US5838734A - Compensation for local oscillator errors in an OFDM receiver - Google Patents

Compensation for local oscillator errors in an OFDM receiver Download PDF

Info

Publication number
US5838734A
US5838734A US08/549,831 US54983196A US5838734A US 5838734 A US5838734 A US 5838734A US 54983196 A US54983196 A US 54983196A US 5838734 A US5838734 A US 5838734A
Authority
US
United States
Prior art keywords
phase
fourier transform
receiver
carriers
division multiplexed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/549,831
Inventor
Derek Thomas Wright
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
British Broadcasting Corp
Original Assignee
British Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British Broadcasting Corp filed Critical British Broadcasting Corp
Assigned to BRITISH BROADCASTING CORPORATION reassignment BRITISH BROADCASTING CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WRIGHT, DEREK THOMAS
Application granted granted Critical
Publication of US5838734A publication Critical patent/US5838734A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/345Modifications of the signal space to allow the transmission of additional information
    • H04L27/3455Modifications of the signal space to allow the transmission of additional information in order to facilitate carrier recovery at the receiver end, e.g. by transmitting a pilot or by using additional signal points to allow the detection of rotations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2679Decision-aided

Definitions

  • This invention relates to receiving equipment for digital transmissions of the orthogonal frequency division multiplex type and in particular to receiving equipment which can compensate for phase errors in the received digital signals.
  • Orthogonal frequency division multiplex is a modulation technique which has been proprosed by the Eureka 147 digital broadcasting consortium. In such transmissions digital data is divided between a large number of adjacent carriers so that a relatively small amount of data is. carried on each carrier. This is the frequency division multiplex part of OFDM.
  • the orthogonal part of the OFDM name arises because adjacent carriers are arranged to be mathematically orthogonal so that their sidebands may overlap but signals can still be received without adjacent carrier interference.
  • FIG. 1 shows a phase diagram for a QPSK modulation scheme.
  • the scheme provides four phase states which are represented by vectors, one in each quadrant of the phase diagram.
  • a two bit word can be modulated onto a carrier by varying the phase of the carrier.
  • FIG. 2 shows a 16 QAM modulation scheme which provides 16 phase states, for each quadrant.
  • the four vectors in the upper right quadrant are indicated on the figure. This scheme enables four bit words to be modulated onto a carrier by varying the phase and amplitude of the carrier.
  • the QPSE modulation scheme of FIG. 1 has a tolerance of 45° to phase shift errors for the carrier. It will be appreciated that for the 16 QAM scheme of FIG. 2 this tolerance is reduced and for higher order QAM schemes e.g. 64 QAM, the phase shift error tolerance is reduced still further. Thus the minimization of phase shift errors in transmitter and receiver becomes important.
  • the need for modulators, filters, and demodulators for each carrier is avoided by use of the fast fourier transform (FFT) algorithmn to perform the modulation/de-modulation process on the many carriers.
  • FFT fast fourier transform
  • the wide band frequency domain digital signal is transformed using an FFT into the time domain. This signal is then transmitted.
  • the reverse process is applied to produce the plurality of carriers.
  • the FFT for a sample of the signal is known as a symbol and this is what is transmitted and then received.
  • phase noise there are various sources of phase noise in the transmission and reception of the signal and some of these are discussed below.
  • Phase errors due to thermally generated random noise affect the amplitudes and phases of the carriers in a way such that there is no relationship between the errors of different carriers in the same FFT frame or between the errors on a chosen carrier between different FFT frames.
  • Phase errors due to local oscillator phase noise in a receiver appear equally on all carriers within one FFT frame, but the value of this error is random in terms of its value for any or all carriers between one FFT frame and the next. The amplitudes of the carriers will not be affected by local oscillator phase noise.
  • a frequency error on the local oscillator can be interpreted as a phase error which is equal an all carriers in any one FFT frame and where the angle of such error progresses systematically from frame to frame at a rate dependent on the frequency error. It can be detected by detecting the phase error on any chosen carrier in every frame and calculating the average of the rate of progression. Using the average sill eliminate the effects of random noise.
  • An error in the timing of the FFT frame is equivalent to a uniform group delay error across the frequency band occupied by the carriers.
  • Each carrier has a phase error which is directly related to its frequency and the delay value.
  • the advance (or retard). of phase with carrier frequency error is continuous but would typically be interpreted during measurement as a sawtooth excursing between angles of - ⁇ /2 and + ⁇ /2. If the FFT frame timing error is consistent these errors will be consistent for each carrier from frame to frame and each would be removed by differential phase decoding. Without differential phase decoding a consistent timing error can be deduced by comparing the difference in the average phase error between two reference carriers near to each end of the band; the evaluation of the timing error will be simpler if these two reference carriers do not carry phase modulation.
