationary position. A second base member 216 can then be added having a side surface 218 engageable with the shoulder ridges 220 located about shaft 214 allowing the second base 216 to index about the circumference of the shaft 214 for direction application of a shaft 222. Once a directional locale is depicted, the metal nut 224 is used to engage the threads of the shaft 214 fixing the directional shaft in a stationary position. A third nut is made available to tightened to devices such as the plates disclosed in FIGS. 2 and 3 for pinion type shaft attachment.
FIG. 10 illustrates an alternative cross link based upon a C-shaped bracket 230 having two holes 232 and 234 with a peg 236 and nut 238 for locking the bracket 230 in position about a conventional alignment support rod 240. The cross-link 242 can be placed through the pinion type peg 236 by use of attachment holes 244 for stabilizing along the bilateral support rod 240. The cross-link 242 provides stability for a mid-thoracic and is less bulky that the aforementioned cross-links. Further shown is use of an improved alignment rod 240 having a plurality of spaced apart raised ridges 241 to assist in maintaining attachment-brackets in a predetermined position.
FIG. 11 is a anterior cervical plate employing a second plate for locking purposes. Cervical plate 250 is defined as a first rectangular shaped rigid plate having a first end 252 and a second end 254 and two side edges 256 and 258 with a curvature formed between the two edges causing the plate 252 to have a slight curve in it for the cervical curve. The plate utilizes a plurality of openings such as the slots 260 and holes 262 for use in attaching the plate 250 to the cervical by use of conventional bone screws. A second rectangular shaped rigid plate 270 defined by two ends 272 and 274 and two edges 276 and 278 also having a curvature between the two edges is used to couple to the first plate 250 to prevent the bone screws, not shown, from loosening out of the bone. One surface 280 of the place includes a series of indentations 282 and 284 to accommodate the bone screws head. The second plate 270 has a plurality of attachment holes 286 placed about the outer edge of the plate 250 for insertion of threaded screws that which in turn can be threaded in coupling holes 288 placed about the circumference of the first plate 250.
As shown in FIG. 12 is a anterior cervical plate employing a second plate for locking purposes. Cervical plate 250 is readily attached to the spine 290 by use of screws 292 placed into the slots 260. The second plate 270 is then placed over the cervical plate 250, the raised indentations 282 and 284 of the plate allowing a flush attachment. Attachment screws 294 are placed through the openings 286 of the second plate and are threaded into threaded openings 288 of the first plate 250. The second plate essentially locking the first plate in position by preventing bone screws 292 from working their way out of the bone.
FIG. 13 is another embodiment of an anterior cervical plate employing a second plate for locking purposes. Cervical plate 300 is defined as a first rectangular shaped rigid plate having a first end 302 and a second end 304 and two side edges 306 and 308 with a curvature formed between the two edges causing the plate 302 to have a slight curve in it for the cervical curve. The plate utilizes a plurality of openings such as the slots 310 and holes 312 for use in attaching the plate 300 to the cervical by use of conventional bone screws. Permanently attached to each side of the plate is attachment strap 314 which includes a means for permanently attaching to strap 316.
A second rectangular shaped rigid plate 320 defined by two ends 322 and 324 and two edges 326 and 328 also having a curvature between the two edges is used to couple to the first plate 300 to prevent the bone screws, not shown, from loosening out of the bone. One surface of the place includes a series of indentations 330 to accommodate the bone screws head. The second plate 320 has two coupling points 332 that are operatively associated with the aforementioned strapping means 314 and 316.
As shown in FIG. 14 the anterior cervical plate is shown attached in a locked position. Cervical plate 30 is readily attached to the spine by use of conventional bone screws placed. The second plate 320 is then placed over the cervical plate 300, the raised indentations of the plate allowing a flush attachment. The attachment straps 314 is then permanently affixed to the second plate 320 followed by attachment straps 316. The attachment straps permanently affixing the two plates in a juxtaposition.
FIG. 15 is still another embodiment of an anterior cervical plate employing a second plate for locking purposes. Cervical plate 350 is defined as a first rectangular shaped rigid plate having a first raised end 352 and a second raised end 354 and two raised side edges 356 and 358 with a curvature formed between the two edges causing the plate 352 to have a slight curve in it for the cervical curve. The plate utilizes a plurality of openings such as the slots 360 for use in attaching the plate 350 to the cervical by use of conventional bone screws. This embodiment employs a plurality of threaded bosses 362 permanently attached to the inner surface of the plate for second plate attachment purposes.
A second rectangular shaped rigid plate 370 defined by two ends 372 and 374 and two edges 376 and 378 also having a curvature between the two edges is used to couple to the first plate 350 to prevent the bone screws, not shown, from loosening out of the bone. The ends and edges fitting within the first plate 350 assimilating a single piece anterior plate. One surface of the second place includes a series of indentations 384 to accommodate the bone screws head used in attaching the first plate to the bone. The second plate 370 having a plurality of holes 380 to accommodate the bosses 362 wherein attachment nuts 382 permanently fasten the two plates in position.
Referring now to FIG. 16, a post screw 390 for attachment to the pedicle bone is shown. A first end 392 includes a relatively coarse self-tapping thread over a major portion of its length. A second end 394 forming an enlarged shoulder 396 for bracket support or placement of spacing washers 398. The second end utilizes a rectilinear protruding shaft 400 extending obliquely from the shoulder 396 having a threaded section 404 for use in conjunction with an attachment nut. Installation can be performed by use of the centrally disposed slot 402 or a hex shaped shaft or shoulder.
Referring to FIG. 17, a variable angled and adjustable cross-link sagittal traverse support member 410 is shown having a finely threaded aperture 414 for insertion of rotatable disk 412 having engagement threads 416. The disk allowing the surgeon to rotate the disk as well as provide a means for vertical adjustment in a manner similarly to the spacing washers.
FIGS. 18 provides a perspective view of an oversized caudal facing hook 430 having a hook shaped base 432 with a fork opening 440 formed integral with a saddle shaped upper portion 434. The saddle shape portion illustrates the enlarged protruding member necessary in instances of large bone attachment or the need of greater strength. The embodiment utilizes a form of four member protrusion with the U-shaped side surfaces thereby providing the additional support. The saddle allows for attachment directly onto an alignment support rod wherein the metal nut 446 includes internal threads engageable directly with the threaded hook body 436. The nut 446 forcing the support plate 444 tightly against the alignment rod 442, the use of a beveled support plate is shown 444 which is preformed to accommodate the curvature of the rod thereby allowing an increase in the surface area of contact.
It is to be understood that while we have illustrated and described certain forms of our invention, it is not to be limited to the specific forms or arrangement of components herein described and shown. It will be apparent to those skilled in the art that various changes may be made without departing from the scope of the invention and the invention is not to be considered limited to what is shown in the drawings and described in the specification.

Claims (3)

What is claimed is:
1. A surgical implant system for the anterior cervical comprising:
a support base formed by a first rectangular plate of nominal thickness defined by an upper surface and a lower surface having a length formed by a first and second end and a width, said width formed by a first side edge and a second side edge spanning the width of a human spinal column of a human, said plate curved between said first side edge and said second side edge by raising said first and second end of said plate a predetermined distance about each said side edge, said first plate having a plurality of slots formed therethrough each adapted to accommodate a screw shank of a bone screw for securing said first plate directly to a portion of a human's anterior cervical;
a lock cover formed by a second curved rectangular plate of nominal thickness having a top surface and a bottom surface with a width and length equal to said first plate, said second plate having indentations positioned over each slot of said first plate adapted to accommodate an upper portion of said bone screw; and
at least one attachment strap means permanently secured to said second surface of said first plate, said strap adapted for placement over said top surface of said second plate, said strap including a means for securing said second plate to said first plate;
whereby said support base is adapted to be secured to the anterior cervical of a human by use of bone screws, each bone screw having a shank placed through one of said first plate slots, said second plate being coupled to said first plate whereby said indentations in said second plate frictionally secure the screw heads between said upper surface of said support base and said bottom surface of said second plate to prevent said bone screws from rotation and thus loosening from the cervical.
2. The surgical implant system of claim 1, wherein said attachment strap means is further defined as a first attachment strap permanently secured to a side edge of said first plate and a second attachment strap permanently secured to an opposite side edge of said first plate, said first attachment strap having a means for coupling to said second attachment strap, whereby the bottom surface of said second plate is placed over the upper surface of said first place with said attachment straps wrapped around said second plate for securing to said first plate.
3. The surgical implant apparatus for stabilizing a portion of a human spine, said apparatus comprising:
a curved support plate of nominal thickness defined by an upper surface and a lower surface having a length and a width, said width bordered by a first side edge and a second side edge dimensioned and sized to span a spinal column of a human, said support plate having a plurality of spaced apart longitudinal attachment slots formed therethrough, said support plate having at least one attachment strap coupled to a first side edge of said support plate and at least one attachment strap coupled to an opposite side edge of said support plate, said first attachment strap having a means for coupling to said second attachment strap;
a lock plate of nominal thickness having a top surface and a bottom surface with a width and length and curvature equal to said support plate, said lock plate having raised indentations positioned over each slot of said support plate adapted to accommodate the head of a bone screw; and
whereby said support plate is aligned over a spinal column having properly positioned spinal elements and anchored thereto by use of bone screws inserted through said attachment slots, said lock plate being coupled to said support plate by wrapping said first and second attachment strap around said lock plate and coupling said straps together whereby said indentations in said lock plate frictionally secure the screw heads of bone screws between said upper surface of said support plate and said bottom surface of said lock plate to prevent the bone screws from rotating and loosening from the anchored position.
US08/692,849 1992-08-11 1996-07-24 Spinal stabilization implant system Expired - Lifetime US5766254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/692,849 US5766254A (en) 1992-08-11 1996-07-24 Spinal stabilization implant system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US07/928,263 US5397363A (en) 1992-08-11 1992-08-11 Spinal stabilization implant system
US24135694A 1994-05-11 1994-05-11
PCT/US1995/003331 WO1996028106A1 (en) 1992-08-11 1995-03-13 Spinal stabilization implant system
US08/692,849 US5766254A (en) 1992-08-11 1996-07-24 Spinal stabilization implant system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US24135694A Continuation 1992-08-11 1994-05-11

Publications (1)

Publication Number Publication Date
US5766254A true US5766254A (en) 1998-06-16

Family

ID=26789555

Family Applications (2)

Application Number Title Priority Date Filing Date
US07/928,263 Expired - Lifetime US5397363A (en) 1992-08-11 1992-08-11 Spinal stabilization implant system
US08/692,849 Expired - Lifetime US5766254A (en) 1992-08-11 1996-07-24 Spinal stabilization implant system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US07/928,263 Expired - Lifetime US5397363A (en) 1992-08-11 1992-08-11 Spinal stabilization implant system

Country Status (2)

Country Link
US (2) US5397363A (en)
WO (1) WO1996028106A1 (en)