  • phase error due to the local oscillator is equal on all carriers the value for each carrier will be masked by the modulation and random noise. Averaging between FFT time frames is not appropriate and the use of sufficient unmodulated carriers within a single frame to average out the effects of the random noise would cuase unacceptable loss of data capacity. A more thorough phase noise analysis has to be made to remove phase noise from the carriers.
  • phase noise For a given oscillator design, we might expect the phase noise to increase with the frequency of operation.
  • a large tuning range makes the oscillator more susceptible to the noise generated by the varicap diode which is used as the controlling element. This suggests the need for an oscillator with a limited locking range and discrete frequency steps between these ranges.
  • the integrate and dump nature of the FFT process in OFDM demodulation is such that frequency components of phase noise above 100% of the symbol rate or below about 10% of the symbol rate become less relevant.
  • the rising noise sideband level at lower frequencies therefore make the dominant effect that due to the sidebands at frequencies equal to about one tenth of the carrier spacing.
  • At small values of carrier spacing there is a rapid increase in the effects of phase noise.
  • FIG. 3 A block diagram of a proprosed receiver which includes this phase error analysis is shown in FIG. 3.
  • the FFT of an OFDM signal is received by an antenna 2 and a radio frequency amplifier 4.
  • the receiver signal is combined, in a mixer 6, with a frequency signal from a local oscillator 8.
  • the combined signals then pass to an analogue to digital converter 10 which outputs a digital signal corresponding to a received FFT symbol.
  • This is stored in a symbol period wave form store 12.
  • Each stored symbol period is then fed, in turn, to an FFT block 14 which converts it to the frequency domain.
  • the FFT block 14 has outputs for the I and Q values of each of the carriers which were originally encoded at the transmitter. These pass to a converter 16 which derives the magnitude Z for each vector from the QAM diagram which they represent. These I and Q values also pass to the converter 18 which derives an angle for each vector in the QAM phase diagram and supplies this to a phase error analyser 20 as well as to a phase error compensator 22.
  • the phase error analyser 20 removes phase noise due to the local oscillator 8 and the phase angles are then corrected in the phase error compensator to provide a corrected output 24.
  • the system of FIG. 3 provides a receiver which is able to analyse and compensate for phase noise generated by the local oscillator and thus avoids the need for a more accurate (e.g. crystal) local oscillator thereby minimising the cost of receiving equipment.
  • Using such an arrangement should enable digital transmissions to be used for television signals such as IMTV signals in conventional television channels.
  • the first possibility is one based upon maximum likelihood techniques. This assumes one of a number of possibilities about the phase state of each carrier due to the modulation. For example, it could be assumed that the modulation might correspond to the modulation phase state nearest to the actual detected phase, or the nearest one or more states on either side. It should be noted that, in general, we would not expect thermal noise to have moved the modulation state from the original phase by more than the phase interval between the assumed state and the adjacent ones on either side; if this requirement were not met there would necessarily be a high bit-error rate due to random noise generated in channel, without consideration of any additional effects due to the local oscillator phase error.
  • a possible simpler technique is to avoid taking the source modulation into account for each individual carrier by assuming that, for random modulating data, the means of the phase angles of all carriers in the FFT frame will statistically be close to zero. Note that the addition system needs to be defined carefully with regard to modulo arithmetic, otherwise the mean of all the carriers which have near zero phase and a small amount of random error will be 180° rather than the expected 0° (e.g. half around 5° and half around 355°).
  • the problem is to make a software estimation of the error angle in a sitation where all the individual vector points are displaced by random amounts due to the effects of thermal noise in the channel.
  • the necessary averaging of the noise effects would intuitively be applied by a human observer viewing the oscilloscope display.
  • the recognition factor is within the envelope of vector magnitude plotted vertically against the phase angle of the vector plotted horizontally, for the combined result of all carriers in the ensemble from a single received FFT frame (FIG. 5).
  • the ambiguity free range can be increased up to ⁇ 180° by putting a unique feature into the constellation diagram. For example it could be deliberately arranged not to use any carriers within a particular 20° phase range and then to squeeze all the phases into the remaining 340°. This could be called a "sliced-pie modification" (FIG. 8) to the phase modulation system
  • Rectangular, triangular and star-shaped outlines for constellation diagrams could also be contrived to provide particular levels of ambiguity range for detecting local oscillator phase errors in the way described above.
  • phase and frequency response variations between carriers are removed by standard equalisation procedures prior to attempting to evaluate the value of the local oscillator phase error from the combined effect of all carriers in a single phasor constellation diagram.
  • equalisation techniques are well established and typically make use of a training sequence transmitted from time to time in place of the data-carrying FFT symbol.