Cited By (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000053077A2 (en) 1999-03-07 2000-09-14 Discure Ltd. Method and apparatus for computerized surgery
US6183478B1 (en) 1999-02-04 2001-02-06 Depuy Orthopaedics, Inc. Temporary fixation device
WO2001017465A1 (en) * 1999-09-03 2001-03-15 Cook Daniel J Temporary spine fixation device and method
US6224602B1 (en) 1999-10-11 2001-05-01 Interpore Cross International Bone stabilization plate with a secured-locking mechanism for cervical fixation
US6309391B1 (en) 2000-03-15 2001-10-30 Sdgi Holding, Inc. Multidirectional pivoting bone screw and fixation system
US6312431B1 (en) 2000-04-24 2001-11-06 Wilson T. Asfora Vertebrae linking system
US20010038620A1 (en) * 1999-05-21 2001-11-08 Ensemble Communication Inc. Method and apparatus for allocating bandwidth in a wireless communication system
US20020120273A1 (en) * 1999-10-13 2002-08-29 Needham Dusty Anna Anterior cervical plating system and method
US20020128655A1 (en) * 1997-02-11 2002-09-12 Michelson Gary K. Segmentable skeletal plating system
WO2002080789A1 (en) * 2001-04-05 2002-10-17 Osteotech, Inc. Bone fixation system and method
US20020183755A1 (en) * 2001-06-04 2002-12-05 Michelson Gary K. Dynamic anterior cervical plate system having moveable segments, instrumentation, and method for installation thereof
US20020183757A1 (en) * 2001-06-04 2002-12-05 Michelson Gary K. Dynamic single-lock anterior cervical plate system having non-detachably fastened and moveable segments, instrumentation, and method for installation thereof
US20020183754A1 (en) * 2001-06-04 2002-12-05 Michelson Gary K. Anterior cervical plate system having vertebral body engaging anchors, connecting plate, and method for installation thereof
US20020188296A1 (en) * 2001-06-06 2002-12-12 Michelson Gary K. Dynamic, modular, multilock anterior cervical plate system having detachably fastened assembleable and moveable segments, instrumentation, and method for installation thereof
US20030018335A1 (en) * 1997-02-11 2003-01-23 Michelson Gary K. Anterior cervical plate system
US20030060828A1 (en) * 2001-06-06 2003-03-27 Michelson Gary K. Dynamic multilock anterior cervical plate system having non-detachably fastened and moveable segments, instrumentation, and method for installation thereof
US20030105460A1 (en) * 2000-03-15 2003-06-05 Dennis Crandall Multidirectional pivoting bone screw and fixation system
US6626909B2 (en) * 2002-02-27 2003-09-30 Kingsley Richard Chin Apparatus and method for spine fixation
US6679883B2 (en) 2001-10-31 2004-01-20 Ortho Development Corporation Cervical plate for stabilizing the human spine
US6682532B2 (en) 2002-03-22 2004-01-27 Depuy Acromed, Inc. Coupling system and method for extending spinal instrumentation
US20040034353A1 (en) * 1994-03-28 2004-02-19 Michelson Gary Karlin Apparatus and method for anterior spinal stabilization
US20040034356A1 (en) * 2002-07-16 2004-02-19 Lehuec Jean-Charles Plating system for stabilizing a bony segment
US20040158246A1 (en) * 1998-04-30 2004-08-12 Sofamor S.N.C. Anterior implant for the spine
US6776781B1 (en) 2000-09-28 2004-08-17 Farihan Renno Spinal-column buttress plate assembly and method for attachment
US20040181226A1 (en) * 2001-06-04 2004-09-16 Michelson Gary K. Method for installing dynamic, modular, single-lock anterior cervical plate system having assembleable and moveable segments
US20040220571A1 (en) * 1998-04-30 2004-11-04 Richard Assaker Bone plate assembly
US20050277920A1 (en) * 2004-05-28 2005-12-15 Slivka Michael A Non-fusion spinal correction systems and methods
US20050283155A1 (en) * 2004-06-21 2005-12-22 Michael Jacene Instruments and methods for holding a bone plate
US20060036250A1 (en) * 2004-08-12 2006-02-16 Lange Eric C Antero-lateral plating systems for spinal stabilization
US20060149255A1 (en) * 2005-01-06 2006-07-06 Doubler Robert L Spinal implant kit
US20060155296A1 (en) * 2005-01-07 2006-07-13 Celonova Biosciences, Inc. Three-dimensional implantable bone support
US20060195089A1 (en) * 2005-02-03 2006-08-31 Lehuec Jean-Charles Spinal plating and intervertebral support systems and methods
US20060217714A1 (en) * 2005-03-24 2006-09-28 Depuy Spine, Inc. Low profile spinal tethering methods
US20060217721A1 (en) * 2005-03-11 2006-09-28 Suh Sean S Translational hinged door plate system
US20060241615A1 (en) * 2005-04-19 2006-10-26 Sdgi Holdings, Inc. Antero-lateral plating systems and methods for spinal stabilization
WO2006124273A2 (en) * 2005-05-12 2006-11-23 Stern Joseph D Revisable anterior cervical plating system
US20060265069A1 (en) * 2000-12-13 2006-11-23 Goble E M Multiple Facet Joint Replacement
US20060293670A1 (en) * 2005-06-03 2006-12-28 Smisson Hugh F Iii Surgical stabilization system
US20070173840A1 (en) * 2006-01-11 2007-07-26 Huebner Randall J Bone plate with cover
US20070233184A1 (en) * 2006-02-28 2007-10-04 Klein Tools, Inc. Medical instrument for grasping surgical implant rods
US20070270820A1 (en) * 2006-04-26 2007-11-22 Sdgi Holdings, Inc. Revision fixation plate and method of use
US7322984B2 (en) 2005-01-06 2008-01-29 Spinal, Llc Spinal plate with internal screw locks
US7344539B2 (en) 2001-03-30 2008-03-18 Depuy Acromed, Inc. Intervertebral connection system
US20080228226A1 (en) * 2007-03-12 2008-09-18 Arya Nick Shamie Cervical support system
US7468069B2 (en) 2004-02-10 2008-12-23 Atlas Spine, Inc. Static anterior cervical plate
US20090326590A1 (en) * 1999-10-13 2009-12-31 Warsaw Orthopedic, Inc. System and method for securing a plate to the spinal column
US7682392B2 (en) 2002-10-30 2010-03-23 Depuy Spine, Inc. Regenerative implants for stabilizing the spine and devices for attachment of said implants
US20100082067A1 (en) * 2008-09-29 2010-04-01 Kondrashov Dimitriy G System and method to stablize a spinal column including a spinolaminar locking plate
US7727266B2 (en) 2004-06-17 2010-06-01 Warsaw Orthopedic, Inc. Method and apparatus for retaining screws in a plate
US7736380B2 (en) 2004-12-21 2010-06-15 Rhausler, Inc. Cervical plate system
US7740649B2 (en) 2004-02-26 2010-06-22 Pioneer Surgical Technology, Inc. Bone plate system and methods
US7766947B2 (en) 2001-10-31 2010-08-03 Ortho Development Corporation Cervical plate for stabilizing the human spine
US7766940B2 (en) 2004-12-30 2010-08-03 Depuy Spine, Inc. Posterior stabilization system
US7799054B2 (en) 2004-12-30 2010-09-21 Depuy Spine, Inc. Facet joint replacement
US7942900B2 (en) 2007-06-05 2011-05-17 Spartek Medical, Inc. Shaped horizontal rod for dynamic stabilization and motion preservation spinal implantation system and method
US7963978B2 (en) 2007-06-05 2011-06-21 Spartek Medical, Inc. Method for implanting a deflection rod system and customizing the deflection rod system for a particular patient need for dynamic stabilization and motion preservation spinal implantation system
US7985244B2 (en) 2004-09-30 2011-07-26 Depuy Spine, Inc. Posterior dynamic stabilizer devices
US20110190776A1 (en) * 2009-12-18 2011-08-04 Palmaz Scientific, Inc. Interosteal and intramedullary implants and method of implanting same
US7993372B2 (en) 2007-06-05 2011-08-09 Spartek Medical, Inc. Dynamic stabilization and motion preservation spinal implantation system with a shielded deflection rod system and method
US8007518B2 (en) 2008-02-26 2011-08-30 Spartek Medical, Inc. Load-sharing component having a deflectable post and method for dynamic stabilization of the spine
US8012181B2 (en) 2008-02-26 2011-09-06 Spartek Medical, Inc. Modular in-line deflection rod and bone anchor system and method for dynamic stabilization of the spine
US8016861B2 (en) 2008-02-26 2011-09-13 Spartek Medical, Inc. Versatile polyaxial connector assembly and method for dynamic stabilization of the spine
US8021396B2 (en) 2007-06-05 2011-09-20 Spartek Medical, Inc. Configurable dynamic spinal rod and method for dynamic stabilization of the spine
US8043337B2 (en) 2006-06-14 2011-10-25 Spartek Medical, Inc. Implant system and method to treat degenerative disorders of the spine
US8048115B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Surgical tool and method for implantation of a dynamic bone anchor
US8057515B2 (en) 2008-02-26 2011-11-15 Spartek Medical, Inc. Load-sharing anchor having a deflectable post and centering spring and method for dynamic stabilization of the spine
US8070749B2 (en) 2005-05-12 2011-12-06 Stern Joseph D Revisable anterior cervical plating system
US8083772B2 (en) 2007-06-05 2011-12-27 Spartek Medical, Inc. Dynamic spinal rod assembly and method for dynamic stabilization of the spine
US8083775B2 (en) 2008-02-26 2011-12-27 Spartek Medical, Inc. Load-sharing bone anchor having a natural center of rotation and method for dynamic stabilization of the spine
US8092501B2 (en) 2007-06-05 2012-01-10 Spartek Medical, Inc. Dynamic spinal rod and method for dynamic stabilization of the spine
US8092496B2 (en) 2004-09-30 2012-01-10 Depuy Spine, Inc. Methods and devices for posterior stabilization
US8097024B2 (en) 2008-02-26 2012-01-17 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and method for stabilization of the spine
US8114134B2 (en) 2007-06-05 2012-02-14 Spartek Medical, Inc. Spinal prosthesis having a three bar linkage for motion preservation and dynamic stabilization of the spine
US8172885B2 (en) 2003-02-05 2012-05-08 Pioneer Surgical Technology, Inc. Bone plate system
US8211155B2 (en) 2008-02-26 2012-07-03 Spartek Medical, Inc. Load-sharing bone anchor having a durable compliant member and method for dynamic stabilization of the spine
US8257397B2 (en) 2009-12-02 2012-09-04 Spartek Medical, Inc. Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US8267979B2 (en) 2008-02-26 2012-09-18 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and axial spring and method for dynamic stabilization of the spine
US8333792B2 (en) 2008-02-26 2012-12-18 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and method for dynamic stabilization of the spine
US8337536B2 (en) 2008-02-26 2012-12-25 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post with a compliant ring and method for stabilization of the spine
US8361126B2 (en) 2007-07-03 2013-01-29 Pioneer Surgical Technology, Inc. Bone plate system
US8430916B1 (en) 2012-02-07 2013-04-30 Spartek Medical, Inc. Spinal rod connectors, methods of use, and spinal prosthesis incorporating spinal rod connectors
US8518085B2 (en) 2010-06-10 2013-08-27 Spartek Medical, Inc. Adaptive spinal rod and methods for stabilization of the spine
US8562656B2 (en) 2010-10-15 2013-10-22 Warsaw Orrthopedic, Inc. Retaining mechanism
US8623019B2 (en) 2007-07-03 2014-01-07 Pioneer Surgical Technology, Inc. Bone plate system
US8668725B2 (en) 2007-07-13 2014-03-11 Southern Spine, Llc Bone screw
US8900277B2 (en) 2004-02-26 2014-12-02 Pioneer Surgical Technology, Inc. Bone plate system
US8992579B1 (en) 2011-03-08 2015-03-31 Nuvasive, Inc. Lateral fixation constructs and related methods
US9011540B1 (en) * 2005-03-24 2015-04-21 Igip, Llc Overlay or implant and method for improving stability of the implant
US9028549B1 (en) * 2008-03-27 2015-05-12 Spinelogik, Inc. Intervertebral fusion device and method of use
US9060815B1 (en) 2012-03-08 2015-06-23 Nuvasive, Inc. Systems and methods for performing spine surgery
US9095444B2 (en) 2009-07-24 2015-08-04 Warsaw Orthopedic, Inc. Implant with an interference fit fastener
US9271743B2 (en) 2012-08-09 2016-03-01 Wilson Theophilo Asfora System for joint fusion
US9427324B1 (en) 2010-02-22 2016-08-30 Spinelogik, Inc. Intervertebral fusion device and method of use
US9468479B2 (en) 2013-09-06 2016-10-18 Cardinal Health 247, Inc. Bone plate
US9517089B1 (en) 2013-10-08 2016-12-13 Nuvasive, Inc. Bone anchor with offset rod connector
US9526533B1 (en) * 2014-09-12 2016-12-27 Roberto J. Aranibar Spinal repair implants and related methods
USD779065S1 (en) 2014-10-08 2017-02-14 Nuvasive, Inc. Anterior cervical bone plate
CN107411854A (en) * 2017-07-12 2017-12-01 中南大学湘雅医院 A kind of practical artificial neural plate device
CN109567918A (en) * 2018-11-27 2019-04-05 中南大学湘雅医院 Medical titanium alloy cone-plate positioning system
US11877779B2 (en) 2020-03-26 2024-01-23 Xtant Medical Holdings, Inc. Bone plate system