Abstract

A receiver for orthogonal frequency division multiplexed signals includes means (14) for calculating the (discrete) Fourier Transform of the received signal, and means (20) for calculating the phase error due to local oscillator errors.

Description

FIELD OF THE INVENTION
This invention relates to receiving equipment for digital transmissions of the orthogonal frequency division multiplex type and in particular to receiving equipment which can compensate for phase errors in the received digital signals.
BACKGROUND OF THE INVENTION
Orthogonal frequency division multiplex (OFDM) is a modulation technique which has been proprosed by the Eureka 147 digital broadcasting consortium. In such transmissions digital data is divided between a large number of adjacent carriers so that a relatively small amount of data is. carried on each carrier. This is the frequency division multiplex part of OFDM. The orthogonal part of the OFDM name arises because adjacent carriers are arranged to be mathematically orthogonal so that their sidebands may overlap but signals can still be received without adjacent carrier interference.
Digital data is modulated onto a carrier using quadrature phase shift keying (QPSK) or a higher level of quadrature amplitude modulation (QAM) such a 64 QAM or 256 QAM. FIG. 1 shows a phase diagram for a QPSK modulation scheme. The scheme provides four phase states which are represented by vectors, one in each quadrant of the phase diagram. Thus with a QPSK scheme a two bit word can be modulated onto a carrier by varying the phase of the carrier.
FIG. 2 shows a 16 QAM modulation scheme which provides 16 phase states, for each quadrant. The four vectors in the upper right quadrant are indicated on the figure. This scheme enables four bit words to be modulated onto a carrier by varying the phase and amplitude of the carrier.
The QPSE modulation scheme of FIG. 1 has a tolerance of 45° to phase shift errors for the carrier. It will be appreciated that for the 16 QAM scheme of FIG. 2 this tolerance is reduced and for higher order QAM schemes e.g. 64 QAM, the phase shift error tolerance is reduced still further. Thus the minimization of phase shift errors in transmitter and receiver becomes important.
In a practical OFDM transmitter and receiver the need for modulators, filters, and demodulators for each carrier is avoided by use of the fast fourier transform (FFT) algorithmn to perform the modulation/de-modulation process on the many carriers. In order to transmit the many carriers the wide band frequency domain digital signal is transformed using an FFT into the time domain. This signal is then transmitted. In a receiver the reverse process is applied to produce the plurality of carriers. The FFT for a sample of the signal is known as a symbol and this is what is transmitted and then received.
There are various sources of phase noise in the transmission and reception of the signal and some of these are discussed below.
Phase errors due to thermally generated random noise affect the amplitudes and phases of the carriers in a way such that there is no relationship between the errors of different carriers in the same FFT frame or between the errors on a chosen carrier between different FFT frames.
Phase errors due to local oscillator phase noise in a receiver appear equally on all carriers within one FFT frame, but the value of this error is random in terms of its value for any or all carriers between one FFT frame and the next. The amplitudes of the carriers will not be affected by local oscillator phase noise.
A frequency error on the local oscillator can be interpreted as a phase error which is equal an all carriers in any one FFT frame and where the angle of such error progresses systematically from frame to frame at a rate dependent on the frequency error. It can be detected by detecting the phase error on any chosen carrier in every frame and calculating the average of the rate of progression. Using the average sill eliminate the effects of random noise.
An error in the timing of the FFT frame is equivalent to a uniform group delay error across the frequency band occupied by the carriers. Each carrier has a phase error which is directly related to its frequency and the delay value. The advance (or retard). of phase with carrier frequency error is continuous but would typically be interpreted during measurement as a sawtooth excursing between angles of -π/2 and +π/2. If the FFT frame timing error is consistent these errors will be consistent for each carrier from frame to frame and each would be removed by differential phase decoding. Without differential phase decoding a consistent timing error can be deduced by comparing the difference in the average phase error between two reference carriers near to each end of the band; the evaluation of the timing error will be simpler if these two reference carriers do not carry phase modulation.
There will inevitably be a small element of random jitter in the timing of the FFT frame causing phase errors which increase (positively or negatively) in direct relation to the carrier changes from frame to frame. If this effect is present it will cause significant errors only on the higher frequency carriers. The magnitude of the effect can be kept acceptably small by providing adequate flywheeling on the timing arrangements for the FFT window.
We have appreciated that although the phase error due to the local oscillator is equal on all carriers the value for each carrier will be masked by the modulation and random noise. Averaging between FFT time frames is not appropriate and the use of sufficient unmodulated carriers within a single frame to average out the effects of the random noise would cuase unacceptable loss of data capacity. A more thorough phase noise analysis has to be made to remove phase noise from the carriers.
When considering the likely problems to OFDM systems caused by phase noise in the local oscillator, it is necessary to consider two aspects. On the one hand we need to know how much phase noise can be expected from different configurations of local oscillator. On the other hand we need to know how much phase noise can be tolerated by the modulation system.
As a starting point the considerations applied to Digital Audio Broadcast systems can be re-evaluated to digital television transmission. The following differences will need to be taken in account.
1. The frequency at which the oscillator operates.
For a given oscillator design, we might expect the phase noise to increase with the frequency of operation.
2. The tuning range.
A large tuning range makes the oscillator more susceptible to the noise generated by the varicap diode which is used as the controlling element. This suggests the need for an oscillator with a limited locking range and discrete frequency steps between these ranges.
3. The carrier spacing of the modulation system.
We can anticipate a typical spectrum of noise sidebands for a local oscillator which rises at frequencies closer to the centre frequency. We can also expect all the carriers in the OFDM ensemble to acquire the same side band information in the mixing process, since each carrier will independently mix with the local oscillator in a similar way. All carriers should, therefore, suffer identical phase perturbation.
The integrate and dump nature of the FFT process in OFDM demodulation is such that frequency components of phase noise above 100% of the symbol rate or below about 10% of the symbol rate become less relevant. The rising noise sideband level at lower frequencies therefore make the dominant effect that due to the sidebands at frequencies equal to about one tenth of the carrier spacing. At small values of carrier spacing there is a rapid increase in the effects of phase noise.
4. The euclidian distance of the modulation system.
In terms of added noise voltage, a change from QPSK to 16 QAM or 64QAM leads respectively to approximately 6 dB and 12 dB reductions in noise immunity. For phase errors only, the 90° separation between QPSK points allows phase noise to perturb the true phase by up to 45° before errors occur. In 16 QAM systems this figure becomes respectively 18.44° and 8.113° for the points at the extremities of 16 QAM and 64 QAM constellations (closest to the axes, not the diagonal corners). Compared with the factors of 2 and 4 reduction in permissable voltage added noise, the reduction factors for phase added noise are 2.44 (7.75 dB) and 5.53 (14.86 dB) respectively.
SUMMARY OF THE INVENTION
We have thus appreciated that local oscillator phase noise is a serious problem when transmitting higher data rates on an OFDM system, for example data rates of the order which would be required to transmit a digital television signal in a conventional UHF television channel. Furthermore we have appreciated that a simple averaging of phase noise between FFT time frames is not appropriate to removal of the local oscillator noise.