Families Citing this family (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2718943B1 (en) * 1994-04-21 1996-06-21 Jbs Sa Reinforced bar with three branches for osteosynthesis of the spine.
US5716355A (en) * 1995-04-10 1998-02-10 Sofamor Danek Group, Inc. Transverse connection for spinal rods
FR2738144B1 (en) * 1995-09-04 1997-10-10 Cahlik Marc Andre VERSATILE INTERVERTEBRAL STABILIZATION DEVICE
FR2738143B1 (en) * 1995-09-04 1997-10-10 Cahlik Marc Andre INTERVERTEBRAL STABILIZATION SURGICAL IMPLANT
AU1352097A (en) * 1995-12-22 1997-07-17 Ohio Medical Instrument Company, Inc. Spinal fixation device with laterally attachable connectors
ZA983955B (en) * 1997-05-15 2001-08-13 Sdgi Holdings Inc Anterior cervical plating system.
US5980523A (en) * 1998-01-08 1999-11-09 Jackson; Roger Transverse connectors for spinal rods
DE19816782A1 (en) * 1998-04-16 1999-10-28 Ulrich Gmbh & Co Kg Implant for insertion between the vertebral body of the spine
WO1999060956A1 (en) 1998-05-27 1999-12-02 Nuvasive, Inc. Interlocking spinal inserts
WO1999060837A2 (en) * 1998-05-27 1999-12-02 Nuvasive, Inc. Bone blocks and methods for inserting
WO1999060957A1 (en) 1998-05-27 1999-12-02 Nuvasive, Inc. Methods and apparatus for separating and stabilizing adjacent vertebrae
US6283967B1 (en) * 1999-12-17 2001-09-04 Synthes (U.S.A.) Transconnector for coupling spinal rods
US6234705B1 (en) 1999-04-06 2001-05-22 Synthes (Usa) Transconnector for coupling spinal rods
US20020133155A1 (en) * 2000-02-25 2002-09-19 Ferree Bret A. Cross-coupled vertebral stabilizers incorporating spinal motion restriction
US6964667B2 (en) * 2000-06-23 2005-11-15 Sdgi Holdings, Inc. Formed in place fixation system with thermal acceleration
US6899713B2 (en) * 2000-06-23 2005-05-31 Vertelink Corporation Formable orthopedic fixation system
US6875212B2 (en) * 2000-06-23 2005-04-05 Vertelink Corporation Curable media for implantable medical device
US6749614B2 (en) * 2000-06-23 2004-06-15 Vertelink Corporation Formable orthopedic fixation system with cross linking
CA2414168C (en) * 2000-06-23 2010-02-09 University Of Southern California Percutaneous vertebral fusion system
US6852126B2 (en) 2000-07-17 2005-02-08 Nuvasive, Inc. Stackable interlocking intervertebral support system
US6740088B1 (en) * 2000-10-25 2004-05-25 Sdgi Holdings, Inc. Anterior lumbar plate and method
DE10101478C2 (en) * 2001-01-12 2003-03-27 Biedermann Motech Gmbh connecting element
GB2371344A (en) * 2001-01-23 2002-07-24 Frederick Arthur Summerlin Blind rivet
KR100397128B1 (en) * 2001-03-21 2003-09-17 정연문 Apparatus for fixation of cervical spine
FR2823096B1 (en) * 2001-04-06 2004-03-19 Materiel Orthopedique En Abreg PLATE FOR LTE AND LTE VERTEBRATE OSTEOSYNTHESIS DEVICE, OSTEOSYNTHESIS DEVICE INCLUDING SUCH A PLATE, AND INSTRUMENT FOR LAYING SUCH A PLATE
FR2829919B1 (en) * 2001-09-26 2003-12-19 Spine Next Sa VERTEBRAL FIXATION DEVICE
US6923814B1 (en) 2001-10-30 2005-08-02 Nuvasive, Inc. System and methods for cervical spinal fusion
US20060079892A1 (en) * 2001-10-31 2006-04-13 Suranjan Roychowdhury Adjustable tandem connectors for corrective devices for the spinal column and other bones and joints
US6932817B2 (en) * 2002-02-01 2005-08-23 Innovative Spinal Design Polyaxial modular skeletal hook
US7618423B1 (en) 2002-06-15 2009-11-17 Nuvasive, Inc. System and method for performing spinal fusion
US7776049B1 (en) 2002-10-02 2010-08-17 Nuvasive, Inc. Spinal implant inserter, implant, and method
US7918876B2 (en) 2003-03-24 2011-04-05 Theken Spine, Llc Spinal implant adjustment device
US7473267B2 (en) * 2003-04-25 2009-01-06 Warsaw Orthopedic, Inc. System and method for minimally invasive posterior fixation
US20050080414A1 (en) * 2003-10-14 2005-04-14 Keyer Thomas R. Spinal fixation hooks and method of spinal fixation
US11419642B2 (en) 2003-12-16 2022-08-23 Medos International Sarl Percutaneous access devices and bone anchor assemblies
US7179261B2 (en) 2003-12-16 2007-02-20 Depuy Spine, Inc. Percutaneous access devices and bone anchor assemblies
US7918891B1 (en) 2004-03-29 2011-04-05 Nuvasive Inc. Systems and methods for spinal fusion
US7645294B2 (en) * 2004-03-31 2010-01-12 Depuy Spine, Inc. Head-to-head connector spinal fixation system
US7717939B2 (en) 2004-03-31 2010-05-18 Depuy Spine, Inc. Rod attachment for head to head cross connector
US20050228380A1 (en) * 2004-04-09 2005-10-13 Depuy Spine Inc. Instruments and methods for minimally invasive spine surgery
US20060036324A1 (en) 2004-08-03 2006-02-16 Dan Sachs Adjustable spinal implant device and method
US8114158B2 (en) 2004-08-03 2012-02-14 Kspine, Inc. Facet device and method
US20060036259A1 (en) * 2004-08-03 2006-02-16 Carl Allen L Spine treatment devices and methods
WO2006017641A2 (en) * 2004-08-03 2006-02-16 Vertech Innovations, L.L.C. Spinous process reinforcement device and method
US7288095B2 (en) 2004-08-12 2007-10-30 Atlas Spine, Inc. Bone plate with screw lock
US7717938B2 (en) 2004-08-27 2010-05-18 Depuy Spine, Inc. Dual rod cross connectors and inserter tools
ATE524121T1 (en) 2004-11-24 2011-09-15 Abdou Samy DEVICES FOR PLACING AN ORTHOPEDIC INTERVERTEBRAL IMPLANT
EP1719468A1 (en) * 2004-12-17 2006-11-08 Zimmer GmbH Intervertebral stabilization system
US8496686B2 (en) * 2005-03-22 2013-07-30 Gmedelaware 2 Llc Minimally invasive spine restoration systems, devices, methods and kits
US7628800B2 (en) * 2005-06-03 2009-12-08 Warsaw Orthopedic, Inc. Formed in place corpectomy device
US8623088B1 (en) 2005-07-15 2014-01-07 Nuvasive, Inc. Spinal fusion implant and related methods
KR20080040684A (en) * 2005-07-18 2008-05-08 동명 전 Bi-polar bone screw assembly
WO2007016247A2 (en) 2005-07-28 2007-02-08 Nuvasive, Inc. Total disc replacement system and related methods
US7628799B2 (en) * 2005-08-23 2009-12-08 Aesculap Ag & Co. Kg Rod to rod connector
WO2007040553A1 (en) * 2005-09-26 2007-04-12 Dong Jeon Hybrid jointed bone screw system
US20070154514A1 (en) * 2005-12-30 2007-07-05 Demakas John J Therapeutic Structures
WO2007114834A1 (en) 2006-04-05 2007-10-11 Dong Myung Jeon Multi-axial, double locking bone screw assembly
USD741488S1 (en) 2006-07-17 2015-10-20 Nuvasive, Inc. Spinal fusion implant
US7918857B2 (en) 2006-09-26 2011-04-05 Depuy Spine, Inc. Minimally invasive bone anchor extensions
US8361117B2 (en) 2006-11-08 2013-01-29 Depuy Spine, Inc. Spinal cross connectors
US20080140124A1 (en) * 2006-12-07 2008-06-12 Dong Myung Jeon Spinal rod transverse connector system
US7744632B2 (en) * 2006-12-20 2010-06-29 Aesculap Implant Systems, Inc. Rod to rod connector
US8480718B2 (en) * 2006-12-21 2013-07-09 Warsaw Orthopedic, Inc. Curable orthopedic implant devices configured to be hardened after placement in vivo
US7771476B2 (en) 2006-12-21 2010-08-10 Warsaw Orthopedic Inc. Curable orthopedic implant devices configured to harden after placement in vivo by application of a cure-initiating energy before insertion
US8663328B2 (en) * 2006-12-21 2014-03-04 Warsaw Orthopedic, Inc. Methods for positioning a load-bearing component of an orthopedic implant device by inserting a malleable device that hardens in vivo
US8758407B2 (en) * 2006-12-21 2014-06-24 Warsaw Orthopedic, Inc. Methods for positioning a load-bearing orthopedic implant device in vivo
EP2117451A1 (en) * 2006-12-29 2009-11-18 Zimmer Spine Austin, Inc. Spinal stabilization systems and methods
US8636783B2 (en) * 2006-12-29 2014-01-28 Zimmer Spine, Inc. Spinal stabilization systems and methods
BRPI0806432A2 (en) * 2007-01-23 2011-09-13 Bio Smart Co Ltd spacer to be used in a surgical operation for spinal processes
WO2008094572A2 (en) * 2007-01-30 2008-08-07 Dong Myung Jeon Anterior cervical plating system
US8673005B1 (en) 2007-03-07 2014-03-18 Nuvasive, Inc. System and methods for spinal fusion
US10603077B2 (en) * 2007-04-12 2020-03-31 Globus Medical, Inc. Orthopedic fastener for stabilization and fixation
CA2689965A1 (en) 2007-06-06 2008-12-18 Kspine, Inc. Medical device and method to correct deformity
USD671645S1 (en) 2007-09-18 2012-11-27 Nuvasive, Inc. Intervertebral implant
US8414588B2 (en) * 2007-10-04 2013-04-09 Depuy Spine, Inc. Methods and devices for minimally invasive spinal connection element delivery
US20090171395A1 (en) * 2007-12-28 2009-07-02 Jeon Dong M Dynamic spinal rod system
US20090192548A1 (en) * 2008-01-25 2009-07-30 Jeon Dong M Pedicle-laminar dynamic spinal stabilization device
US20090194206A1 (en) * 2008-01-31 2009-08-06 Jeon Dong M Systems and methods for wrought nickel/titanium alloy flexible spinal rods
US9579126B2 (en) 2008-02-02 2017-02-28 Globus Medical, Inc. Spinal rod link reducer
US9345517B2 (en) 2008-02-02 2016-05-24 Globus Medical, Inc. Pedicle screw having a removable rod coupling
WO2009097623A2 (en) * 2008-02-02 2009-08-06 Texas Scottish Rite Hospital For Children Pedicle screw
WO2009097624A2 (en) * 2008-02-02 2009-08-06 Texas Scottish Rite Hospital For Children Spinal rod link reducer
US8083796B1 (en) 2008-02-29 2011-12-27 Nuvasive, Inc. Implants and methods for spinal fusion
US9060813B1 (en) 2008-02-29 2015-06-23 Nuvasive, Inc. Surgical fixation system and related methods
US8414584B2 (en) 2008-07-09 2013-04-09 Icon Orthopaedic Concepts, Llc Ankle arthrodesis nail and outrigger assembly
WO2010006195A1 (en) 2008-07-09 2010-01-14 Amei Technologies, Inc. Ankle arthrodesis nail and outrigger assembly
US20100049252A1 (en) * 2008-08-21 2010-02-25 Southern Spine, Llc Transverse Connector Device for Extending an Existing Spinal Fixation System
US20100087864A1 (en) * 2008-10-03 2010-04-08 Assaf Klein Fastener assembly that fastens to polyaxial pedicle screw
US8409208B2 (en) 2008-10-04 2013-04-02 M. Samy Abdou Device and method to access the anterior column of the spine
US8828058B2 (en) * 2008-11-11 2014-09-09 Kspine, Inc. Growth directed vertebral fixation system with distractible connector(s) and apical control
US20090143823A1 (en) * 2008-11-13 2009-06-04 Jeon Dong M Transverse connector system for spinal rods
US20100198271A1 (en) * 2009-02-02 2010-08-05 Vincent Leone Screw Sheath for Minimally Invasive Spinal Surgery and Method Relating Thereto
USD754346S1 (en) 2009-03-02 2016-04-19 Nuvasive, Inc. Spinal fusion implant
US9387090B2 (en) 2009-03-12 2016-07-12 Nuvasive, Inc. Vertebral body replacement
US9687357B2 (en) 2009-03-12 2017-06-27 Nuvasive, Inc. Vertebral body replacement
US8357182B2 (en) * 2009-03-26 2013-01-22 Kspine, Inc. Alignment system with longitudinal support features
US8287597B1 (en) 2009-04-16 2012-10-16 Nuvasive, Inc. Method and apparatus for performing spine surgery
US9351845B1 (en) 2009-04-16 2016-05-31 Nuvasive, Inc. Method and apparatus for performing spine surgery
US9161787B2 (en) * 2009-04-23 2015-10-20 The Johns Hopkins University Vertebral body reduction instrument and methods related thereto
US20100318129A1 (en) * 2009-06-16 2010-12-16 Kspine, Inc. Deformity alignment system with reactive force balancing
US8246657B1 (en) 2009-06-29 2012-08-21 Nuvasive, Inc. Spinal cross connector
US9168071B2 (en) 2009-09-15 2015-10-27 K2M, Inc. Growth modulation system
USD731063S1 (en) 2009-10-13 2015-06-02 Nuvasive, Inc. Spinal fusion implant
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US10219842B2 (en) * 2010-03-23 2019-03-05 Scapa Flow, Llc Cervical link system
US9198696B1 (en) 2010-05-27 2015-12-01 Nuvasive, Inc. Cross-connector and related methods
US9247964B1 (en) 2011-03-01 2016-02-02 Nuasive, Inc. Spinal Cross-connector
US9387013B1 (en) 2011-03-01 2016-07-12 Nuvasive, Inc. Posterior cervical fixation system
US8672978B2 (en) 2011-03-04 2014-03-18 Zimmer Spine, Inc. Transverse connector
CA2838047A1 (en) 2011-06-03 2012-12-06 Kspine, Inc. Spinal correction system actuators
US9247962B2 (en) 2011-08-15 2016-02-02 K2M, Inc. Laminar hook insertion device
US9060818B2 (en) 2011-09-01 2015-06-23 DePuy Synthes Products, Inc. Bone implants
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
EP2572662A1 (en) * 2011-09-23 2013-03-27 Zimmer Spine Stabilization device for vertebrae
US9198765B1 (en) 2011-10-31 2015-12-01 Nuvasive, Inc. Expandable spinal fusion implants and related methods
USD721808S1 (en) 2011-11-03 2015-01-27 Nuvasive, Inc. Intervertebral implant
WO2014172632A2 (en) 2011-11-16 2014-10-23 Kspine, Inc. Spinal correction and secondary stabilization
US9468469B2 (en) 2011-11-16 2016-10-18 K2M, Inc. Transverse coupler adjuster spinal correction systems and methods
US8920472B2 (en) 2011-11-16 2014-12-30 Kspine, Inc. Spinal correction and secondary stabilization
US9468468B2 (en) 2011-11-16 2016-10-18 K2M, Inc. Transverse connector for spinal stabilization system
US9451987B2 (en) 2011-11-16 2016-09-27 K2M, Inc. System and method for spinal correction
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
FR2989264B1 (en) * 2012-04-11 2014-05-09 Medicrea International MATERIAL OF VERTEBRAL OSTEOSYNTHESIS
US8771319B2 (en) 2012-04-16 2014-07-08 Aesculap Implant Systems, Llc Rod to rod cross connector
US8828056B2 (en) 2012-04-16 2014-09-09 Aesculap Implant Systems, Llc Rod to rod cross connector
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
WO2014125005A1 (en) * 2013-02-14 2014-08-21 Dietmar Wolter Bone plate system
US20140277155A1 (en) 2013-03-14 2014-09-18 K2M, Inc. Taper lock hook
US9468471B2 (en) 2013-09-17 2016-10-18 K2M, Inc. Transverse coupler adjuster spinal correction systems and methods
US9987063B2 (en) 2014-04-22 2018-06-05 Stryker European Holdings I, Llc Plates with countersinks
US10028774B2 (en) * 2015-03-09 2018-07-24 Alphatec Spine, Inc. Transverse link having spherical ball joint
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US10413330B2 (en) * 2016-08-09 2019-09-17 Warsaw Orthopedic, Inc. Spinal implant system and method
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10413331B2 (en) 2016-12-21 2019-09-17 Spine Wave, Inc. Spinal stabilization system with head to head cross connector
CN107260237B (en) * 2017-08-04 2023-10-31 王锡阳 Surgical incision opening system
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11331125B1 (en) 2021-10-07 2022-05-17 Ortho Inventions, Llc Low profile rod-to-rod coupler