We therefore propose a system in which the phase errors in a received signal are analysed at a receiver and corrected phase values derived.
BRIEF DESCRIPTION OF THE DRAWINGS
A block diagram of a proprosed receiver which includes this phase error analysis is shown in FIG. 3. In this the FFT of an OFDM signal is received by an antenna 2 and a radio frequency amplifier 4. The receiver signal is combined, in a mixer 6, with a frequency signal from a local oscillator 8. The combined signals then pass to an analogue to digital converter 10 which outputs a digital signal corresponding to a received FFT symbol. This is stored in a symbol period wave form store 12. Each stored symbol period is then fed, in turn, to an FFT block 14 which converts it to the frequency domain.
The FFT block 14 has outputs for the I and Q values of each of the carriers which were originally encoded at the transmitter. These pass to a converter 16 which derives the magnitude Z for each vector from the QAM diagram which they represent. These I and Q values also pass to the converter 18 which derives an angle for each vector in the QAM phase diagram and supplies this to a phase error analyser 20 as well as to a phase error compensator 22. The phase error analyser 20 removes phase noise due to the local oscillator 8 and the phase angles are then corrected in the phase error compensator to provide a corrected output 24.
Thus the system of FIG. 3 provides a receiver which is able to analyse and compensate for phase noise generated by the local oscillator and thus avoids the need for a more accurate (e.g. crystal) local oscillator thereby minimising the cost of receiving equipment.
Using such an arrangement should enable digital transmissions to be used for television signals such as IMTV signals in conventional television channels.
All the proposed techniques which could be used to discover the common value of phase error on all carriers due to the local oscillator, are based upon maximum likelihood decoding and/or majority logic decisions across all the carriers in (or possibly large groups of carriers from) the ensemble.
The first possibility is one based upon maximum likelihood techniques. This assumes one of a number of possibilities about the phase state of each carrier due to the modulation. For example, it could be assumed that the modulation might correspond to the modulation phase state nearest to the actual detected phase, or the nearest one or more states on either side. It should be noted that, in general, we would not expect thermal noise to have moved the modulation state from the original phase by more than the phase interval between the assumed state and the adjacent ones on either side; if this requirement were not met there would necessarily be a high bit-error rate due to random noise generated in channel, without consideration of any additional effects due to the local oscillator phase error.
We could then use majority voting and maximum likelihood decoding techniques to find which combination of possible modulation scenarios gives the lowest standard deviation to the average of the residual phase errors across all carriers. In this respect the existence of a standard deviation would be due to thermal noise effects and the mean error should be due to the instantaneous phase state of the local oscillator for that FFT frame. It may be necessary for reasons of practicality to group the majority voting process to many groups of relatively few carriers each, in what is in effect a first round of removing what might be called the "modulation ambiguity" from the error analysis. Without grouping even trying only the nearest phase on either side of the measured values for all of 512 carriers would involve assessing 2512 combinations.
A possible simpler technique is to avoid taking the source modulation into account for each individual carrier by assuming that, for random modulating data, the means of the phase angles of all carriers in the FFT frame will statistically be close to zero. Note that the addition system needs to be defined carefully with regard to modulo arithmetic, otherwise the mean of all the carriers which have near zero phase and a small amount of random error will be 180° rather than the expected 0° (e.g. half around 5° and half around 355°).
There extends from the above the possibility of arranging the data at the transmission source such that the sum of all carrier phases in the modulation frame will exactly equal some chosen value. This might require some carriers to be dedicated to the purpose of allowing the sum to be adjusted. Alternatively there could be a means of transmitting the value of the sum or mean value in a supplementary data channel.
There is still some difficulty in using a method based upon average phase. This difficulty will be described by way of an analogy to a clock face.
On a clock face the average position of the hour hand over many randomly taken readings of the time will suggest that the average position is that which points toward the 30 minute marker. This is because all the readings are defined as lying between zero and 59 minutes. Consider now that the clock face has no numerals and is round. Furthermore, the whole clock has been rotated on the wall by some angle equivalent to say `t` minutes. This error would not be apparent since all time readings would still be categorised into a range between zero and 59 mintures since there was no way of knowing that they should have been taken in the range t to t+59. (In our analogy we disregard the clue given by relationship sys the hour hand position to the minute hand).
If the clock face was square, the rotation of the clock face on the wall would have been obvious, with no ambiguity until the error value was equivalent to greater than, ±45 of rotation (i.e. ±12 minutes). The point to note is that the constellation diagram for a 64 QAM modulation system (FIG. 4) has a square outline rather like a square clock face. Superimposing the vector points for all the carriers (say 512 minimum and 8192 maximum) in one FFT frame will give a result which is highly likely to contain several of each possible phase/magnitude state all with a common phase error. This will make the rotated clock face effect easily recognisable on an oscilloscope type of display, provided that the all carrier result is viewed separately for each frame (by using some storage technique associated with the display device).
The problem is to make a software estimation of the error angle in a sitation where all the individual vector points are displaced by random amounts due to the effects of thermal noise in the channel. The necessary averaging of the noise effects would intuitively be applied by a human observer viewing the oscilloscope display. The recognition factor is within the envelope of vector magnitude plotted vertically against the phase angle of the vector plotted horizontally, for the combined result of all carriers in the ensemble from a single received FFT frame (FIG. 5).
Without local oscillator phase errors a 16, 64 or 256 QAM system would have peaks in the all-carrier magnitude/phase envelope at 45°, 135°, 225° and 315°. A partially populated or 256 or 1024 QAM system (FIG. 6) which might be used for a hierarchical modulation system would produce an envelope which also had minima at 0°, 90°, 180°and 270°. A pattern recognition technique can be used to discover the actual positions of the peaks and minima and hence derive the error value.
If greater than ±45° of phase error is expected the ambiguity free range can be increased up to ±180° by putting a unique feature into the constellation diagram. For example it could be deliberately arranged not to use any carriers within a particular 20° phase range and then to squeeze all the phases into the remaining 340°. This could be called a "sliced-pie modification" (FIG. 8) to the phase modulation system| An alternative to squeezing the phase states into the remaining space is to arrange the transmission so that the phase states corresponding to the pie-slice sector are never used (FIG. 7). The results in a magnitude phase distribution as shown in FIG. 9.
Rectangular, triangular and star-shaped outlines for constellation diagrams could also be contrived to provide particular levels of ambiguity range for detecting local oscillator phase errors in the way described above.
All of the foregoing assumes that the phase and frequency response variations between carriers are removed by standard equalisation procedures prior to attempting to evaluate the value of the local oscillator phase error from the combined effect of all carriers in a single phasor constellation diagram. These equalisation techniques are well established and typically make use of a training sequence transmitted from time to time in place of the data-carrying FFT symbol.