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0007393A1 (en) * 1978-06-16 1980-02-06 GebràœDer Sulzer Aktiengesellschaft Implant allowing the growth in length and thickness
EP0201024A1 (en) * 1985-05-06 1986-11-12 Dietmar Prof. Dr. Wolter Bone plate arrangement
US4896668A (en) * 1986-04-10 1990-01-30 Peters Plate set for osteal fixation, equipped with suture strands
US4957496A (en) * 1988-11-11 1990-09-18 Mecron Medizinische Produkte Gmbh Slotted slide plate assembly for osteosynthesis
EP0455255A1 (en) * 1990-05-04 1991-11-06 Witold Ramotowski A plate-type bone stabilizer
US5085660A (en) * 1990-11-19 1992-02-04 Lin Kwan C Innovative locking plate system
SU1715338A1 (en) * 1988-11-28 1992-02-28 Специальное Конструкторско-Технологическое Бюро Института Проблем Машиностроения Ан Усср Spine positioner
US5129899A (en) * 1991-03-27 1992-07-14 Smith & Nephew Richards Inc. Bone fixation apparatus
US5190545A (en) * 1991-08-27 1993-03-02 Pfizer Hospital Products Group, Inc. Cerclage wire positioning insert
US5234431A (en) * 1991-04-03 1993-08-10 Waldemar Link Gmbh & Co. Bone plate arrangement
US5261910A (en) * 1992-02-19 1993-11-16 Acromed Corporation Apparatus for maintaining spinal elements in a desired spatial relationship
US5366461A (en) * 1993-01-25 1994-11-22 William Blasnik Sternum banding assembly