Claims (9)

I claim:
1. A receiver for an orthogonal frequency division multiplexed signal comprising:
means for receiving a Fourier transform (FT) representation of the signal,
inverse Fourier transform means for converting the FT to the frequency domain,
means for deriving magnitude and phase of each frequency domain component of the inverse FT,
means for analyzing the phase of the frequency domain component;
means for compensating for phase errors common to all carriers in one Fourier Transform symbol wherein the phase errors comprise phase noise from a local oscillator.
2. A receiver for an orthogonal frequency division multiplexed signal according to claim 1 in which the received signal comprises a television signal.
3. A receiver for an orthogonal frequency division multiplexed signal according to claim 1, in which the received signal comprises an FT of a quadrature amplitude modulation signal (QAM).
4. A receiver for an orthogonal frequency division multiplexed signal according to claim 1, in which the analyzing means operates by a maximum likelihood decoding technique.
5. A receiver for an orthogonal frequency division multiplexed signal according to claim 1, in which the analyzing means operates by a majority voting technique.
6. A receiver for an orthogonal frequency division multiplexed signal according to claim 1, in which the Fourier Transform is a Discrete Fourier Transform.
7. A receiver for an orthogonal frequency division multiplexed signal according to claim 1, in which the Fourier Transform is a Fast Fourier Transform.
8. A receiver for an orthogonal frequency division multiplexed signal comprising:
means for receiving a Fourier Transform (FT) representation of the signal:
inverse Fourier Transform means for converting the FT to the frequency domain;
means for deriving magnitude and phase of each frequency domain component of the inverse FT;
means for analyzing the phase of the frequency domain component by a maximum likelihood decoding technique; and
means for compensating phase errors common to all carriers in one Fourier Transform symbol.
9. A receiver for an orthogonal frequency division multiplexed signal comprising:
means for receiving a Fourier Transform (FT) representation of the signal:
inverse Fourier Transform means for converting the FT to the frequency domain;
means for deriving magnitude and phase of each frequency domain component of the inverse FT;
means for analyzing the phase of the frequency domain component by a majority voting technique; and
means for compensating for phase errors common to all carriers in one Fourier Transform symbol.
US08/549,831 1993-05-05 1994-05-05 Compensation for local oscillator errors in an OFDM receiver Expired - Lifetime US5838734A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9309212A GB2278257B (en) 1993-05-05 1993-05-05 Receiving equipment for digital transmissions
GB9309212 1993-05-05
PCT/GB1994/000962 WO1994026046A1 (en) 1993-05-05 1994-05-05 Compensation for local oscillator errors in an ofdm receiver

Publications (1)

Publication Number Publication Date
US5838734A true US5838734A (en) 1998-11-17

Family

ID=10734935

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/549,831 Expired - Lifetime US5838734A (en) 1993-05-05 1994-05-05 Compensation for local oscillator errors in an OFDM receiver

Country Status (6)

Country Link
US (1) US5838734A (en)
EP (1) EP0697153B1 (en)
JP (1) JPH08510603A (en)
DE (1) DE69420265T2 (en)
GB (1) GB2278257B (en)
WO (1) WO1994026046A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920598A (en) * 1997-05-02 1999-07-06 Sony Corporation Receiving apparatus and receiving method
US5987063A (en) * 1996-03-13 1999-11-16 Nokia Technology Gmbh Method for compensating channel errors in a digital data communication system
US6215819B1 (en) * 1997-05-02 2001-04-10 Sony Corporation Receiving apparatus and receiving method
GB2361607A (en) * 2000-04-17 2001-10-24 Mitsubishi Electric Inf Tech Compensating for local oscillator and sampling frequency offsets in an OFDM receiver
US20020097669A1 (en) * 2000-12-06 2002-07-25 Samsung Electronics Co., Ltd. Device for receiving OFDM signal, and method for restoring signal by channel estimation
US6618352B1 (en) 1998-05-26 2003-09-09 Matsushita Electric Industrial Co., Ltd. Modulator, demodulator, and transmission system for use in OFDM transmission
US20030206073A1 (en) * 2002-05-01 2003-11-06 Vladimir Kravtsov Method and system for synchronizing a quadrature amplitude modulation demodulator
WO2003098892A1 (en) * 2002-05-22 2003-11-27 Tandberg Television Asa Modified psk constellation to facilitate carrier recovery
US20040008802A1 (en) * 2002-07-10 2004-01-15 Noam Galperin System and method for pre-FFT OFDM fine synchronization
US20040037311A1 (en) * 2002-08-07 2004-02-26 Phonex Broadband Corporation Digital narrow band power line communication system
US6762991B1 (en) * 1999-03-19 2004-07-13 Kabushiki Kaisha Kaisha Signal generator and OFDM modulator synchronized to external device
US20040156441A1 (en) * 1997-09-22 2004-08-12 Miguel Peeters Method and arrangement to determine a clock timing error in a multi-carrier transmission system, and related synchronisation units
US6862262B1 (en) * 1999-09-13 2005-03-01 Matsushita Electric Industrial Co., Ltd. OFDM communication device and detecting method
US20050220220A1 (en) * 2002-03-19 2005-10-06 Thomas Licensing S.A. Slicing algorithm for multi-level modulation equalizing schemes
US6975585B1 (en) 2000-07-27 2005-12-13 Conexant Systems, Inc. Slotted synchronous frequency division multiplexing for multi-drop networks
US20070110175A1 (en) * 2004-05-04 2007-05-17 Stefan Fechtel Phase And Frequency Control Of An OFDM Receiver By Means Of Pilot Phase-Value Estimation
US20070218854A1 (en) * 2006-03-16 2007-09-20 Lawrence Sean J Multicarrier receiver and method with phase noise reduced signal
US7346135B1 (en) * 2002-02-13 2008-03-18 Marvell International, Ltd. Compensation for residual frequency offset, phase noise and sampling phase offset in wireless networks
US20110116562A1 (en) * 2009-11-18 2011-05-19 Wi-Lan, Inc. Digital Communications Receiver and Method of Estimating Residual Carrier Frequency Offset In A Received Signal
US8892465B2 (en) 2001-06-27 2014-11-18 Skky Incorporated Media delivery platform

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020848A1 (en) * 1994-01-28 1995-08-03 Philips Electronics N.V. Digital transmission system
FR2738095B1 (en) * 1995-08-21 1997-11-07 France Telecom METHOD AND DEVICE FOR DEMODULATING A MULTI-CARRIER SIGNAL TAKING INTO ACCOUNT AN ESTIMATION OF THE RESPONSE OF THE TRANSMISSION CHANNEL AND AN ESTIMATON OF A WHITE FREQUENCY DISTORTION
FR2738094B1 (en) * 1995-08-21 1997-09-26 France Telecom METHOD AND DEVICE FOR MODIFYING THE CONSISTENT DEMODULATION OF A MULTI-CARRIER SYSTEM FOR REDUCING THE BIAS INTRODUCED BY A WHITE FREQUENCY DISTORTION
JP3511798B2 (en) * 1996-05-08 2004-03-29 三菱電機株式会社 Digital broadcast receiver
JPH09307526A (en) * 1996-05-17 1997-11-28 Mitsubishi Electric Corp Digital broadcast receiver
JP3556047B2 (en) * 1996-05-22 2004-08-18 三菱電機株式会社 Digital broadcast receiver
GB9622728D0 (en) * 1996-10-31 1997-01-08 Discovision Ass Timing synchronization in a reciever employing orthogonal frequency division mutiplexing
US6359938B1 (en) 1996-10-31 2002-03-19 Discovision Associates Single chip VLSI implementation of a digital receiver employing orthogonal frequency division multiplexing
TW465234B (en) 1997-02-18 2001-11-21 Discovision Ass Single chip VLSI implementation of a digital receiver employing orthogonal frequency division multiplexing
EP0877526B1 (en) * 1997-05-02 2008-01-16 Lsi Logic Corporation Demodulating digital video broadcast signals
GB2325126B (en) * 1997-05-02 2002-06-19 Lsi Logic Corp Demodulating digital video broadcast signals
KR100230332B1 (en) * 1997-08-30 1999-11-15 윤종용 FFT window position recovery apparatus for OFDM system receiver and method thereof
JP3850452B2 (en) 1998-08-24 2006-11-29 三菱電機株式会社 Signal demodulating device and reception control method in the signal demodulating device
JP3773388B2 (en) * 2000-03-15 2006-05-10 三菱電機株式会社 Clock signal regeneration circuit and clock signal regeneration method
EP2757752B1 (en) * 2013-01-21 2019-03-13 Mitsubishi Electric R&D Centre Europe B.V. Data transmission and reception using a hierarchical modulation scheme with clustered constellation points
EP2757753B1 (en) * 2013-01-21 2019-08-21 Mitsubishi Electric R&D Centre Europe B.V. Data transmission and reception using a hierarchical modulation scheme with clustered constellation points

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0208872A1 (en) * 1985-07-15 1987-01-21 BBC Brown Boveri AG Method for the transmission of digital data
US4881241A (en) * 1988-02-24 1989-11-14 Centre National D'etudes Des Telecommunications Method and installation for digital communication, particularly between and toward moving vehicles
WO1990004893A1 (en) * 1988-10-21 1990-05-03 Thomson-Csf Emitter, transmission method and receiver
EP0407673A1 (en) * 1989-07-12 1991-01-16 International Business Machines Corporation Process of synchronizing a receiving modem after a training on data
WO1992005646A1 (en) * 1990-09-14 1992-04-02 National Transcommunications Limited Reception of orthogonal frequency division multiplexed signals
EP0499560A1 (en) * 1991-01-17 1992-08-19 France Telecom Channel estimation method for COFDM transmission system
EP0506400A2 (en) * 1991-03-27 1992-09-30 Matsushita Electric Industrial Co., Ltd. Signal transmission system
US5282222A (en) * 1992-03-31 1994-01-25 Michel Fattouche Method and apparatus for multiple access between transceivers in wireless communications using OFDM spread spectrum
US5369670A (en) * 1992-02-14 1994-11-29 Agt Limited Method and apparatus for demodulation of a signal transmitted over a fading channel using phase estimation
US5452288A (en) * 1992-04-08 1995-09-19 France Telecom Method for the transmission of digital data in radio paging systems and corresponding radio paging receiver

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0208872A1 (en) * 1985-07-15 1987-01-21 BBC Brown Boveri AG Method for the transmission of digital data
US4881241A (en) * 1988-02-24 1989-11-14 Centre National D'etudes Des Telecommunications Method and installation for digital communication, particularly between and toward moving vehicles
WO1990004893A1 (en) * 1988-10-21 1990-05-03 Thomson-Csf Emitter, transmission method and receiver
EP0407673A1 (en) * 1989-07-12 1991-01-16 International Business Machines Corporation Process of synchronizing a receiving modem after a training on data
WO1992005646A1 (en) * 1990-09-14 1992-04-02 National Transcommunications Limited Reception of orthogonal frequency division multiplexed signals
EP0499560A1 (en) * 1991-01-17 1992-08-19 France Telecom Channel estimation method for COFDM transmission system
EP0506400A2 (en) * 1991-03-27 1992-09-30 Matsushita Electric Industrial Co., Ltd. Signal transmission system
US5369670A (en) * 1992-02-14 1994-11-29 Agt Limited Method and apparatus for demodulation of a signal transmitted over a fading channel using phase estimation
US5282222A (en) * 1992-03-31 1994-01-25 Michel Fattouche Method and apparatus for multiple access between transceivers in wireless communications using OFDM spread spectrum
US5452288A (en) * 1992-04-08 1995-09-19 France Telecom Method for the transmission of digital data in radio paging systems and corresponding radio paging receiver