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8610858U1 (en) * 1986-04-21 1986-06-12 Wolter, Dietmar, Prof. Dr., 2000 Hamburg Bone plate assembly
FR2615095B1 (en) * 1987-05-15 1989-08-18 Fabrication Materiel Orthopedi OSTEOSYNTHESIS INSTRUMENTATION FOR THE CORRECTION OF LUMBAR SCOLIOSES BY POSTERIOR PATHWAY
FR2642643B1 (en) * 1989-02-09 1991-05-10 Vignaud Jean Louis SPINAL INSTRUMENTATION FOR UNIVERSAL PEDICULAR FIXATION WITH MICROMETRIC ADJUSTMENT DIAPASON SCREW
FR2650173B1 (en) * 1989-07-26 1991-11-15 Jbs Sa METHOD AND DEVICE FOR STRAIGHTENING, FIXING, COMPRESSION, ELONGATION OF THE RACHIS
CA2035348C (en) * 1990-02-08 2000-05-16 Jean-Louis Vignaud Adjustable fastening device with spinal osteosynthesis rods
FR2658414B1 (en) * 1990-02-19 1992-07-31 Sofamor IMPLANT FOR OSTEOSYNTHESIS DEVICE IN PARTICULAR OF THE RACHIS.
FR2658413B1 (en) * 1990-02-19 1997-01-03 Sofamor OSTEOSYNTHESIS DEVICE FOR THE CORRECTION OF SPINAL DEVIATIONS.
GB9014817D0 (en) * 1990-07-04 1990-08-22 Mehdian Seyed M H Improvements in or relating to apparatus for use in the treatment of spinal disorders
DE9016227U1 (en) * 1990-11-29 1991-02-14 Howmedica Gmbh, 2314 Schoenkirchen, De
FR2676354B1 (en) * 1991-05-17 1997-11-07 Vignaud Jean Louis LOCKABLE CONNECTION DEVICE OF SPINAL OSTEOSYNTHESIS ANCHORING ELEMENTS.
US5304210A (en) * 1992-01-28 1994-04-19 Amei Technologies Inc. Apparatus for distributed bone growth stimulation

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0007393A1 (en) * 1978-06-16 1980-02-06 GebràœDer Sulzer Aktiengesellschaft Implant allowing the growth in length and thickness
EP0201024A1 (en) * 1985-05-06 1986-11-12 Dietmar Prof. Dr. Wolter Bone plate arrangement
US4896668A (en) * 1986-04-10 1990-01-30 Peters Plate set for osteal fixation, equipped with suture strands
US4957496A (en) * 1988-11-11 1990-09-18 Mecron Medizinische Produkte Gmbh Slotted slide plate assembly for osteosynthesis
SU1715338A1 (en) * 1988-11-28 1992-02-28 Специальное Конструкторско-Технологическое Бюро Института Проблем Машиностроения Ан Усср Spine positioner
EP0455255A1 (en) * 1990-05-04 1991-11-06 Witold Ramotowski A plate-type bone stabilizer
US5085660A (en) * 1990-11-19 1992-02-04 Lin Kwan C Innovative locking plate system
US5129899A (en) * 1991-03-27 1992-07-14 Smith & Nephew Richards Inc. Bone fixation apparatus
US5234431A (en) * 1991-04-03 1993-08-10 Waldemar Link Gmbh & Co. Bone plate arrangement
US5190545A (en) * 1991-08-27 1993-03-02 Pfizer Hospital Products Group, Inc. Cerclage wire positioning insert
US5261910A (en) * 1992-02-19 1993-11-16 Acromed Corporation Apparatus for maintaining spinal elements in a desired spatial relationship
US5366461A (en) * 1993-01-25 1994-11-22 William Blasnik Sternum banding assembly

Cited By (276)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040034353A1 (en) * 1994-03-28 2004-02-19 Michelson Gary Karlin Apparatus and method for anterior spinal stabilization
US20070093689A1 (en) * 1995-09-04 2007-04-26 Active Implants Corporation Method and apparatus for computerized surgery
US20050197701A1 (en) * 1995-09-04 2005-09-08 Amiram Steinberg Method and apparatus for computerized surgery
US20050177239A1 (en) * 1995-09-04 2005-08-11 Amiram Steinberg Method and apparatus for computerized surgery
US20080071374A1 (en) * 1995-09-04 2008-03-20 Active Implants Corporation Method and apparatus for computerized surgery
US7651497B2 (en) 1997-02-11 2010-01-26 Warsaw Orthopedic, Inc. Segmentable plate with locking element
US7074221B2 (en) 1997-02-11 2006-07-11 Sdgi Holdings, Inc. Anterior cervical plate system
US7077844B2 (en) 1997-02-11 2006-07-18 Sdgi Holdings, Inc. Segmentable skeletal plating system
US8123788B2 (en) 1997-02-11 2012-02-28 Warsaw Orthopedic, Inc. Plating system having retaining member that permits movement of at least one bone fastener
US7137984B2 (en) 1997-02-11 2006-11-21 Warsaw Orthopedic, Inc. Single-lock anterior cervical plate and method
US8262708B2 (en) 1997-02-11 2012-09-11 Warsaw Orthopedic, Inc. Single-lock plating system
US6969390B2 (en) 1997-02-11 2005-11-29 Michelson Gary K Anterior cervical plating system and bone screw
US8480717B2 (en) 1997-02-11 2013-07-09 Warsaw Orthopedic, Inc. Orthopedic implant with locking element
US6936051B2 (en) 1997-02-11 2005-08-30 Gary K. Michelson Multilock anterior cervical plating system
US6936050B2 (en) 1997-02-11 2005-08-30 Gary K. Michelson Multilock anterior cervical plating system
US20030018335A1 (en) * 1997-02-11 2003-01-23 Michelson Gary K. Anterior cervical plate system
US6527776B1 (en) 1997-02-11 2003-03-04 Gary K. Michelson Locking element for locking at least two bone screws to an orthopedic device
US20030045880A1 (en) * 1997-02-11 2003-03-06 Michelson Gary K. Anterior cervical plate system
US7704255B2 (en) 1997-02-11 2010-04-27 Warsaw Orthopedic, Inc. Threadless multi-lock anterior cervical plating system
US6926718B1 (en) 1997-02-11 2005-08-09 Gary K. Michelson Multilock anterior cervical plating system
US6592586B1 (en) 1997-02-11 2003-07-15 Gary K. Michelson Single-lock anterior cervical plating system
US6616666B1 (en) 1997-02-11 2003-09-09 Gary K. Michelson Apparatus for compressing a spinal disc space disposed between two adjacent vertebral bodies of a cervical spine
US6620163B1 (en) 1997-02-11 2003-09-16 Gary K. Michelson Anterior cervical plating system and bone screw
US20030181912A1 (en) * 1997-02-11 2003-09-25 Michelson Gary K. Anterior cervical plating system and bone screw
US6916320B2 (en) 1997-02-11 2005-07-12 Gary K. Michelson Anterior cervical plate system
US20030191472A1 (en) * 1997-02-11 2003-10-09 Michelson Gary K. Multilock anterior cervical plating system
US20030191471A1 (en) * 1997-02-11 2003-10-09 Michelson Gary K. Multilock anterior cervical plating system
US20050059971A1 (en) * 1997-02-11 2005-03-17 Michelson Gary K. Plating system having retaining member that permits movement of at least one bone fastener
US8048075B2 (en) 1997-02-11 2011-11-01 Warsaw Orthopedic, Inc. Orthopedic implant with locking element
US20050038436A1 (en) * 1997-02-11 2005-02-17 Michelson Gary K. System and method for stabilizing a portion of the spine
US20040236335A1 (en) * 1997-02-11 2004-11-25 Michelson Gary K. Plate apparatus for the spine
US20040236334A1 (en) * 1997-02-11 2004-11-25 Michelson Gary K. Plating apparatus and system having a retaining element
US20040220572A1 (en) * 1997-02-11 2004-11-04 Michelson Gary K Skeletal plating system
US8641743B2 (en) 1997-02-11 2014-02-04 Warsaw Orthopedic, Inc. Orthopedic implant with locking element
US20020128655A1 (en) * 1997-02-11 2002-09-12 Michelson Gary K. Segmentable skeletal plating system
US8016864B2 (en) 1998-04-30 2011-09-13 Warsaw Orthopedic, Inc. Anterior implant for the spine
US20040220571A1 (en) * 1998-04-30 2004-11-04 Richard Assaker Bone plate assembly
US20100069968A1 (en) * 1998-04-30 2010-03-18 Sofamor S.N.C. Anterior implant for the spine
US20040158246A1 (en) * 1998-04-30 2004-08-12 Sofamor S.N.C. Anterior implant for the spine
US6183478B1 (en) 1999-02-04 2001-02-06 Depuy Orthopaedics, Inc. Temporary fixation device
US9017313B2 (en) 1999-03-07 2015-04-28 Nuvasive, Inc. Method and apparatus for computerized surgery
US9668875B2 (en) 1999-03-07 2017-06-06 Nuvasive, Inc. Method and apparatus for computerized surgery
US9827109B2 (en) 1999-03-07 2017-11-28 Nuvasive, Inc. Methods and apparatus for performing spine surgery
US20020107573A1 (en) * 1999-03-07 2002-08-08 Discure Ltd. Method and apparatus for computerized surgery
WO2000053077A2 (en) 1999-03-07 2000-09-14 Discure Ltd. Method and apparatus for computerized surgery
US20080065067A1 (en) * 1999-03-07 2008-03-13 Active Implants Corporation Method and apparatus for computerized surgery
US20010038620A1 (en) * 1999-05-21 2001-11-08 Ensemble Communication Inc. Method and apparatus for allocating bandwidth in a wireless communication system
US7135024B2 (en) 1999-09-03 2006-11-14 Cookgas, L.L.C. Lumbar spine fixation device
US20040010254A1 (en) * 1999-09-03 2004-01-15 Cook Daniel J. Lumbar spine fixation device
WO2001017465A1 (en) * 1999-09-03 2001-03-15 Cook Daniel J Temporary spine fixation device and method
US6224602B1 (en) 1999-10-11 2001-05-01 Interpore Cross International Bone stabilization plate with a secured-locking mechanism for cervical fixation
US8167919B2 (en) 1999-10-13 2012-05-01 Warsaw Orthopedic, Inc. System and method for securing a plate to the spinal column
US20090326590A1 (en) * 1999-10-13 2009-12-31 Warsaw Orthopedic, Inc. System and method for securing a plate to the spinal column
US20020120273A1 (en) * 1999-10-13 2002-08-29 Needham Dusty Anna Anterior cervical plating system and method
US6309391B1 (en) 2000-03-15 2001-10-30 Sdgi Holding, Inc. Multidirectional pivoting bone screw and fixation system
US7322979B2 (en) 2000-03-15 2008-01-29 Warsaw Orthopedic, Inc. Multidirectional pivoting bone screw and fixation system
US20030105460A1 (en) * 2000-03-15 2003-06-05 Dennis Crandall Multidirectional pivoting bone screw and fixation system
US6312431B1 (en) 2000-04-24 2001-11-06 Wilson T. Asfora Vertebrae linking system
US6776781B1 (en) 2000-09-28 2004-08-17 Farihan Renno Spinal-column buttress plate assembly and method for attachment
US20060265069A1 (en) * 2000-12-13 2006-11-23 Goble E M Multiple Facet Joint Replacement
US7618455B2 (en) * 2000-12-13 2009-11-17 Facet Solutions, Inc Multiple facet joint replacement
US7344539B2 (en) 2001-03-30 2008-03-18 Depuy Acromed, Inc. Intervertebral connection system
WO2002080789A1 (en) * 2001-04-05 2002-10-17 Osteotech, Inc. Bone fixation system and method
US20040181226A1 (en) * 2001-06-04 2004-09-16 Michelson Gary K. Method for installing dynamic, modular, single-lock anterior cervical plate system having assembleable and moveable segments
US8048076B2 (en) 2001-06-04 2011-11-01 Warsaw Orthopedic, Inc. Method for installation of anterior cervical plate system having vertebral body engaging anchors and connecting plate
US7547306B2 (en) 2001-06-04 2009-06-16 Warsaw Orthopedic, Inc. Method for installation of dynamic, single-lock anterior cervical plate system having non-detachably fastened and moveable segments
US20020183755A1 (en) * 2001-06-04 2002-12-05 Michelson Gary K. Dynamic anterior cervical plate system having moveable segments, instrumentation, and method for installation thereof
US20040181229A1 (en) * 2001-06-04 2004-09-16 Michelson Gary K. Instrumentation for use with dynamic single-lock anterior cervical plate system having non-detachably fastened and moveable segments
US7097645B2 (en) 2001-06-04 2006-08-29 Sdgi Holdings, Inc. Dynamic single-lock anterior cervical plate system having non-detachably fastened and moveable segments
US20020183757A1 (en) * 2001-06-04 2002-12-05 Michelson Gary K. Dynamic single-lock anterior cervical plate system having non-detachably fastened and moveable segments, instrumentation, and method for installation thereof
US7112202B2 (en) 2001-06-04 2006-09-26 Warsaw Orthopedic, Inc. Method for installing dynamic, modular, single-lock anterior cervical plate system having assembleable and moveable segments
US20020183754A1 (en) * 2001-06-04 2002-12-05 Michelson Gary K. Anterior cervical plate system having vertebral body engaging anchors, connecting plate, and method for installation thereof
US7985224B2 (en) 2001-06-04 2011-07-26 Warsaw Orthopedic, Inc. Method for installation of dynamic, single-lock anterior cervical plate system having non-detachably fastened and moveable segments
US7399301B2 (en) 2001-06-04 2008-07-15 Warsaw Orthopedic, Inc. Instrumentation for use with dynamic single-lock anterior cervical plate system having non-detachably fastened and moveable segments
US8323283B2 (en) 2001-06-04 2012-12-04 Warsaw Orthopedic, Inc. Plate system having bone portion engaging anchors and connecting plate
US20050027297A1 (en) * 2001-06-04 2005-02-03 Michelson Gary K. Dynamic, modular, single-lock anterior cervical plate system having assembleable and moveable segments and instrumentation for installation thereof
US7118573B2 (en) 2001-06-04 2006-10-10 Sdgi Holdings, Inc. Dynamic anterior cervical plate system having moveable segments, instrumentation, and method for installation thereof
US20110054528A1 (en) * 2001-06-04 2011-03-03 Michelson Gary K Dynamic plate system having moveable segments
US7824432B2 (en) 2001-06-04 2010-11-02 Warsaw Orthopedic, Inc. Method for installation of dynamic anterior cervical plate system having moveable segments
US7811285B2 (en) 2001-06-04 2010-10-12 Warsaw Orthopedic, Inc. Dynamic, modular, single-lock anterior cervical plate system having assembleable and moveable segments and instrumentation for installation thereof
US20050085816A1 (en) * 2001-06-04 2005-04-21 Michelson Gary K. Method for installation of dynamic anterior cervical plate system having moveable segments
US20050216010A1 (en) * 2001-06-04 2005-09-29 Michelson Gary K Method for installation of dynamic, single-lock anterior cervical plate system having non-detachably fastened and moveable segments
US20090259226A1 (en) * 2001-06-04 2009-10-15 Michelson Gary K Method for installation of dynamic, single-lock anterior cervical plate system having non-detachably fastened and moveable segments
US7740630B2 (en) 2001-06-04 2010-06-22 Warsaw Orthopedic, Inc. Anterior cervical plate system having vertebral body engaging anchors and connecting plate
US7186256B2 (en) 2001-06-04 2007-03-06 Warsaw Orthopedic, Inc. Dynamic, modular, single-lock anterior cervical plate system having assembleable and movable segments
US20050187554A1 (en) * 2001-06-04 2005-08-25 Michelson Gary K. Method for installation of anterior cervical plate system having vertebral body engaging anchors and connecting plate
US8834533B2 (en) 2001-06-04 2014-09-16 Warsaw Orthopedic, Inc. Dynamic plate system having moveable segments
US20030060828A1 (en) * 2001-06-06 2003-03-27 Michelson Gary K. Dynamic multilock anterior cervical plate system having non-detachably fastened and moveable segments, instrumentation, and method for installation thereof
US7041105B2 (en) 2001-06-06 2006-05-09 Sdgi Holdings, Inc. Dynamic, modular, multilock anterior cervical plate system having detachably fastened assembleable and moveable segments
US7704250B2 (en) 2001-06-06 2010-04-27 Warsaw Orthopedic, Inc. Instrumentation for use with dynamic multilock anterior cervical plate system having non-detachably fastened and moveable segments
US20050216009A1 (en) * 2001-06-06 2005-09-29 Michelson Gary K Instrumentation for use with dynamic multilock anterior cervical plate system having non-detachably fastened and moveable segments
US20050192576A1 (en) * 2001-06-06 2005-09-01 Michelson Gary K. Method for installing dynamic multilock anterior cervical plate system having detachably fastened and moveable segments
US7803157B2 (en) 2001-06-06 2010-09-28 Warsaw Orthopedic, Inc. Dynamic, modular, multilock anterior cervical plate system having detachably fastened assembleable and moveable segments and instrumentation for installation thereof
US20050027298A1 (en) * 2001-06-06 2005-02-03 Michelson Gary K. Dynamic, modular, multilock anterior cervical plate system having detachably fastened assembleable and moveable segments and instrumentation for installation thereof
US7115130B2 (en) 2001-06-06 2006-10-03 Warsaw Orthopedic, Inc. Method for installing dynamic, modular, multilock anterior cervical plate system having detachably fastened assembleable and moveable segments
US20020188296A1 (en) * 2001-06-06 2002-12-12 Michelson Gary K. Dynamic, modular, multilock anterior cervical plate system having detachably fastened assembleable and moveable segments, instrumentation, and method for installation thereof
US20040186476A1 (en) * 2001-06-06 2004-09-23 Michelson Gary K. Method for installing dynamic, modular, multilock anterior cervical plate system having detachably fastened assembleable and moveable segments
US7044952B2 (en) 2001-06-06 2006-05-16 Sdgi Holdings, Inc. Dynamic multilock anterior cervical plate system having non-detachably fastened and moveable segments
US7766947B2 (en) 2001-10-31 2010-08-03 Ortho Development Corporation Cervical plate for stabilizing the human spine
US6679883B2 (en) 2001-10-31 2004-01-20 Ortho Development Corporation Cervical plate for stabilizing the human spine
US6626909B2 (en) * 2002-02-27 2003-09-30 Kingsley Richard Chin Apparatus and method for spine fixation
US6682532B2 (en) 2002-03-22 2004-01-27 Depuy Acromed, Inc. Coupling system and method for extending spinal instrumentation
US8070784B2 (en) * 2002-07-16 2011-12-06 Warsaw Orthopedic, Inc. Plating system for stabilizing a bony segment
US20060074420A1 (en) * 2002-07-16 2006-04-06 Lehuec Jean-Charles Plating system for stabilizing a bony segment
US20040034356A1 (en) * 2002-07-16 2004-02-19 Lehuec Jean-Charles Plating system for stabilizing a bony segment
US6989012B2 (en) 2002-07-16 2006-01-24 Sdgi Holdings, Inc. Plating system for stabilizing a bony segment
US7682392B2 (en) 2002-10-30 2010-03-23 Depuy Spine, Inc. Regenerative implants for stabilizing the spine and devices for attachment of said implants
US8172885B2 (en) 2003-02-05 2012-05-08 Pioneer Surgical Technology, Inc. Bone plate system
US7468069B2 (en) 2004-02-10 2008-12-23 Atlas Spine, Inc. Static anterior cervical plate
US7909859B2 (en) 2004-02-26 2011-03-22 Pioneer Surgical Technology, Inc. Bone plate system and methods
US11129653B2 (en) 2004-02-26 2021-09-28 Pioneer Surgical Technology, Inc. Bone plate system
US10166051B2 (en) 2004-02-26 2019-01-01 Pioneer Surgical Technology, Inc. Bone plate system
US8900277B2 (en) 2004-02-26 2014-12-02 Pioneer Surgical Technology, Inc. Bone plate system
US7740649B2 (en) 2004-02-26 2010-06-22 Pioneer Surgical Technology, Inc. Bone plate system and methods
US20050277920A1 (en) * 2004-05-28 2005-12-15 Slivka Michael A Non-fusion spinal correction systems and methods
US8506602B2 (en) 2004-05-28 2013-08-13 DePuy Synthes Products, LLC Non-fusion spinal correction systems and methods
US8034085B2 (en) 2004-05-28 2011-10-11 Depuy Spine, Inc. Non-fusion spinal correction systems and methods
US8672984B2 (en) 2004-06-17 2014-03-18 Warsaw Orthopedic, Inc. Method and apparatus for retaining screw in a plate
US7727266B2 (en) 2004-06-17 2010-06-01 Warsaw Orthopedic, Inc. Method and apparatus for retaining screws in a plate
US20050283155A1 (en) * 2004-06-21 2005-12-22 Michael Jacene Instruments and methods for holding a bone plate
US8298271B2 (en) 2004-06-21 2012-10-30 Depuy Spine, Inc. Instruments and methods for holding a bone plate
US20100069967A1 (en) * 2004-06-21 2010-03-18 Michael Jacene Instruments and Methods For Holding A Bone Plate
US7604638B2 (en) * 2004-06-21 2009-10-20 Depuy Spine, Inc. Instruments and methods for holding a bone plate
US20060036250A1 (en) * 2004-08-12 2006-02-16 Lange Eric C Antero-lateral plating systems for spinal stabilization
US8092496B2 (en) 2004-09-30 2012-01-10 Depuy Spine, Inc. Methods and devices for posterior stabilization
US7985244B2 (en) 2004-09-30 2011-07-26 Depuy Spine, Inc. Posterior dynamic stabilizer devices
US7736380B2 (en) 2004-12-21 2010-06-15 Rhausler, Inc. Cervical plate system
US8709043B2 (en) 2004-12-30 2014-04-29 Depuy Spine, Inc. Artificial facet joint
US8070783B2 (en) 2004-12-30 2011-12-06 Depuy Spine, Inc. Facet joint replacement
US7896906B2 (en) 2004-12-30 2011-03-01 Depuy Spine, Inc. Artificial facet joint
US20100312283A1 (en) * 2004-12-30 2010-12-09 Depuy Spine, Inc. Facet joint replacement
US7766940B2 (en) 2004-12-30 2010-08-03 Depuy Spine, Inc. Posterior stabilization system
US20110118787A1 (en) * 2004-12-30 2011-05-19 Depuy Spine, Inc. Artificial facet joint
US7799054B2 (en) 2004-12-30 2010-09-21 Depuy Spine, Inc. Facet joint replacement
US7322984B2 (en) 2005-01-06 2008-01-29 Spinal, Llc Spinal plate with internal screw locks
US20060149255A1 (en) * 2005-01-06 2006-07-06 Doubler Robert L Spinal implant kit
US7438715B2 (en) 2005-01-06 2008-10-21 Spinal Llc Spinal implant kit
US20060155296A1 (en) * 2005-01-07 2006-07-13 Celonova Biosciences, Inc. Three-dimensional implantable bone support
US20060195089A1 (en) * 2005-02-03 2006-08-31 Lehuec Jean-Charles Spinal plating and intervertebral support systems and methods
US20060217721A1 (en) * 2005-03-11 2006-09-28 Suh Sean S Translational hinged door plate system