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
F. Daffara, et al "Maximum Likelihood Frequency Detectors for Orthogonal Multicarrier Systems", IEEE International Conference on Communications, '93, May 1993, Conference Record, vol. 2/3, pp. 766-771.
F. Daffara, et al Maximum Likelihood Frequency Detectors for Orthogonal Multicarrier Systems , IEEE International Conference on Communications, 93, May 1993, Conference Record, vol. 2/3, pp. 766 771. *
H. Nakamura, et al "Power Efficient High-Level Modulation for High-Capacity Digital Radio Systems", The Transactions of the Institute of Electronics, Information and Comm. Engineers, E72, 1989, No. 5, Toyko, Japan, pp. 633-639.
H. Nakamura, et al Power Efficient High Level Modulation for High Capacity Digital Radio Systems , The Transactions of the Institute of Electronics, Information and Comm. Engineers, E72, 1989, No. 5, Toyko, Japan, pp. 633 639. *

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5987063A (en) * 1996-03-13 1999-11-16 Nokia Technology Gmbh Method for compensating channel errors in a digital data communication system
US5920598A (en) * 1997-05-02 1999-07-06 Sony Corporation Receiving apparatus and receiving method
US6215819B1 (en) * 1997-05-02 2001-04-10 Sony Corporation Receiving apparatus and receiving method
US20040156441A1 (en) * 1997-09-22 2004-08-12 Miguel Peeters Method and arrangement to determine a clock timing error in a multi-carrier transmission system, and related synchronisation units
US6618352B1 (en) 1998-05-26 2003-09-09 Matsushita Electric Industrial Co., Ltd. Modulator, demodulator, and transmission system for use in OFDM transmission
US6944122B2 (en) 1998-05-26 2005-09-13 Matsushita Electric Industrial Co., Ltd. Modulator, demodulator, and transmission system for use in OFDM transmission
US20040008618A1 (en) * 1998-05-26 2004-01-15 Naganori Shirakata Modulator, demodulator, and transmission system for use in OFDM transmission
US6762991B1 (en) * 1999-03-19 2004-07-13 Kabushiki Kaisha Kaisha Signal generator and OFDM modulator synchronized to external device
US6862262B1 (en) * 1999-09-13 2005-03-01 Matsushita Electric Industrial Co., Ltd. OFDM communication device and detecting method
GB2361607A (en) * 2000-04-17 2001-10-24 Mitsubishi Electric Inf Tech Compensating for local oscillator and sampling frequency offsets in an OFDM receiver
US7116741B2 (en) 2000-04-17 2006-10-03 Mitsubishi Denki Kabushiki Kaisha Compensation of sampling frequency offset and local oscillator frequency offset in a OFDM receiver
US20020159534A1 (en) * 2000-04-17 2002-10-31 Steve Duncan Compensation of sampling frequency offset and local oscillator frequency offset in a ofdm receiver
US6975585B1 (en) 2000-07-27 2005-12-13 Conexant Systems, Inc. Slotted synchronous frequency division multiplexing for multi-drop networks
US7088672B2 (en) * 2000-12-06 2006-08-08 Samsung Electronics Co., Ltd. Device for receiving OFDM signal, and method for restoring signal by channel estimation
US20020097669A1 (en) * 2000-12-06 2002-07-25 Samsung Electronics Co., Ltd. Device for receiving OFDM signal, and method for restoring signal by channel estimation
US9203956B2 (en) 2001-06-27 2015-12-01 Skky Incorporated Media delivery platform
US9124718B2 (en) 2001-06-27 2015-09-01 Skky Incorporated Media delivery platform
US8908567B2 (en) 2001-06-27 2014-12-09 Skky Incorporated Media delivery platform
US8892465B2 (en) 2001-06-27 2014-11-18 Skky Incorporated Media delivery platform
US8972289B2 (en) 2001-06-27 2015-03-03 Skky Incorporated Media delivery platform
US9319516B2 (en) 2001-06-27 2016-04-19 Skky, Llc Media delivery platform
US9215310B2 (en) 2001-06-27 2015-12-15 Skky Incorporated Media delivery platform
US9203870B2 (en) 2001-06-27 2015-12-01 Skky Incorporated Media delivery platform
US9219810B2 (en) 2001-06-27 2015-12-22 Skky Incorporated Media delivery platform
US9037502B2 (en) 2001-06-27 2015-05-19 Skky Incorporated Media delivery platform
US9118693B2 (en) 2001-06-27 2015-08-25 Skky Incorporated Media delivery platform
US9832304B2 (en) 2001-06-27 2017-11-28 Skky, Llc Media delivery platform
US9124717B2 (en) 2001-06-27 2015-09-01 Skky Incorporated Media delivery platform
US7616719B1 (en) 2002-02-13 2009-11-10 Marvell International Ltd. Compensation for residual frequency offset, phase noise and sampling phase offset in wireless networks
US7346135B1 (en) * 2002-02-13 2008-03-18 Marvell International, Ltd. Compensation for residual frequency offset, phase noise and sampling phase offset in wireless networks
US9185013B1 (en) 2002-02-13 2015-11-10 Marvell International Ltd. Systems and methods for compensating a channel estimate for sampling phase jitter
US8223893B1 (en) 2002-02-13 2012-07-17 Marvell International Ltd. Compensation for residual frequency offset, phase noise and sampling phase offset in wireless networks
US9432276B1 (en) 2002-02-13 2016-08-30 Marvell International Ltd. Systems and methods for compensating a channel estimate for phase and sampling phase jitter
US8767879B1 (en) 2002-02-13 2014-07-01 Marvell International Ltd. Compensation for residual frequency offset, phase noise and sampling phase offset in wireless networks
US7894513B2 (en) * 2002-03-19 2011-02-22 Thomson Licensing Slicing algorithm for multi-level modulation equalizing schemes
US20050220220A1 (en) * 2002-03-19 2005-10-06 Thomas Licensing S.A. Slicing algorithm for multi-level modulation equalizing schemes
US6727772B2 (en) * 2002-05-01 2004-04-27 Intel Corporation Method and system for synchronizing a quadrature amplitude modulation demodulator
US20030206073A1 (en) * 2002-05-01 2003-11-06 Vladimir Kravtsov Method and system for synchronizing a quadrature amplitude modulation demodulator
WO2003098892A1 (en) * 2002-05-22 2003-11-27 Tandberg Television Asa Modified psk constellation to facilitate carrier recovery
US20070177686A1 (en) * 2002-07-10 2007-08-02 Noam Galperin System and Method for Pre-FFT OFDM Fine Synchronization
US20040008802A1 (en) * 2002-07-10 2004-01-15 Noam Galperin System and method for pre-FFT OFDM fine synchronization
US7447282B2 (en) 2002-07-10 2008-11-04 Zoran Corporation System and method for pre-FFT OFDM fine synchronization
US7346131B2 (en) 2002-07-10 2008-03-18 Zoran Corporation System and method for pre-FFT OFDM fine synchronization
US20040037311A1 (en) * 2002-08-07 2004-02-26 Phonex Broadband Corporation Digital narrow band power line communication system
US20070110175A1 (en) * 2004-05-04 2007-05-17 Stefan Fechtel Phase And Frequency Control Of An OFDM Receiver By Means Of Pilot Phase-Value Estimation
US8068567B2 (en) * 2004-05-04 2011-11-29 Infineon Technologies Ag Phase and frequency control of an ODFM receiver by means of pilot phase-value estimation
US20070218854A1 (en) * 2006-03-16 2007-09-20 Lawrence Sean J Multicarrier receiver and method with phase noise reduced signal
US7675999B2 (en) * 2006-03-16 2010-03-09 Intel Corporation Multicarrier receiver and method with phase noise reduced signal
US8498354B2 (en) 2009-11-18 2013-07-30 Wi-Lan, Inc. Digital communications receiver and method of estimating residual carrier frequency offset in a received signal
US20110116562A1 (en) * 2009-11-18 2011-05-19 Wi-Lan, Inc. Digital Communications Receiver and Method of Estimating Residual Carrier Frequency Offset In A Received Signal
US8265184B2 (en) * 2009-11-18 2012-09-11 Wi-Lan, Inc. Digital communications receiver and method of estimating residual carrier frequency offset in a received signal