US7527641B2 (en) * 2005-03-11 2009-05-05 Synthes Usa, Llc Translational hinged door plate system
US11103288B2 (en) 2005-03-24 2021-08-31 DePuy Synthes Products, Inc. Low profile spinal tethering devices
US20100106195A1 (en) * 2005-03-24 2010-04-29 Depuy Spine, Inc. Low profile spinal tethering methods
US9492165B2 (en) 2005-03-24 2016-11-15 DePuy Synthes Products, Inc. Low profile spinal tethering devices
US8273086B2 (en) * 2005-03-24 2012-09-25 Depuy Spine, Inc. Low profile spinal tethering devices
US20060217713A1 (en) * 2005-03-24 2006-09-28 Serhan Hassan A Low profile spinal tethering devices
US10194954B2 (en) 2005-03-24 2019-02-05 DePuy Synthes Products, Inc. Low profile spinal tethering devices
US20060217715A1 (en) * 2005-03-24 2006-09-28 Depuy Spine, Inc. Low profile spinal tethering systems
US20060217714A1 (en) * 2005-03-24 2006-09-28 Depuy Spine, Inc. Low profile spinal tethering methods
US9011540B1 (en) * 2005-03-24 2015-04-21 Igip, Llc Overlay or implant and method for improving stability of the implant
US8123749B2 (en) * 2005-03-24 2012-02-28 Depuy Spine, Inc. Low profile spinal tethering systems
US8888818B2 (en) * 2005-03-24 2014-11-18 DePuy Synthes Products, LLC Low profile spinal tethering methods
US7909826B2 (en) * 2005-03-24 2011-03-22 Depuy Spine, Inc. Low profile spinal tethering methods
US8470007B2 (en) 2005-04-19 2013-06-25 Warsaw Orthopedic, Inc. Antero-lateral plating systems and methods for spinal stabilization
US8109980B2 (en) 2005-04-19 2012-02-07 Kyphon Sarl Antero-lateral plating systems and methods for spinal stabilization
US7678113B2 (en) 2005-04-19 2010-03-16 Warsaw Orthopedic, Inc. Antero-lateral plating systems and methods for spinal stabilization
US20060241615A1 (en) * 2005-04-19 2006-10-26 Sdgi Holdings, Inc. Antero-lateral plating systems and methods for spinal stabilization
WO2006124273A3 (en) * 2005-05-12 2007-11-01 Joseph D Stern Revisable anterior cervical plating system
US10383665B2 (en) 2005-05-12 2019-08-20 Globus Medical, Inc. Revisable anterior cervical plating system
US8556895B2 (en) 2005-05-12 2013-10-15 Joseph D. Stern Revisable anterior cervical plating system
US9095381B2 (en) 2005-05-12 2015-08-04 Joseph D. Stern Revisable anterior cervical plating system
US8858556B2 (en) 2005-05-12 2014-10-14 Joseph D. Stern Revisable anterior cervical plating system
WO2006124273A2 (en) * 2005-05-12 2006-11-23 Stern Joseph D Revisable anterior cervical plating system
US20090264886A1 (en) * 2005-05-12 2009-10-22 Stern Joseph D Distraction device for use with a revisable anterior cervical plating system
US8070749B2 (en) 2005-05-12 2011-12-06 Stern Joseph D Revisable anterior cervical plating system
US9662146B2 (en) 2005-05-12 2017-05-30 Joseph D. Stern Revisable anterior cervical plating system
US9668782B2 (en) 2005-05-12 2017-06-06 Joseph D. Stern Revisable anterior cervical plating system
US20060271052A1 (en) * 2005-05-12 2006-11-30 Stern Joseph D Revisable anterior cervical plating system
US8057521B2 (en) 2005-06-03 2011-11-15 Southern Spine, Llc Surgical stabilization system
US20060293670A1 (en) * 2005-06-03 2006-12-28 Smisson Hugh F Iii Surgical stabilization system
US20070173840A1 (en) * 2006-01-11 2007-07-26 Huebner Randall J Bone plate with cover
US20070233184A1 (en) * 2006-02-28 2007-10-04 Klein Tools, Inc. Medical instrument for grasping surgical implant rods
US20070270820A1 (en) * 2006-04-26 2007-11-22 Sdgi Holdings, Inc. Revision fixation plate and method of use
US8172882B2 (en) 2006-06-14 2012-05-08 Spartek Medical, Inc. Implant system and method to treat degenerative disorders of the spine
US8043337B2 (en) 2006-06-14 2011-10-25 Spartek Medical, Inc. Implant system and method to treat degenerative disorders of the spine
US20080228226A1 (en) * 2007-03-12 2008-09-18 Arya Nick Shamie Cervical support system
WO2008112831A1 (en) * 2007-03-12 2008-09-18 Arya Nick Shamie Improved cervical support system
US8002803B2 (en) 2007-06-05 2011-08-23 Spartek Medical, Inc. Deflection rod system for a spine implant including an inner rod and an outer shell and method
US8070780B2 (en) 2007-06-05 2011-12-06 Spartek Medical, Inc. Bone anchor with a yoke-shaped anchor head for a dynamic stabilization and motion preservation spinal implantation system and method
US8105356B2 (en) 2007-06-05 2012-01-31 Spartek Medical, Inc. Bone anchor with a curved mounting element for a dynamic stabilization and motion preservation spinal implantation system and method
US8109970B2 (en) 2007-06-05 2012-02-07 Spartek Medical, Inc. Deflection rod system with a deflection contouring shield for a spine implant and method
US7942900B2 (en) 2007-06-05 2011-05-17 Spartek Medical, Inc. Shaped horizontal rod for dynamic stabilization and motion preservation spinal implantation system and method
US8114130B2 (en) 2007-06-05 2012-02-14 Spartek Medical, Inc. Deflection rod system for spine implant with end connectors and method
US8114134B2 (en) 2007-06-05 2012-02-14 Spartek Medical, Inc. Spinal prosthesis having a three bar linkage for motion preservation and dynamic stabilization of the spine
US8118842B2 (en) 2007-06-05 2012-02-21 Spartek Medical, Inc. Multi-level dynamic stabilization and motion preservation spinal implantation system and method
US8092501B2 (en) 2007-06-05 2012-01-10 Spartek Medical, Inc. Dynamic spinal rod and method for dynamic stabilization of the spine
US8048128B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Revision system and method for a dynamic stabilization and motion preservation spinal implantation system and method
US8142480B2 (en) 2007-06-05 2012-03-27 Spartek Medical, Inc. Dynamic stabilization and motion preservation spinal implantation system with horizontal deflection rod and articulating vertical rods
US8147520B2 (en) 2007-06-05 2012-04-03 Spartek Medical, Inc. Horizontally loaded dynamic stabilization and motion preservation spinal implantation system and method
US8162987B2 (en) 2007-06-05 2012-04-24 Spartek Medical, Inc. Modular spine treatment kit for dynamic stabilization and motion preservation of the spine
US8083772B2 (en) 2007-06-05 2011-12-27 Spartek Medical, Inc. Dynamic spinal rod assembly and method for dynamic stabilization of the spine
US8080039B2 (en) 2007-06-05 2011-12-20 Spartek Medical, Inc. Anchor system for a spine implantation system that can move about three axes
US8172881B2 (en) 2007-06-05 2012-05-08 Spartek Medical, Inc. Dynamic stabilization and motion preservation spinal implantation system and method with a deflection rod mounted in close proximity to a mounting rod
US8070774B2 (en) 2007-06-05 2011-12-06 Spartek Medical, Inc. Reinforced bone anchor for a dynamic stabilization and motion preservation spinal implantation system and method
US8177815B2 (en) 2007-06-05 2012-05-15 Spartek Medical, Inc. Super-elastic deflection rod for a dynamic stabilization and motion preservation spinal implantation system and method
US8182515B2 (en) 2007-06-05 2012-05-22 Spartek Medical, Inc. Dynamic stabilization and motion preservation spinal implantation system and method
US8182516B2 (en) 2007-06-05 2012-05-22 Spartek Medical, Inc. Rod capture mechanism for dynamic stabilization and motion preservation spinal implantation system and method
US8192469B2 (en) 2007-06-05 2012-06-05 Spartek Medical, Inc. Dynamic stabilization and motion preservation spinal implantation system and method with a deflection rod
US7963978B2 (en) 2007-06-05 2011-06-21 Spartek Medical, Inc. Method for implanting a deflection rod system and customizing the deflection rod system for a particular patient need for dynamic stabilization and motion preservation spinal implantation system
US8211150B2 (en) 2007-06-05 2012-07-03 Spartek Medical, Inc. Dynamic stabilization and motion preservation spinal implantation system and method
US8052722B2 (en) 2007-06-05 2011-11-08 Spartek Medical, Inc. Dual deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method
US7985243B2 (en) 2007-06-05 2011-07-26 Spartek Medical, Inc. Deflection rod system with mount for a dynamic stabilization and motion preservation spinal implantation system and method
US8048113B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Deflection rod system with a non-linear deflection to load characteristic for a dynamic stabilization and motion preservation spinal implantation system and method
US8105359B2 (en) 2007-06-05 2012-01-31 Spartek Medical, Inc. Deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method
US8070775B2 (en) 2007-06-05 2011-12-06 Spartek Medical, Inc. Deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method
US8070776B2 (en) 2007-06-05 2011-12-06 Spartek Medical, Inc. Deflection rod system for use with a vertebral fusion implant for dynamic stabilization and motion preservation spinal implantation system and method
US8298267B2 (en) 2007-06-05 2012-10-30 Spartek Medical, Inc. Spine implant with a deflection rod system including a deflection limiting shield associated with a bone screw and method
US8317836B2 (en) 2007-06-05 2012-11-27 Spartek Medical, Inc. Bone anchor for receiving a rod for stabilization and motion preservation spinal implantation system and method
US8066747B2 (en) 2007-06-05 2011-11-29 Spartek Medical, Inc. Implantation method for a dynamic stabilization and motion preservation spinal implantation system and method
US7993372B2 (en) 2007-06-05 2011-08-09 Spartek Medical, Inc. Dynamic stabilization and motion preservation spinal implantation system with a shielded deflection rod system and method
US8002800B2 (en) 2007-06-05 2011-08-23 Spartek Medical, Inc. Horizontal rod with a mounting platform for a dynamic stabilization and motion preservation spinal implantation system and method
US8048122B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Spine implant with a dual deflection rod system including a deflection limiting sheild associated with a bone screw and method
US8012175B2 (en) 2007-06-05 2011-09-06 Spartek Medical, Inc. Multi-directional deflection profile for a dynamic stabilization and motion preservation spinal implantation system and method
US8568451B2 (en) 2007-06-05 2013-10-29 Spartek Medical, Inc. Bone anchor for receiving a rod for stabilization and motion preservation spinal implantation system and method
US8048123B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Spine implant with a deflection rod system and connecting linkages and method
US8021396B2 (en) 2007-06-05 2011-09-20 Spartek Medical, Inc. Configurable dynamic spinal rod and method for dynamic stabilization of the spine
US8057514B2 (en) 2007-06-05 2011-11-15 Spartek Medical, Inc. Deflection rod system dimensioned for deflection to a load characteristic for dynamic stabilization and motion preservation spinal implantation system and method
US8048115B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Surgical tool and method for implantation of a dynamic bone anchor
US8048121B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Spine implant with a defelction rod system anchored to a bone anchor and method
US8052721B2 (en) 2007-06-05 2011-11-08 Spartek Medical, Inc. Multi-dimensional horizontal rod for a dynamic stabilization and motion preservation spinal implantation system and method
US9381046B2 (en) 2007-07-03 2016-07-05 Pioneer Surgical Technology, Inc. Bone plate system
US9655665B2 (en) 2007-07-03 2017-05-23 Pioneer Surgical Technology, Inc. Bone plate systems
US8623019B2 (en) 2007-07-03 2014-01-07 Pioneer Surgical Technology, Inc. Bone plate system
US8361126B2 (en) 2007-07-03 2013-01-29 Pioneer Surgical Technology, Inc. Bone plate system
US10226291B2 (en) 2007-07-03 2019-03-12 Pioneer Surgical Technology, Inc. Bone plate system
US10898247B2 (en) 2007-07-03 2021-01-26 Pioneer Surgical Technology, Inc. Bone plate system
US8668725B2 (en) 2007-07-13 2014-03-11 Southern Spine, Llc Bone screw
US8267979B2 (en) 2008-02-26 2012-09-18 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and axial spring and method for dynamic stabilization of the spine
US8097024B2 (en) 2008-02-26 2012-01-17 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and method for stabilization of the spine
US8007518B2 (en) 2008-02-26 2011-08-30 Spartek Medical, Inc. Load-sharing component having a deflectable post and method for dynamic stabilization of the spine
US8333792B2 (en) 2008-02-26 2012-12-18 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and method for dynamic stabilization of the spine
US8057515B2 (en) 2008-02-26 2011-11-15 Spartek Medical, Inc. Load-sharing anchor having a deflectable post and centering spring and method for dynamic stabilization of the spine
US8012181B2 (en) 2008-02-26 2011-09-06 Spartek Medical, Inc. Modular in-line deflection rod and bone anchor system and method for dynamic stabilization of the spine
US8048125B2 (en) 2008-02-26 2011-11-01 Spartek Medical, Inc. Versatile offset polyaxial connector and method for dynamic stabilization of the spine
US8057517B2 (en) 2008-02-26 2011-11-15 Spartek Medical, Inc. Load-sharing component having a deflectable post and centering spring and method for dynamic stabilization of the spine
US8337536B2 (en) 2008-02-26 2012-12-25 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post with a compliant ring and method for stabilization of the spine
US8211155B2 (en) 2008-02-26 2012-07-03 Spartek Medical, Inc. Load-sharing bone anchor having a durable compliant member and method for dynamic stabilization of the spine
US8016861B2 (en) 2008-02-26 2011-09-13 Spartek Medical, Inc. Versatile polyaxial connector assembly and method for dynamic stabilization of the spine
US8083775B2 (en) 2008-02-26 2011-12-27 Spartek Medical, Inc. Load-sharing bone anchor having a natural center of rotation and method for dynamic stabilization of the spine
US9028549B1 (en) * 2008-03-27 2015-05-12 Spinelogik, Inc. Intervertebral fusion device and method of use
US9717600B1 (en) * 2008-03-27 2017-08-01 Spinelogik, Inc. Bioabsorbable anchoring member for insertion into a vertebral body
US9730805B1 (en) 2008-03-27 2017-08-15 Spinelogik, Inc. Intervertebral fusion device and method or use
US20100082067A1 (en) * 2008-09-29 2010-04-01 Kondrashov Dimitriy G System and method to stablize a spinal column including a spinolaminar locking plate
US8623062B2 (en) 2008-09-29 2014-01-07 Dimitriy G. Kondrashov System and method to stablize a spinal column including a spinolaminar locking plate
US8216281B2 (en) 2008-12-03 2012-07-10 Spartek Medical, Inc. Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US9433453B2 (en) 2009-07-24 2016-09-06 Warsaw Orthopedic, Inc. Implant with an interference fit fastener
US9095444B2 (en) 2009-07-24 2015-08-04 Warsaw Orthopedic, Inc. Implant with an interference fit fastener
US8257397B2 (en) 2009-12-02 2012-09-04 Spartek Medical, Inc. Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US8394127B2 (en) 2009-12-02 2013-03-12 Spartek Medical, Inc. Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US8372122B2 (en) 2009-12-02 2013-02-12 Spartek Medical, Inc. Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US20110190776A1 (en) * 2009-12-18 2011-08-04 Palmaz Scientific, Inc. Interosteal and intramedullary implants and method of implanting same
US9427324B1 (en) 2010-02-22 2016-08-30 Spinelogik, Inc. Intervertebral fusion device and method of use
US8518085B2 (en) 2010-06-10 2013-08-27 Spartek Medical, Inc. Adaptive spinal rod and methods for stabilization of the spine
US8562656B2 (en) 2010-10-15 2013-10-22 Warsaw Orrthopedic, Inc. Retaining mechanism
US8992579B1 (en) 2011-03-08 2015-03-31 Nuvasive, Inc. Lateral fixation constructs and related methods
US8430916B1 (en) 2012-02-07 2013-04-30 Spartek Medical, Inc. Spinal rod connectors, methods of use, and spinal prosthesis incorporating spinal rod connectors
US9579131B1 (en) 2012-03-08 2017-02-28 Nuvasive, Inc. Systems and methods for performing spine surgery
US9060815B1 (en) 2012-03-08 2015-06-23 Nuvasive, Inc. Systems and methods for performing spine surgery
US9566100B2 (en) 2012-08-09 2017-02-14 Asfora Ip, Llc Screw for joint fusion
US9271743B2 (en) 2012-08-09 2016-03-01 Wilson Theophilo Asfora System for joint fusion
US10987144B2 (en) 2012-08-09 2021-04-27 Asfora Ip, Llc Screw for joint fusion
US9271742B2 (en) 2012-08-09 2016-03-01 Wilson Theophilo Asfora System for joint fusion
US9295488B2 (en) 2012-08-09 2016-03-29 Wilson T. Asfora Joint fusion
US9526548B2 (en) 2012-08-09 2016-12-27 Asfora Ip, Llc System for joint fusion
US10251688B2 (en) 2012-08-09 2019-04-09 Asfora Ip, Llc Screw for joint fusion
US9468479B2 (en) 2013-09-06 2016-10-18 Cardinal Health 247, Inc. Bone plate
US9517089B1 (en) 2013-10-08 2016-12-13 Nuvasive, Inc. Bone anchor with offset rod connector
US9687280B1 (en) * 2014-09-12 2017-06-27 Roberto J. Aranibar Spinal repair implants and related methods
US9839452B1 (en) * 2014-09-12 2017-12-12 Roberto J. Aranibar Spinal repair implants and related methods
US9526533B1 (en) * 2014-09-12 2016-12-27 Roberto J. Aranibar Spinal repair implants and related methods
USD798455S1 (en) 2014-10-08 2017-09-26 Nuvasive, Inc. Anterior cervical bone plate
USD779065S1 (en) 2014-10-08 2017-02-14 Nuvasive, Inc. Anterior cervical bone plate
CN107411854A (en) * 2017-07-12 2017-12-01 中南大学湘雅医院 A kind of practical artificial neural plate device
CN109567918A (en) * 2018-11-27 2019-04-05 中南大学湘雅医院 Medical titanium alloy cone-plate positioning system
CN109567918B (en) * 2018-11-27 2020-07-17 中南大学湘雅医院 Medical titanium alloy conical plate positioning system
US11877779B2 (en) 2020-03-26 2024-01-23 Xtant Medical Holdings, Inc. Bone plate system