Also Published As

Publication number Publication date
GB9309212D0 (en) 1993-06-16
GB2278257B (en) 1996-10-02
DE69420265T2 (en) 2000-01-13
EP0697153B1 (en) 1999-08-25
WO1994026046A1 (en) 1994-11-10
GB2278257A (en) 1994-11-23
EP0697153A1 (en) 1996-02-21
JPH08510603A (en) 1996-11-05
DE69420265D1 (en) 1999-09-30

Similar Documents

Publication Publication Date Title
US5838734A (en) Compensation for local oscillator errors in an OFDM receiver
US5946292A (en) Method and digital receiver for receiving orthogonal frequency-division multiplexed signals
EP0553841B1 (en) Method and apparatus for digital signal transmission using orthogonal frequency division multiplexing
AU646298B2 (en) Reception of orthogonal frequency division multiplexed signals
US5550812A (en) System for broadcasting and receiving digital data, receiver and transmitter for use in such system
US5343499A (en) Quadrature amplitude modulation synchronization method
US5687165A (en) Transmission system and receiver for orthogonal frequency-division multiplexing signals, having a frequency-synchronization circuit
US5371761A (en) Transmission system and receiver for this system
JP4012534B2 (en) Device to maintain signal level
US5724388A (en) Digital signal modulation analysis device
EP0786888B1 (en) Provision of a frequency reference in a multicarrier modulation system
US7158475B1 (en) Transmitting apparatus and method and provision medium
JP2001292124A (en) Reception device
EP1175056A1 (en) Many-carrier signal and transmission and reception thereof
US4949356A (en) PCM receiver with lock state control
JP3148090B2 (en) OFDM signal synchronous demodulator
GB2319703A (en) AFC in a DMT receiver
JP3541653B2 (en) Received signal correction system and orthogonal frequency division multiplexed signal transmission device
US5295160A (en) Apparatus for FM-modulation of digital signals
US20230041647A1 (en) System Clock Spur Reduction in OFDM Receiver
JPH1065644A (en) Ofdm signal transmitting method and ofdm signal receiving device
JP3592082B2 (en) Carrier synchronization device and carrier synchronization method for information transmission system
JP3592081B2 (en) Carrier synchronization device and carrier synchronization method for information transmission system
JP2003110524A (en) Ofdm receiver
JPH10242934A (en) Ofdm reference carrier reproducing device

Legal Events

Date Code Title Description
AS Assignment

Owner name: BRITISH BROADCASTING CORPORATION, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WRIGHT, DEREK THOMAS;REEL/FRAME:007873/0499

Effective date: 19951031

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

SULP Surcharge for late payment

Year of fee payment: 11