Also Published As

Publication number Publication date
WO1996028106A1 (en) 1996-09-19
US5397363A (en) 1995-03-14

Similar Documents

Publication Publication Date Title
US5766254A (en) Spinal stabilization implant system
US5676703A (en) Spinal stabilization implant system
US5888221A (en) Spinal stabilization implant system
AU680209B2 (en) Spinal rod transverse connector for supporting vertebral fixation elements
US6050997A (en) Spinal fixation system
US5628740A (en) Articulating toggle bolt bone screw
JP2506564B2 (en) Variable angle screw for spinal implant system
US5476463A (en) Spinal column retaining apparatus
US5690629A (en) Apparatus for maintaining vertebrae of a spinal column in a desired spatial relationship
JP5324916B2 (en) Spine composition system
US5330472A (en) Device for applying a tensional force between vertebrae of the human vertebral column
US5645544A (en) Variable angle extension rod
EP1765206B1 (en) Spinal rod system
US5676665A (en) Spinal fixation apparatus and method
EP0468264B1 (en) Spinal column retaining apparatus
US5928233A (en) Spinal fixation device with laterally attachable connectors
JP2672082B2 (en) Device for holding bone parts in a desired spatial relationship
US5344422A (en) Pedicular screw clamp
JP2560207B2 (en) Spinal therapy device
EP0425783A1 (en) Pedicle screw clamp
JPS6041960A (en) Spine support apparatus
JPH05269143A (en) Spine retainer
KR20010020503A (en) Adjustable fixing device for straightening and supporting the back bone

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment

Year of fee payment: 7

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 12

SULP Surcharge for late payment

Year of fee payment: 11